
Modifying Gibbs Sampling to Avoid Self Transitions

Radford M. Neal

University of Toronto, Dept. of Statistical Sciences

https://glizen.com/radfordneal

radford@utstat.utoronto.ca

26 March 2024

Abstract. Gibbs sampling is a popular Markov chain Monte Carlo method that samples from a distri-

bution on n state variables by repeatedly sampling from the conditional distribution of one variable, xi,

given the other variables, x−i, either choosing i randomly, or updating sequentially using some systematic

or random order for i. When xi is discrete, a Gibbs sampling update may choose a new value that is the

same as the old value. A theorem of Peskun indicates that, when i is chosen randomly, a reversible method

that reduces the probability of such self transitions, while increasing the probabilities of transitioning to

each of the other values, will decrease the asymptotic variance of estimates of expectations of functions of

the state. This has inspired two modified Gibbs sampling methods, originally due to Frigessi, Hwang, and

Younes and to Liu, though these do not always reduce self transitions to the minimum possible. Methods

that do reduce the probability of self transitions to the minimum, but do not satisfy the conditions of

Peskun’s theorem, have also been devised, by Suwa and Todo, some of which are reversible and some not.

I review and relate these past methods, and introduce a broader class of reversible methods, including that

of Frigessi, et al., based on what I call “antithetic modification”, which also reduce asymptotic variance

compared to Gibbs sampling, even when not satisfying the conditions of Peskun’s theorem. A modification

of one method in this class, which I denote as ZDNAM, reduces self transitions to the minimum possible,

while still always reducing asymptotic variance compared to Gibbs sampling. I introduce another new

class of non-reversible methods based on slice sampling that can also minimize self transition probabilities.

I provide explicit, efficient implementations of all these methods, and compare the performance of Gibbs

sampling and these modified Gibbs sampling methods in simulations of a 2D Potts model, a Bayesian

mixture model, and a belief network with unobserved variables. The assessments look at both random

selection of i, and several sequential update schemes. Sequential updates using methods that minimize

self transition probabilities are found to usually be superior, with ZDNAM often performing best. There

is evidence that the non-reversibility produced by sequential updating can be beneficial, but no consistent

benefit is seen from the individual updates being done by a non-reversible method.

1 Introduction

Gibbs sampling has for some time been widely used to sample from complex probability distributions in

statistics and machine learning (Geman and Geman 1984; Ackley, Hinton, and Sejnowski 1985; Gelfand

and Smith 1990; Thomas, Spiegelhalter, and Gilks 1992), and has been used in statistical physics (where

it is often called “Glauber dynamics” or the “heatbath” method) since long before that (see Landau and

Binder (2009) for a review). Gibbs sampling is easy to implement in many contexts, and has no adjustable

parameters that need tuning. In some applications, Gibbs sampling is used alone, but it is also often

combined with other Markov chain Monte Carlo (MCMC) methods, either by alternating between Gibbs

sampling and other updates, or by using Gibbs sampling for a subset of variables for which it is well-suited,

1

ar
X

iv
:2

40
3.

18
05

4v
1

 [
st

at
.C

O
]

 2
6

M
ar

 2
02

4

and other update methods for the remaining variables. Gibbs sampling or its modifications can also be a

component of more elaborate sampling schemes, such as those aimed at exploitation of parallel computation

(Tjelmeland 2004), or avoidance of backtracking (Neal 2004). Improvements to Gibbs sampling that require

no additional computational capabilities are therefore of considerable interest.

I will review several ways of modifying Gibbs sampling to reduce the probability that a transition leaves

the state the same as before, and introduce two new classes of such methods. Some of these methods

can be shown to always produce better estimates that Gibbs sampling when the variable to be updated is

chosen randomly, using results discussed in detail in a companion theoretical paper (Neal and Rosenthal

2023). I show empirically that these methods can also improve MCMC estimates in other contexts, such

as sequential updating of variables, and that the methods that reduce self transitions to the minimum

possible generally perform best.

2 Review of Gibbs Sampling (GS) and its implementation

Gibbs sampling and other Markov chain Monte Carlo methods aim to sample from some probability

distribution, π(x), on a state space, X , by repeatedly applying updates to the state, each of which leaves

π invariant, and eventually converge to π regardless of the initial state. Gibbs sampling is applicable when

the state is naturally seen as consisting of n variables, with X written as X1 × · · · × Xn. A single Gibbs

sampling update of the state x consists of choosing an index i ∈ {1, . . . , n} and then replacing xi with a

value drawn from the conditional distribution for xi given the remaining variables (denoted as x−i).

I will write P (x → x′) for the probability that the Markov chain transitions to state x′ when in state x.

When only variable i is updated, I will write P (xi → x′i|x−i) for the probability of transitioning from the

state with xi to that with x′i, given that the other variables have values x−i (which remain unchanged). For

Gibbs sampling, P (xi → x′i|x−i) is simply π(x′i|x−i). Note that when X or Xi is finite, it will sometimes

be convenient to put the transition probabilities in a matrix, P , with Puv = P (u → v).

A Gibbs sampling update for a single variable, i, is reversible, meaning that

π(xi|x−i)P (xi → x′i|x−i) = π(x′i|x−i)P (x′i → xi|x−i) (1)

as is easily seen by substituting P (xi → x′i|x−i) = π(x′i|x−i). This reversibility condition is sufficient (but

not necessary) for the update to leave the conditional distribution invariant :

π(x′i|x−i) =
∑
xi∈Xi

π(xi|x−i)P (xi → x′i|x−i) (2)

Since a Gibbs sampling update for variable i does not change x−i, invariance of this conditional distribution

implies invariance of π as a whole — that is,

π(x′) =
∑
x∈X

π(x)P (x → x′) (3)

One way to use single-variable Gibbs sampling updates to sample for the full state is to randomly select

a variable to update each iteration, from some distribution for i on {1, . . . , n}, here assumed uniform. This

produces a chain with the following transition probabilities:

P (x → x′) =
1

n

n∑
i=1

I(x′−i = x−i) π(x
′
i|x−i) (4)

2

(where I(·) is 1 if the enclosed condition is true, and 0 otherwise). These transitions are easily seen to also

be reversible, and hence leave π invariant. However, a disadvantage of this strategy is that some variables

might, by chance, not be updated for a considerable time.

A more common strategy is to perform Gibbs sampling updates for variables in sequence, with i going

from 1 to n. Since each such update leaves π invariant, the sequence of updates will also leave π invariant,

and hence be a suitable Markov chain Monte Carlo method. However, such a sequence of updates is not, in

general, reversible. It can be made reversible by, in each such series of updates, going through the variables

in an order that is randomly chosen for that series, from a distribution in which any update order and

its reverse are equally likely. Note, however, that this reversible version is not necessarily better than a

non-reversible sequence of updates.

For Gibbs sampling to be feasible, it must be possible to sample from the conditional distribution

π(xi|x−i) with a reasonable amount of computation. This is sometimes possible when xi is continuous, or

discrete with an infinite number of possible values, and has a form amenable to sampling. When xi takes

values from a finite set, that is not enormous, Gibbs sampling will be feasible as long as π(xi|x−i) can be

computed for all xi ∈ Xi, after which sampling a particular xi according to these probabilities can be done

in a straightforward way (Devroye 1986, page 85).

In some applications, such as the Potts model, π(xi|x−i) depends on x−i only through a function, e(x−i),

that has a small number of possible values. In this case, tables of conditional probabilities for xi for all

possible values of e(x−i) can be pre-computed once, before simulating the Markov chain. Using the “alias

method” (Devroye 1986, page 107), tables can then be pre-computed that allow for sampling from each of

these conditional distributions in time that is independent of the number of possible values for xi.

The probabilities used for Gibbs sampling will usually have a floating-point representation, and may

have been computed with some round-off error. I will assume that these probabilities are guaranteed to be

in the interval [0, 1], and that their sum is very close to one, but not necessarily exactly one. This will be

the case when, as often, these probabilities are first computed in unnormalized form (guaranteed to be non-

negative, and not all zero), and then are all divided by their (possibly inexact) sum. I assume the methods

for sampling discussed above can handle probabilities with these characteristics. The detailed algorithms

for modified Gibbs sampling that I present here will in turn produce such transition probabilities.

Intuitively, it seems that Gibbs sampling can be inefficient, since it is quite possible that when updating

variable i by sampling from π(xi|x−i), the new value, x′i, will be the same as the current value, xi. Since

we need the value of the state to move around in order to explore the distribution, this seems sub-optimal.

Such self transitions are sometimes necessary. If some value for xi has conditional probability greater

than 1/2, this value must sometimes remain unchanged if its frequency of occurrence is to match its

probability. In particular, if some value has probability p > 1/2, the probability that a transition leaves

this value unchanged must be at least (2p−1) / p > 0 for the transitions to leave the distribution invariant.1

This paper looks at several methods for modifying Gibbs sampling to reduce the probability of self

transitions. Some of these methods are reversible, and never decrease non-self transition probabilities.

These methods can be justified as being superior to Gibbs sampling by a theorem of Peskun (1973)

showing that for such chains the intuition that self transitions are inefficient is correct. Some other

reversible methods reduce self transition probabilities and also reduce some non-self transition probabilities,

so Peskun’s theorem does not apply, but they can be justified as improvements to Gibbs sampling using

1Let u be the value with π(u) = p > 1/2. Then invariance requires that p =
∑

v π(v)P (v → u) = pP (u → u) +∑
v ̸=u π(v)P (v → u) ≤ pP (u → u) +

∑
v ̸=u π(v) = pP (u → u) + 1−p, from which it follows that P (u → u) ≥ (2p−1) / p.

3

other theoretical tools (Neal and Rosenthal 2023). Theoretical analysis of non-reversible methods is more

difficult, but as will be seen empirically, some non-reversible methods often perform as well or better than

reversible methods. However, the reversible ZDNAM method that I introduce here is a good overall choice,

when employed with a non-reversible sequential updating schedule.

3 Asymptotic variance, Peskun-dominance, and efficiency-dominance

One fundamental measure of efficiency of an MCMC method designed to sample from a distribution π is

the asymptotic variance of an estimate of the expectation with respect to π of some function f , found by

averaging over states from the chain:

v(f, P) = lim
K→∞

K Var
(1

K

K∑
t=1

f(x(t))
)

(5)

Here, x(t) is the state after t transitions of the chain with transitions P , initialized at some state x(0). When

some large number, K, of transitions are simulated, we expect the variance of the average, (1/K)
∑

f(x(t)),

which is an estimate for the expectation of f , to be approximately v(f, P)/K. (In practice, the early part of

a chain is often discarded when estimating expectations, but this refinement does not affect the asymptotic

variance, and will be ignored here.)

Lowering asymptotic variance is an important goal in designing a Markov chain sampling method, but

other criteria such as speed of convergence to π are also important, and can conflict with minimizing

asymptotic variance.2 One should note in particular that independent sampling from π — that is, using

transition probabilities P (x → x′) = π(x′) — results in immediate convergence, but does not minimize

asymptotic variance, since lower variance can be obtained by “antithetic” sampling, in which the transitions

induce negative correlations between f(x(t)) and f(x(t+δ)) for some lags δ.

It is not feasible to actually minimize asymptotic variance for the problems with an enormous state space

for which MCMC is used, just as it is not practical to directly sample from a distribution on such a state

space. But we can try to improve the asymptotic variance of less direct methods, such as Gibbs sampling.

For this, we need to know that an improvement to a component of the method — such as sampling a new

value for a single variable, with other variables left unchanged — will result in an improvement to the

overall method. This is a main topic of a companion paper (Neal and Rosenthal 2023).

Previous work in this area has utilized a theorem of Peskun (1973), who showed that if two chains with

transitions P and P ∗ are both reversible with respect to π, and P ∗(x → x′) ≥ P (x → x′) for all x ̸= x′,

then v(f, P ∗) ≤ v(f, P), for all functions f .

In other words, if a reversible chain is modified to reduce the probability of some self transitions, and

hence necessarily increase the probability of some non-self transitions, while not reducing the probability

of any other non-self transitions, this will not increase the asymptotic variance of the estimate for the

expectation of any function. Typically, such a modification will reduce asymptotic variance (with some

exceptions, such as when the function is constant, so the variance of the estimate is always zero).

I will say that P ∗ Peksun-dominates P if P ∗(x → x′) ≥ P (x → x′) for all x ̸= x′, and that P ∗

efficiency-dominates P if the asymptotic variance of the estimate of the expectation of every function is

2As an extreme example, it is always easy to define and implement a chain that has zero asymptotic variance for estimating
the expectation of any function with respect to the uniform distribution on some easily enumerable set, by simply having the
chain cycle deterministically through all elements of this set. But such a chain is of no practical use, since it gives accurate
estimates only after having visited every value, which is impractical for any problem where one would consider using MCMC.
However, examples of this sort are not possible with reversible chains, which cannot be periodic with period greater than two.

4

at least as small when using P ∗ as when using P . Peksun’s theorem then says that, for reversible chains,

Peksun dominance implies efficiency dominance.

Note that Peskun dominance is only a partial ordering — it is possible for two Markov chains to both be

reversible with respect to π but for neither to Peskun-dominate the other, since for each chain there is some

non-self transition probability that is larger than that for the other chain. Similarly, efficiency-dominance

is a partial order over reversible chains (Neal and Rosenthal 2023, Theorem 10), but not a complete order.

Furthermore, when neither of two chains Peskun-dominates (or efficiency-dominates) the other, it may be

that no other reversible chain Peskun-dominates (or efficiency-dominates) both of these chains.3

Suppose we modify the Gibbs sampling update for variable xi, for some particular values of the other

variables, say when x−i = x̄−i, in a way that Peskun-dominates the Gibbs sampling update — that is, the

probability of changing xi to any value other than its current value is greater after the modification than

it would be for Gibbs sampling — while also being reversible with respect to the conditional distribution

for xi. It is easy to see that a method that randomly selects a variable to update, and uses this modified

method when variable i is selected and x−i = x̄−i, will Peskun dominate Gibbs sampling with random

selection of the variable to update. The probability of moving from x to x′ will be at least as large when

variable xi is updated and x−i = x̄−i, and the same otherwise. Accordingly, by Peskun’s theorem, the

overall method using the modified update will efficiency-dominate Gibbs sampling.

We can go on to modify the updates for variable i with other values for x−i, and to modify updates

for variables other than i. If each of these local modifications Peskun-dominates Gibbs sampling, then

again the overall method (with random selection of variable to update) will Peskun-dominate, and hence

also efficiency-dominate, Gibbs sampling. Peskun dominance thus provides a way of showing that local

efficiency improvements, to updates of single variables, lead to improvement in the efficiency of the overall

method — at least, when the variable to be updated is chosen randomly.

However, the converse of Peskun’s theorem is not true. As I will discuss later, it is possible, with

reversible P ∗ and P , for P ∗ to efficiency-dominate P even though some non-self transition probabilities

are greater for P than for P ∗. This raises the question of whether a modification to an update for a single

variable that efficiency-dominates Gibbs sampling, but does not Peskun-dominate it, will always result in

an efficiency improvement when used in an overall method that randomly selects a variable to update. A

companion paper (Neal and Rosenthal 2023) shows that this is true, as will be discussed further later.

Peskun’s theorem does not apply if the variables are updated by a sequential scan for i = 1, . . . n. One

reason is that this (typically) results in a non-reversible chain (taking a full scan to be one iteration of the

chain). If the order for updating variables is randomly selected for each iteration, with any order and its

reverse equally probable, the resulting chain will be reversible, but Peskun’s theorem will still not apply,

since it is possible that a sequence of modified Gibbs sampling updates that individually Peskun-dominate

3Consider two chains with transition probabilities shown below, both reversible with respect to the uniform distribution
on {1, 2, 3, 4}: 

0 0 1
2

1
2

0 0 1
2

1
2

1
2

1
2

0 0
1
2

1
2

0 0




0 1
2

0 1
2

1
2

0 1
2

0

0 1
2

0 1
2

1
2

0 1
2

0


The first chain has zero asymptotic variance when estimating the expectation for the function I(x ∈ {1, 2}), but not for the
function I(x ∈ {1, 3}), while the reverse is true for the second chain. No reversible chain has zero asymptotic variance for
both functions (a consequence of the fact that periodic reversible chains must have period two), and hence no reversible chain
can Peskun-dominate, or efficiency-dominate, both.

5

the corresponding unmodified Gibbs sampling update will have lower probability of some transition to a

different state, even when this does not happen for any single modified Gibbs sampling update.4

It is therefore only when the variable to be updated is selected randomly that Peskun’s theorem provides

a guarantee that modifying Gibbs sampling to increase the probabilities for all non-self transitions will

improve asymptotic variance. When variables are updated in sequence, as is the more common practice,

Peskun’s theorem provides no guarantee that the modified method will be better. One cannot say in

general whether updating variables sequentially is better or worse than updating them at random, as is

illustrated by He, et al. (2016). However, sequential updating, producing a non-reversible chain, seems to

usually work better in practical applications, which reduces the practical relevance of Peskun’s theorem.

Nevertheless, Peskun’s theorem provides a theoretical motivation for looking at ways of reducing self

transitions in Gibbs sampling. I will next describe one method of reducing self transitions for which

Peskun’s theorem applies, based on a Metropolis-Hastings modification of Gibbs sampling. I will then

introduce a more general framework for improving the efficiency of Gibbs sampling, and discuss several

reversible methods derived in this way. For some of these, Peskun’s theorem does not apply, but they can

still be shown to efficiency-dominate Gibbs sampling.

4 The Metropolis-Hastings Gibbs Sampling (MHGS) method

Gibbs sampling can be seen as an instance of the Metropolis-Hastings algorithm (Hastings 1970), in which

transition probabilities from a state u are defined in terms of probabilities, Q(u → v), for proposing to

move from u to a state v. After sampling a v according to these probabilities, v is accepted as the new

state with probability

min

(
1,

π(v)Q(v → u)

π(u)Q(u → v)

)
(6)

If v is not accepted, the new state is the same as the old state, u. This transition is reversible with respect

to π, and hence leaves π invariant.

A Gibbs sampling update for component i of state x is obtained by proposing a new value for the state

according to the conditional distribution for xi given the other components of the state. That is,

Q(x → x′) = I(x′−i = x−i)π(x
′
i|x−i) (7)

This proposal is always accepted, since for any proposed x′,

min

(
1,

π(x′)Q(x′ → x)

π(x)Q(x → x′)

)
= min

(
1,

π(x′)π(xi|x′−i)

π(x)π(x′i|x−i)

)
= min

(
1,

π(x′−i)π(x
′
i|x′−i)π(xi|x′−i)

π(x−i)π(xi|x−i)π(x′i|x−i)

)
= 1 (8)

Liu (1996) introduced a method of modifying such a Gibbs sampling update by always proposing a

value for xi that is different from the current value, with probabilities proportional to the conditional

probabilities given x−i. That is, the proposal probabilities are

Q(x → x′) = I(x′−i = x−i) I(x
′
i ̸= xi)

π(x′i|x−i)

1− π(xi|x−i)
(9)

4For example, consider when π is uniform over X = {0, 1} × {0, 1}. Gibbs sampling updates for both variables give equal
probability to the values 0 and 1, and when applied in either order, the probability of transitioning to any of the four possible
values is 1/4. Both Gibbs sampling updates can be modified so that the value is changed with probability 1, and viewed
individually, these modifications satisfy the condition for Peskun’s theorem. But when applied sequentially, in any order, even
one chosen at random, these modified updates have probability 0 of moving from state (0, 0) to state (0, 1) or to state (1, 0),
compared to probability 1/4 for the unmodified updates. So Peskun’s theorem does not apply.

6


1
10

2
10

3
10

4
10

1
10

2
10

3
10

4
10

1
10

2
10

3
10

4
10

1
10

2
10

3
10

4
10

 →


0 2

9
3
9

4
9

1
9

1
72

3
8

4
8

1
9

2
8

34
504

4
7

1
9

2
8

3
7

106
504


Figure 1: An illustration of how MHGS modifies Gibbs sampling transition probabilities. The variable
updated in this example has four possible values, whose conditional probabilities given the current values
of other variables are 1/10, 2/10, 3/10, and 4/10.

The acceptance probability for such a proposal is

min

(
1,

π(x′)π(xi|x′−i) / (1− π(x′i|x′−i))

π(x)π(x′i|x−i) / (1− π(xi|x−i))

)
= min

(
1,

π(x′−i)π(x
′
i|x′−i)π(xi|x′−i) (1− π(xi|x−i)

π(x−i)π(xi|x−i)π(x′i|x−i) (1− π(x′i|x′−i)

)
(10)

= min

(
1,

1− π(xi|x−i)

1− π(x′i|x−i)

)
(11)

Note that this is 1 whenever π(x′i|x−i) ≥ π(xi|x−i).

These proposal and acceptance probabilities give the following modified non-self transition probabilities:

when x′ ̸= x, P ∗(x → x′) = I(x′−i = x−i)
π(x′i|x−i)

1− π(xi|x−i)
min

(
1,

1− π(xi|x−i)

1− π(x′i|x−i)

)
(12)

= I(x′−i = x−i) min

(
π(x′i|x−i)

1− π(xi|x−i)
,

π(x′i|x−i)

1− π(x′i|x−i)

)
(13)

The modified self transition probability, P ∗(x → x), can be found as one minus the sum of non-self

transition probabilities from x. The self transition probability also equals the total probability of proposing

a value that is not accepted:

P ∗(x → x) =
∑
x′
i

I
(
π(x′i|x−i) < π(xi|x−i

) π(x′i|x−i)

1− π(xi|x−i)

(
1− 1− π(xi|x−i)

1− π(x′i|x−i)

)
(14)

It follows that the self transition probability is zero when xi has minimal conditional probability, since all

proposals from such a value are accepted. So at least one modified self transition probability is zero.

I will refer to this method as Metropolis-Hastings Gibbs Sampling (MHGS). Figure 1 shows an example

of how MHGS modifies Gibbs sampling transition probabilities.

As Liu notes, the non-self transition probabilities of equation (13) are clearly greater than those for

Gibbs sampling, which are π(x′i|x−i), so Peskun’s theorem guarantees that the asymptotic variance of

estimates found using MHGS will be lower than when using GS, when i is selected randomly.

Liu’s short paper does not discuss how to implement this method, but there are two obvious ways.

First, transitions can be simulated by computing all non-self transition probabilities from the current

value of the state using equation (13), then finding the self transition probability as one minus the sum of

these.5 A new value can then be sampled according to these probabilities, as discussed earlier for Gibbs

sampling. This takes expected time asymptotically proportional to m, the number of possible values for xi,

5Using equation (14) is not recommended, as it may have high relative error when 1− π(xi|x−i) is close to zero.

7

Input: Gibbs sampling probabilities, π(i), for i = 1, . . . ,m
The current state value, k, in {1, . . . ,m}

Output: MHGS transition probabilities, p(i), for i = 1, . . . ,m

If 1− π(i) ≤ 0 for any i:

Avoid division by zero by reverting to Gibbs sampling when a
probability is 1 (or perhaps very close to 1)

For i = 1, . . . ,m: Set p(i) to π(i)

Else:

Find non-self transition probabilities, and their sum

Set s to 0

For i = 1, . . . ,m:
If i ̸= k:

Set p(i) to min (1, π(i) / (1− π(k)), π(i) / (1− π(i)))
The min with 1 above guards against error from rounding

Add p(i) to s

Set the self transition probability, guarding against round-off error producing
a negative probability (or change 1−s < 0 to 1−s < ϵ for some small ϵ to
avoid producing tiny probabilities that should be exactly zero)

If 1−s < 0:
Set p(k) to 0

Else:
Set p(k) to 1−s

Algorithm 1: Computing MHGS transition probabilities, based on equation (13). Here, the algorithm
is phrased in terms of a distribution, π, for a single variable, but in practice, it will be applied to the
conditional distribution for one variable given values of the others, as would be sampled for unmodified
Gibbs sampling.

if probabilities need to be computed for each update, or takes constant time if probabilities for all possible

conditional distributions can be pre-computed, and the alias method used. Algorithm 1 shows in detail how

the needed transitions probabilities can be computed, including some precautions for avoiding numerical

issues.

Alternatively, a transition can be simulated by first sampling a proposal from the distribution defined

by equation (9), and then accepting this proposal with the probability given by equation (11), or instead

rejecting it and retaining the current value.6 When Gibbs sampling probabilities have no useful structure,

this procedure also takes time asymptotically proportional to m, since that much time is needed for the

computation of m−1 proposal probabilities and their use in sampling of a proposal.

Sometimes, however, the conditional probabilities given x−i have a form that allows for fast sampling,

which can be modified to sample a proposal according to equation (9). One possibility is when sampling

can be done by inverting the cumulative distribution function. For example, suppose the Gibbs sampling

6Note that rather than use equation (9) as written, it may be better to replace the expression π(x′
i|x−i) / (1− π(xi|x−i))

with π(x′
i|x−i) /

∑
x′
i ̸=xi

π(x′
i|x−i), in order to mitigate effects of round-off error when π(xi|x−i) is close to 1.

8

probabilities are geometric(θ) on {1, . . . ,m}, with cumulative distribution function

F (a) = P (x′i ≤ a) =
1− (1− θ)a

1− (1− θ)m
(15)

Inverting the continuous form of this cumulative distribution function, in which a can be any non-negative

real, allows sampling from this distribution in constant time, independent of m (Devroye 1986, page 87).

For this example,

F−1(u) =
log(1− u(1− (1− θ)m))

log(1− θ)
(16)

and we can generate a value as ⌈F−1(U)⌉, where U is drawn from the uniform distribution on (0, 1).

This efficient simulation method can be adapted to MHGS. Given a current value of xi, the cumulative

distribution function of a proposal x′i from equation (9) will be

Fprop(a) =



F (a)

1− F (xi) + F (xi−1)
if a < xi−1

F (xi−1)

1− F (xi) + F (xi−1)
if xi−1 ≤ a < xi

F (a)− F (xi) + F (xi−1)

1− F (xi) + F (xi−1)
if xi ≤ a

(17)

The corresponding inverse cumulative distribution function is

F−1
prop(u) =

 F−1(u (1− F (xi) + F (xi−1)) if this is less than xi−1

F−1(F (xi)− F (xi−1) + u (1− F (xi) + F (xi−1))) otherwise
(18)

We can use this to generate a proposal as ⌈F−1
prop(U)⌉, where U is uniform on (0, 1), and then accept or

reject it according to equation (11).

Note that with this technique there is no problem with letting m go to infinity, to obtain a method that

works for a variable with a distribution on the positive integers.

More generally, if any method for efficient Gibbs sampling is available (including for a variable with a

countably infinite number of possible values), it can be adapted to sample from the proposal distribution

of equation (9) by sampling repeatedly until a value for x′i different from xi is obtained, which can then be

accepted or rejected according to equation (11). However, if the current value, xi, is such that π(xi|x−i)

is close to one, a great many repetitions might be required before a different value is obtained. This

inefficiency can be avoided by reverting to doing a standard Gibbs sampling update if the maximum value

of π(xi|x−i) for all possible xi is close to one, which preserves reversibility since this criterion does not

depend on the current value. (Of course, this will slightly increase the probability of a self transition.)

If the value with maximum probability is not easily identifiable, one can use the following approach:

First sample a value as for Gibbs sampling, then test whether the probability of this value is in [ϵ, 1− ϵ],

for some ϵ close to zero. If so, repeatedly sample (discarding the value just tested) until a value different

from the current value is found, knowing that there is no problematic value with probability greater than

1 − ϵ. If the probability of the value tested is outside [ϵ, 1 − ϵ], instead revert to Gibbs sampling (again,

discarding the value used for the test). The probability of reverting to Gibbs sampling if no value has

probability greater than 1− ϵ will be less than mϵ.

9

5 Efficiency improvement by Antithetic Modification (AM)

A wide class of methods for modifying Gibbs sampling can be formulated as applying a sequence of antithetic

modifications to the original Gibbs sampling transition matrix. All these modifications can be shown to

produce a chain that efficiency-dominates Gibbs sampling, even though many do not Peskun-dominate it.

The concept of an antithetic modification can be applied to any transition probabilities, P , on a finite

state space, X , that are reversible with respect to some distribution, π, on X . Two disjoint subsets of

X , A and B, with π(A) and π(B) non-zero, are specified, along with a value δ > 0 that controls the

magnitude of the modification, which must satisfy P (a → a′) ≥ δπ(a′)π(B)/π(A) for all a, a′ ∈ A, and

P (b → b′) ≥ δπ(b′)π(A)/π(B) for all b, b′ ∈ B.

The modification will alter only transitions to and from values that are both in A ∪ B, with modified

transition probabilities, P ∗, as follows:

P ∗(a → a′) = P (a → a′) − δπ(a′)π(B)/π(A), if a ∈ A and a′ ∈ A
P ∗(a → b′) = P (a → b′) + δπ(b′), if a ∈ A and b′ ∈ B
P ∗(b → b′) = P (b → b′) − δπ(b′)π(A)/π(B), if b ∈ B and b′ ∈ B
P ∗(b → a′) = P (b → a′) + δπ(a′), if b ∈ B and a′ ∈ A
P ∗(u → v′) = P (u → v′), if u /∈ A ∪ B or v′ /∈ A ∪ B

(19)

One can easily verify that the modified transitions probabilities from each value are non-negative and sum

to one, and that these transition probabilities are reversible with respect to π.

If P ∗ can be derived from P by applying a sequence of zero or more antithetic modifications, then I

will say that P ∗ is antithetically derivable from P . It is easy to see that this is a partial order, since the

only non-trivial condition for this is antisymmetry, which holds because an antithetic modification always

reduces some self transition probabilities, and never increases any self transition probabilities, so it is not

possible for P and Q to be antithetically derivable from each other unless they are equal.

Figure 2 shows an example in which three antithetic modifications are applied starting from an initial

transition probability matrix with all rows equal to π.

For any P ∗ and P that are reversible with respect to π, if P ∗ Peskun-dominates P , then P ∗

must also be antithetically derivable from P by a sequence of modifications in which A and B are

singleton sets. If P ∗(a → b) > P (a → b), an antithetic modification with A = {a}, B = {b}, and

δ = (P ∗(a → b)− P (a → b)) / π(b) will change the transition probabilities between a and b from those

of P to those of P ∗, without altering transition probabilities involving values other than a and b. By a

sequence of such modifications, P ∗ is antithetically derivable from P .

However, an antithetic modification in which A and/or B have more than one element can change P

to a P ∗ that efficiency-dominates P , but does not Peskun-dominate it. The first modification in Figure 2

provides an example: There, P (2 → 3) decreases from 1/6 to 1/15 after the first modification with A = {1}
and B = {2, 3}, while P (1 → 2) increases from 1/4 to 3/8, so neither the original nor the modified transition

matrix Peskun-dominates the other.

However, whenever P ∗ is antithetically derivable from P it does efficiency-dominate P . This follows

from Theorem 9 of the companion paper (Neal and Rosenthal 2023), which states that if P and Q are

reversible irreducible Markov chains on a finite state space, then P efficiency-dominates Q if and only if

the matrix Q− P has only non-negative eigenvalues. (See also (Mira and Geyer 1999)).

10

P =


1
2

1
4

1
6

1
12

1
2

1
4

1
6

1
12

1
2

1
4

1
6

1
12

1
2

1
4

1
6

1
12

 →


7
24

3
8

3
12

1
12

3
4

1
10

1
15

1
12

3
4

1
10

1
15

1
12

1
2

1
4

1
6

1
12

 →


7
24

3
8

3
12

1
12

3
4

1
10

1
15

1
12

3
4

1
10

1
30

7
60

1
2

1
4

7
30

1
60

 →


283
1176

23
56

23
84

11
147

23
28

1
20

1
30

2
21

23
28

1
20 0 27

210
22
49

2
7

27
105

6
735

 = P ∗

A = {1}, B = {2, 3} A = {3}, B = {4} A = {1, 4}, B = {2, 3}
δ = 1

2 δ = 2
5 δ = 1

7

Figure 2: Changes to a transition probability matrix through three successive antithetic modifications. On
the left, P has all rows equal to π. Three antithetic modifications are then applied, with A, B, and δ as
shown, to obtain P ∗. For each modification, probabilities that change are shown in bold.

For a general antithetic modification, as defined by (19), the difference matrix, P − P ∗, will be zero

except for the submatrix corresponding to states in A ∪ B. If we order states in A = {a1, a2, . . .} before

those in B = {b1, b2, . . .}, with any other states following, P − P ∗ will look like this:

P − P ∗ =



δπ(a1)
π(B)
π(A) δπ(a2)

π(B)
π(A) · · · −δπ(b1) −δπ(b2) · · · 0 · · ·

δπ(a1)
π(B)
π(A) δπ(a2)

π(B)
π(A) · · · −δπ(b1) −δπ(b2) · · · 0 · · ·

...
...

...
...

...

−δπ(a1) −δπ(a2) · · · δπ(b1)
π(A)
π(B) δπ(b2)

π(A)
π(B) · · · 0 · · ·

−δπ(a1) −δπ(a2) · · · δπ(b1)
π(A)
π(B) δπ(b2)

π(A)
π(B) · · · 0 · · ·

...
...

...
...

...

0 0 · · · 0 0 · · · 0 · · ·
...

...
...

...
...



(20)

This is a rank-one matrix, since all rows are equal to the first row, or equal the first row times −π(A)/π(B),
or are zero. If we let D be the diagonal matrix with entries π(a1), π(a2), . . . , π(b1), π(b2), . . . , 0, . . . on its

diagonal, and let

v =

[√
π(B)
π(A)

√
π(B)
π(A)

· · · −

√
π(A)

π(B)
−

√
π(A)

π(B)
· · · 0 · · ·

]T

(21)

then we can write

P − P ∗ = δ v vTD (22)

Since vTDv =
∑

a∈A π(a)π(B)/π(A) +
∑

b∈B π(b)π(A)/π(B) = π(A)+π(B), we see that (P −P ∗) v =

δ (π(A)+π(B)) v, so δ (π(A)+π(B)) is an eigenvalue of P −P ∗, with all other eigenvalues being zero (since

P −P ∗ is of rank one). Since this eigenvalue is positive, Theorem 9 from (Neal and Rosenthal 2023) shows

that P ∗ efficiency-dominates P .

Since efficiency-dominance is transitive, it follows that the result of any sequence of antithetic modifica-

tions will efficiency-dominate the original transition matrix.

11

A wide variety of improved methods can be derived using antithetic modifications. In this paper, I will

focus on generic methods, in which nothing is known that distinguishes one state from another, except for

their probabilities under π. However, antithetic modifications can also be designed in a way that exploits

some known structure of the state space as a guide to how to choose the subsets A and B.

For example, suppose it is beneficial for the value chosen from X = {1, . . . ,m} to be far from the current

value. If m = 2j , we can try to flip from the current value to one in the other half of X , which will on

average be more distant than a value chosen from all of X . Failing that, we could try to flip from the

current value to one in the other quarter of the same half, and so forth. To do this, we can modify the

probabilities for independent sampling (all rows equal to π) by applying an antithetic modification with

A = {1, . . . , 2j−1} and B = {2j−1+ 1, . . . , 2j}. If π(A) ≥ π(B), we use δ = π(B)/π(A), which results in

all transition probabilities amongst values in B being zero. Otherwise, we use δ = π(A)/π(B), and all

transition probabilities amongst values in A will be zero. We then apply another antithetic modification,

in the first case using A = {1, . . . , 2j−2} and B = {2j−2+ 1, . . . , 2j−1}, which partitions the previous A,

and in the second case using A = {2j−1+1, . . . , 2j−1+2j−2} and B = {2j−1+2j−2+1, 2j}, partitioning the

previous B, in both cases with δ chosen to make transition probabilities within either A or B zero. This

continues until A and B are singleton sets.

Here is an example with m = 4:
1
4

3
10

1
5

1
4

1
4

3
10

1
5

1
4

1
4

3
10

1
5

1
4

1
4

3
10

1
5

1
4

 →


10
121

12
121

4
11

5
11

10
121

12
121

4
11

5
11

5
11

6
11 0 0

5
11

6
11 0 0

 →


0 2

11
4
11

5
11

5
33

1
33

4
11

5
11

5
11

6
11 0 0

5
11

6
11 0 0

 (23)

Note that only the row of this matrix for transition probabilities from the current value need be computed.

This procedure is equivalent to one used for the No-U-Turn Sampler by Hoffman and Gelman (2014,

Section 3.1.2) to select from amongst states found by simulating a trajectory using Hamiltonian dynamics.

When the goal is to improve Gibbs sampling, antithetic modifications can be applied to the Gibbs

sampling transition matrix for updating a particular variable, when other variables have particular values.

When the variable to be updated is selected randomly, each such modification will improve the efficiency

of the overall chain, and hence so will a set of antithetic modifications for updates to every variable, for

every combination of values for other variables.

To see this is detail, suppose that there are two state variables, so X = X1 × X2, with X1 = {1, 2} and

X2 = {1, 2, 3}, and that π((1, 1)) = 1/8, π((1, 2)) = 1/4, π((1, 3)) = 1/8, π((2, 1)) = 1/4, π((2, 2)) = 1/8,

and π((2, 3)) = 1/8. With states ordered lexicographically (i.e., with X1 changing more slowly), the

transition matrices for Gibbs sampling updates of the first and second variables will be

P1 =



1/3 0 0 2/3 0 0

0 2/3 0 0 1/3 0

0 0 1/2 0 0 1/2

1/3 0 0 2/3 0 0

0 2/3 0 0 1/3 0

0 0 1/2 0 0 1/2


, P2 =



1/4 1/2 1/4 0 0 0

1/4 1/2 1/4 0 0 0

1/4 1/2 1/4 0 0 0

0 0 0 1/2 1/4 1/4

0 0 0 1/2 1/4 1/4

0 0 0 1/2 1/4 1/4


(24)

State order: (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (1,1) (1,2) (1,3) (2,1) (2,2) (2,3)

12

If the order of states were changed so that X2 changed more slowly, P1 would change to

P̃1 =



1/3 2/3 0 0 0 0

1/3 2/3 0 0 0 0

0 0 2/3 1/3 0 0

0 0 2/3 1/3 0 0

0 0 0 0 1/2 1/2

0 0 0 0 1/2 1/2


(25)

State order: (1,1) (2,1) (1,2) (2,2) (1,3) (2,3)

So, with a suitable order, both Gibbs sampling updates have block-diagonal transition matrices, with each

block being the transition matrix for an update of that one variable, which is reversible with respect to the

conditional distribution for that variable given the current value of the other variable (of all other variables,

when there are more than two variables). If the variable to update is selected uniformly at random, the

transition probability matrix for the entire chain is P = (1/2)(P1 + P2). More generally, when there are

n variables, P = (1/n)(P1 + · · ·+ Pn).

We can apply an antithetic modification that affects only a single block, in the update for one variable.

For example, applying equations (19), the block for updating the second variable in the above example

when the first variable has the value 2 can be antithetically modified with A = {(2, 1)}, B = {(2, 2), (2, 3)},
and δ = 2, giving the following modified version of P2:

P ∗
2 =



1/4 1/2 1/4 0 0 0

1/4 1/2 1/4 0 0 0

1/4 1/2 1/4 0 0 0

0 0 0 0 1/2 1/2

0 0 0 1 0 0

0 0 0 1 0 0


(26)

State order: (1,1) (1,2) (1,3) (2,1) (2,2) (2,3)

Note that this can also be viewed as an antithetic modification to just the lower-right block, regarding it

as a transition matrix that is reversible with respect to a conditional distribution for that variable: 1/2 1/4 1/4

1/2 1/4 1/4

1/2 1/4 1/4

 →

 0 1/2 1/2

1 0 0

1 0 0

 (27)

For this block modification, π is the conditional distribution, with probabilities 1/2, 1/4, 1/4, and δ = 1.

As discussed above, the eigenvalues of the difference between the original transition matrix P2 and the

antithetically-modified matrix P ∗
2 will all be non-negative. But we cannot conclude that P ∗

2 efficiency-

dominates P2, because neither of these are irreducible — on their own, they cannot move over the full

state space. We can conclude that the modified overall transition matrix with random selection of variable

to update, (1/2)(P1 + P ∗
2), efficiency-dominates the original overall transition matrix, (1/2)(P1 + P2),

provided these are both irreducible, by using Theorem 12 of (Neal and Rosenthal 2023). More generally,

P ∗ = (1/n)(P ∗
1 + · · ·+P ∗

n) efficiency-dominates P = (1/n)(P1+ · · ·+Pn) if each of the differences Pk −P ∗
k

has only non-negative eigenvalues, provided P and P ∗ are irreducible and the Pk and P ∗
k are reversible.

Accordingly, when antithetic modification is used to improve the efficiency of individual Gibbs sampling

updates, this improvement extends to an overall method that randomly selects a variable to update. Note,

13

however, that this guarantee does not apply when variables are updated in some systematic order, even

though, as will be seen later in the empirical evaluations, this is often better than random updates.

An antithetic modification may produce transition probabilities that do not converge to π, but instead

are periodic, flipping between different distributions at even and odd iterations. Seen in isolation, averages

from such an update will nevertheless be correct estimates of expectations. When such transitions are used

to update single variables in a Gibbs sampling framework, with the variable to update chosen randomly,

such exact periodicity is possible,7 though rare, but averages will still be correct even with periodicity.

When variables are updated in some systematic order, rather than randomly, it is possible for periodicity

of individual updates to produce incorrect estimates.8 Though this problem is rare in practice, if necessary

it can be avoided by occasionally doing an unmodified Gibbs sampling update.

6 Nested Antithetic Modification (NAM) methods

I will now look at methods in which a sequence of m−1 antithetic modifications are applied to a transition

matrix in which all rows are the same, as for a Gibbs sampling update. These antithetic modifications will

use subsets of states, Ai and Bi, for i = 1, . . . ,m−1, in which each Ai = {ai} is a singleton set contained

in Bi−1 and Bi = Bi−1\Ai, with B0 = X . I call these nested antithetic modification (NAM) methods, since

X = B0 ⊃ B1 ⊃ B2 ⊃ · · · ⊃ Bm−1 are nested sets of states. Different NAM methods result from different

ways of choosing which element of Bi−1 is chosen as ai — what I will call the focal value for that stage in

the sequence. For all these antithetic modifications, δ will be chosen to be as large as possible.

When focal values a1, a2, . . . , am−1 are chosen to have non-decreasing probability under π, the resulting

NAM method turns out to be equivalent to a method described by Frigessi, Hwang, and Younes (1992),

and later independently by Tjelmeland (2004). In this case, the modified transitions Peskun-dominate

Gibbs sampling. This is not true for all NAM methods, but, as discussed in the previous section, they, like

all AM methods, do efficiency-dominate Gibbs sampling.

In this section, I look at NAM methods in general, for any selection of a1, a2, . . . , am−1, and present

efficient implementations of these methods. For notational simplicity, I will describe how these methods

would be applied to modify transitions for the entire state, but in practice they will modify Gibbs sampling

probabilities for a single state variable, with π being the conditional distribution for that variable given

the current values of other variables.

I will present NAM methods assuming that the state space is X = {1, . . . ,m}. The choice of focal values
can then be represented using a permutation, σ, on 1, . . . ,m, with ai = σ(i). The antithetic modifications

will produce successive transition probability matrices P0, P1, . . . , Pm−1, where P0 has all rows equal to π

(i.e., the Gibbs sampling probabilities), and Pi is the result of applying an antithetic modification to Pi−1

with Ai = {σ(i)} and Bi = {σ(j) : j = i+1, . . . ,m}. In some cases, all modified transition probabilities,

Pi(b → b′), for b, b′ ∈ Bi will be zero at stage i, in which case the procedure is terminated at that point,

with Pi being the final modified transition matrix.

The submatrix of Pi with rows and columns in Bi will always have all rows the same, with row elements

proportional to π(b′) for b′ ∈ Bi. This is obvious for P0, and can be seen below to carry over from Pi−1 to Pi,

7Let π be uniform over X = {0, 1}×{0, 1}×{0, 1}. There is an antithetic modification of Gibbs sampling for each variable
that flips the value with probability one. With random selection of the variable to update, the number of 1s will alternate in
periodic fashion between an even number and an odd number when this modified method is used.

8With the same example as in footnote 7, flipping values in a systematic scan starting at state (0, 0, 0) will produce the
cycle (0, 0, 0), (1, 0, 0), (1, 1, 0), (1, 1, 1), (0, 1, 1), (0, 0, 1), (0, 0, 0), . . ., in which the values (0, 1, 0) and (1, 0, 1) never appear.

14

since the changes from Pi−1(b → b′) to Pi(b → b′) for b, b′ ∈ Bi do not depend on b and are proportional to

π(b′). Define the ratio of the sum of a row of this submatrix to the sum of probabilities for its values as

follows:

ri =
1

π(Bi)

∑
b′∈Bi

Pi(b → b′) (28)

This will be the same for any b ∈ Bi. Since B0 = X , we will have r0 = 1. We can express the transition

probabilities in this sub-matrix as

Pi(b → b′) = ri π(b
′) (29)

for any b and b′ in Bi.

Stage i of the NAM procedure will operate differently depending on whether or not π(Ai) < π(Bi). If

π(Ai) = π(ai) = π(σ(i)) < π(Bi), we set δi = ri−1 π(ai) / π(Bi). Using (19), this gives Pi as follows:

Pi(ai → ai) = 0

Pi(ai → b′) = Pi−1(ai → b′) + δiπ(b
′), if b′ ∈ Bi

Pi(b → b′) = Pi−1(b → b′) − δiπ(b
′)π(ai)/π(Bi), if b ∈ Bi and b′ ∈ Bi

Pi(b → ai) = Pi−1(b → ai) + δiπ(ai), if b ∈ Bi

Pi(u → v′) = Pi−1(u → v′), if u /∈ Ai ∪ Bi or v
′ /∈ Ai ∪ Bi

(30)

We can see that the value of Pi(b → b′) above will be positive using (29) twice, along with π(ai) < π(Bi):

δiπ(b
′)π(ai)/π(Bi) < δiπ(b

′) = ri−1π(b
′)π(ai)/π(Bi) = Pi−1(b → b′)π(ai)/π(Bi) < Pi−1(b → b′) (31)

so Pi(b → b′) = Pi−1(b → b′) − δiπ(b
′)π(ai)/π(Bi) is positive.

When instead π(Ai) = π(ai) ≥ π(Bi), we make use of (19) with δi = ri−1 π(Bi) / π(ai) and obtain

Pi(ai → ai) = Pi−1(ai → ai) − δiπ(Bi)

Pi(ai → b′) = Pi−1(ai → b′) + δiπ(b
′), if b′ ∈ Bi

Pi(b → b′) = 0, if b ∈ Bi and b′ ∈ Bi

Pi(b → ai) = Pi−1(b → ai) + δiπ(ai), if b ∈ Bi

Pi(u → v′) = Pi−1(u → v′), if u /∈ Ai ∪ Bi or v
′ /∈ Ai ∪ Bi

(32)

Pi(b → b′) = 0 because applying equation (29) to its expression in (19), and noting that Ai = {ai}, gives

Pi−1(b → b′) − δiπ(b
′)π(Ai)/π(Bi) = Pi−1(b → b′) − ri−1π(b

′) = Pi−1(b → b′) − Pi−1(b → b′) = 0 (33)

Pi(ai → ai) is guaranteed to be non-negative because, using π(ai) ≥ π(Bi) and equation (29),

δiπ(Bi) ≤ δiπ(ai) = ri−1π(Bi) ≤ ri−1π(ai) = Pi−1(ai → ai) (34)

so Pi(ai → ai) = Pi−1(ai → ai) − δiπ(Bi) is non-negative. Since a modification in which π(ai) ≥ π(Bi)

results in Pi(b → b′) being zero for all b, b′ ∈ Bi, the NAM procedure is terminated at this point, with Pi

being the final result.

Figures 3 and 4 shows two examples of Nested Antithetic Modification, with different orderings, σ, of

focal values. The example in Figure 4 ends after the second stage, when the probability of the focal value

(a2 = 4) is as large as the probability of the remaining values (in B2 = {1, 2}). Subsequent stages would

operate on an all-zero sub-matrix, and hence do nothing.

15

r0 = 1 r1 =
80
81 r2 =

400
441 r3 =

25
63

1
10

2
10

3
10

4
10

1
10

2
10

3
10

4
10

1
10

2
10

3
10

4
10

1
10

2
10

3
10

4
10

 →


0 2

9
3
9

4
9

1
9

16
81

24
81

32
81

1
9

16
81

24
81

32
81

1
9

16
81

24
81

32
81

 →


0 2

9
3
9

4
9

1
9 0 24

63
32
63

1
9

16
63

120
441

160
441

1
9

16
63

120
441

160
441

 →


0 2

9
3
9

4
9

1
9 0 24

63
32
63

1
9

16
63 0 40

63
1
9

16
63

30
63

10
63


A1 = {1}, B1 = {2, 3, 4} A2 = {2}, B2 = {3, 4} A3 = {3}, B3 = {4}

δ1 =
1
9 δ2 =

160
567 δ3 =

300
441

Figure 3: An example of the Nested Antithetic Modification (NAM) method, with m = 4 values having
probabilities 1/10, 2/10, 3/10, 4/10, ordered by σ(i) = i. The arrows show transition probabilities being
modified at each stage, using (30), since here π(ai) < π(Bi) at every stage. Compare with the MHGS
modification in Figure 1. Note that the final result has all off-diagonal transition probabilities smaller than
in the original, and hence Peskun-dominates it.

r0 = 1 r1 =
40
49

1
10

2
10

3
10

4
10

1
10

2
10

3
10

4
10

1
10

2
10

3
10

4
10

1
10

2
10

3
10

4
10

 →


4
49

8
49

3
7

16
49

4
49

8
49

3
7

16
49

1
7

2
7 0 4

7
4
49

8
49

3
7

16
49

 →


0 0 3

7
28
49

0 0 3
7

28
49

1
7

2
7 0 4

7
7
49

14
49

3
7

7
49


A1 = {3}, B1 = {1, 2, 4} A2 = {4}, B2 = {1, 2}

δ1 =
3
7 δ2 =

30
49

Figure 4: The same example as in Figure 3, except with σ(1) = 3 and σ(2) = 4, so for the second stage,
π(ai) > π(Bi), and hence the modification is done using (32). Since this sets the {1, 2} sub-matrix to all
zeros, the procedure ends after this stage. Note that the final result does not Peskun-dominate the original,
since P (1 → 2) and P (2 → 1) decrease to zero, but the new matrix does efficiency-dominate the original,
as discussed in Section 5.

When simulating a Markov chain, we need only the row of the transition matrix giving the transition

probabilities from the current state value, k. Algorithm 2 computes just these probabilities, given a

particular order, σ, of focal values, taking time proportional to the number of possible values, m.

The algorithm considers successive focal values, ai = σ(i) for i = 1, 2, . . ., but rather than compute the

whole transition matrix, for each focal value it computes only the single transition probability from the

current value, k, to that focal value, until k itself is the focal value. Once k is the focal value, the transition

probabilities from k to all remaining values are computed. Note that once transition probabilities to and

from a focal value are computed at some stage, they are not modified by later stages, so there is no need

to consider further focal values past k.

16

Input: Gibbs sampling probabilities, π(i), for i = 1, . . . ,m
A permutation, σ, on {1, . . . ,m} giving the order of focal values
The current state value, k, in {1, . . . ,m}

Output: NAM transition probabilities from k, as p(i) for i = 1, . . . ,m

Set s to 1 The sum of probabilities for values that have not yet been focal

Set f to 1 The sum of transition probabilities from k to values that have not yet been focal

Find modified transition probabilities from the current value to successive focal values,
until the focal value is the current value

Set i to 1

While σ(i) ̸= k:

After seeing a focal value with probability at least as large as remaining values, just store
zeros (can change f ≤ 0 to f ≤ ϵ for small ϵ to avoid tiny probabilities from rounding)

If f ≤ 0:

Set p(σ(i)) to 0
Else:

Let q be the probability of the focal value; update s to be the sum
of probabilities for remaining non-focal values

Set q to π(σ(i))
Subtract q from s Sets variable s to si

Compute the transition probability from the current value, k, to the focal value,
and find the new total probability for transitions to remaining values

If q ≥ s:
Set p(σ(i)) to f
Set f to 0

Else:
Set p(σ(i)) to (q/s)f Guarantees p(σ(i)) ≤ f ≤ 1, even with rounding
Subtract p(σ(i)) from f Sets variable f to fi, was previously fi−1

Add 1 to i

Compute modified transition probabilities from the current value, k, which is now focal, to
values that have not previously been focal, as well as the self transition probability for k

If f ≤ 0:

Set p(k) to 0
For j = i+1, . . . ,m: Set p(σ(j)) to 0

Else:

Set q to π(k)
Subtract q from s

If q > s:
Set p(k) to ((q−s)/q)f Guarantees p(k) ≤ f ≤ 1, even with rounding
For j = i+1, . . . ,m: Set p(σ(j)) to min (f, (π(σ(j))/q)f) Min in case of rounding

Else:
Set p(k) to 0
For j = i+1, . . . ,m: Set p(σ(j)) to min (f, (π(σ(j))/s)f) Min in case of rounding

Algorithm 2: Computation of modified transition probabilities from the current value by the NAM method.

17

Algorithm 2 incrementally maintains two sums:

si =

m∑
j=i+1

π(σ(j)) = π(Bi) (35)

fi =

m∑
j=i+1

Pi(k → σ(j)) (36)

Starting from s0 = 1 and f0 = 1, these are updated by

si = si−1 − π(σ(i)) (37)

fi = fi−1 − Pi(k → σ(i)) (38)

for j = 1, 2, . . . until σ(j) = k. Note that ri = fi/si, and that the values of fi, si, and ri do not actually

depend on the value of k.

The stage i computation for the transition probability from the current value, k, to a focal value,

ai = σ(i), when π(ai) < π(Bi) = si, can be re-written from its form in (30) as follows, using equation (29):

Pi(k → ai) = Pi−1(k → ai) + δiπ(ai) (39)

= ri−1π(ai) + ri−1 (π(ai)/π(Bi))π(ai) (40)

=
fi−1

si−1
π(ai) [1 + π(ai)/π(Bi)] (41)

=
fi−1

si−1
π(ai)

π(ai) + π(Bi)

π(Bi)
(42)

=
fi−1

si−1
π(ai)

si−1

si
=

fi−1

si
π(ai) (43)

This is the method that Algorithm 2 uses to compute Pi(k → ai), which is p(σ(i)) in the program, after

which it updates fi−1 to fi by subtracting the result, as in equation (38).

If π(ai) ≥ π(Bi) = si at some stage before k becomes the focal value, (32) gives

Pi(k → ai) = Pi−1(k → ai) + δiπ(ai) (44)

= ri−1π(ai) + ri−1(π(Bi)/π(ai))π(ai) (45)

= ri−1 [π(ai) + π(Bi) (46)

=
fi−1

si−1
si−1 = fi−1 (47)

and transition probabilities from k to all remaining values are zero.

When instead π(ai) = π(σ(i)) is less than π(Bi) for all stages prior to when k becomes the focal value, the

transition probabilities from k to the remaining values are found once k is the focal value using either (30)

or (32). When k becomes the focal value at stage i, so k = ai = σ(i), then if π(k) = π(ai) < π(Bi) = si,

18

using (30) gives Pi(k → k) = 0, and for b′ ∈ Bi,

Pi(k → b′) = Pi−1(k → b′) + δiπ(b
′) (48)

= ri−1π(b
′) + ri−1 (π(k)/π(Bi))π(b

′) (49)

=
fi−1

si−1
π(b′) [1 + π(k)/π(Bi))] (50)

=
fi−1

si−1
π(b′)

π(k) + π(Bi)

π(Bi)
(51)

=
fi−1

si−1
π(b′)

si−1

si
=

fi−1

si
π(b′) (52)

Whereas, if π(k) = π(ai) ≥ π(Bi) = si, using (32) gives

Pi(k → k) = Pi−1(k → k) − δiπ(Bi) (53)

= ri−1π(k) − ri−1(π(Bi)/π(k))π(Bi) (54)

=
fi−1

si−1
[π(k)− π(Bi)

2/π(k)] (55)

=
fi−1

π(k) + si

π(k)2 − s2i
π(k)

= fi−1
π(k)− si

π(k)
(56)

and for b′ ∈ Bi,

Pi(k → b′) = Pi−1(k → b′) + δiπ(b
′) (57)

= ri−1π(b
′) + ri−1(π(Bi)/π(k))π(b

′) (58)

=
fi−1

si−1
π(b′) [1 + π(Bi)/π(k)] (59)

=
fi−1

si−1
π(b′)

π(k) + π(Bi)

π(k)
(60)

=
fi−1

si−1
π(b′)

si−1

π(k)
=

fi−1

π(k)
π(b′) (61)

These formulas are used for the computations at the end of Algorithm 2.

As presented, Algorithm 2 computes all transition probabilities from the current value of the state,

which will subsequently be used to sample the value for the next state. This is inefficient when many of

these transition probabilities are zero, as occurs when at some point π(ai) ≥ si. The algorithm could be

modified to return only the non-zero transition probabilities, which also saves time when sampling. Note

also that when π(σ(1)) is 1/2 or more, any value other than σ(1) has probability one of transitioning to

σ(1), so in this case there is no need to generate a random variate except when the current value is σ(1).

It would also be possible to modify Algorithm 2 so that, rather than returning transition probabilities

from state k, it instead returns a value randomly sampled according to these probabilities. Since Algo-

rithm 2 computes transition probabilities in the order σ, and does not change them once they are first

computed, this could be done by sampling a number, U , uniformly distributed on [0, 1], maintaining the

cumulative sum of transition probabilities computed so far, and returning the value just considered once

this cumulative sum exceeds U . This would save some computation time, though the savings would not

19

be dramatic in the typical case where computing the normalized probabilities, π, requires looking at all m

values in any case.

When π(σ(i)) < si at every step, we can visualize the full matrix of transition probabilities computed

by this algorithm (a row at a time) as illustrated below, for m = 5 and σ(i) = i:

P ∗ =



0 π(2)
f0
s1

π(3)
f0
s1

π(4)
f0
s1

π(5)
f0
s1

π(1)
f0
s1

0 π(3)
f1
s2

π(4)
f1
s2

π(5)
f1
s2

π(1)
f0
s1

π(2)
f1
s2

0 π(4)
f2
s3

π(5)
f2
s3

π(1)
f0
s1

π(2)
f1
s2

π(3)
f2
s3

0 π(5)
f3
s4

π(1)
f0
s1

π(2)
f1
s2

π(3)
f2
s3

π(4)
f3
s4

f4



(62)

Notice that under the diagonal the values in a column are all the same, and that above the diagonal the

values in a row equal the probabilities from π times a common factor.

When π(σ(i)) ≥ si at some point, the transition matrix is the same as above for rows before i and

for columns before i, but then is different for the submatrix of rows and columns from i and later, as is

illustrated below, when m = 5, σ(i) = i, and π(3) ≥ s3 = π(4) + π(5):

P ∗ =



0 π(2)
f0
s1

π(3)
f0
s1

π(4)
f0
s1

π(5)
f0
s1

π(1)
f0
s1

0 π(3)
f1
s2

π(4)
f1
s2

π(5)
f1
s2

π(1)
f0
s1

π(2)
f1
s2

π(3)−s3
π(3)

f2
π(4)

π(3)
f2

π(5)

π(3)
f2

π(1)
f0
s1

π(2)
f1
s2

f2 0 0

π(1)
f0
s1

π(2)
f1
s2

f2 0 0



(63)

The eigenvalues and eigenvectors of these transition matrices are of some interest. For a transition matrix

for the entire state, the eigenvalues determine the rate of convergence of the Markov chain. However, this

connection does not hold for partial transitions that update a single variable, rather than the entire state,

as for Gibbs sampling and its modifications. Nevertheless, the eigenvalues provide some insight. An

eigenvalue of one always exists, with right eigenvector of all ones, since each row of transition probabilities

sums to one. When the rows are all equal to π (as for a Gibbs sampling update of a single variable, seen in

isolation from others), all the remaining eigenvalues are zero, reflecting immediate convergence to π after

one transition. Negative eigenvalues correspond to “antithetic” aspects of the transition, which reduce

asymptotic variance, even compared to when the eigenvalues.

20

For notational simplicity, suppose that σ(i) = i for all i. Then at each NAM step, i, prior to any at

which π(i) ≥ si, we can identify an eigenvalue of λi = −π(i)fi−1/si. An associated right eigenvector is

vi = [0, . . . , si−1 − π(i), −π(i), . . . ,−π(i)]T (64)

= [0, . . . , si−1, 0, . . . , 0]
T − [0, . . . , π(i), π(i), . . . , π(i)]T (65)

where there are i−1 leading zero elements in the vector. These eigenvectors (along with v0 = [1, . . . , 1]T

with eigenvalue 1) are orthogonal with respect to an inner product based on π, with vTi DvTj = 0 for i ̸= j,

where D is the diagonal matrix with π on the diagonal. If at some step, i < m, we find that π(i) ≥ si, we

can identify an eigenvalue of λi = −fi−1si/π(i), with the same eigenvector vi as above. Since the submatrix

of rows and columns after i will be zero, all remaining eigenvalues (to λm−1) are zero.9

These eigenvalues (apart from the single eigenvalue of one) are all negative, except that some are zero

when π(σ(i)) ≥ si for some i. This provides an alternative proof, via Corollary 15 of (Neal and Rosenthal

2023), that NAM methods efficiency-dominate Gibbs sampling, in addition to the general proof of this for

AM methods given in Section 5.

In isolation, the negative eigenvalues of the modified NAM transition matrix introduce an element of

“antithetic” sampling, reducing asymptotic variance of estimates, while slowing convergence to π, since the

absolute values of the eigenvalues (other than the single one) are greater than for Gibbs sampling. However,

when the transitions are used to update single variables, rather than the entire state, the modification will

not necessarily lead to slower convergence than Gibbs sampling with random selection of variable to update

— that will depend on the eigenvalues of the full transition matrix for an update of a randomly selected

variable, which are not zero for Gibbs sampling.

Different orders of focal values for NAM may produce different transition probabilities, so different ways

of choosing an order produce different methods for modifying Gibbs sampling. I will use “NAM” without

a prefix to refer to a method in which the order of focal values is fixed. I next discuss a method in which

focal values are chosen to have non-decreasing probability, as in Figure 3. This order may be different

for each Gibbs sampling update, as changes to other variables change the conditional distribution of the

variable updated. This will be followed by discussion of the opposite strategy, of focusing on values in

non-increasing order of probability, which can have rather different properties.

9Proof that vi is an eigenvector of P ∗, with eigenvalue as given above: First, [P ∗vi]j is zero for j < i since it equals

si−1P
∗(j → i) −

m∑
k=i

π(i)P ∗(j → k) = si−1π(i)
fj−1

sj
− π(i)

m∑
k=i

π(k)
fj−1

sj
= si−1π(i)

fj−1

sj
− π(i)si−1

fj−1

sj
= 0

When i is less than any k for which π(k) ≥ sk, then for any j > i, [P ∗vi]j equals

si−1P
∗(j → i) −

m∑
k=i

π(i)P ∗(j → k) = si−1π(i)
fi−1

si
− π(i)fi−1 = π(i)

fi−1

si
(si−1 − si) =

[
−π(i)

fi−1

si

] [
− π(i)

]
consistent with an eigenvalue of −π(i)fi−1/si. Finally, when π(i) < si, [P

∗vi]i equals

−
m∑

k=i+1

π(i)P ∗(i → k) = − π(i)

m∑
k=i+1

π(k)
fi−1

si
= −π(i)fi−1 =

[
−π(i)

fi−1

si

] [
si−1 − π(i)

]
again consistent with the eigenvalue −π(i)fi−1/si. When π(i) ≥ si, the eigenvalue is −fi−1si/π(i), since [P ∗vi]i equals

(si−1 − π(i))P ∗(i → i) −
m∑

k=i+1

π(i)P ∗(i → k) = (si−1 − π(i))
π(i)− si

π(i)
fi−1 −

m∑
k=i+1

π(i)
π(k)

π(i)
fi−1

=
fi−1

π(i)

[
si−1(π(i)−si) + π(i)si − π(i)

m∑
k=i

π(k)
]

=
fi−1

π(i)

[
si−1π(i)− si−1si + π(i)si − π(i)si−1

]
=

[
−fi−1si

π(i)

][
si−1 − π(i)

]
and when j > i, [P ∗vi]j equals (si−1 − π(i))P ∗(j → i) = (si−1 − π(i)) fi−1 = sifi−1 =

[
−fi−1si

π(i)

] [
− π(i)

]
.

21

7 The Upward Nested Antithetic Modification (UNAM) method

In the example of Figure 3, the focal values used (1, 2, and 3) are in increasing order of probability:

π(1)=1/10 < π(2)=2/10 < π(3)=3/10, with the final value having the largest probability, π(4)=4/10.

I will refer to the NAM method in which focal values are chosen in non-decreasing order of probability as

the Upwards Nested Antithetic Modification (UNAM) method.

This method is not new. It is equivalent to a method discussed by Frigessi, Hwang, and Younes (1992),

and later devised independently by Tjelmeland (2004). As these authors note, and I will discuss below,

the UNAM method will always produce a modified transition probability matrix that Peskun-dominates

the original matrix, and hence efficiency-dominates it — i.e., produces estimates with lower asymptotic

variance. As discussed in Sections 3, this Peskun-dominance and efficiency-dominance for updates of

individual variables will carry over to an overall method that randomly selects a variable to update. NAM

methods do not in general produce transitions that Peskun-dominate Gibbs sampling, as can be seen for

the example of Figure 4, but as discussed for antithetic modifications in general in Section 5, they always

efficiency-dominate Gibbs sampling, and this also carries over to an overall method that randomly selects

a variable to update.

Unless an ordering by probability is already known, the UNAM method will start by finding

a permutation, σ, of the possible values that orders them in non-decreasing probability, so that

π(σ(i)) ≤ π(σ(j)) when i ≤ j. (In the example of Figure 3, values are already ordered by probability,

so σ(i) = i.) Various sorting algorithms could be used to find this ordering. With m possible values, this

can be done in time proportional to m logm using a comparison sort, or in time linear in m if a radix sort

is used.

Once a suitable sorted order, σ, has been found, UNAM can be implemented by just applying Algorithm 2

with that σ. However, when σ puts values in non-decreasing order of probability, this algorithm can be

simplified, as shown in Algorithm 3. In particular, within the loop, it is never possible for π(ai), which is q

in the program, to be greater than or equal to si. As discussed above regarding Algorithm 2, it is possible

to modify Algorithm 3 to return a sampled value rather than transition probabilities.

It is useful to see, from looking at the update to f in the loop of Algorithm 3, that for i < k,

fi = fi−1 − fi−1
π(σ(i))

si
= fi−1

(
1 − π(σ(i))

si

)
= fi−1

si − π(σ(i))

si
(66)

To show that the UNAM method never decreases non-self transition probabilities, it suffices to show that

the transition probability from σ(j) to σ(i), with i < j, never decreases, since reversibility then guarantees

the same for the transition probability from σ(i) to σ(j). When Algorithm 3 is applied with k = σ(j), this

will be so if fi−1 ≥ si for all i < j (see the entries below the diagonal in (62) above). Using s0 = 1, f0 = 1,

and the update of equation (37), we can first see that f0 ≥ s1, and then, using (66), that if fi−2 ≥ si−1,

fi−1 = fi−2
si−1 − π(σ(i−1))

si−1
(67)

≥ si−1
si−1 − π(σ(i−1))

si−1
(68)

= si−1 − π(σ(i−1)) (69)

≥ si−1 − π(σ(i)) = si (70)

where the second inequality is because σ orders values by non-decreasing probability. It follows that

22

Input: Gibbs sampling probabilities, π(i), for i = 1, . . . ,m
The current state value, k, in {1, . . . ,m}

Output: UNAM transition probabilities from k, as p(i), for i = 1, . . . ,m

Set σ to some permutation on {1, . . . ,m} for which π(σ(i)) ≤ π(σ(j)) when i ≤ j

Set s to 1 The sum of probabilities for values that have not yet been focal

Set f to 1 The sum of transition probabilities from k to values that have not yet been focal

Find modified transition probabilities from the current value to successive focal values,
until the focal value is the current value

Set i to 1

While σ(i) ̸= k:

Let q be the probability of the focal value; update s to be the sum
of probabilities for remaining non-focal values

Set q to π(σ(i))
Subtract q from s Sets variable s to si

Compute the transition probability from current value, k, to the focal value,
and find the new total probability for transitions to remaining values

Set p(σ(i)) to min(f, (q/s)f) Min with f done in case q > s due to rounding
Subtract p(σ(i)) from f Sets variable f to fi, was previously fi−1

Add 1 to i

Compute modified transition probabilities from the current value, k, which is now focal, to
values that have not previously been focal, as well as the self transition probability for k

If i = m:
Set p(k) to f

Else:
Subtract π(k) from s
Set p(k) to 0
For j = i+1, . . . ,m: Set p(σ(j)) to min(f, (π(σ(j))/s)f) Min guards against rounding

Algorithm 3: Computation of UNAM transition probabilities, a simplification of Algorithm 2 when focal
values have non-decreasing probability.

fi−1 ≥ si for all i < j, and hence UNAM never decreases non-self transition probabilities. Peskun’s

theorem therefore guarantees that estimates using UNAM have lower asymptotic variance than estimates

using Gibbs sampling, when the variable to be updated is randomly selected.

UNAM transitions also Peskun-dominate those produced by MHGS. Again, we need only look at tran-

sition probabilities from σ(j) = k to σ(i) with i < j, for which π(σ(i)) ≤ π(k). For such a transition,

the MHGS transition probability, from equation (13), is π(σ(i)) / (1−π(σ(i))). From equation (43), we

see that the UNAM transition probabilities will be at least as large as the MHGS transition probabilities

if π(σ(i))fi−1/si ≥ π(σ(i)) / (1−π(σ(i))), as will be the case if fi−1 ≥ si / (1−π(σ(i))), for all i < j.

This holds for i = 1, since f0 = 1, and from (37), s1 = s0 − π(σ(1)) = 1 − π(σ(1)). Furthermore, if

23

fi−2 ≥ si−1 / (1−π(σ(i−1))), then again using equation (66, we have

fi−1 = fi−2
si−1 − π(σ(i−1))

si−1
(71)

≥ si−1

1 − π(σ(i−1))

si−1 − π(σ(i−1))

si−1
(72)

=
si−1 − π(σ(i−1))

1 − π(σ(i−1))
(73)

≥ si−1 − π(σ(i))

1 − π(σ(i))
=

si
1 − π(σ(i))

(74)

The second inequality follows from π(σ(i)) ≥ π(σ(i− 1)) and the fact that if 0 ≤ δ ≤ A ≤ B then

A/B ≥ (A−δ)/(B−δ). So the UNAM non-self transition probabilities are at least as great as those using

MHGS, and hence Peskun’s theorem implies that with random selection of variable to update, UNAM

leads to lower asymptotic variance than MHGS.

If π(σ(i)) = π(σ(i+1)), then for any k = σ(j) with j > i + 1, Algorithm 3 will produce the same

transition probabilities from k to σ(i) and from k to σ(i+1). To see this, note that in iteration i of the

loop, p(σ(i)) will be set to π(σ(i))fi−1/si, and in the next iteration, p(σ(i+1)) will be set to

π(σ(i+1))
fi
si+1

= π(σ(i))
fi
si+1

= π(σ(i)) fi−1
si − π(σ(i))

si

1

si − π(σ(i+1))
= π(σ(i))

fi−1

si
(75)

which is the same. Furthermore, as for all NAM methods, the transition probabilities to any σ(i) from all

the σ(j) with j > i are the same. Accordingly, when two or more values have equal probability, it makes

no difference in what order σ places them.

Algorithm 3 sets all UNAM self transition probabilities to zero, except possibly that for σ(m), which will

be zero if π(σ(m−1)) = π(σ(m)) but not otherwise. To see this, note that this self transition probability will

be fm−1, which from equation (66) has the factor (sm−1 − π(σ(m−1))) / sm−1, and since sm−1 = π(σ(m)),

this is zero when π(σ(m−1)) = π(σ(m)).

As discussed earlier, the MHGS method can be applied when the number of possible values is countably

infinite, provided these have a tractable form. Doing this seems much harder for the UNAM method, since

Algorithm 3 looks at the possible values starting from the least probable, and so would take an infinite

number of steps. Some hope for using UNAM with a countably infinite (or very large) number of possible

values comes from reversing the recursions in equations (37) and (66):

fm−1 = P ∗(σ(m) → σ(m)), fi−1 = fi
si

si − π(σ(i))
(76)

sm−1 = π(σ(m)), si−1 = si + π(σ(i)) (77)

After defining these recursions for a finite m, one might find the limiting form as m goes to infinity. One

could then sample from the transition distribution computing only finitely many of the fi, as necessary.

Unfortunately, it is not clear how to compute fm = P ∗(σ(m) → σ(m)) without looking at all m values,

but perhaps this is tractable for some distributions.10 If we can sample from π (i.e., the Gibbs sampling

conditional probabilities), we could apply rejection sampling, using our knowledge of the relative transition

10If it happens that π(σ(m−1)) = π(σ(m)), we know that P ∗(σ(m) → σ(m)) = 0, but then the recursion from fm−1 to
fm−2 is undefined, and we have a problem computing fm−2.

24


1
10

2
10

3
10

4
10

1
10

2
10

3
10

4
10

1
10

2
10

3
10

4
10

1
10

2
10

3
10

4
10

 →

× 10
9


0 2

9
3
9

4
9

1
9

17
90

3
10

4
10

1
9

2
10

26
90

4
10

1
9

2
10

3
10

35
90

 →

× 80
63


0 2

9
3
9

4
9

1
9 0 24

63
32
63

1
9

16
63

148
630

4
10

1
9

16
63

3
10

211
630

 →

× 100
63


0 2

9
3
9

4
9

1
9 0 24

63
32
63

1
9

16
63 0 40

63
1
9

16
63

30
63

10
63



Figure 5: Modification of Gibbs sampling transition probabilities using the procedure of Frigessi, Hwang,
and Younes (1992), equivalent to UNAM. The probabilities altered at each stage are shown in bold. The
factors by which non-self transition probabilities in the current row and column are multiplied are below
the arrows. At each stage, self transition probabilities are altered so that the probabilities in a row sum
to one. Note that the final result is the same as obtained with UNAM, as shown in Figure 3.

probabilities from the current state to the other states, which we can get from these recursions, except when

the current state is the most probable, for which we would need to know the self transition probability.

The UNAMmethod gives the same transition probabilities as the method that is implicit in the statement

and proof of Theorem 1 of Frigessi, Hwang, and Younes (1992). They note that their method can be applied

to the probabilities for a Gibbs sampling update of a randomly-selected state variable, and that the Peskun-

dominance of the individual updates extends to this scenario. They also found eigenvalues and eigenvectors

of their transition matrices, which I presented above for the more general class of NAM methods.

Like my description of UNAM here, the procedure of Frigessi, et al., illustrated in Figure 5, focuses on

values in order of non-decreasing probability, alters transition probabilities to and from each such focal

value in turn, and then proceeds to apply the procedure to the sub-matrix of remaining values. However,

in their description, the values in the sub-matrix are not rescaled by a common factor in order to keep the

row sums equal to one, as happens in the UNAM procedure — instead, self transition probabilities in the

sub-matrix are reduced to keep the sum of transition probabilities equal to one, which is always possible

when the focal values are in non-decreasing order of probability. The final result is the same as for UNAM.

One feature of this procedure is that modified non-self transition probabilities at every stage (not just the

final stage) are at least as large as the Gibbs sampling probabilities, and hence these intermediate transition

probabilities Peskun-dominate Gibbs sampling. Indeed, Frigessi, et al. consider in detail (on pages 624

and 626–627) only a simplified form of their method, in which only the first stage of modifications is

performed, involving the least-probable state (except that when several states have the smallest probability,

they modify the transition probabilities for all of them). In this regard, they remark (page 627),

In the definition of the modified Gibbs sampler, we did not complete all the procedure described

in part (b) of Theorem 1, for two reasons: The first is that we are not sure that, from any

configuration which is not a local minimum of the energy, this new Markov chain would reach

a bottom with positive probability. Our proof cannot be extended to show that this new

stochastic matrix has no eigenvalue −1 at temperature 0. The second reason is practical: Each

new step of the procedure of Theorem 1(b) would involve more and more computational cost.

We therefore restrict ourselves to only one step, which is easy to implement.

Their first reason is particular to applications that aim essentially at optimization rather than sampling.

Their second reason has some validity, since if only one stage of the procedure is done, one needn’t sort the

possible values by probability, but only find the state(s) of lowest probability. But the m logm sorting cost

is not prohibitive in the typical case where all m probabilities must be computed in any case. Perhaps they

did not realize that only the m probabilities for transitions from the current state need be computed, as in

25

Algorithm 3, rather than all m2 transition probabilities. They give a recursive formula for the eigenvalues

(page 617, Remark 4), which might have led them to an efficient simulation procedure, but they do not

exploit its computational possibilities.11

Frigessi, et al. also show their method, when when applied to the entire state (not necessarily when used

to sample individual variables as in Gibbs sampling), minimizes the maximum asymptotic variance of the

estimated expectation of a function, maximizing over all functions with variance one (under π). This is

of limited practical relevance, however, since the worst-case function will be proportional to the indicator

function of the least likely state, which is seldom of interest.

A method equivalent to UNAM is also described by Tjelmeland (2004). Tjelmeland was apparently

unaware of the work of Frigessi, et al., perhaps since the title and abstract of the paper by Frigessi, et al.

give little indication that it describes a general method for improving Gibbs sampling, and as noted above,

Frigessi, et al. are dismissive of the utility of the full method. The title and abstract of Tjelmeland’s paper

also do not mention that it contains a general-purpose improvement to Gibbs sampling, focusing instead

on a particular context involving multiple proposals. The method is described as “Transition alternative 2”

on page 5.

The presentation of Tjelmeland’s method is somewhat similar to that of Frigessi, et al., but differs in

several respects. As described mathematically, it alters the entire sub-matrix at each stage, rather than

only the row and column involving the focal value, and the diagonal. The end result is the same, however.12

Following the presentation of the method, Tjelmeland remarks that

The above process defines all elements in P(y). When simulating the Markov chain one of

course only needs the elements in row κ. These can easily be computed without computing the

whole matrix P(y). This is computationally important if m is large.

Tjelmeland gives no details, however. Avoiding such unnecessary computation of the full transition matrix

is the point of Algorithm 3 for UNAM, as well as the more general NAM method of Algorithm 2.

Yet another path to a method equivalent to UNAM is mentioned by Pollet, Rombouts, Van Houcke,

and Heyde (2004). The Metropolis-Hastings modification of Gibbs sampling probabilities that define the

MHGS method can be generalized to modify any set of reversible transition probabilities, P (u → v). We

use a proposal distribution, Q, that gives zero probability to the current state, rescaling P (u → v) for

v ̸= u to sum to one:

Q(u → v) =
P (u → v)

1− P (u → u)
(78)

The acceptance probability for such an update will be

min

(
1,

π(v)Q(v → u)

π(u)Q(u → v)

)
= min

(
1,

π(v)P (v → u) (1−P (u → u))

π(u)P (u → v) (1−P (v → v))

)
= min

(
1,

1−P (u → u)

1−P (v → v)

)
(79)

using the fact that π(v)P (v → u) = π(u)P (u → v) due to the reversibility of P .

11Note that for i < k, P ∗(σ(k) → σ(i)) = π(σ(i))fi−1/si = −λi, and P ∗(σ(i) → σ(k)) = −λiπ(σ(k))/π(σ(i)), so knowing
the eigenvalues allows efficient computation of transition probabilities.

12The equivalence is easier to see after simplifying Tjelmeland’s equation (14), that defines a factor for multiplying transition
probabilities:

ut = min
k∈At

(
1−

∑
l/∈At P

t
k,l(y)∑

l∈At\{k} P
t
k,l(y)

)
where At is the set of states with non-zero self transition probabilities. The numerator in the fraction here is the same for
all k, from which it follows that the minimum is for the k with minimum value for P t

k,k.

26

The modified non-self transition probabilities will therefore be

when u ̸= v, P ∗(u → v) = min

(
P (u → v)

1−P (u → u)
,

P (u → v)

1−P (v → v)

)
(80)

with the self transition probabilities determined by probabilities summing to one.13

Since these modified transition probabilities are themselves reversible (as for any Metropolis-Hastings

method), the procedure can be repeated as many times as desired. P ∗(u → v) will equal P (u → v) if

the self transition probability of either u or v is zero, while otherwise P ∗(u → v) will be greater than

P (u → v). Hence repetition of this procedure asymptotically converges to a transition matrix with at most

one non-zero self transition probability.

The same result is obtained with at most m repetitions if only the sub-matrix with non-zero self tran-

sition probabilities is updated (scaling it to have rows that sum to one, applying the Metropolis-Hastings

procedure, and then scaling it back). The value with the smallest self transition probability will have zero

self transition probability after this modification, so all but at most one self transition probability will be

zero after m−1 applications of the procedure.

The results of these Metropolis-Hasting procedures, and of the methods of Frigessi, et al. and of Tjelme-

land, are the same as the result obtained by the UNAM method. This is a consequence of three charac-

teristics that they share. First, all these methods produce transition probabilities that are reversible with

respect to π. Second, they ultimately set all self transition probabilities to zero, except perhaps for the

most probable value. Third, for all methods, the modified transition probabilities P ∗(σ(i) → σ(j)) with

j > i are equal to π(σ(j)) times a factor that depends only on i, not on j, which due to reversibility implies

also that the modified transition probabilities P ∗(σ(i) → σ(j)) with j < i are equal to π(σ(i)) times a

factor that depends only on j, not on i (so elements in a column below the diagonal are all the same, as

seen in (62) for example). For UNAM, this can be seen from the last line of Algorithm 3. For the methods

that repeatedly apply a Metropolis-Hasting modification, this is a consequence of equation (80), along with

the fact that at each stage values ordered by σ have non-decreasing self transition probability, which is true

for the initial GS transition probabilities, and is maintained by each MH update.14 These characteristics

determine a unique final result, once all self transition probabilities, apart perhaps for σ(m), are zero.15

All these methods must therefore produce the the same final result as the UNAM method.

13Pollet, et al. (2004) give an incorrect expression for P ∗(u → v) (in their notation, T ′
ij) on the bottom left of page 2, but

this appears to be what they intended.

14Let P be transition probabilities before the MH update of (80), and P ∗ the transition probabilities after this update.
Let σ(i) and σ(i+1) be consecutive focal values, with π(σ(i)) ≤ π(σ(i+1)). Let R = π(σ(i))/π(σ(i+1)), and define
s0 = P (σ(i) → σ(i)), s1 = P (σ(i+1) → σ(i+1)), A =

∑
k<i P (σ(i) → σ(k)) =

∑
k<i P (σ(i+1) → σ(k)), b0 = P (σ(i) → σ(i+1)),

b1 = P (σ(i+1) → σ(i)) = Rb0, C0 =
∑

k>i+1 P (σ(i) → σ(k)), C1 =
∑

k>i+1 P (σ(i+1) → σ(k)), and define s∗0, s
∗
1, A

∗, b∗0, b
∗
1,

C∗
0 , and C∗

1 analogously for P ∗ rather than P . We wish to show that if s0 ≤ s1, then s∗0 ≤ s∗1. We have that C0 = 1−A−b0−s0,
C1 = 1 − A − b1 − s1, s

∗
0 = 1 − A∗ − b∗0 − C∗

0 and s∗1 = 1 − A∗ − b∗1 − C∗
1 . Since b∗0 = b0/(1−s0), b

∗
1 = Rb∗0 = Rb0/(1−s0),

C∗
0 = C0/(1−s0), and C∗

1 = C1/(1−s1), we have

s∗0 = 1 − A∗ − b0
1−s0

− 1−A− b0 − s0
1−s0

= −A∗ +
A

1−s0

s∗1 = 1 − A∗ − Rb0
1−s0

− 1−A−Rb0 − s1
1−s1

= −A∗ + Rb0

(
1

1−s1
− 1

1−s0

)
+

A

1−s1

Since s1 ≥ s0, we see that the middle term in the expression for s∗1 is non-negative, and the final term is at least as large as
the final term in the expression for s∗0, and hence s∗1 ≥ s∗0.

15To see this, let hi for i = 1, . . . ,m−1 be the factors that are used to multiply π(σ(j)) to get P ∗(σ(i) → σ(j)) for j > i, which
due to reversibility also determine P ∗(σ(j) → σ(i)), and let g be the self transition probability for σ(m). The requirement
that transition probabilities sum to one leads to m linear equations in g and the hi, which uniquely determine them.

27

8 The Downward Nested Antithetic Modification (DNAM) method

The Nested Antithetic Modification approach can also be applied with values ordered by non-increasing

probability, giving the Downward Nested Antithetic Modification (DNAM) method. DNAM sometimes

leads to smaller self transition probabilities than UNAM. With order reversed from UNAM, there is no

guarantee that all non-self transition probabilities with DNAM are at least as large as with Gibbs sampling,

so Peskun’s theorem does not apply, but as discussed in Section 5, the transition probabilities produced

with DNAM nevertheless efficiency-dominate Gibbs sampling.

DNAM can be implemented by simply applying the NAM procedure of Algorithm 2, passing it a σ

that orders values by non-increasing probability. However, finding this order by sorting values according to

probability can be avoided when the current value has probability of 1/2 or more, as shown in Algorithm 4.

DNAM sometimes produces transition probabilities that are zero past some point in the downward ordering.

The algorithm could be modified to efficiently skip these zero probabilities, as discussed in Section 6.

Some examples of transition matrices obtained using UNAM are shown in Figure 6, with comparison to

UNAM and Gibbs sampling.

In example (a), both UNAM and DNAM have a single non-zero self transition probability — the value

with largest probability for UNAM, one of those with second-smallest probability for DNAM. Unlike

UNAM, DNAM can treat values with the same probability (here, π(2) = π(3)) in substantively different

ways, so it matters how the sorting algorithm used to produce σ handles ties. Note that in this example, the

non-zero self transition probability is smaller for DNAM than for UNAM, but the reverse is also possible.

In example (b), both UNAM and DNAM produce self transition probabilities that are all zero. This

happens with UNAM when the two largest probabilities under π are equal. It happens with DNAM when

some value has a probability under π equal to the sum of probabilities of values later in the order σ. In this

example, this happens because the second-last value in the order σ has the same probability as the last

value. Note that although both UNAM and DNAM produce zero self transition probabilities, the other

transition probabilities differ for the two methods.

Example (c) shows that UNAM can produce all zero self transition probabilities while DNAM does

not. Example (d) shows the reverse, and also shows that with DNAM a large sub-matrix of transition

probabilities may be all zero, a property that can sometimes be exploited to reduce computational cost.

Since neither UNAM nor DNAM is clearly superior to the other in all situations, one might consider

randomly choosing between them, with equal probabilities, hoping to obtain the advantages of both. I call

this method UDNAM. The transition probabilities for this method are simply the averages of those for

UNAM and those for DNAM. Theorem 11 of (Neal and Rosenthal 2023) can be applied (twice) to show that

since UNAM and DNAM both efficiency-dominate Gibbs sampling, UDNAM must also efficiency-dominate

Gibbs sampling — UDNAM, as the random combination of UNAM and DNAM, must efficiency-dominate

the random combination of UNAM and GS, which must efficiency-dominate the random combination of

GS and GS, which is simply GS.

As noted earlier, Algorithm 2 used in DNAM can be modified to sample a value from the transition

distribution, taking time proportional only to the index of this sampled value in the order σ, rather than

computing all probabilities. Since DNAM looks at probabilities in decreasing order, this permits its use

when the number of possible values is countably infinite, provided a formula for probabilities of values is

available, and a non-increasing ordering can be determined.

For the the geometric(θ) distribution of equation (15), used as an example for MHGS, when m goes to

28

Input: Gibbs sampling probabilities, π(i), for i = 1, . . . ,m
The current state value, k, in {1, . . . ,m}

Output: DNAM transition probabilities, p(i), for i = 1, . . . ,m

If π(k) ≥ 1/2:

Quickly handle the case where the current value has probability half or more,
without needing to order values by probability

For i = 1, . . . ,m:
If i ̸= k:

Set p(i) to min(1, π(i)/π(k)) Min guards against round-off error

Set p(k) to (2π(k)− 1) / π(k)

Else:

Set σ to some permutation on {1, . . . ,m} for which π(σ(i)) ≥ π(σ(j)) when i ≤ j

Set p to the output of the NAM procedure of Algorithm 2 with inputs π, σ, and k

Algorithm 4: Computation of DNAM transition probabilities.

GS


1
12

3
12

3
12

5
12

1
12

3
12

3
12

5
12

1
12

3
12

3
12

5
12

1
12

3
12

3
12

5
12




2
10

2
10

3
10

3
10

2
10

2
10

3
10

3
10

2
10

2
10

3
10

3
10

2
10

2
10

3
10

3
10




1
10

3
10

3
10

3
10

1
10

3
10

3
10

3
10

1
10

3
10

3
10

3
10

1
10

3
10

3
10

3
10




1
10

1
10

3
10

5
10

1
10

1
10

3
10

5
10

1
10

1
10

3
10

5
10

1
10

1
10

3
10

5
10



UNAM


0 3

11
3
11

5
11

1
11 0 15

44
25
44

1
11

15
44 0 25

44
1
11

15
44

15
44

10
44




0 2
8

3
8

3
8

2
8 0 3

8
3
8

2
8

2
8 0 1

2
2
8

2
8

1
2 0




0 3
9

3
9

3
9

1
9 0 4

9
4
9

1
9

4
9 0 4

9
1
9

4
9

4
9 0




0 1
9

3
9

5
9

1
9 0 3

9
5
9

1
9

1
9 0 7

9
1
9

1
9

21
45

14
45



DNAM


0 3

42
3
14

5
7

1
42

2
42

3
14

5
7

1
14

3
14 0 5

7
1
7

3
7

3
7 0




0 1
7

3
7

3
7

1
7 0 3

7
3
7

2
7

2
7 0 3

7
2
7

2
7

3
7 0




0 3
21

3
7

3
7

1
21

2
21

3
7

3
7

1
7

3
7 0 3

7
1
7

3
7

3
7 0




0 0 0 1

0 0 0 1

0 0 0 1
1
5

1
5

3
5 0


π 1

12
3
12

3
12

5
12

2
10

2
10

3
10

3
10

1
10

3
10

3
10

3
10

1
10

1
10

3
10

5
10

(a) (b) (c) (d)

Figure 6: Some comparisons of transitions probabilities for Gibbs Sampling (GS), UNAM, and DNAM.
For all examples, values are ordered by non-decreasing probability, so UNAM focuses on values as ordered,
and DNAM focuses on values in the reverse order.

29

infinity, π(i) = θ(1 − θ)i−1 and si =
∑

j>i π(j) = (1 − θ)i. The decreasing ordering is σ(i) = i). When

θ ≥ 1/2, we will have π(1) ≥ 1/2, so the DNAM transition probabilities computed by Algorithm 4 will be

P ∗(1 → 1) = (2π(1)− 1) / π(1) = (2θ − 1) / θ (81)

P ∗(1 → j) = (1− θ)j−1, for j > 1 (82)

P ∗(i → 1) = 1, for i > 1 (83)

P ∗(i → j) = 0, for i, j > 1 (84)

When θ < 1/2, we will never have π(i) ≥ si, so the DNAM transition probabilities will follow the pattern

of (62), giving:16

P ∗(i → j) =
θ

1− θ

(
1− 2θ

1− θ

)j−1

, for j < i (87)

P ∗(i → i) = 0 (88)

P ∗(i → j) =
θ(1− 2θ)i−1

(1− θ)2i−1
(1− θ)j−1, for j > i (89)

So for this geometric distribution, the DNAM method produces the minimum possible self transition

probability. The transition distributions are piecewise geometric, and so are easily sampled from.

Finally, note that self transition probabilities that are all zero can sometimes be obtained with NAM

using an ordering that is neither upward (as in UNAM) nor downward (as in DNAM). For example (a) of

Figure 6, we can obtain the transition probability matrices below by using the ordering 1,4,2,3 (or 1,4,3,2),

shown on the left, and by using the ordering 4,1,2,3 (or 4,1,3,2), shown on the right:
0 3

11
3
11

5
11

1
11 0 5

33
25
33

1
11

5
33 0 25

33

1
11

15
33

15
33 0




0 3
21

3
21

5
7

1
21 0 5

21
5
7

1
21

5
21 0 5

7

1
7

3
7

3
7 0

 (90)

However, although a transition matrix having self transition probabilities that are all zero always exists

when no value has probability greater than 1/2, such a transition matrix cannot generally be obtained using

NAM with some ordering — this is possible only when there is exact equality between the probability of

some value and a sum of probabilities of some other values. In the next three sections, I will discuss

methods that do always minimize self transition probabilities.

16For j < i, we will have

P ∗(i → j) = π(j)
fj−1

sj
=

θ(1− θ)j−1

(1− θ)j
fj−1 =

θ

1− θ
fj−1 (85)

So then, fj = fj−1 − P ∗(i → j) = fj−1 − θ
1−θ

fj−1 = 1−2θ
1−θ

fj−1, from which it follows that fj =
(

1−2θ
1−θ

)j
, and hence that

P ∗(i → j) = θ
1−θ

(
1−2θ
1−θ

)j−1

.

For j > i,

P ∗(i → j) = π(j)
fi−1

si
=

θ(1− θ)j−1

(1− θ)i

(
1− 2θ

1− θ

)i−1

=
θ(1− 2θ)i−1

(1− θ)2i−1
(1− θ)j−1 (86)

30

9 The Zero-self DNAM (ZDNAM) method

A non-zero self transition probability is necessary only for a value whose probability under π is more than

one half. But DNAM will produce a non-zero self transition probability for a value with probability less

than one half if this probability is greater than the sum of the probabilities of values with lower probability,

as is the case in examples (a) and (c) of Figure 6. Note that when this happens the transition probabilities

among the remaining values are all zero, so the DNAM procedure ends at this point.

Here, I describe a modified procedure, the Zero-self DNAM method (ZDNAM), which modifies the

DNAM procedure to operate differently at the step just before the one where DNAM would produce a

non-zero self transition probability, substituting transition probabilities that avoid this. As for DNAM,

the remaining transition probabilities are all zero, so no further steps are necessary.

The idea can be illustrated by an example with m = 5 and σ(i) = i, with π(1) = 6/18, π(2) = 5/18,

π(3) = 4/18, π(4) = 2/18, and π(5) = 1/18. DNAM modifies the original transitions as follows:



6
18

5
18

4
18

2
18

1
18

6
18

5
18

4
18

2
18

1
18

6
18

5
18

4
18

2
18

1
18

6
18

5
18

4
18

2
18

1
18

6
18

5
18

4
18

2
18

1
18


→



0 5
12

4
12

2
12

1
12

6
12

5
36

4
36

2
36

1
36

6
12

5
36

4
36

2
36

1
36

6
12

5
36

4
36

2
36

1
36

6
12

5
36

4
36

2
36

1
36


→



0 5
12

4
12

2
12

1
12

6
12 0 4

14
2
14

1
14

6
12

5
14

4
49

2
49

1
49

6
12

5
14

4
49

2
49

1
49

6
12

5
14

4
49

2
49

1
49


→



0 5
12

4
12

2
12

1
12

6
12 0 4

14
2
14

1
14

6
12

5
14

1
28

2
28

1
28

6
12

5
14

4
28 0 0

6
12

5
14

4
28 0 0


The non-zero self transition probability of P ∗(3 → 3) = 1/28 results from π(3) = 4/18 being greater than

the sum of probabilities for later values, which in this example is s3 = π(4) + π(5) = 3/18.

For this example, the ZDNAM method operates the same as DNAM for the first step, but at step

i = 2, the ZDNAM algorithm recognizes that π(σ(i + 1)) > si+1 =
∑

j>i+1 π(σ(j)) — in this example,

that π(3) = 4/18 > π(4) + π(5) = 3/18 — and employs a special construction to avoid a non-zero self

transition probability for σ(i+ 1) — in this example, for the value 3. The result is as follows:

6
18

5
18

4
18

2
18

1
18

6
18

5
18

4
18

2
18

1
18

6
18

5
18

4
18

2
18

1
18

6
18

5
18

4
18

2
18

1
18

6
18

5
18

4
18

2
18

1
18


→



0 5
12

4
12

2
12

1
12

6
12

5
36

4
36

2
36

1
36

6
12

5
36

4
36

2
36

1
36

6
12

5
36

4
36

2
36

1
36

6
12

5
36

4
36

2
36

1
36


→



0 5
12

4
12

2
12

1
12

6
12 0 12

40
4
30

2
30

6
12

15
40 0 2

24
1
24

6
12

10
30

4
24 0 0

6
12

10
30

4
24 0 0


(91)

This special operation is uniquely determined by the requirements that the result be reversible with

respect to π, that it not alter transition probabilities to or from σ(j) for j < i that were found in previous

steps, that transition probabilities among the σ(j) with j > i+1 be zero, and that transition probabilities

to σ(j) for j > i+ 1 from both σ(i) and σ(i+1) be proportional to π(σ(j)).

The derivation of the general scheme can be illustrated with reference to the NAM transition matrix

shown in (63), which represents the result of DNAM when m = 5, σ(i) = i, and a non-zero self transition

probability is produced at step 3. At step 2, the ZDNAM method will alter the matrix produced so that

31

it instead has the following form:

P ∗ =



0 π(2)
f0
s1

π(3)
f0
s1

π(4)
f0
s1

π(5)
f0
s1

π(1)
f0
s1

0
1

π(2)
Af1

π(4)

π(2)
Bf1

π(5)

π(2)
Bf1

π(1)
f0
s1

1

π(3)
Af1 0

π(4)

π(3)
Cf1

π(5)

π(3)
Cf1

π(1)
f0
s1

Bf1 Cf1 0 0

π(1)
f0
s1

Bf1 Cf1 0 0



(92)

This transition matrix is reversible with respect to π by construction. A, B, and C can be found from the

requirement that the rows sum to one.

I will now switch to using a general notation, with i being the step at which ZDNAM recognizes

that π(σ(i+1)) > si+1, and hence the special construction is needed. The example above has i = 2 and

σ(i) = i. Recall that si is the sum of π(σ(j)) for all j > i, and that for any k > i, fi is the sum of transition

probabilities from σ(k) to σ(j) for all j > i.

When finding A, B, and C, the requirement that rows of the matrix sum to one is equivalent to requiring

that for k ≥ i, the sum of P ∗(σ(k) → σ(j)) for j ≥ i must be fi−1. This gives the following equations:

A + Bsi+1 = π(σ(i)), A + Csi+1 = π(σ(i+1)), B + C = 1 (93)

Solving this system of equations, we get

A =
π(σ(i)) + π(σ(i+1))− si+1

2
, B =

π(σ(i))− π(σ(i+1)) + si+1

2 si+1
, C =

si+1 + π(σ(i+1))− π(σ(i))

2 si+1
(94)

Algorithm 5 implements this procedure. As in Algorithm 4 for DNAM, it starts by handling the case

where the current value has probability 1/2 or more specially, which avoids the need to sort by probability.

The case where the most-probable value has probability 1/2 or more is also handled specially. Otherwise,

the DNAM procedure is applied for i from 1 on up, until the current value is reached in the ordering found,

while also checking whether the next step, i+1, will be one in which π(σ(i+1)) ≥ si+1, and hence the

special construction will be used. Because of this forward check, no check for whether π(σ(i)) ≥ si is

needed within the loop.

If the special construction is needed, the values A, B, and C of (94) are computed and used, taking care

to avoid division by zero.

As is the case for other NAM methods, the ZDNAM algorithm computes transition probabilities se-

quentially, and hence can easily be modified to sample a value from the transition distribution based on

a uniform random variate, terminating once the cumulative probability exceeds the uniform variate. The

possibilities for handling distributions with a countably infinite number of values are similar to DNAM.

The reduction in self transition probability for ZDNAM compared to DNAM is not uniformly beneficial

— it is not always the case that the ZDNAM transition matrix efficiency-dominates the DNAM transition

32

Input: Gibbs sampling probabilities, π(i), for i = 1, . . . ,m
The current state value, k, in {1, . . . ,m}

Output: ZDNAM transition probabilities, p(i), for i = 1, . . . ,m

If π(k) ≥ 1/2:

Quickly handle the case where the current value has probability half or more,
without needing to order values by probability

For i = 1, . . . ,m:
If i ̸= k:

Set p(i) to min(1, π(i)/π(k)) Min guards against round-off error

Set p(k) to (2π(k)− 1) / π(k)

Else:

Set σ to some permutation on {1, . . . ,m} for which π(σ(i)) ≥ π(σ(j)) when i ≤ j

If π(σ(1)) ≥ 1/2:

Handle the case where a value has probability of 1/2 or more. Won’t be the
current value, since that’s handled above.

Set p(σ(1)) to 1

For i = 2, . . . ,m:
Set p(σ(i)) to 0

Else:

Set s to 1 The sum of probabilities for values that have not yet been focal

Set f to 1 The sum of transition probabilities from k to values not yet focal

Find modified transition probabilities from the current value to successive focal values,
until the focal value is the current value, or special handling to avoid a non-zero
self transition probability is needed.

Set i to 1

While f > 0 and σ(i) ̸= k and π(σ(i+1)) < s− π(σ(i))− π(σ(i+1):

Let q be the probability of the focal value; update s to be the sum
of probabilities for remaining non-focal values

Set q to π(σ(i))
Subtract q from s Sets variable s to si, guaranteed positive

Compute the transition probability from the current value, k, to the focal value,
and find the new total probability for transitions to remaining values

Set p(σ(i)) to (q/s)f Guaranteed p(σ(i)) ≤ f ≤ 1, even with rounding
Subtract p(σ(i)) from f Sets variable f to fi, was previously fi−1

Add 1 to i

Set q to π(σ(i))
Subtract q from s

Continue with the procedure of Algorithm 5: Part 2.

Algorithm 5: Part 1. Procedure for computing ZDNAM transition probabilities.

33

Continuation of Algorithm 5: Part 1.

If f > 0 and s > 0 and i < m:

Set q2 to π(σ(i+1))
Set s2 to max (0, s− q2) max guards against round-off error

If q2 ≥ s2:

Use the special construction to avoid a non-zero self transition probability.

Set A to (q + q2 − s2) / 2
If k = σ(i):

Set p(σ(i)) to 0
Set p(σ(i+1) to fA/q

Else If k = σ(i+1):
Set p(σ(i)) to fA/q2
Set p(σ(i+1) to 0

If s2 ≤ 0:
Add 2 to i

Else:
Set B to (q − q2 + s2) / (2s2)
Set C to (s2 + q2 − q) / (2s2)
If k = σ(i):

Add 2 to i
While i ≤ m:

Set p(σ(i)) to fBπ(σ(i))/q
Add 1 to i

Else If k = σ(i+1):
Add 2 to i
While i ≤ m:

Set p(σ(i)) to fCπ(σ(i))/q2
Add 1 to i

Else:
Set p(σ(i)) to fB
Set p(σ(i+1)) to fC
Add 2 to i

Else:

Compute modified transition probabilities from the current value, k,
which is now focal, to values that have not previously been focal.

Set p(σ(i)) to 0
Add 1 to i
While i ≤ m:

Set p(σ(i)) to (π(σ(i)) / s) f
Add 1 to i

Set any remaining transition probabilities to zero.

While i ≤ m:
Set p(σ(i)) to 0
Add 1 to i

Algorithm 5: Part 2. Continuation of procedure for computing ZDNAM transition probabilities.

34

matrix. This can be seen, for example, when m = 3 and π(1) = 4/9, π(2) = 3/9, and π(3) = 2/9, for which

P ∗
DNAM =


0 9

15
6
15

12
15

1
15

2
15

12
15

3
15 0

 , P ∗
ZDNAM =


0 15

24
9
24

20
24 0 4

24

18
24

6
24 0

 (95)

Numerical calculation finds that the eigenvalues of P ∗
DNAM−P ∗

ZDNAM are 0.10306, −0.03639, and zero. Since

their signs are mixed, Theorem 9 of (Neal and Rosenthal 2023) shows that neither P ∗
DNAM nor P ∗

ZDNAM

efficiency-dominates the other.

A ZDNAM transition probability matrix has eigenvalues and eigenvectors that can be associated with

each step followed when constructing it. Until the special construction is used, when π(σ(i + 1)) ≥ si+1,

these are the same as for any NAM procedure, as described in Section 6 (e.g., equation (65)). Two

eigenvalues and eigenvectors are associated with steps i and i+ 1 when the special construction is applied

at step i. Assuming for notational simplicity that the non-increasing ordering is σ(i) = i, these two

eigenvalues are given by

λ = −fi−1

2

[
1 ±

√
1 −

(
π(i)− π(i+1) + si+1

) (
π(i+1)2 − (π(i)− si+1)2

)
/
(
π(i)π(i+1)si+1

)]
(96)

An associated right eigenvector for such a λ is

v = [0, . . . , Cfi−1si+1 + λπ(i+1), −Bfi−1si+1 − λπ(i), Bfi−1π(i+1)− Cfi−1π(i), . . .]T (97)

where there are i−1 leading zero elements in the vector, and the elements after position i + 1 are all the

same.17 The eigenvalues after those associated with steps i and i+ 1 are all zero.

The eigenvalues of a ZDNAM transition matrix are all zero or negative, apart from the one eigenvalue of

1 with eigenvector [1, . . . , 1]T . This is so for the eigenvalues associated with the NAM steps before step i,

17Here is the proof that either one of the λ of (96), which can be written as λ = −(fi−1/2)
[
1±

√
D
]
, in which D =

1 −
(
π(i) − π(i+1) + si+1

) (
π(i+1)2 − (π(i) − si+1)

2
)
/
(
π(i)π(i+1)si+1

)
, is an eigenvalue of the ZDNAM transitions P ∗

visualized in (92) with the corresponding v from (97) as an associated eigenvector.

We first show that [P ∗v]j = 0 for j < i:

[P ∗v]j = (Cfi−1si+1 + λπ(i+1))P ∗(j → i)− (Bfi−1si+1 + λπ(i))P ∗(j → i+1) +

m∑
k=i+2

(Bfi−1π(i+1)− Cfi−1π(i))P
∗(j → k)

=
fj−1

sj

[
(Cfi−1si+1 + λπ(i+1))π(i) − (Bfi−1si+1 + λπ(i))π(i+1) + (Bfi−1π(i+1)− Cfi−1π(i)) si+1

]
= 0

Next, we see that

[P ∗v]i = −(Bfi−1si+1 + λπ(i))P ∗(i → i+1) +

m∑
k=i+2

(Bfi−1π(i+1)− Cfi−1π(i))P
∗(i → k)

=
(
fi−1/π(i)

) (
− (Bfi−1si+1 + λπ(i))A + (Bfi−1π(i+1)− Cfi−1π(i))Bsi+1

)
= −

(
f2
i−1/(2π(i))

) ((
(π(i)−π(i+1)+si+1) −

[
1±

√
D
]
π(i)

)
A − (Bπ(i+1)−Cπ(i)) (π(i)−π(i+1)+si+1)

)
= −

(
f2
i−1/4

) (
(−π(i+1)+si+1) (π(i)+π(i+1)−si+1) / π(i) ∓ (π(i) + π(i+1)− si+1)

√
D

− ((π(i)− π(i+1) + si+1)π(i+1)− (si+1 + π(i+1)− π(i))π(i)) (π(i)−π(i+1)+si+1) / (π(i)si+1)
)

= −
(
f2
i−1/4

) (
± (si+1−π(i)−π(i+1))

√
D + (π(i)π(i+1)2+π(i)2π(i+1)+π(i+1)s2i+1+π(i+1)2si+1

+2π(i)s2i+1−π(i)3−π(i+1)3−s3i+1− 3π(i)π(i+1)si+1) / (π(i)si+1)
)

= −
(
f2
i−1/4

) [
1±

√
D
] (

si+1 + π(i+1)− π(i)−
[
1±

√
D
]
π(i+1)

)
= λ (Cfi−1si+1 + λπ(i+1))

In similar fashion, we have:

35

where the special construction is needed, as demonstrated in Section 6. The two eigenvalues given by (96)

are also negative — the value of the square root is less than one, hence the quantity in square brackets

is positive, and the eigenvalue is negative. To see that the square root is less than one, note first that

π(i) ≥ π(i+1), since the ordering is non-increasing, and hence the factor (π(i)−π(i+1)+ si+1) is positive.

Also, π(i) < π(i+1) + si+1, since otherwise the special construction would have been used before step i,

and π(i+1) ≥ si+1, since the special construction was used at step i, and hence π(i) ≥ si+1. It follows that

0 ≤ π(i)− si+1 < π(i+1), and hence the factor (π(i+1)2 − (π(i)− si+1)
2) is positive.

Since the eigenvalues (apart from the single 1) are all zero or negative, Corollary 15 of (Neal and

Rosenthal 2023) can then be applied to show that ZDNAM transitions efficiency-dominate Gibbs sampling.

As discussed for antithetic modifications in Section 5, Theorem 12 of (Neal and Rosenthal 2023) allows

us to then conclude that using ZDNAM to update a randomly selected variable efficiency-dominates using

Gibbs sampling with such random updates.

10 The Shifted Tower (ST) and Half Shifted Tower (HST) methods

Suwa and Todo (2010) and Suwa (2022) describe a class of methods for defining transition probabilities

that can be viewed in terms of building a “tower” of probabilities for values, applying a circular shift

operation to produce a second tower, and then defining transition probabilities by the alignment of the

first and second towers.

The first method, of Suwa and Todo (2010), shifts by the probability of the most probable value. I will

refer to this as the Shifted Tower (ST) method. It always reduces self transitions to the minimum possible.

Unlike all the methods considered previously in this paper, it may produce non-reversible transitions

(though note that when there are only two possible values, transitions leaving π invariant are always

reversible with respect to π). Suwa (2022) generalized this method to an arbitrary shift, and in particular

noted that shifting by 1/2 minimizes self transitions while also producing transitions that are reversible. I

call this the Half Shifted Tower (HST) method.

The ST and HST methods are illustrated in Figure 7. Algorithm 6 implements these methods, for any

[P ∗v]i+1 = (Cfi−1si+1 + λπ(i+1))P ∗(i+1 → i) +

m∑
k=i+2

(Bfi−1π(i+1)− Cfi−1π(i))P
∗(i → k)

=
(
fi−1/π(i+1)

) (
(Cfi−1si+1 + λπ(i+1))A + (Bfi−1π(i+1)− Cfi−1π(i))Csi+1

)
= −

(
f2
i−1/(2π(i+1))

) (
(−(si+1+π(i+1)−π(i)) +

[
1±

√
D
]
π(i+1))A − (Bπ(i+1)−Cπ(i)) (si+1+π(i+1)−π(i))

)
= −

(
f2
i−1/4)

) (
(−si+1+π(i)) (π(i)+π(i+1)− si+1) / π(i+1) ± (π(i)+π(i+1)− si+1)

√
D

− ((π(i)− π(i+1) + si+1)π(i+1)− (si+1 + π(i+1)− π(i))π(i)) (si+1+π(i+1)−π(i)) / (π(i+1)si+1)
)

= −
(
f2
i−1/4

) (
± (π(i)+π(i+1)− si+1)

√
D + (π(i)π(i+1)2 − π(i)2π(i+1)− π(i)s2i+1 − π(i)2si+1

− 2π(i+1)s2i+1+π(i)3+π(i+1)3+s3i+1+ 3π(i)π(i+1)si+1) / (π(i+1)si+1)
)

= −
(
f2
i−1/4

) [
1±

√
D
] (

− π(i) + π(i+1)− si+1 +
[
1±

√
D
]
π(i)

)
= λ (−Bfi−1si+1 − λπ(i))

Finally, for j > i+ 1, we have that

[P ∗v]j = (Cfi−1si+1 + λπ(i+1))P ∗(j → i) − (Bfi−1si+1 + λπ(i))P ∗(j → i+1)

= (Cfi−1si+1 + λπ(i+1))Bfi−1 − (Bfi−1si+1 + λπ(i))Cfi−1

= λ (Bfi−1π(i+1)− Cfi−1π(i))

36

specified shift, and any ordering of values, using a formula adapted from one given by Suwa (2022).18

For a given shift amount, s ∈ [0, 1], and ordering of values, σ, the formula computes the “flow” from

value k to value i, defined by vki = π(k)P ∗(k → i), as

vki = max (0, min (∆1, π(k) + π(i)−∆1, π(k), π(i)))

+ max (0, min (∆2, π(k) + π(i)−∆2, π(k), π(i))) (98)

where ∆1 = π(k)− s+ Ck − Ci and ∆2 = ∆1 + 1

Here, Ck is the sum of probabilities for values before k in the ordering σ. We can compute these as follows:

Cσ(i) =

i−1∑
j=1

π(σ(j)) (99)

Once vki has been computed, we can find the transition probability from k to i as

P ∗(k → i) = vki / π(k) (100)

Figure 8 illustrates how the formula for vki of equation (98) is derived. The left of the figure shows a

situation in which vki = ∆1, while the right shows a situation in which vki = π(k) + π(i) − ∆1. When

the shifted region for value i completely encloses the original region for value k, the flow will be π(k), and

in the opposite situation, the flow will be π(i). Taking the minimum of all these possibilities, and then

replacing a negative value by zero, gives the flow in all situations where wrap-around is not an issue. To

this, we need to add the value for the flow that is found accounting for the possibility that after shifting

by s, the start of the region for value i wraps around from 1 to 0, which we do by replacing ∆1 by

∆2 = π(k)− s+ Ck − (Ci − 1) = ∆1 + 1. The final result is given by equation (98).

In Algorithm 6, this procedure is modified to avoid issues with round-off error. Rather than compute

∆2 as ∆1 + 1, the program sets ∆2 to ∆1 + S, where S is the sum of probabilities for all values. If the

probabilities are normalized, one would expect this to be 1, but it may not be due to round-off error.

Similarly, the transition probability P ∗(k → i) is not found as vki/π(k), but rather as vki /
∑

j vkj , which

guarantees that these transition probabilities are not greater than one even if
∑

j vkj is not exactly π(k).

For both ST and HST, the ordering of values can matter. I will use ST and HST to refer to these

methods with the original order retained. I use Ordered HST (OHST) to refer to HST with values ordered

by probability — whether by non-increasing or non-decreasing probability makes no difference. I use

Upward ST (UST) or Downward ST (DST) to refer to the ST method in which the most probable value is

followed by the other values in non-decreasing or non-increasing order. For all these methods, how values

with equal probability are ordered may matter.

Both UST and DST produce transition probabilities are (in general) non-reversible, but which are,

however, reverses of each other — that is,

π(u)PUST (u → v) = π(v)PDST (v → u) (101)

18Suwa’s formula appears to erroneously treat the values as having the reverse of their specified order, comparing to Fig. 1
of Suwa (2022), though this has no practical effect if the ordering was arbitrary anyway. The formula used in Algorithm 6
corrects for this. Note that Fi in Suwa’s formulas (12) and (13) corresponds to C(i) + π(i) in the notation used here.

37

Shifted Tower

1 (0.4)

2 (0.3)

3 (0.1)

4 (0.2)

-

-

-

-

-

-

-

-

-

-

1 (0.4)

2 (0.2)

2 (0.1)

3 (0.1)

4 (0.2)


0 1

4
1
4

1
2

1 0 0 0

1 0 0 0

0 1 0 0



Half Shifted Tower

1 (0.4)

2 (0.3)

3 (0.1)

4 (0.2)

-

-

-

-

-

-

-

-

-

-

1 (0.4)

2 (0.1)

2 (0.2)

3 (0.1)

4 (0.2)


0 1

2
1
4

1
4

2
3 0 0 1

3

1 0 0 0
1
2

1
2 0 0



Figure 7: The Shifted Tower (ST) and Half Shifted Tower (HST) methods. In this example, values 1, 2, 3,
and 4 have probabilities of 0.4, 0.3, 0.1, and 0.2. On the left for each method is the tower of regions for each
value, with heights proportional to their probabilities. On the right of this tower is a shifted tower, with
regions that move out of the top moving into the bottom, which may result in the region for a value being
split between top and bottom. For the ST method, the shift is by the probability of the most probable
symbol. For the HST method, the shift is always by 1/2. Transitions are defined by randomly sampling
from the region of the left tower corresponding to the current value, then following the arrows right to a
region of the shifted tower. The resulting matrices of transition probabilities are shown to the right.

Ck

Ck + π(k)

π(k)
∆1

π(i)

Ci + s

Ck

Ck + π(k)

π(k)

∆1 π(i)

Ci + s

vki = ∆1 = π(k)− s+ Ck − Ci vki = π(k) + π(i)−∆1

Figure 8: Illustration of how vki for the shifted tower method can be found in two situations.

38

Input: Gibbs sampling probabilities, π(i), for i = 1, . . . ,m
The current state value, k, in {1, . . . ,m}
Amount of shift, s, in (0, 1)
A permutation, σ, on {1, . . . ,m}, giving an ordering of values

Output: ST transition probabilities, p(i), for i = 1, . . . ,m

Temporary storage: Flows of probability, v(i), from k to each value, for i = 1, . . . ,m

Cumulative probabilities, C(i), for i = 1, . . . ,m, with C(i) =
∑i−1

j=1 π(i)

If π(k) ≥ 1/2:

Quickly handle the case where the current value has probability half or more,
without needing to compute cumulative probabilities.

For i = 1, . . . ,m:
If i ̸= k:

Set p(i) to min(1, π(i)/π(k)) Min guards against round-off error

Set p(k) to (2π(k)− 1) / π(k)

Else:

Compute cumulative probabilities, in the order given by σ, but stored in the original order.
Set S to the sum of all probabilities, which should be one, but may differ due to rounding.

Set S to 0
For i = 1, . . . ,m:

Set C(σ(i)) to S
Add π(σ(i)) to S

Find the flows from the current value to each value, and the total flow.

Set t to 0
For i = 1, . . . ,m:

Set ∆1 to π(k)− s+ C(k)− C(i) Will be exactly zero if i = k and s = π(k)
Set ∆2 to ∆1 + S
Set v(i) to max (0, min (∆1, π(k) + π(i)−∆1, π(k), π(i)))

+ max (0, min (∆2, π(k) + π(i)−∆2, π(k), π(i)))
Add v(i) to t

If t = 0:

If the total flow is zero, return a result giving probability 1 to the most probable value.

Set j to 1
For i = 2, . . . ,m:

If π(i) > π(j):
Set j to i

For i = 1, . . . ,m:
Set p(i) to 1 if i = j, otherwise to 0

Else:

Find transition probabilities by normalizing flows by their sum, which should be π(k),
but may differ due to rounding.

For i = 1, . . . ,m:
Set p(i) to v(i)/t

Algorithm 6: Computation of ST transition probabilities.

39

Downward Shifted Tower

1 (0.4)

2 (0.3)

3 (0.2)

4 (0.1)

3 → 2

1 (0.4)

2 (0.2)

2 (0.1)

3 (0.2)

4 (0.1)

↷

2 (0.2)

1 (0.4)

4 (0.1)

3 (0.2)

2 (0.1)

2 → 3

4 (0.1)

3 (0.2)

2 (0.3)

1 (0.4)

↓

Upward Shifted Tower

1 (0.4)

4 (0.1)

3 (0.2)

2 (0.3)

2 → 3

3 (0.1)

2 (0.3)

1 (0.4)

4 (0.1)

3 (0.1)

Figure 9: Illustration of why UST and DST are reversals of each other. On the left is an illustration of
DST transition probabilities, showing in particular that π(3)PDST (3 → 2) = 0.1. In the middle is the
result of rotating the diagram on the left by 180 degrees, which produces reversed transition probabilities,
where in particular π(2)PDST (2 → 3) = 0.1. On the right is the result of shifting the two towers in the
middle down by 0.2 (wrapping bottom to top). This shift of both towers has no effect on the transition
probabilities, which are now seen to be those of PUST .

This relationship is illustrated in Figure 9. Averaging the transition probabilities produced by UST and

DST therefore gives a method, which I will call UDST, that is reversible:

π(u)PUDST (u → v) = π(u) (PUST (u → v) + PDST (u → v)) / 2 (102)

= π(v) (PDST (v → u) + PUST (v → u)) / 2 (103)

= π(v)PUDST (v → u) (104)

Like UST and DST, UDST produces the minimum possible self transition probabilities, so it will provide

interesting information on the effect of reversibility in the experimental comparisons.

Algorithm 6 also starts by checking whether the current value has probability of 1/2 or more, and

if so, finds the transition probabilities from this value quickly, without needing to compute cumulative

probabilities. This check could be omitted, as might be desirable if it is known that probabilities of a half

or more are unlikely. Also, when this check is omitted, it is not necessary for the input probabilities, π,

to be normalized to sum to one, given the adjustments described in the previous paragraph, provided the

shift amount, s, is on the same scale as these unnormalized probabilities. Indeed, the procedure described

by Suwa (2022) does not assume that probabilities are normalized.

The ST method can be implemented by applying Algorithm 6 with s set to the maximum value of π.

For the HST method, Algorithm 6 is called with s set to 1/2.

In many contexts, computing transition probabilities is not necessary — all that is needed is a way of

sampling from the transition distribution given the current state value. For ST methods, sampling directly

may be significantly faster than first computing transition probabilities and then sampling using them.

Algorithm 7 implements such a direct sampling method, based on randomly choosing a point within the

region of the “tower” corresponding to the current value, then moving this point down by the shift amount,

40

Input: Gibbs sampling probabilities, π(i), for i = 1, . . . ,m
The current state value, k, in {1, . . . ,m}
Amount of shift, s, in (0, 1)
A permutation, σ, on {1, . . . ,m}, giving an ordering of values

Output: A state value, j, sampled from the ST transition probabilities from state k,
guaranteed not to be a value with transition probability zero

Find the sum, u, of probabilities of values before k in the ordering used.

Set i to 1
Set u to 0
While σ(i) ̸= k:

Set u to u+ π(σ(i))
Add 1 to i

Add a random amount to u, while subtracting the shift, with wrap-around.

Set r to a uniform random variate on [0, 1]
Add rπ(k)− s to u Guaranteed not to increase u when s = maxj π(j)
If u ≤ 0:

Add 1 to u Guarantees that u is greater than zero

Use this value of u to pick a value, j, to transition to, picking an arbitrary value with
non-zero probability if no value is chosen due to round-off error.

Set i to 0
Set s to 0
While i < m and u > s:

Add 1 to i
If π(σ(i)) > 0:

Add π(σ(i)) to s
Set j to σ(i)

The value j is now a sample from the transition probabilities from the current state, k.

Algorithm 7: Sampling from ST transition probabilities.

with wrap-around (equivalent to moving the tower up), and choosing a new value using this shifted point

as if it were a random [0, 1] variate.

This technique could be used when the state has a countably infinite number of values, as long as the

cumulative distribution function and its inverse can be computed efficiently.

11 Flattened slice sampling methods (FSS and ZFSS)

Modified Gibbs sampling methods can also be derived using the “slice sampling” framework (Neal 2003).

For discrete distributions, slice sampling can be visualized using bars associated with each possible value,

with the height of a bar equal to its value’s probability. A vertical level within the bar for the current

value is sampled uniformly, and some update is then made that moves amongst the bars that intersect the

horizontal line drawn at this level, with the property of leaving the uniform distribution on this horizontal

“slice” invariant.

One update that seems promising for avoiding self transitions is to move from the bar for the current

41



0 0 0 0 1
1
2 0 0 0 1

2

0 1 0 0 0

0 0 1 0 0

0 0 1
3

1
9

5
9





0 0 0 0 1
1
4 0 0 0 3

4

0 1
2 0 0 1

2

0 0 0 0 1
1
9

2
9

4
9

1
9

1
9





0 0 0 0 1
1
4 0 0 0 3

4

0 1
2 0 0 1

2

0 0 0 0 1
10
63

20
63

4
9

5
63 0



0.1

-

1

0.2
�

-

2

0.2

3

�

0.05

4

�

0.45

�

�

�

5

0.1

1

0.2

2

0.2

3
0.05

4

0.45

5

? ? ?

�
0.1

1

0.2

2
0.05

4

0.2

3

0.45

5

? ? ?

Slice Sampling Flattened Slice Sampling Zero-self Flattened Slice Sampling

Figure 10: Illustration of SS, FSS, and ZFSS methods. These diagrams portray transitions that leave
invariant the distribution on {1, 2, 3, 4, 5} with probabilities 0.1, 0.2, 0.2,, 0.05, and 0.45. The left diagram
shows simple slice sampling, in which a vertical position is randomly chosen from the bar for the current
value, with height equal to its probability, and a movement to the left (with wrap-around) is then made
until the next bar is encountered. In the middle diagram, the self transition probability for the most
probable value is reduced by distributing the excess of its probability over that of the next-most probable
value to new bars that follow the bars for values other than the most probable value and the one before it.
Arrows showing the subsequent transitions are omitted, except for one left arrow showing that there is still
a non-zero self transition probability, going from the most probable value to another bar also associated
with this value. In the right diagram, value 3 is moved to just before the most-probable value, which blocks
such a self transition. The resulting transition probability matrices are shown above the diagrams.

value, at the sampled level, to the next bar to the left that rises to that level, wrapping around to the right

side if the left end is reached. This method is shown in the left illustration of Figure 10. Unfortunately,

the method will produce a non-zero self transition probability if one value has a probability greater than

all other values, as is the case for value 5 in Figure 10. If the vertical level sampled when this is the current

value is greater than the probabilities of all other values, the movement to the left will wrap around to the

same value. In this example, the resulting self transition probability from value 5 is (0.45−0.2)/0.45 = 5/9,

but the minimum possible self transition probability for this distribution is zero.

This self transition probability can be reduced by distributing the portion of the probability of the

most-probable symbol that is greater than all other symbols amongst another set of bars, which follow

the bars for values other than the most probable value and the value to its left (with wraparound). This

modification, called Flattened Slice Sampling (FSS), is shown in the middle illustration of Figure 10. The

0.25 excess probability for value 5 is moved to bars to the right of values 1, 2, and 3, in proportion to

their probabilities. When 5 is the current value, a bar is selected from amongst these three new bars and

the original bar with probabilities 0.05/0.45, 0.1/0.45, 0.1/0.45, and 0.2/0.45. Movement to the left then

occurs as before. If the bar moved to is any of those associated with the most-probable value, that becomes

the new state.

However, the self transition probability for FSS is still not zero in this example. The bar for value 4 is

lower than the new bar to the right of value 3. Consequently, a portion of the bar for value 5 encounters

this new bar, which is also associated with value 5, when leftward movement occurs, resulting in a self

transition probability of 1/9 when value 5 is the current state.

42

The Zero-self Flattened Slice Sampling (ZFSS) method avoids such unnecessary self transitions by re-

ordering values to put a value that blocks such movement immediately to the left of the most-probable

value, while leaving the order of values otherwise unchanged. The value moved is the one closest on the

left to the most-probable value that will block any resulting movement from the original bar for the most-

probable value to one of the new bars also associated with this value. In the example of Figure 10, value

3 is moved to the left of value 5.

This procedure assumes all values have probability less than one half, which also implies that m > 2.

Situations where a value has probability one half or more are handled specially, in the same manner as for

ZDNAM and the ST methods, which, as will be discussed below in Section 13, is the only method that

minimizes the probability of a self transition in this situation. The FSS and ZFSS methods are implemented

in Algorithm 8, with an input flag specifying whether the possible re-ordering for ZFSS is done.

As for the ST methods, an FSS transition can be simulated directly more efficiently than it can be by

first computing transition probabilities from the current value and then sampling a new value according

to these probabilities. Since the flow is computed in Algorithm 8 by adding portions (with the flow never

decreasing), one can keep track of the cumulative flow computed so far, and make a transition to the value

associated with the portion just computed when this cumulative sum exceeds a random variate chosen at

the beginning. Algorithm 9 implements this approach.

The FSS and ZFSS methods are non-reversible, whenever the maximum probability is less than one

half. For FSS, this non-reversibility takes the form of consistent movement to the left (with wrap-around),

except for possible transitions to the most-probable value. One might speculate that such consistent

movement improves efficiency. The re-ordering that may be done for ZFSS is designed to disturb this

leftward movement as little as possible. self transitions could instead be avoided by ordering the values by

non-decreasing probability, but this would often disturb the original ordering more, and could lead to the

ordering changing from one update to another, preventing consistent movement.

FSS and ZFSS are feasible for some distributions with a countably infinite number of values. Consider

the geometric(θ) distribution on {1, 2, . . .} used previously as an example for MHGS and DNAM, with

θ < 1/2. If we use a reverse order, so that value 1 is rightmost, the excess in probability of the most

probable value (1) over the next-most probable (2) will be θ − θ(1 − θ) = θ2, which will be distributed

over new bars that follow values 3, 4, 5, etc. to the right, in proportion to the probabilities of these values.

The height of the new bar to the right of value i+1 will be θ2 · θ(1− θ)i−2 = θ3(1− θ)i−2. In comparison,

the height of the bar for value i will be θ(1 − θ)i−1. The transition probability from value i (for i > 1)

to value 1 will be the sum of the ratio of these, θ2 / (1− θ), plus the ratio of the excess of the probability

for value i over that for value i + 1 to the probability for value i, which is θ. This gives the transition

probabilities from value i for i > 1 as

P ∗(i → 1) = θ2 / (1− θ) + θ = θ / (1− θ) (105)

P ∗(i → i+ 1) = 1 − P ∗(i → 1) = 1 − θ / (1− θ) (106)

P ∗(i → j) = 0, for j ̸= 1 and j ̸= i+ 1 (107)

For value 1, we have

P ∗(1 → 1) = 0 (108)

P ∗(1 → 2) = θ(1− θ) / θ = 1− θ (109)

P ∗(1 → j) = θ3(1− θ)j−3 / θ = θ2(1− θ)j−3, for j > 2 (110)

43

Input: Gibbs sampling probabilities, π(i), for i = 1, . . . ,m
The current state value, k, in {1, . . . ,m}
A flag, ZERO, for whether ZFSS should be used

Output: FSS or ZFSS transition probabilities, p(i), for i = 1, . . . ,m

Temporary storage: Flows of probability, v(i), from k to each value, for i = 1, . . . ,m

If π(k) ≤ 0:

Handle transition from zero-probability value specially.

For i = 1, . . . ,m:
Set p(i) to π(i)

Else:

Find the index, x1, of the most probable value, and its probability, π1.

Set x1 to 1
For i = 2, . . . ,m:

If π(i) > π(x1):
Set x1 to i

Set π1 to π(x1)

If π(x1) ≥ 1/2 or m ≤ 2: Checking for m ≤ 2 guards against round-off error

Handle the case where the current value has probability half or more specially.

If k = x1:
For i = 1, . . . ,m:

Set p(i) to (2π1 − 1) / π1 if i = k, otherwise to π(i)/π1
Else:

For i = 1, . . . ,m:
Set p(i) to 1 if i = x1, otherwise to 0

Else:

Find the probability, π2, of the second most probable value.

Set π2 to 0
for i = 1, . . . ,m:

If i ̸= x1 and π(i) > π2:
Set π2 to π(i)

Find the index, x0, of the value before the most probable value, or for ZFSS, the index
of the first value before the most probable value which will block movement beyond it
from encountering a piece of the most probable value.

Set x0 to x1
Loop:

Set x0 to m if x0 = 1, otherwise to x0 − 1
Set π∗ to (0.5− π1) + (0.5− π(x0)) Computing this way reduces round-off error
Set f to (π1 − π2) / π

∗ Guaranteed to be in [0, 1] even with rounding
Repeat loop as long as ZERO and π(x0) < fπ2

Continue with the procedure of Algorithm 8: Part 2.

Algorithm 8: Part 1. Procedure for computing FSS or ZFSS transition probabilities.

44

Continuation of Algorithm 8: Part 1.

Find the part of the flow due to distributing the difference in probability between most
probable and second-most probable values among other values. Here, f is the factor to
multiply probabilities of values besides x1 and x0 by to get the part of x1 flowing there.

For i = 1, . . . ,m:
If k = x1 and i ̸= x1 and i ̸= x0:

Set v(i) to fπ(i)
Else:

Set v(i) to 0

Find the flow due to slice movement.

Set ℓ to 0 Lower end of probability region to move
Set u to π2 if k = x1, otherwise to π(k) Upper end of probability region to move
Set i to k

While ℓ < u:

Move i backwards, going from x1 to x0, from x0 to before x1, and skipping x0
when otherwise going back.

If i = x1:
Set i to x0

Else:
If i = x0:

Set i to m if x1 = 1, otherwise to x1 − 1
Else:

Set i to m if i = 1, otherwise to i− 1
If i = x0:

Set i to m if x0 = 1, otherwise to x0 − 1

Add to flow from slice movement of [ℓ, u] region, and update ℓ and u.

If ℓ < π(i):
If i ̸= x1 and i ̸= x0:

Set t to min(u, fπ(i))
If ℓ < t:

Add t− ℓ to v(x1)
Set ℓ to t

Set t to min(u, π(i))
Add t− ℓ to v(i)
Set ℓ to t

Return transition probabilities derived from flow.

For i = 1, . . . ,m:
Set p(i) to v(i)/π(k)

Algorithm 8: Part 2. Continuation of procedure for computing FSS or ZFSS transition probabilities.

45

Input: Gibbs sampling probabilities, π(i), for i = 1, . . . ,m
The current state value, k, in {1, . . . ,m}
A flag, ZERO, for whether ZFSS should be used

Output: A state value, j, sampled from the FSS/ZFSS transition probabilities from state k,
guaranteed not to be a value with transition probability zero

If π(k) ≤ 0:

Handle transition from zero-probability value specially.

Set r to a uniform random variate on [0, 1]
For i = 1, . . . ,m:

Set s to 0; Set i to 0
While i < m and r ≥ s:

Add 1 to i
If π(i) > 0:

Add π(i) to s; Set j to i
Else:

Find the index, x1, of the most probable value, and its probability, π1.

Set x1 to 1
For i = 2, . . . ,m:

If π(i) > π(x1):
Set x1 to i

Set π1 to π(x1)

If π(x1) ≥ 1/2 or m ≤ 2: Checking for m ≤ 2 guards against round-off error

Handle the case where the current value has probability half or more specially.

If k ̸= x1:
Set j to x1

Else:
Set r to a uniform random variate on [0, 1]
Set s to 0; Set i to 0
While i < m and r ≥ s:

Add 1 to i
If π(i) > 0:

If i = k:
Add (2π1 − 1) / π1 to s

Else:
Add π(i) / π1 to s

Set j to i

Else:

Find the probability, π2, of the second most probable value, and set j to its index.

Set π2 to 0
for i = 1, . . . ,m:

If i ̸= x1 and π(i) > π2:
Set π2 to π(i); Set j to i

Generate a uniform random variate from zero to height of bar for the current value.

Set r to a uniform random variate on [0, π(k)]

Continue with the procedure of Algorithm 9: Part 2.

Algorithm 9: Part 1. Procedure for sampling from FSS or ZFSS transition probabilities.

46

Find the index, x0, of the value before the most probable value, or for ZFSS, the index
of the first value before the most probable value which will block movement beyond it
from encountering a piece of the most probable value.

Set x0 to x1
Loop:

Set x0 to m if x0 = 1, otherwise to x0 − 1
Set π∗ to (0.5− π1) + (0.5− π(x0)) Computing this way reduces round-off error
Set f to (π1 − π2) / π

∗ Guaranteed in [0, 1] even with rounding
Repeat loop as long as ZERO and π(x0) < fπ2

If k = x1 and r ≥ π2:

If the transition is from the most probable value, x1, and r is in the region to be
distributed among values other than x1 and x0, then select such a value, j.

Subtract π2 from r
Set s to 0; Set i to 0
While i < m and r ≥ s:

Add 1 to i
If i ̸= x1 and i ̸= x0 and π(i) > 0:

Add fπ(i) to s, Set j to i

Else:

Return a value that is transitioned to due to slice movement.

Set ℓ to 0 Lower end of region to move
Set u to π2 if k = x1, otherwise to π(k) Upper end of region to move

Set i to k, Set s to 0

While ℓ < u and r ≥ s:

Move i backwards, going from x1 to x0, from x0 to before x1, and skipping x0
when otherwise going back.

If i = x1:
Set i to x0

Else:
If i = x0:

Set i to m if x1 = 1, otherwise to x1 − 1
Else:

Set i to m if i = 1, otherwise to i− 1
If i = x0:

Set i to m if x0 = 1, otherwise to x0 − 1

Look at slice movement from [ℓ, u] region, and update ℓ and u.

If ℓ < π(i):
If i ̸= x1 and i ̸= x0:

Set t to min(u, fπ(i))
if ℓ < t:

Add t− l to s; Set j to x1; Set ℓ to t
If r ≥ s:

Set t to min(u, π(i))
Add t− l to s; Set j to i; Set ℓ to t

Algorithm 9: Part 2. Continuation of procedure for sampling from FSS or ZFSS transition probabilities.

47

12 Non-domination of reversible methods minimizing self transitions

Proposition 13 of (Neal and Rosenthal 2023) provides a way of showing that a method cannot be efficiency-

dominated by another (see also (Mira and Geyer 1999)). It states that for reversible, irreducible transitions

P andQ, if P efficiency-dominatesQ, then P eigen-dominatesQ, where eigen-dominance of P overQmeans

that if the eigenvalues of P and Q are ordered (retaining multiplicity), all eigenvalues of P are less than

or equal to the corresponding eigenvalue of Q. Put in contrapositive form, this proposition says that if P

does not eigen-dominate Q, it does not efficiency-dominate Q. Corollary 17 of (Neal and Rosenthal 2023)

shows that if P and Q are different, but have the same set of eigenvalues, then neither efficiency-dominates

the other.

It was shown in Section 9 that ZDNAM always efficiency-dominates Gibbs sampling, but this is not true

for the other reversible methods that minimize self transitions. For example, with m = 4 and π(1) = 0.4,

π(2) = 0.3, π(3) = 0.2, and π(4) = 0.1, the UDST method produces a transition matrix with eigenvalues

of −0.69246, −0.35046, 0.04292, and one. Gibbs sampling transition matrices have all zero eigenvalues

(apart from the single eigenvalue of one). So neither UDST nor GS eigen-dominates the other (two of

the eigenvalues of UDST are less than those of GS, but one eigenvalue is greater), and hence neither can

efficiency-dominate the other. There are functions that are more efficiently estimated by Gibbs sampling,

and other functions that are more efficiently estimated by UDST. HST and OHST also do not efficiency-

dominate Gibbs sampling for this example.

Several methods for modifying Gibbs sampling probabilities always produce transitions with the mini-

mum possible self transition probability — zero when πmax = maxi π(i) ≤ 1/2, and (2πmax− 1) / πmax when

πmax ≥ 1/2 — specifically, ZDNAM, all the ST methods, and ZFSS. The transitions produced by ZDNAM,

UDST, HST, and OHST are also reversible.

Theorem 19 of (Neal and Rosenthal 2023) shows that an irreducible, reversible transition matrix with

minimum possible self transition probabilities cannot be efficiency-dominated by any other reversible tran-

sition matrix. So, considered in isolation, transition matrices produced by ZDNAM, UDST, HST, and

OHST cannot be dominated by a different reversible method.

This can be extended to when any reversible method minimizing self transitions is used to update a

randomly-chosen variable — the resulting overall method cannot be efficiency-dominated by any other

reversible method that updates a single variable chosen randomly in the same way.

The key fact to note is that the trace of a reversible transition matrix is both the sum of its self transition

probabilities (which are on the diagonal) and the sum of its eigenvalues (Horn and Johnson 2013, p. 51).

Theorem 16 of (Neal and Rosenthal 2023) states (in contrapositive form) that if trace(P) ≥ trace(Q), and

P ̸= Q, then P cannot efficiency-dominate Q.

The full transition matrix for a Gibbs sampling update of a particular variable will (with a suitable order-

ing of values) be block diagonal, with one block for each possible combination of values for other variables,

as was previously discussed in Section 5. If the Gibbs sampling updates are modified to minimize self tran-

sitions, the trace of the full transition matrix will be the sum of the traces for each block, which will each

have the minimum possible value. If a variable to update is chosen randomly with probabilities a1, . . . , an
(for example, with each ak = 1/n), the combined transition matrix can be written as P =

∑
k akPk, where

Pk is the transition matrix for an update of variable k. The trace of P will
∑

k aktrace(Pk).

If each block of each Pk minimizes self transition probabilities, then P will have the minimum possible

trace of any such method. That is, if Q is any other method (not equal to P) that operates by updating

48

a variable chosen at random with probabilities a1, . . . , an, then trace(Q) ≥ trace(P). It follows that Q

cannot efficiency-dominate P

A stronger result applies when, for some particular problem, a method produces self transition proba-

bilities that are always zero (something that is not always possible) — random updating of variables using

this method cannot in this case be efficiency-dominated by any reversible method at all, including methods

that simultaneously change the values of several (or all) variables, since no transition matrix can have a

trace (sum of self transition probabilities) less than zero.

When variables are updated sequentially in some order that is randomly chosen from a distribution in

which an order and its reversal are equally likely, an even stronger result is possible — as long as it is

guaranteed that at least one of the variable updates has zero self transition probability, the random order

scan will have zero probability of leaving the state unchanged, and hence the scan as a whole cannot be

efficiency-dominated by any other reversible method.19

One should keep in mind, though, that such non-domination results are rather weak justifications for

using a method in practice. They say only that for estimating the mean of some function the method is

better than whatever alternative is being considered. But that does not rule out the possibility that the

method is much worse for the functions of actual interest.

13 Comparisons on simple distributions

We can gain some insight into the differences between the various methods by seeing how they behave on

some simple distributions. Note, though, that in real applications, the distributions will generally be more

complex, and will change from one update to the next, as other variables change (unless the variables are

independent, which would be an uninteresting case). So behaviour in these simple situations should not

be taken as a definite indication of how well the methods will work in practice.

To begin, consider distributions in which all m values have equal probability — that is, π(i) = 1/m for

i = 1, . . . ,m. (Similar behaviour will occur for distributions that are approximately uniform over some

subset of values, with the total probability of other values being small.) The probability of a self transition

from a state chosen from π when using these probabilities directly as in Gibbs Sampling will be

pself

GS
=

∑
i

π(i)PGS(i → i) =
∑
i

π(i)π(i) = m (1/m)2 = 1/m (111)

The minimum possible self transition probability for such a distribution is zero, which will of course be

achieved by the methods that always produce minimum self transition probabilities — namely, ZDNAM,

ST, UST, DST, UDST, HST, OHST, and ZFSS. It is easy to see that, for this distribution, zero self

transition probabilities will also be produced by all the other methods besides Gibbs sampling — that is,

by MHGS, UNAM, DNAM, UDNAM, and FSS.

However, these methods do not all produce the same transition probabilities. MHGS, UNAM, DNAM,

UDNAM, and ZDNAM all produce transitions in which P ∗(i → j) = 1/(m−1) for i ̸= j. ST, UST,

DST, FSS, and ZFSS produce transitions that are periodic with period m — cycling through the m states

— while UDST produces transitions that have probability 1/2 of moving to the value before or after the

current value, performing a random walk around the cycle of values. For even values of m, HST and OHST

produce transitions with period two that are not irreducible, while for odd values of m, their transitions

19Note that this applies only to estimates based on the states after each full scan (that is, on “thinned” estimates, as
described below in Section 14), not necessarily to estimates that use the state after every variable update within a scan.

49

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

largest probability

se
lf−

tr
an

si
tio

n
pr

ob
ab

ili
ty

0.0 0.2 0.4 0.6 0.8 1.0

1.
0

1.
1

1.
2

1.
3

1.
4

largest probability

ra
tio

 o
f n

on
−

se
lf−

tr
an

si
tio

n
pr

ob
ab

ili
tie

s

Figure 11: Behaviour of self transition probabilities for distributions with largest probability p and other
probabilities of (1 − p) / (m − 1), in the limit as m goes to infinity. The plot on the left shows the self
transition probability as a function of p for GS, MHGS, and UNAM in blue, and all other methods (except
UDNAM) in red. The plot on the right shows the ratio of the non-self transition probability for methods
other than GS, MHGS, UNAM, and UDNAM to the non-self transition probability for GS, MHGS, and
UNAM, as a function of p.

are irreducible and aperiodic. The effects of these differences when these transitions are applied to multiple

variables with changing distributions, using various scan orders, are not obvious.

One intuitive measure of how much benefit we might expect from using a method for avoiding self

transitions is the ratio of the probabilities of a non-self transition for such a method to that for Gibbs

sampling. For the uniform distribution, this ratio is 1 / (1 − 1/m) = m/ (m − 1) for all the non-GS

methods. If we see self transitions as wasted effort, and non-self transitions as useful, this ratio represents

the factor by which we might (rather naively) expect efficiency to be improved over Gibbs sampling.

Another simple case to look at is when one value has much larger probability than any other value.

Specifically, let π(1) = p, let π(j) = (1−p) / (m−1) for j = 2, . . . ,m, and look at the limit as m increases.

In this scenario, the probability of a self transition using Gibbs sampling from a value j ̸= 1 is zero in

the limit as m increases, while the probability of a self transition from value 1 is p, giving an overall self

transition probability for GS of p2.

One can easily compute that this is also the self transition probability for MHGS and UNAM, in the

limit as m increases. MHGS and UNAM in fact produce exactly the same transition probabilities in this

situation (for any m).

For methods that produce minimum self transition probabilities, the overall self transition probability is

zero if p ≤ 1/2, and 2p− 1 if p > 1/2. Also, in this situation DNAM and FSS produce the same transition

probabilities as ZDNAM and ZFSS. (UDNAM of course has a self transition probability halfway between

UNAM and DNAM.)

Figure 11 shows the self transition probabilities for this scenario, as well as the ratio of the non-self

transition probability for all the methods minimizing self transitions to the non-self transition probability

for GS, MHGS, and UNAM. This ratio peaks at 4/3 when p = 1/2.

When p < 1/2, the transition probabilities in this scenario produced by ZDNAM, ST, HST, and ZFSS

are all different (both for finitem and in the limit), even though they all have zero self transition probability.

50

However, when p ≥ 1/2, all these methods produce the same transition probabilities.

Indeed, for any distribution with maximum probability one half or more, all methods that produce

the minimum overall self transition probability of 2p − 1 must produce the same transition probabilities.

Specifically, if π(1) = p ≥ 1/2, then these transition probabilities must be as follows:

P ∗ =



2p− 1

p

π(2)

p
. . .

π(m)

p

1 0 . . . 0

...
...

...

1 0 . . . 0


(112)

To see this, note that for P ∗ to leave π invariant, we must have

π(1) = p =

m∑
i=1

π(i)P ∗(i → 1) = p
2p− 1

p
+

m∑
i=2

π(i)P ∗(i → 1) (113)

and hence
m∑
i=2

π(i)P ∗(i → 1) = p − p
2p− 1

p
= 1− p (114)

Since
∑m

i=2 π(i) = 1 − p, this is possible only if P ∗(i → 1) = 1 for i = 2, . . . ,m. Note that this P ∗ is

reversible with respect to π, so any method that produces minimal self transition probabilities produces

reversible transitions in this context, even if the method is not generally reversible.

14 Framework for empirical comparisons

I will empirically compare the performance of the modified Gibbs sampling procedures with each other

and with standard Gibbs sampling for three problems: the well-known Potts model used in statistical

physics and image processing, sampling of mixture indicators for a Bayesian mixture model, and sampling

of unobserved variables in a belief network. Of course, the results of these experiments are only suggestive

of performance in other applications, in which the distributions sampled may have different characteristics.

I will evaluate all the fourteen methods discussed earlier, which can be grouped as follows:

1) Gibbs sampling and methods that can be viewed as deriving from it: GS, MHGS, UNAM, DNAM,

UDNAM, and ZDNAM.

2) Shifted tower methods: ST, DST, UST, UDST, HST, and OHST.

3) Slice sampling methods: FSS and ZFSS.

Of these, ZDNAM, all the shifted tower methods, and ZFSS always minimize self transition probability,

and all the methods in group (1) plus UDST, HST, and OHST always produce reversible transitions.

Each method will be used in combination with several schemes for choosing which of the n variables are

updated in each iteration. For all schemes, n variable updates are considered to constitute a scan, which

is sometimes viewed as a single iteration. The schemes used may include the following:

1) Random. For each iteration, one of the n variables is randomly selected to be updated, indepen-

dently of previous iterations.

51

2) Sequential. The variables are updated in a predefined order from 1 to n, which constitutes one

scan. Not done for mixture models, for which there is no meaningful predefined order.

3) Shuffled sequential. The variables are randomly shuffled, once, at the beginning of a run, the same

way for all runs. They are then repeatedly updated in this shuffled order, with each set of n updates

considered one scan.

4) Checkerboard. Only done for the Potts models, for which the n variables are arranged in a square

array, on which one can imagine a checkerboard pattern being placed. A scan consists of updates for

all the variables on black squares, followed by updates for all the variables on white squares.

5) Random order. For each scan, an order of the n variables is chosen at random, and the variables

are then updated in this order. A new random order is chosen for the next scan.

6) Random order times four. Like the random order method, except that the same random order

is used for four scans in a row, before a new random order is chosen.

For each combination of method and scan order, the Markov chain is simulated for a large number, K,

of scans, starting with a random state, producing a total of nK states. These states are then used to form

estimates for the expectation of several functions of the state variables. No iterations are discarded as

“burn-in”, since the length of the runs and the speed of convergence make this unnecessary. Both thinned

and unthinned estimates are found. The unthinned estimate for the expectation of a function is the average

value of the function at all iterations. The thinned estimate is the average over only the values after the

last update of a scan. The unthinned estimates are therefore averages over nK function values, whereas

the thinned estimates are averages over K function values.

For each distribution tested, three groups of methods are tested using sets of four runs for each method,

with all runs being independent (using different random number seeds). The three groups compare the

following selections of methods:

1) GS, MHGS, UNAM, DNAM, UDNAM, ZDNAM.

2) ST, DST, UST, UDST, HST, OHST.

3) UNAM, ZDNAM, ST, UDST, FSS, ZFSS.

The first group compares methods related to Gibbs sampling, the second compares the shifted tower

methods, and the third compares what appear to be the best from the first two groups along with the slice

sampling methods.20 Summary graphs are produced for each group, for each of the distributions tested.

The efficiency of a method and scan order for a particular function is measured by an estimate of the

asymptotic variance (equation (5)) for that function, found using the following formula:

v(f, P) = γ0 + 2

∞∑
k=1

γk (115)

where γk is the autocovariance of f at lag k, defined by

γk = = E
[(

f(X(t))− µ
)(

f(X(t+k))− µ
)]

(116)

20Note that runs in the third group are independent of those in the first two groups for the same method.

52

where the expectation is over realizations of the Markov chain with transitions P , which leave π invariant,

started from a state drawn from π, and µ is the expectation of f with respect to π. Since the realization

will be stationary, the choice of t in the above formula makes no difference. Note that γ0 is the variance of

f with respect to π.

This formula is proved for homogeneous reversible chains with a finite state space in (Neal and Rosenthal

2023, Proposition 3)), but holds more generally, including for chains with non-reversible transitions, and

those in which the transitions depend on the time index in a periodic way (as for Gibbs sampling with a

sequential scan), if we interpret γk as the average covariance between f(X(t)) and f(X(t+k)) as transitions

at time t vary periodically, provided that the distribution at time t converges to π as t goes to infinity, and

the variance is finite (as is always the case for a finite state space).21

From a realization of the chain of length N , the standard estimate of γk is

γ̂k =
1

N

N−k∑
t=1

(
f(x(t))− µ

)(
f(x(t+k))− µ

)
(118)

If µ is not known, it may be replaced by µ̂ = (1/N)
N∑
t=1

f(xt).

The asymptotic variance for f is then estimated as

v̂(f, P) = γ̂0 + 2

M∑
k=1

γ̂k (119)

where M is selected such that γ̂k is nearly zero for k > M . Note that this estimate will be good only if

the length of the run, N , is much larger than a suitably chosen value of M .22

For unthinned estimates, the estimate for the asymptotic variance based on a run of K scans will use

N = nK in the above formulas. For thinned estimates, there are only N = K function values used, but

in the presentations of results, the asymptotic variance estimates with thinning are multiplied by n to

account for each value used in estimation requiring a factor of n more computation time.

The practical motivation for thinning is usually to reduce memory requirements and time for computing

function values by a factor of n, with the expectation that the efficiency of estimation will be worse than if

all values were used for estimates, though only slightly worse for typical problems. The belief that thinning

gives worse estimates is generally correct (provably so for reversible updates on randomly chosen variables

(Geyer 1992, Section 3.6)), but as will be seen below, there is one context in which thinning actually

improves estimation efficiency.

21Supposing that µ = 0 for simplicity, this is a simple consequence of expanding N times the variance of the mean estimate
from a run of length N as

NE
[(

1
N

N∑
t=1

f(X(t))
)2]

= E
[
1
N

N∑
i=1

N∑
j=1

f(X(i))f(X(j))
]

= E
[
1
N

N∑
t=1

f(X(t))2 + 2
N−1∑
k=1

1
N

N−k∑
t=1

f(X(i))f(X(i+k))
]

(117)

which equals E
[
γ̂0 + 2

N−1∑
k=1

γ̂k
]
, where γ̂k is the estimate for γk given in equation (118) below. Since the expectations of these

estimates converge to the true γk as N goes to infinity, equation (115) will hold generally.
22Note that setting M to the largest possible value of N − 1 is not good, since the estimate will then have a large variance

dominated by estimates γ̂k whose means are close to zero.

53

15 Comparisons for Potts models

The Potts model originates in statistical physics (e.g., Landau and Binder 2009, Section 4.3.2), but similar

models are also used for image analysis (e.g., Geman and Geman 1984) and other applications in which

some discrete aspect of a system exhibits local spatial coherence.

I will consider two-dimensional Potts models, which define a distribution on the space of arrays of

variables, xr,c ∈ {1, . . . ,m}, for r = 0, . . . , R − 1 and c = 0, . . . , C − 1, with the total number of variables

being n = RC. Variables are “neighbors” if one is immediately above, below, left, or right of the other,

with row or column positions wrapping around from R− 1 or C − 1 to 0. The distribution is defined by

π(x) =
1

Z
exp

(
b

R−1∑
r=0

C−1∑
c=0

(
I(xr,c = xr+,c) + I(xr,c = xr,c+)

))
(120)

where r+ = r+1 mod R and c+ = c+1 mod C. Here, Z is the normalizing constant needed to make these

probabilities sum to one. The parameter b controls how strongly variables at neighboring positions tend

to be the same (if b > 0) or different (if b < 0). In physical terms, minus the sum inside the exponential

above is proportional to the “energy” of the system, and 1/b is proportional to the “temperature”.

A Gibbs sampling update for this model will choose a new value for xr,c from {1, . . . ,m}, with r and c

chosen either randomly or sequentially in some order. The conditional distribution for xr,c given the other

variables depends only on the four variables above, below, left, or right of xr,c. There are m4 possible

values of these four neighbors, so when m is fairly small, it is possible to precompute the Gibbs sampling

probabilities for all combinations of neighboring values. Similarly, modified Gibbs sampling probabilities,

found with any of the methods discussed, could be precomputed for all combinations of neighboring values

and all possibilities for the current value of the variable being updated. All methods would then take close

to the same computation time (though for ordinary Gibbs sampling, the table of possible distributions

would be m times smaller).

For my experiments, I used models with m = 4, and either R = C = 8 (n = 64) with b = 0.85 or

R = C = 5 (n = 25) with b = −0.4. In actual applications, R and C are typically larger, but with these

smaller values, very long runs can be done to obtain accurate comparisons of asymptotic variance. For

simplicity of implementation, I did not precompute probabilities for these experiments.

All the scan orders described in Section 14 were tested. The pre-defined sequential order was a raster

scan over rows and columns. When R and C are even, note that the checkerboard scan updates of black

positions can be done in parallel, since there are no interactions between the sites being updated, after which

the updates of the white positions can be done in parallel. This will often be a significant computational

advantage of this scan. However, when R or C are odd, the checkerboard scan will have adjacent sites of

the same colour at the point of wrapping around from R− 1 or C − 1 to 0, which inhibits parallel updates

at these positions. In these experiments, I did not do updates in parallel for the checkerboard scans, nor

do the presentations of results account for any efficiency advantage of using a checkerboard scan.

The expectations of three functions of state were estimated from the runs done:

1) Count of 1s. The number of the n = RC variables whose value is 1. Since the distribution is

symmetrical with respect to the m possible values, this function has the same expectation as that of

the number of variables with any other value. From symmetry, the expectation of this function must

be RC/m, but its variance will vary with b.

2) Sum of squared counts. The sum of the squares of the counts of how many variables have each

54

1 3 3 4 4 4 3 4 | 1 2 1 3 2 2 4 3 | 3 2 4 4 4 1 3 3

4 1 2 2 3 3 3 4 | 4 4 1 4 4 4 4 4 | 3 1 4 4 2 1 1 3

2 4 4 1 4 1 4 4 | 4 3 3 1 2 2 3 4 | 3 3 3 3 2 3 3 3

2 3 2 2 2 2 4 2 | 3 3 1 1 1 1 3 3 | 3 3 3 3 2 1 3 3

4 2 2 2 2 1 4 4 | 2 4 1 4 4 4 3 3 | 3 3 3 3 3 3 3 3

4 2 4 4 3 2 2 4 | 4 3 4 4 4 3 1 1 | 2 2 3 4 4 3 3 3

4 2 4 3 3 2 2 4 | 4 3 4 4 2 3 4 4 | 2 4 4 4 4 4 3 2

4 1 2 4 1 1 1 1 | 2 2 2 2 2 2 4 4 | 3 2 4 4 1 1 3 3

Figure 12: Three 8× 8 arrays of values sampled from the Potts distribution with m = 4 and b = 0.85.

of the m possible values. This has its largest possible value, of (RC)2, when all variables have the

same value, so one value has a count of RC and the others have counts of zero.

3) Number of neighbor pairs with equal values. The number of the 2RC pairs of neighboring

variables that have the same value. If the variables took on them values uniformly and independently,

the expected value would be 2RC/m which is RC/2 when m = 4 as in these experiments. Note

that this function is proportional to minus the “energy” in the physical interpretation; it is also

proportional to the log of the joint probability of all variables.

The 8 × 8 Potts models used a positive value for b of 0.85, so there will be a tendency for neighboring

sites to have the same values. Three arrays of values sampled from this distribution are shown in Figure 12.

For this distribution, the average count of 1 values is exactly 16, from symmetry, with a variance of

approximately 66. The sum of squared counts of the four possible values has an average of approximately

1.29 × 103 and variance of approximately 5.6 × 104. The average number of neighbor pairs with equal

values is approximately 61.9, more than 32, which it would be if values for sites were drawn uniformly and

independently, as expected with a positive b. The variance is approximately 67.

Each run for the 8 × 8 Potts model consisted of K = 200000 scans, each with n = RC = 64 variable

updates. For each of the three groups of methods, four independent runs of this length were done for each

method in the group.

Estimates of autocovariance functions for the number of equal neighbors (proportional to the energy)

based on one of the four sets of runs done for the third group of methods are shown in Figure 13. These plots

show that for the 8× 8 Potts model autocovariances for all methods with all scan orders are positive. This

is expected, since a fairly large positive value for b of 0.85 leads to variables often having most neighbors the

same (as seen in Figure 12), and hence the conditional distribution for that variable is concentrated on this

dominant neighboring value, leading to slow movement through the state space, and high autocovariances

for most functions.

This can also be seen from the frequencies of self transitions of the various methods for the 8× 8 Potts

model (which are the same for all scan orders):

GS: 0.46, MHGS: 0.33, UNAM: 0.31, DNAM: 0.24, UDNAM: 0.28, FSS: 0.24

ZDNAM, ST, DST, UST, UDST, HST, OHST, ZFSS: 0.23 (the minimum possible)

The maximum conditional probability for an update was half or more 40% of the time.

Although eight methods achieve the minimum self transition probability, these methods have substan-

tially different transition probabilities. Figure 14 shows, for each method, how the transition probabilities

55

0 200 600

0
20

40
60

Random, UNAM

Equal neighbors

asym var 17906

0 200 600
0

20
40

60
Sequential, UNAM

Equal neighbors

asym var 10226

0 200 600

0
20

40
60

Shuffled Sequential, UNAM

Equal neighbors

asym var 9233

0 200 600

0
20

40
60

Checkerboard, UNAM

Equal neighbors

asym var 8719

0 200 600

0
20

40
60

Random order, UNAM

Equal neighbors

asym var 10974

0 200 600

0
20

40
60

Random order x4, UNAM

Equal neighbors

asym var 9904

0 200 600

0
20

40
60

Random, ZDNAM

Equal neighbors

asym var 16054

0 200 600

0
20

40
60

Sequential, ZDNAM

Equal neighbors

asym var 8517

0 200 600

0
20

40
60

Shuffled Sequential, ZDNAM

Equal neighbors

asym var 7019

0 200 600

0
20

40
60

Checkerboard, ZDNAM

Equal neighbors

asym var 6598

0 200 600

0
20

40
60

Random order, ZDNAM

Equal neighbors

asym var 8705

0 200 600

0
20

40
60

Random order x4, ZDNAM

Equal neighbors

asym var 7253

0 200 600

0
20

40
60

Random, ST

Equal neighbors

asym var 15860

0 200 600

0
20

40
60

Sequential, ST

Equal neighbors

asym var 9444

0 200 600

0
20

40
60

Shuffled Sequential, ST

Equal neighbors

asym var 7228

0 200 600

0
20

40
60

Checkerboard, ST

Equal neighbors

asym var 6779

0 200 600

0
20

40
60

Random order, ST

Equal neighbors

asym var 8312

0 200 600

0
20

40
60

Random order x4, ST

Equal neighbors

asym var 7478

0 200 600

0
20

40
60

Random, UDST

Equal neighbors

asym var 15031

0 200 600

0
20

40
60

Sequential, UDST

Equal neighbors

asym var 8938

0 200 600

0
20

40
60

Shuffled Sequential, UDST

Equal neighbors

asym var 6899

0 200 600

0
20

40
60

Checkerboard, UDST

Equal neighbors

asym var 6679

0 200 600

0
20

40
60

Random order, UDST

Equal neighbors

asym var 8707

0 200 600

0
20

40
60

Random order x4, UDST

Equal neighbors

asym var 7046

0 200 600

0
20

40
60

Random, FSS

Equal neighbors

asym var 15820

0 200 600

0
20

40
60

Sequential, FSS

Equal neighbors

asym var 9517

0 200 600

0
20

40
60

Shuffled Sequential, FSS

Equal neighbors

asym var 7605

0 200 600

0
20

40
60

Checkerboard, FSS

Equal neighbors

asym var 7078

0 200 600

0
20

40
60

Random order, FSS

Equal neighbors

asym var 8848

0 200 600

0
20

40
60

Random order x4, FSS

Equal neighbors

asym var 7809

0 200 600

0
20

40
60

Random, ZFSS

Equal neighbors

asym var 15630

0 200 600

0
20

40
60

Sequential, ZFSS

Equal neighbors

asym var 9569

0 200 600

0
20

40
60

Shuffled Sequential, ZFSS

Equal neighbors

asym var 7323

0 200 600

0
20

40
60

Checkerboard, ZFSS

Equal neighbors

asym var 6992

0 200 600

0
20

40
60

Random order, ZFSS

Equal neighbors

asym var 8954

0 200 600

0
20

40
60

Random order x4, ZFSS

Equal neighbors

asym var 7495

Figure 13: Autocovariance function estimates for the number of equal neighbors, from one set of runs for
the 8× 8 Potts model, for methods in the third group.

56

1 2 3 4

0.
0

0.
5

1.
0

GS from 1

Neighbors:

1 2 3 4
1 1 2 3
1 1 2 2
1 1 1 2
1 1 1 1

1 2 3 4

0.
0

0.
5

1.
0

GS from 2

1 2 3 4

0.
0

0.
5

1.
0

GS from 3

1 2 3 4

0.
0

0.
5

1.
0

GS from 4

1 2 3 4

0.
0

0.
5

1.
0

UNAM from 1

1 2 3 4

0.
0

0.
5

1.
0

UNAM from 2

1 2 3 4

0.
0

0.
5

1.
0

UNAM from 3

1 2 3 4

0.
0

0.
5

1.
0

UNAM from 4

1 2 3 4

0.
0

0.
5

1.
0

ZDNAM from 1

1 2 3 4

0.
0

0.
5

1.
0

ZDNAM from 2

1 2 3 4

0.
0

0.
5

1.
0

ZDNAM from 3

1 2 3 4

0.
0

0.
5

1.
0

ZDNAM from 4

1 2 3 4

0.
0

0.
5

1.
0

HST from 1

1 2 3 4

0.
0

0.
5

1.
0

HST from 2

1 2 3 4

0.
0

0.
5

1.
0

HST from 3

1 2 3 4

0.
0

0.
5

1.
0

HST from 4

1 2 3 4

0.
0

0.
5

1.
0

ST from 1

1 2 3 4

0.
0

0.
5

1.
0

ST from 2

1 2 3 4

0.
0

0.
5

1.
0

ST from 3

1 2 3 4

0.
0

0.
5

1.
0

ST from 4

1 2 3 4

0.
0

0.
5

1.
0

ZFSS from 1

1 2 3 4

0.
0

0.
5

1.
0

ZFSS from 2

1 2 3 4

0.
0

0.
5

1.
0

ZFSS from 3

1 2 3 4

0.
0

0.
5

1.
0

ZFSS from 4

Figure 14: Transition probabilities in different contexts for the 8× 8 Potts model.

57

vary depending on current value of the variable being updated and the context of values for its neighbors.

The five possible contexts are (1) all neighbors different, (2) two neighbors the same, the others different,

(3) two neighbors the same, other two also the same, but different from the first two, (4) three neighbors

the same, the remaining one different, and (5) all neighbors the same. For each context, the transition

probabilities are shown for each current value of the variable (all the same for Gibbs sampling, since it

ignores the current value).

Summaries of asymptotic variance estimates for all three functions looked at, for all groups of methods,

and all scan orders, are shown in Figures 15 through 17. The summary plots show both the asymptotic

variance estimates from the four individual runs, as dots, and the average of these estimates, as lines

connecting average estimates for the various methods (for each scan order, as indicated by colour).

It is evident from these figures that random selection of the variable to update (black dots and lines)

is greatly inferior to the other scan orders. With a few exceptions, this will prove to also be true for the

problems looked at later. One disadvantage of random selection is that by chance some variables will not

be updated for many iterations. This may suffice to explain why it usually performs poorly. It is, however,

the only scan order for which the theoretical analysis presented earlier applies (apart from some of the

non-dominance results).

The results when the variable to be updated is selected at random (black dots and lines) are consistent

with these theoretical results. Theory says that MHGS, UNAM, DNAM, UDNAM, and ZDNAM efficiency-

dominate GS, and for the three functions looked at, we do see in Figure 15 that these methods have

substantially lower asymptotic variance than GS. Theory also says that UNAM should efficiency-dominate

MHGS, but in this case the differences in asymptotic variance are quite small, and for the sum of squared

counts, the average estimate for asymptotic variance for UNAM is actually slightly greater than for MHGS

— though from the spread in results of the four individual runs, this can be attributed to chance.

With random selection of variable to update, DNAM and ZDNAM perform somewhat better than

UNAM or UDNAM, though there is no theoretical guarantee of this. DNAM, ZDNAM, the shifted tower

methods (see Figure 16) and the slice sampling methods (see Figure 17) all perform very similarly.

Theory also says that for reversible methods, with random selection of variable to update, thinning

(looking only at the state after every n updates) should produce worse estimates (Geyer 1992, Section 3.6).

The results on the 8 × 8 Potts model for the methods in Figure 15 (all reversible) and for the reversible

UDST, HST, and OHST methods in Figure 16 are consistent with this, but a higher asymptotic variance

with thinning (after multiplying by n to account for computation time) is only noticeable for the “equal

neighbors” function, and even there the difference is small. This is expected when, as here, autocovariances

are high.

For this problem, thinning also has a very small effect on efficiency for non-reversible methods and scan

orders other than random selection, with one surprising exception — when each scan updates all variables in

a random order (different for each scan), thinning often gives a noticeable reduction in asympotic variance.

See the blue dots and lines in Figures 15 through 17. This is true for all methods, and all three functions,

though it is less noticeable for the ‘equal neighbors” function than for the other two.

The same phenomenon will be seen later for other problems. A possible explanation can be seen by

considering an extreme circumstance in which we are estimating the expectation of a function that depends

on only a single variable, which is independent of the other variables. When each scan updates variables

in a random order, this variable will sometimes be updated early in the order, and sometimes late in the

order. If a scan in which it is updated late is followed by a scan in which it is updated early, the newly

58

10
00

0
20

00
0

30
00

0
40

00
0

50
00

0
60

00
0

70
00

0

Count of 1s

Random
Sequential
Shuffled Sequential
Checkerboard
Random order
Random order x4

GS MHGS UNAM DNAM UDNAM ZDNAM

1e
+

07
2e

+
07

3e
+

07
4e

+
07

Sum squared counts

Random
Sequential
Shuffled Sequential
Checkerboard
Random order
Random order x4

GS MHGS UNAM DNAM UDNAM ZDNAM

50
00

10
00

0
15

00
0

20
00

0
25

00
0

Equal neighbors

Random
Sequential
Shuffled Sequential
Checkerboard
Random order
Random order x4

GS MHGS UNAM DNAM UDNAM ZDNAM

10
00

0
20

00
0

30
00

0
40

00
0

50
00

0
60

00
0

70
00

0

Count of 1s − thinned

Random
Sequential
Shuffled Sequential
Checkerboard
Random order
Random order x4

GS MHGS UNAM DNAM UDNAM ZDNAM

1e
+

07
2e

+
07

3e
+

07
4e

+
07

Sum squared counts − thinned

Random
Sequential
Shuffled Sequential
Checkerboard
Random order
Random order x4

GS MHGS UNAM DNAM UDNAM ZDNAM

50
00

10
00

0
15

00
0

20
00

0
25

00
0

Equal neighbors − thinned

Random
Sequential
Shuffled Sequential
Checkerboard
Random order
Random order x4

GS MHGS UNAM DNAM UDNAM ZDNAM

Figure 15: Summaries of autocovariance function estimates for the 8 × 8 Potts model, for the first group
of methods.

59

10
00

0
20

00
0

30
00

0
40

00
0

50
00

0
60

00
0

70
00

0

Count of 1s

Random
Sequential
Shuffled Sequential
Checkerboard
Random order
Random order x4

ST DST UST UDST HST OHST

1e
+

07
2e

+
07

3e
+

07
4e

+
07

Sum squared counts

Random
Sequential
Shuffled Sequential
Checkerboard
Random order
Random order x4

ST DST UST UDST HST OHST

50
00

10
00

0
15

00
0

20
00

0
25

00
0

Equal neighbors

Random
Sequential
Shuffled Sequential
Checkerboard
Random order
Random order x4

ST DST UST UDST HST OHST

10
00

0
20

00
0

30
00

0
40

00
0

50
00

0
60

00
0

70
00

0

Count of 1s − thinned

Random
Sequential
Shuffled Sequential
Checkerboard
Random order
Random order x4

ST DST UST UDST HST OHST

1e
+

07
2e

+
07

3e
+

07
4e

+
07

Sum squared counts − thinned

Random
Sequential
Shuffled Sequential
Checkerboard
Random order
Random order x4

ST DST UST UDST HST OHST

50
00

10
00

0
15

00
0

20
00

0
25

00
0

Equal neighbors − thinned

Random
Sequential
Shuffled Sequential
Checkerboard
Random order
Random order x4

ST DST UST UDST HST OHST

Figure 16: Summaries of autocovariance function estimates for the 8×8 Potts model, for the second group
of methods.

60

10
00

0
20

00
0

30
00

0
40

00
0

50
00

0
60

00
0

70
00

0

Count of 1s

Random
Sequential
Shuffled Sequential
Checkerboard
Random order
Random order x4

UNAM ZDNAM ST UDST FSS ZFSS

1e
+

07
2e

+
07

3e
+

07
4e

+
07

Sum squared counts

Random
Sequential
Shuffled Sequential
Checkerboard
Random order
Random order x4

UNAM ZDNAM ST UDST FSS ZFSS

50
00

10
00

0
15

00
0

20
00

0
25

00
0

Equal neighbors

Random
Sequential
Shuffled Sequential
Checkerboard
Random order
Random order x4

UNAM ZDNAM ST UDST FSS ZFSS

10
00

0
20

00
0

30
00

0
40

00
0

50
00

0
60

00
0

70
00

0

Count of 1s − thinned

Random
Sequential
Shuffled Sequential
Checkerboard
Random order
Random order x4

UNAM ZDNAM ST UDST FSS ZFSS

1e
+

07
2e

+
07

3e
+

07
4e

+
07

Sum squared counts − thinned

Random
Sequential
Shuffled Sequential
Checkerboard
Random order
Random order x4

UNAM ZDNAM ST UDST FSS ZFSS

50
00

10
00

0
15

00
0

20
00

0
25

00
0

Equal neighbors − thinned

Random
Sequential
Shuffled Sequential
Checkerboard
Random order
Random order x4

UNAM ZDNAM ST UDST FSS ZFSS

Figure 17: Summaries of autocovariance function estimates for the 8× 8 Potts model, for the third group
of methods.

61

1 2 1 3 2 | 3 2 2 4 4 | 2 1 2 1 3 | 1 1 1 1 2 | 3 2 1 4 3

3 3 1 3 1 | 1 4 3 3 4 | 4 3 2 2 1 | 3 2 2 2 1 | 2 3 1 2 1

4 1 2 3 2 | 2 3 2 4 3 | 3 2 3 3 4 | 2 1 4 1 3 | 2 2 2 3 3

2 3 2 3 1 | 3 1 3 1 2 | 4 4 1 4 2 | 4 2 3 4 1 | 3 2 1 4 2

2 1 1 4 3 | 2 3 3 3 4 | 2 4 3 1 3 | 3 4 1 4 2 | 2 3 1 4 1

Figure 18: Five 5× 5 arrays of values sampled from the Potts distribution with m = 4 and b = −0.4.

sampled value will be present for only a few iterations (much less than n), whereas in the opposite case, the

newly sampled value could be present for almost 2n iterations. When all iterations are used for estimation,

this introduces random variation into how much each sampled value affects the estimate, which reduces

estimation efficiency. However, a thinned estimate will look only at the last iteration of each scan, and use

each sampled value equally, giving an estimate with lower variance. This effect should also be present to

some extent in less extreme circumstances.

Though usually better than random selection, a random scan order is usually worse than all the other

scan orders, for both this problem and for ones considered later. Repeating the same random order for four

scans before generating a new order (see the cyan dots and lines) is almost always an improvement on using

a random order for just one scan. This is understandable, since using the same random order four times

reduces random variation in intervals between updates of the same variable, which plausibly is beneficial

in most circumstances, though there is no theoretical guarantee of this. The “shuffled sequential” order

takes this further, generating one random order that is used for all scans (the same order for all runs).

This is almost always better that repeating the same scan only four times.

For the Potts model, two other scans are also tried — a sequential raster scan across each row, then

across the next row, etc., and the “checkerboard” scan, of first all “black” variables and then all “white”

variables, as described earlier. For the 8 × 8 Potts model, one or the other of these is always the best

scan, for the functions tested, but which is best depends on the function. The sequential scan is best for

the sum of squared counts, the checkerboard scan is best for the number of equal neighbors, and these

two are almost the same (and better than the others) for the count of 1s. Somewhat surprisingly, the

sequential raster scan is worse than the shuffled sequential scan when estimating the expected number of

equal neighbors (though better for the other two functions).

For the most part, the choice of scan order does not affect which of the modified Gibbs sampling

methods is best. GS, MHGS, UNAM, and UDNAM are uniformly worse than the other methods. Very

little difference is seen amongst the shifted tower methods (Figure 16), except that HST is perhaps slightly

worse than the others. DNAM and FSS do not minimize self transition probabilities, but for this problem

their self transition probabilities are only slightly greater than the minimum, and they perform only slightly

worse than ZDNAM and ZFSS. The performances of the ZDNAM, ST, DST, UST UDST, OHST, and ZFSS

methods are difficult to distinguish, but they equal or exceed the performance of the other methods for all

scan orders.

The 5×5 Potts models used a negative value for b of −0.4, so neighboring sites will tend to have different

values. Five arrays of values sampled from this distribution are shown in Figure 18.

For this distribution, the average count of 1 values is exactly 6.25, from symmetry, with a variance of

approximately 3.37. The sum of squared counts of the four possible values has an average of approximately

170 and variance of approximately 116. The average number of neighbor pairs with equal values is approx-

imately 9.09, less than 12.5, which it would be if values for sites were drawn uniformly and independently,

62

as expected with a negative value for b. The variance is approximately 7.7.

Each run for the 5 × 5 Potts model consisted of K = 1000000 scans, each with n = RC = 25 variable

updates. For each of the three groups of methods, four independent runs of this length were done for each

method in the group.

Estimates of autocovariance functions for the number of equal neighbors (proportional to the energy)

based on one of the four sets of runs done for the third group of methods are shown in Figure 19. In contrast

to the 8× 8 model with positive b, this 5× 5 model with negative b has negative autocovariances for some

combinations of update method and scan order. Of particular note are the negative autocovariances for

ZDNAM and UDST when the checkerboard scan order is used, which result in the smallest asymptotic

variances for this function.

The antithetic effects of modified Gibbs sampling updates have more scope to produce negative autoco-

variances when b is negative, since avoiding the value of a neighboring variable can (with m = 4) be done

in more than one way, so an antithetic method can switch between them, whereas matching a neighboring

value can be done in only one way.

This effect shows up in the frequencies of self transitions for the various methods, which are:

GS: 0.274, MHGS: 0.064, UNAM: 0.031, DNAM: 0.011, UDNAM: 0.021, FSS: 0

ZDNAM, ST, DST, UST, UDST, HST, OHST, ZFSS: 0

The maximum conditional probability for an update was never half or more, and hence the minimum self

transition probability is zero, ensuring that there is an antithetic aspect to the sampling.

For the 5× 5 model with negative b, Figure 20 shows, for each method, how the transition probabilities

vary, depending on the current value of the variable being updated and on the context of values for its

neighbors. This may be compared to Figure 14 for the 8× 8 model with positive b. One thing to note for

the 5×5 model is that ZDNAM, HST, ST, and ZFSS all have zero self transition probability in all contexts,

but ZDNAM differs from the others in almost always having non-zero transition probabilities to values

other than the current value. The HST, ST, and ZFSS methods have many zero transition probabilities,

both for the 5× 5 and 8× 8 models.

These zero transition probabilities may be responsible for the somewhat erratic performance of these

methods on the 5×5 model, as can be seen in the summaries of asymptotic variance estimates in Figures 21

through 23. (Note that, in these figures, the dots for the four runs with each method and scan order are

close enough to mostly appear as one dot.)

For the methods deriving from Gibbs sampling, results without thinning, shown on the left in Figure 21,

are similar to those for the 8 × 8 Potts model. GS has the highest asymptotic variances, followed by

MHGS, with asymptotic variances for UNAM slightly lower than MHGS. This is as expected by theory

for a random scan. The DNAM, UDNAM, and ZDNAM methods are somewhat better than UNAM, with

ZDNAM performing best. One difference from the 8×8 model is that the sequential scan is never the best

— the shuffled sequential scan (which uses a fixed random order rather than a systematic raster scan) is

always better. For the “equal neighbors” function, the checkerboard scan is best of all.

The results with thinning are shown on the right in Figure 21. For the random order scan, thinning

reduces asymptotic variance for the “count of 1s” function, a phenomenon discussed earlier for the 8 × 8

Potts model. For all other functions, scans, and methods, thinning increases asymptotic variance. This is

as expected, but for the “sum squared counts” function, the amount of increase varies substantially with

scan order, so much so that the random scan is better than all other scan orders for all methods except

63

0 40 80 120

0
2

4
6

8

Random, UNAM

Equal neighbors

asym var 169.49

0 40 80 120
0

2
4

6
8

Sequential, UNAM

Equal neighbors

asym var 163.39

0 40 80 120

0
2

4
6

8

Shuffled Sequential, UNAM

Equal neighbors

asym var 119.21

0 40 80 120

0
2

4
6

8

Checkerboard, UNAM

Equal neighbors

asym var 89.81

0 40 80 120

0
2

4
6

8

Random order, UNAM

Equal neighbors

asym var 123.93

0 40 80 120

0
2

4
6

8

Random order x4, UNAM

Equal neighbors

asym var 121.4

0 40 80 120

0
2

4
6

8

Random, ZDNAM

Equal neighbors

asym var 144.06

0 40 80 120

0
2

4
6

8

Sequential, ZDNAM

Equal neighbors

asym var 132.56

0 40 80 120

0
2

4
6

8

Shuffled Sequential, ZDNAM

Equal neighbors

asym var 94.89

0 40 80 120

0
2

4
6

8

Checkerboard, ZDNAM

Equal neighbors

asym var 65.45

0 40 80 120

0
2

4
6

8

Random order, ZDNAM

Equal neighbors

asym var 97.7

0 40 80 120

0
2

4
6

8

Random order x4, ZDNAM

Equal neighbors

asym var 95.09

0 40 80 120

0
2

4
6

8

Random, ST

Equal neighbors

asym var 140.81

0 40 80 120

0
2

4
6

8

Sequential, ST

Equal neighbors

asym var 273.33

0 40 80 120

0
2

4
6

8

Shuffled Sequential, ST

Equal neighbors

asym var 208.66

0 40 80 120

0
2

4
6

8

Checkerboard, ST

Equal neighbors

asym var 175.34

0 40 80 120

0
2

4
6

8

Random order, ST

Equal neighbors

asym var 141.06

0 40 80 120

0
2

4
6

8

Random order x4, ST

Equal neighbors

asym var 175.26

0 40 80 120

0
2

4
6

8

Random, UDST

Equal neighbors

asym var 146.06

0 40 80 120

0
2

4
6

8

Sequential, UDST

Equal neighbors

asym var 135.89

0 40 80 120

0
2

4
6

8

Shuffled Sequential, UDST

Equal neighbors

asym var 96.99

0 40 80 120

0
2

4
6

8

Checkerboard, UDST

Equal neighbors

asym var 67.71

0 40 80 120

0
2

4
6

8

Random order, UDST

Equal neighbors

asym var 99.61

0 40 80 120

0
2

4
6

8

Random order x4, UDST

Equal neighbors

asym var 98.08

0 40 80 120

0
2

4
6

8

Random, FSS

Equal neighbors

asym var 169.72

0 40 80 120

0
2

4
6

8

Sequential, FSS

Equal neighbors

asym var 370.27

0 40 80 120

0
2

4
6

8

Shuffled Sequential, FSS

Equal neighbors

asym var 285.09

0 40 80 120

0
2

4
6

8

Checkerboard, FSS

Equal neighbors

asym var 239.08

0 40 80 120

0
2

4
6

8

Random order, FSS

Equal neighbors

asym var 185.21

0 40 80 120

0
2

4
6

8

Random order x4, FSS

Equal neighbors

asym var 243.99

0 40 80 120

0
2

4
6

8

Random, ZFSS

Equal neighbors

asym var 170.62

0 40 80 120

0
2

4
6

8

Sequential, ZFSS

Equal neighbors

asym var 366.49

0 40 80 120

0
2

4
6

8

Shuffled Sequential, ZFSS

Equal neighbors

asym var 284.72

0 40 80 120

0
2

4
6

8

Checkerboard, ZFSS

Equal neighbors

asym var 236.08

0 40 80 120

0
2

4
6

8

Random order, ZFSS

Equal neighbors

asym var 185.9

0 40 80 120

0
2

4
6

8

Random order x4, ZFSS

Equal neighbors

asym var 244.59

Figure 19: Autocovariance function estimates for the number of equal neighbors, from one set of runs for
the 5× 5 Potts model, for methods in the third group.

64

1 2 3 4

0.
0

0.
5

1.
0

GS from 1

Neighbors:

1 2 3 4
1 1 2 3
1 1 2 2
1 1 1 2
1 1 1 1

1 2 3 4

0.
0

0.
5

1.
0

GS from 2

1 2 3 4

0.
0

0.
5

1.
0

GS from 3

1 2 3 4

0.
0

0.
5

1.
0

GS from 4

1 2 3 4

0.
0

0.
5

1.
0

UNAM from 1

1 2 3 4

0.
0

0.
5

1.
0

UNAM from 2

1 2 3 4

0.
0

0.
5

1.
0

UNAM from 3

1 2 3 4

0.
0

0.
5

1.
0

UNAM from 4

1 2 3 4

0.
0

0.
5

1.
0

ZDNAM from 1

1 2 3 4

0.
0

0.
5

1.
0

ZDNAM from 2

1 2 3 4

0.
0

0.
5

1.
0

ZDNAM from 3

1 2 3 4

0.
0

0.
5

1.
0

ZDNAM from 4

1 2 3 4

0.
0

0.
5

1.
0

HST from 1

1 2 3 4

0.
0

0.
5

1.
0

HST from 2

1 2 3 4

0.
0

0.
5

1.
0

HST from 3

1 2 3 4

0.
0

0.
5

1.
0

HST from 4

1 2 3 4

0.
0

0.
5

1.
0

ST from 1

1 2 3 4

0.
0

0.
5

1.
0

ST from 2

1 2 3 4

0.
0

0.
5

1.
0

ST from 3

1 2 3 4

0.
0

0.
5

1.
0

ST from 4

1 2 3 4

0.
0

0.
5

1.
0

ZFSS from 1

1 2 3 4

0.
0

0.
5

1.
0

ZFSS from 2

1 2 3 4

0.
0

0.
5

1.
0

ZFSS from 3

1 2 3 4

0.
0

0.
5

1.
0

ZFSS from 4

Figure 20: Transition probabilities in different contexts for the 5× 5 Potts model.

65

20
40

60
80

10
0

12
0

14
0

Count of 1s

Random
Sequential
Shuffled Sequential
Checkerboard
Random order
Random order x4

GS MHGS UNAM DNAM UDNAM ZDNAM

20
00

40
00

60
00

80
00

Sum squared counts

Random
Sequential
Shuffled Sequential
Checkerboard
Random order
Random order x4

GS MHGS UNAM DNAM UDNAM ZDNAM

10
0

20
0

30
0

40
0

Equal neighbors

Random
Sequential
Shuffled Sequential
Checkerboard
Random order
Random order x4

GS MHGS UNAM DNAM UDNAM ZDNAM

20
40

60
80

10
0

12
0

14
0

Count of 1s − thinned

Random
Sequential
Shuffled Sequential
Checkerboard
Random order
Random order x4

GS MHGS UNAM DNAM UDNAM ZDNAM

20
00

40
00

60
00

80
00

Sum squared counts − thinned

Random
Sequential
Shuffled Sequential
Checkerboard
Random order
Random order x4

GS MHGS UNAM DNAM UDNAM ZDNAM

10
0

20
0

30
0

40
0

Equal neighbors − thinned

Random
Sequential
Shuffled Sequential
Checkerboard
Random order
Random order x4

GS MHGS UNAM DNAM UDNAM ZDNAM

Figure 21: Summaries of autocovariance function estimates for the 5 × 5 Potts model, for the first group
of methods.

66

20
40

60
80

10
0

12
0

14
0

Count of 1s

Random
Sequential
Shuffled Sequential
Checkerboard
Random order
Random order x4

ST DST UST UDST HST OHST

20
00

40
00

60
00

80
00

Sum squared counts

Random
Sequential
Shuffled Sequential
Checkerboard
Random order
Random order x4

ST DST UST UDST HST OHST

10
0

20
0

30
0

40
0

Equal neighbors

Random
Sequential
Shuffled Sequential
Checkerboard
Random order
Random order x4

ST DST UST UDST HST OHST

20
40

60
80

10
0

12
0

14
0

Count of 1s − thinned

Random
Sequential
Shuffled Sequential
Checkerboard
Random order
Random order x4

ST DST UST UDST HST OHST

20
00

40
00

60
00

80
00

Sum squared counts − thinned

Random
Sequential
Shuffled Sequential
Checkerboard
Random order
Random order x4

ST DST UST UDST HST OHST

10
0

20
0

30
0

40
0

Equal neighbors − thinned

Random
Sequential
Shuffled Sequential
Checkerboard
Random order
Random order x4

ST DST UST UDST HST OHST

Figure 22: Summaries of autocovariance function estimates for the 5×5 Potts model, for the second group
of methods.

67

20
40

60
80

10
0

12
0

14
0

Count of 1s

Random
Sequential
Shuffled Sequential
Checkerboard
Random order
Random order x4

UNAM ZDNAM ST UDST FSS ZFSS

20
00

40
00

60
00

80
00

Sum squared counts

Random
Sequential
Shuffled Sequential
Checkerboard
Random order
Random order x4

UNAM ZDNAM ST UDST FSS ZFSS

10
0

20
0

30
0

40
0

Equal neighbors

Random
Sequential
Shuffled Sequential
Checkerboard
Random order
Random order x4

UNAM ZDNAM ST UDST FSS ZFSS

20
40

60
80

10
0

12
0

14
0

Count of 1s − thinned

Random
Sequential
Shuffled Sequential
Checkerboard
Random order
Random order x4

UNAM ZDNAM ST UDST FSS ZFSS

20
00

40
00

60
00

80
00

Sum squared counts − thinned

Random
Sequential
Shuffled Sequential
Checkerboard
Random order
Random order x4

UNAM ZDNAM ST UDST FSS ZFSS

10
0

20
0

30
0

40
0

Equal neighbors − thinned

Random
Sequential
Shuffled Sequential
Checkerboard
Random order
Random order x4

UNAM ZDNAM ST UDST FSS ZFSS

Figure 23: Summaries of autocovariance function estimates for the 5× 5 Potts model, for the third group
of methods.

68

Gibbs sampling, an unusual occurrence for practical problems. A similar but less pronounced effect is

visible for the “equal neighbors” function.

I speculate that combining a scan other than random selection of a variable with a method other than

Gibbs sampling (one having an antithetic aspect) can induce somewhat periodic movement, which when

sampled only every n iterations can produce inefficient estimates. One would usually expect this to occur

only for fairly easy problems, such as this one. For difficult problems, one expects that many scans will be

needed to move to an almost independent state, and autocovariances for most functions of interest will be

strongly positive. A modification to Gibbs sampling that introduces antithetic aspects would then only be

expected to somewhat reduce the magnitude of these autocovariances, not make them negative. Thinning

would then behave more in the expected way.

The shifted tower methods (Figure 22) and slice sampling methods (FSS and ZFSS in Figure 23) show

the same surprising behaviours. In addition, the ST, HST, FSS, and ZFSS methods show large variation

in performance. For the “count of 1s” function, the ST, FSS, and ZFSS methods have nearly the same

asymptotic variance for all scan orders, which is lower than that of all other methods. However, for the

other two functions, these methods perform very poorly. The ZDNAM, DST, UST, and UDST methods

show the best overall performance, with OHST behaving similarly, but with slightly higher asymptotic

variance.

Note that the erratic ST, HST, FSS, and ZFSS methods are the ones that often have some zero non-self

transition probabilities, and that also use a fixed ordering of values, so these zero transition probabilities

may apply consistently. In some circumstances, this could be beneficial, but from these results, it seems

it can also have bad effects. As discussed in Section 11, ZFFS was deliberately designed to preserve this

order as much as possible, but in light of these results, it might be interesting to design a slice sampling

method in which the values do not keep the same order.

Pollet, et al. (2004) have also compared Gibbs sampling with MHGS and UNAM,23 for a 4 × 4 Potts

model, with random selection of the variable to be updated, and also report that UNAM performs signif-

icantly better than Gibbs sampling at estimating the expectation of the energy, and that MHGS is only

slightly worse than UNAM. They did not consider sequential updates of variables, or functions of state

other than the energy.

Another comparison of methods on the Potts model was done by Suwa (2022), who compared GS,

MHGS, UNAM, ST, HST, and other shifted tower methods in which the amount shift varies from 0 to 1/2

(with corresponding variation in self transition probability).24 Suwa considers Potts models with m (their

q) equal to 2, 3, 4, 5, and 6, with the temperature set to the value corresponding to a phase transition

in an infinite lattice. For m = 4, this corresponds to choosing b = 1.098 in equation (120). They used

R = C = 32, so n = 1024, and updated variables in a fixed sequential order, which was not specified, but

presumably corresponded to a simple scan across and down the lattice (corresponding to what is labeled

as ”Sequential” in Figures 15 through 17). Suwa evaluated methods by their “integrated autocorrelation

time”, which is proportional to asympotic variance, of an “order parameter”.

Suwa’s results show that MHGS is substantially better than GS, and that UNAM is only slightly better

than MHGS, in agreement with the results of Pollet (2004), and the results reported here for the 8 × 8

23They refer to GS as ”heatbath”, to MHGS as ”MG”, and to UNAM as ”Opt”.
24Suwa refers to GS as “heatbath”, MHGS as “Metropolized Gibbs”, UNAM as “iterative Metropolized Gibbs”, and ST as

the “Suwa-Todo algorithm”; other shifted tower methods were characterized by the shift amount (with s = 1/2 corresponding
to HST).

69

Potts model. Suwa also shows a substantial advantage of ST over UNAM, again in agreement with results

here.

A larger claim by Suwa is that the autocorrelation time is an exponential function of the frequency of

non-self transitions — equivalently, that the log of the autocorrelation time (or asymptotic variance) is a

linear function of the frequency of non-self transitions, as pictured in Fig. 2 of (Suwa 2022). This figure

shows results for shifted tower methods in which the amount of shift is varied from just above 0 to 1/2 (with

the latter value corresponding to HST), with a consequent variation in self transition probability from just

below 1 to the minimum possible. The results obtained are fit reasonably well by a linear relationship

of log autocorrelation time to non-self transition probability. Furthermore, the results with GS, MHGS,

UNAM, and ST (with shift not constant, but equal to the maximum probability) are also close to this line.

This claim seems misleading, however. First, note that the non-self transition probability is upper

bounded by a value no greater than one, so an exponential improvement as it increases does not permit

arbitrarily large improvements in autocorrelation time. Second, the autocorrelation time must go to infinity

as the non-self transition probability goes to zero, so the exponential relationship cannot hold in this limit.

One may question whether the experimental results with the smallest non-self transition probabilities

are accurate, considering the difficulty of estimating autocorrelation times when they are very large. The

alternative of autocorrelation time being proportional to some power of the non-self transition probability is

almost indistinguishable from an exponential relationship over the range of non-self transition probabilities

for which the fit of the latter is good in Suwa’s Fig. 2, which is from 0.23 to 0.29 for q = 4.

Suwa also compares a sequential scan with a random scan, with results shown in Fig. 4 of (Suwa 2022),

which appears to be for q = 4 (though this is not stated). For the ST method, the sequential scan is a factor

of about 3.5 more efficient than a random scan, similar to, though a bit greater, than the advantage seen

here in Figure 16. These results are seen by Suwa as following a relationship in which the autocorrelation

time with a random scan is proportional to a power of the non-self transition probability. While this is

more plausible than an exponential relationship for small non-self transition probabilities, I think that

further research is needed to elucidate these relationships. The results for the 5 × 5 Potts model here

show that methods with the same self transition probability (including those that minimize it) can have

substantially different efficiencies (for example, ST, UDST, and HST in Figure 22).

16 Comparisons for a Bayesian mixture model

Mixture models are commonly used for data that comes from several distinct sources, for example, data

on symptoms of patients suffering from different diseases. In a Bayesian modeling approach (Neal 1992a),

the parameters of the mixture model are integrated over, with respect to a prior distribution, leaving as

the only unknowns which component of the mixture is associated with each data point (e.g., which disease

each patient has). Sampling for these component indicators can be done by Gibbs sampling, which can be

modified to avoid self transitions by the methods discussed in this paper.

A mixture model for independent observations y1, . . . , yn represents their distribution as a mixture of m

component distributions, as follows:

P (yi|α, θ) =

m∑
xi=1

αxi
P (yi|xi, θxi

) (121)

Here, xi indicates which mixture component is associated with observation yi, α = [α1, . . . , αm] is a vector

of mixture weights, with
∑

x αx = 1, and θx gives the parameters of mixture component x. For the model

70

used in the experiments here, each observation consists of H binary variables, yi = [yi1, . . . , yiH] with

yih ∈ {0, 1}, and θx contains the probabilities for each of these binary variables to have the value 1, so

θx = [θx1, . . . , θxH] with θxh ∈ [0, 1]. Conditional on observation i coming from mixture component xi, the

H binary variables are assumed to be independent, so

P (yi|xi, θ) =

H∏
h=1

θyih

xih
(1−θxih)

1−yih (122)

The joint probability of all observations, yi, along with all component indicators, xi, for given values of

the model parameters α and θ, is therefore

P (y1, . . . , yn, x1, . . . , xn|α, θ) =

n∏
i=1

αxi

H∏
h=1

θyih

xih
(1−θxih)

1−yih (123)

=

[
m∏

x=1

αCx
x

] [
m∏

x=1

H∏
h=1

θSxh

xh (1− θxh)
Cx−Sxh

]
(124)

where Cx is the number of xi for i = 1, . . . , n that are equal to x, and Sxh is the sum of yih for those i for

which xi equals x.

In a Bayesian treatment of this problem, a prior distribution for the unknown parameters α and θ is

specified. If in this prior the θxh and α parameters are independent, with each θxh uniform over (0, 1) and

α uniform over the simplex with αx > 0 and
∑

x αx = 1, it is possible to analytically integrate over the

prior for these parameters (Neal 1992a), giving a joint distribution for the observations and component

indicators alone:

P (y1, . . . , yn, x1, . . . , xn) =

[
(m−1)!

(n+m−1)!

m∏
x=1

Cx!

][
m∏

x=1

H∏
h=1

Sxh! (Cx − Sxh)!

(Cx + 1)!

]
(125)

When we have observed y1, . . . , yn, we may wish to sample from the conditional distribution of the com-

ponent indicators x1, . . . , xn given these observations, both because this distribution is of interest in itself

(giving possible “clusterings” of the observations), and because it assists inference for the parameters and

predictions for future observations. This can be done using Gibbs sampling. The conditional distribution

for xi given x−i can be obtained from equation (16), as

P (xi = x|y1, . . . , yn, x1, . . . , xi−1, xi+1, . . . , xn) ∝ (C−
x + 1)

H∏
h=1

(S−
xh + 1)yih(C−

x − S−
xh + 1)1−yih

C−
x + 2

(126)

where C−
x = Cx− I(xi = x) is the number of xj for j ̸= i that are equal to x, and S−

xh = Sxh−yihI(xi = x)

is the sum of yjh for those j ̸= i for which xj equals x.

The experiments in this section compare use of Gibbs sampling with the modified Gibbs sampling

methods, on a problem in which there are n = 30 observations, each consisting of H = 10 binary variables.

The model used has m = 9 mixture components. The data, shown in Figure 24, was manually constructed

to have five clusters of observations, which would be expected to correspond to mixture components, so we

anticipate that several of the mixture components will be associated with few or no observations in typical

samples from the posterior distribution

71

1: 1 1 1 1 0 0 0 0 1 0

2: 1 1 1 1 0 0 0 0 0 0

3: 1 1 1 1 0 0 0 0 1 0

4: 1 0 1 1 0 0 0 0 1 0

5: 1 1 1 1 0 0 0 0 0 1

6: 1 1 1 1 0 0 1 0 1 1

7: 0 1 1 1 0 0 0 0 0 0

8: 0 0 0 0 1 1 1 1 1 0

9: 0 0 0 0 1 1 1 1 1 0

10: 0 0 0 0 1 1 1 1 1 1

11: 0 0 0 1 1 1 1 1 0 0

12: 0 0 0 0 0 1 1 1 1 1

13: 0 0 1 0 1 1 1 0 1 0

14: 1 0 1 1 0 0 1 1 0 1

15: 0 0 1 1 0 0 1 1 1 1

16: 0 0 1 1 0 0 1 1 1 0

17: 0 0 1 1 0 1 1 1 1 0

18: 0 0 1 1 0 0 1 1 0 0

19: 0 0 1 1 0 0 1 1 0 1

20: 1 1 0 0 1 1 0 0 0 0

21: 1 1 0 0 1 1 0 0 1 1

22: 1 1 0 0 1 1 0 0 1 0

23: 1 1 0 0 1 1 0 0 0 1

24: 1 1 1 0 1 1 0 0 1 1

25: 1 1 0 0 1 1 0 0 1 0

26: 1 0 0 0 1 0 0 0 0 0

27: 0 0 0 0 0 1 0 0 0 1

28: 0 0 0 1 0 0 0 0 0 0

29: 0 1 0 0 0 0 0 0 1 0

30: 0 0 0 0 0 0 1 0 0 0

Figure 24: The n = 30 observations used for the mixture model example. The observations are here
grouped by the five manually-created clusters. The order is randomized in the runs done, so this “true”
clustering does not affect the results.

The expectations of the following functions of state were estimated:

1) Obs 1 in cluster 1. The indicator function for whether x1 = 1. Since the mixture components

(clusters) are treated symmetrically in the model, the true expectation of this function must be

1/m = 1/9 = 0.111111, and its variance must be (1/m)(1−1/m) = 8/81 = 0.098765.

2) Obs 10 cluster size. The number of observations in the cluster associated with observation 10 —

that is,
∑30

i=1 I(xi = x10). The expectation of this function is approximately 5.56 and its variance is

approximately 3.26.

3) Obs 30 cluster size. The number of observations in the cluster associated with observation 30.

The expectation of this function is approximately 4.35 and its variance is approximately 6.38.

Each run consisted of K = 200000 scans, each with n = 30 updates component indicators. For each

group of methods, four independent runs of this length were done, for each method in the group, and each

scan order.

The frequencies of self transitions for the various methods are as follows:

GS: 0.69, MHGS: 0.65, UNAM: 0.64, DNAM: 0.61, UDNAM: 0.62, FSS: 0.61

ZDNAM, ST, DST, UST, UDST, HST, OHST, ZFSS: 0.61

The maximum conditional probability for an update was half or more 86% of the time.

Summaries of asymptotic variance estimates for the three function above, for all groups of methods, are

shown in Figures 25 through 27. Note that there is no meaningful original order for the variables, so there

is no “sequential” scan order.

The results for the mixture model problem are qualitatively similar to those for the 8× 8 Potts model.

The shuffled sequential scan order gives the best results. Thinning increases asymptotic variance, except

for the random scan, for which thinning is beneficial. Amongst the methods deriving from Gibbs sampling

(Figure 25), ZDNAM performs best. The shifted tower methods (Figure 26) all perform about equally

well, except that HST may be slightly worse than the others. FSS and ZFSS (see Figure 27) also perform

well.

72

50
10

0
15

0
20

0
25

0
30

0

Obs 1 in cluster 1

Random
Shuffled Sequential
Random order
Random order x4

GS MHGS UNAM DNAM UDNAM ZDNAM

50
10

0
15

0
20

0
25

0
30

0
35

0
40

0

Obs 10 cluster size

Random
Shuffled Sequential
Random order
Random order x4

GS MHGS UNAM DNAM UDNAM ZDNAM

10
0

20
0

30
0

40
0

50
0

Obs 30 cluster size

Random
Shuffled Sequential
Random order
Random order x4

GS MHGS UNAM DNAM UDNAM ZDNAM

50
10

0
15

0
20

0
25

0
30

0

Obs 1 in cluster 1 − thinned

Random
Shuffled Sequential
Random order
Random order x4

GS MHGS UNAM DNAM UDNAM ZDNAM

50
10

0
15

0
20

0
25

0
30

0
35

0
40

0

Obs 10 cluster size − thinned

Random
Shuffled Sequential
Random order
Random order x4

GS MHGS UNAM DNAM UDNAM ZDNAM

10
0

20
0

30
0

40
0

50
0

Obs 30 cluster size − thinned

Random
Shuffled Sequential
Random order
Random order x4

GS MHGS UNAM DNAM UDNAM ZDNAM

Figure 25: Summaries of autocovariance function estimates for the Bayesian mixture model, for the first
group of methods.

73

50
10

0
15

0
20

0
25

0
30

0

Obs 1 in cluster 1

Random
Shuffled Sequential
Random order
Random order x4

ST DST UST UDST HST OHST

50
10

0
15

0
20

0
25

0
30

0
35

0
40

0

Obs 10 cluster size

Random
Shuffled Sequential
Random order
Random order x4

ST DST UST UDST HST OHST

10
0

20
0

30
0

40
0

50
0

Obs 30 cluster size

Random
Shuffled Sequential
Random order
Random order x4

ST DST UST UDST HST OHST

50
10

0
15

0
20

0
25

0
30

0

Obs 1 in cluster 1 − thinned

Random
Shuffled Sequential
Random order
Random order x4

ST DST UST UDST HST OHST

50
10

0
15

0
20

0
25

0
30

0
35

0
40

0

Obs 10 cluster size − thinned

Random
Shuffled Sequential
Random order
Random order x4

ST DST UST UDST HST OHST

10
0

20
0

30
0

40
0

50
0

Obs 30 cluster size − thinned

Random
Shuffled Sequential
Random order
Random order x4

ST DST UST UDST HST OHST

Figure 26: Summaries of autocovariance function estimates for the Bayesian mixture model, for the second
group of methods.

74

50
10

0
15

0
20

0
25

0
30

0

Obs 1 in cluster 1

Random
Shuffled Sequential
Random order
Random order x4

UNAM ZDNAM ST UDST FSS ZFSS

50
10

0
15

0
20

0
25

0
30

0
35

0
40

0

Obs 10 cluster size

Random
Shuffled Sequential
Random order
Random order x4

UNAM ZDNAM ST UDST FSS ZFSS

10
0

20
0

30
0

40
0

50
0

Obs 30 cluster size

Random
Shuffled Sequential
Random order
Random order x4

UNAM ZDNAM ST UDST FSS ZFSS

50
10

0
15

0
20

0
25

0
30

0

Obs 1 in cluster 1 − thinned

Random
Shuffled Sequential
Random order
Random order x4

UNAM ZDNAM ST UDST FSS ZFSS

50
10

0
15

0
20

0
25

0
30

0
35

0
40

0

Obs 10 cluster size − thinned

Random
Shuffled Sequential
Random order
Random order x4

UNAM ZDNAM ST UDST FSS ZFSS

10
0

20
0

30
0

40
0

50
0

Obs 30 cluster size − thinned

Random
Shuffled Sequential
Random order
Random order x4

UNAM ZDNAM ST UDST FSS ZFSS

Figure 27: Summaries of autocovariance function estimates for the Bayesian mixture model, for the third
group of methods.

75

17 Comparisons for a belief network

A joint distribution for random variables x1, . . . , xn can be written as a product of successive conditional

distributions:

π(x) = π(x1)π(x2|x1)π(x3|x1, x2) · · ·π(xn|x1, . . . , xn−1) (127)

A belief network (sometimes called a “Bayesian network” or “directed graphical model”) is a directed graph

with arrows that go from some xi to some xj with j > i, which summarizes how the representation above

can be simplified by omitting some conditioning variables — in the factor π(xj | . . .), the only xi that need

be conditioned on are those (the “parents” of xj) for which there is an arrow from xi to xj in the network.

Consider, for example, the network below:

����
x1

�
�	

@
@R����

x2

@
@R

����
x3

�
�	����

x4

The absence of arrows from x1 to x4 and from x2 to x3 means that the joint distribution can be written as

π(x) = π(x1)π(x2|x1)π(x3|x1)π(x4|x2, x3) (128)

Many common statistical models (e.g., state space time series models) can be seen as belief networks.

They have also been used to represent knowledge elicited from experts (Pearl 1988; Lauritzen and Spiegel-

halter 1988), and as models in the style of neural networks that can be learned from data (Neal 1992b).

If some variables in a belief network are known, the conditional distribution of the other variables given

these known variables can be sampled from using Gibbs sampling. The unknown variables are updated

in some systematic or random order. An update to variable xi is done by sampling a new value from

its conditional distribution given current values of other variables, including both ones with known values

(which are fixed) and the current values of other unknown variables.

The conditional distribution for xi needed for Gibbs sampling depends only on the parents of xi, the

children of xi, and the parents of the children of xi, with the conditional probabilities being proportional

to the product of factors of the joint distribution that involve xi. For the example network above,

π(x1|x−1) ∝ π(x1)π(x2|x1)π(x3|x1) (129)

π(x2|x−2) ∝ π(x2|x1)π(x4|x2, x3) (130)

π(x3|x−3) ∝ π(x3|x1)π(x4|x2, x3) (131)

π(x4|x−4) ∝ π(x4|x2, x3) (132)

The belief network used for the experiments reported here is shown in Figure 28. The 10 variables in

the model, represented as circles in the network, are arranged in three layers — a layer at the top of two

variables (each with five possible values), a layer of five variables in the middle (each with four possible

values), and a layer of three variables at the bottom (each with three possible values). Arrows go from

every variable in the top layer to every variable in the middle layer, and from every variable in the middle

layer to every variable in the bottom layer.

76

��������
�

�
�

�	

@
@

@
@R

�
�

�
�

�
��=

Z
Z
Z

Z
Z

ZZ~

r r r
��������������������

J
J
JĴ

�

HHH
HHH

HHHj

���
���

����

r r r
������������

Figure 28: The belief network used for the experiments. The variables represented by the circles at the
top have possible values in {1, 2, 3, 4, 5}, those in the middle have possible values {1, 2, 3, 4}, and those at
the bottom have possible values {1, 2, 3}.

The marginal distributions for the two variables at the top (which have no parents) are determined

by parameters αi,u, where i ∈ {1, 2} identifies the variable and u ∈ {1, 2, 3, 4, 5} is a possible value for

the variable. The probability for variable i in this top group having value u is exp(αi,u) /
∑

u′ exp(αi,u′).

(Note that this and other parameterizations for this model are redundant, with multiple parameter values

producing the same distribution.)

The conditional distribution for a middle variable given values for its parent variables is defined using

a multinomial logit model (also known as a “softmax” model). For each possible value, v, of variable j in

the middle layer, a summed input, sj,v =
∑

i exp(βij,xiv) is computed, where βij,uv are parameters giving

the influence of variable i having value u on variable j having value v. The probability that variable j

has value v is then exp(sj,v) /
∑

v′ exp(sj,v′). In similar fashion, parameters γjk,vw define multinomial logit

models for the values of variables in the bottom layer, given values for variables in the middle layer.

For the experiments, a single set of parameters, αi,u, βij,uv, and γjk,vw, were randomly sampled, inde-

pendently, from the t distribution with four degrees of freedom. Gibbs sampling and the other methods

were then used to sample from the distribution for all n = 2+5+ 3 = 10 variables. This is not the typical

usage — one would usually condition on known values for some of the variables — and if one did want

to sample from this distribution, it can be done more easily by sampling top down from the conditional

distribution of each node given its parents. However, it is a useful test of sampling methods, since moving

around the whole unconstrained distribution should be more challenging.

Estimates of the expectations of the following functions of state were found:

1) Unit 1 of layer 1 is 1. The indicator that the first variable in the middle layer (1) of variables has

the value 1. The expectation of this function is 0.2109 (and consequently its variance is 0.1664).

2) Unit 1 of layer 2 is 1. The indicator that the first variable in the bottom layer (2) of variables has

the value 1. The expectation of this function is 0.07353 (and its variance is 0.06812).

1) Unit 1 layer 0 and unit 1 layer 2 is 1. The indicator that the logical “and” of the first variable

of the top layer (0) and the first variable of the bottom layer (2) is 1 (i.e., that both variables are 1).

The expectation of this function is 0.04950 (and its variance is 0.04705).

The expectations above were computed by brute-force marginalization over all possible combinations of

values for the ten variables.

77

Four runs with K = 1000000 scans, each with n = 10 variable updates, were done for each scan order

and each method within each group of methods.

The frequencies of self transitions for the various methods are:

GS: 0.68, MHGS: 0.59, UNAM: 0.58, DNAM: 0.56, UDNAM: 0.57, FSS: 0.56

ZDNAM, ST, DST, UST, UDST, HST, OHST, ZFSS: 0.56

The maximum conditional probability for an update was half or more 89% of the time.

Summaries of asymptotic variance estimates for the three function above, for all groups of methods, are

shown in Figures 29 through 31. Note that the results for the sequential scan (red) and shuffled sequential

scan (orange) are almost identical (with the latter overlaying the former).

The results on the belief network problem are qualitatively quite similar to those for both the 8×8 Potts

model and the mixture model. The sequential and shuffled sequential scan orders gives the best results.

Thinning increases asymptotic variance, except for the random scan, for which thinning is beneficial. For

all scan orders, with and without thinning, there is almost no difference in asymptotic variance between

DNAM, ZDNAM, FSS, ZFSS, and the shifted tower methods, all of which are noticeably better than GS,

MHGS, UNAM, and UDNAM.

It is not surprising that all the methods minimizing self transition probability have nearly the same

performance on this problem. As noted above, the maximum conditional probability for this problem is

one half or more 89% of the time, and as shown at the end of Section 13, in such situations any method

that minimizes self transition probability must have the same transition probabilities. There is therefore

little scope for differences amongst these methods, or with DNAM and FSS, both of which almost minimize

self transition probability for this problem.

18 Conclusions

Liu’s (1996) MHGS modification of Gibbs sampling and the UNAM method due to Frigessi, Hwang, and

Younes (1992) and Tjelmeland (2004) can both be justified as improvements to Gibbs sampling by applying

Peskun’s (1973) theorem. In this paper, I have introduced a more general class of methods based on nested

antithetic modification (NAM), which can also be shown to efficiency-dominate Gibbs sampling, using a

more general theory, presented in a companion paper (Neal and Rosenthal 2023). The DNAM method

in this class appears in the experimental evaluations to usually be superior to UNAM, though this is not

theoretically guaranteed. The ZDNAM modification to DNAM reduces self transitions to the minimum

possible, and can also be shown to efficiency-dominate Gibbs sampling, when the variable to update is

chosen randomly.

The minimum possible self transition probability can also be achieved with the ST method (Suwa and

Todo 2010) and the HST method (Suwa 2022). In this paper, I also consider UST, DST, UDST, and OHST

variations on these methods. One can show, using theory developed in (Neal and Rosenthal 2023), that the

reversible methods in this class (UDST, HST, and OHST) cannot be efficiency-dominated by any reversible

method (within the framework of randomly-selected variable updates). However, unlike ZDNAM, these

methods do not always efficiency-dominate Gibbs sampling.

In this paper, I have also introduced two new non-reversible methods based on slice sampling, FSS and

ZFSS, with the latter minimizing self transitions.

78

2
4

6
8

10

Unit 1 of layer 1 is 1

Random
Sequential
Shuffled Sequential
Random order
Random order x4

GS MHGS UNAM DNAM UDNAM ZDNAM

1
2

3
4

5

Unit 1 of layer 2 is 1

Random
Sequential
Shuffled Sequential
Random order
Random order x4

GS MHGS UNAM DNAM UDNAM ZDNAM

1
2

3
4

5

Unit 1 layer 0 and unit 1 layer 2 is 1

Random
Sequential
Shuffled Sequential
Random order
Random order x4

GS MHGS UNAM DNAM UDNAM ZDNAM

2
4

6
8

10

Unit 1 of layer 1 is 1 − thinned

Random
Sequential
Shuffled Sequential
Random order
Random order x4

GS MHGS UNAM DNAM UDNAM ZDNAM

1
2

3
4

5

Unit 1 of layer 2 is 1 − thinned

Random
Sequential
Shuffled Sequential
Random order
Random order x4

GS MHGS UNAM DNAM UDNAM ZDNAM

1
2

3
4

5

Unit 1 layer 0 and unit 1 layer 2 is 1 − thinned

Random
Sequential
Shuffled Sequential
Random order
Random order x4

GS MHGS UNAM DNAM UDNAM ZDNAM

Figure 29: Summaries of autocovariance function estimates for the belief network, for the first group of
methods.

79

2
4

6
8

10

Unit 1 of layer 1 is 1

Random
Sequential
Shuffled Sequential
Random order
Random order x4

ST DST UST UDST HST OHST

1
2

3
4

5

Unit 1 of layer 2 is 1

Random
Sequential
Shuffled Sequential
Random order
Random order x4

ST DST UST UDST HST OHST

1
2

3
4

5

Unit 1 layer 0 and unit 1 layer 2 is 1

Random
Sequential
Shuffled Sequential
Random order
Random order x4

ST DST UST UDST HST OHST

2
4

6
8

10

Unit 1 of layer 1 is 1 − thinned

Random
Sequential
Shuffled Sequential
Random order
Random order x4

ST DST UST UDST HST OHST

1
2

3
4

5

Unit 1 of layer 2 is 1 − thinned

Random
Sequential
Shuffled Sequential
Random order
Random order x4

ST DST UST UDST HST OHST

1
2

3
4

5

Unit 1 layer 0 and unit 1 layer 2 is 1 − thinned

Random
Sequential
Shuffled Sequential
Random order
Random order x4

ST DST UST UDST HST OHST

Figure 30: Summaries of autocovariance function estimates for the belief network, for the second group of
methods.

80

2
4

6
8

10

Unit 1 of layer 1 is 1

Random
Sequential
Shuffled Sequential
Random order
Random order x4

UNAM ZDNAM ST UDST FSS ZFSS

1
2

3
4

5

Unit 1 of layer 2 is 1

Random
Sequential
Shuffled Sequential
Random order
Random order x4

UNAM ZDNAM ST UDST FSS ZFSS

1
2

3
4

5

Unit 1 layer 0 and unit 1 layer 2 is 1

Random
Sequential
Shuffled Sequential
Random order
Random order x4

UNAM ZDNAM ST UDST FSS ZFSS

2
4

6
8

10

Unit 1 of layer 1 is 1 − thinned

Random
Sequential
Shuffled Sequential
Random order
Random order x4

UNAM ZDNAM ST UDST FSS ZFSS

1
2

3
4

5

Unit 1 of layer 2 is 1 − thinned

Random
Sequential
Shuffled Sequential
Random order
Random order x4

UNAM ZDNAM ST UDST FSS ZFSS

1
2

3
4

5

Unit 1 layer 0 and unit 1 layer 2 is 1 − thinned

Random
Sequential
Shuffled Sequential
Random order
Random order x4

UNAM ZDNAM ST UDST FSS ZFSS

Figure 31: Summaries of autocovariance function estimates for the belief network, for the third group of
methods.

81

The experimental evaluations here show that, with Gibbs sampling and its modifications, random se-

lection of a variable to update is usually (but not quite always) worse than using other scan orders, such

as sequential updates. Random updating is necessary for the overall updates to be reversible, when the

modification of Gibbs sampling used is reversible. Unfortunately, the theoretical justifications in this paper

apply only to reversible methods, so the practical choice of method to use when a non-random scan is used

must be largely based on experiment. However, the experiments do show that the relative performance

of different methods is usually (but not always) similar for random and systematic scans, so theoretical

results for random scans are still of some interest.

On the four problems looked at, the best overall performance was achieved using the DNAM, ZDNAM,

DST, UST, UDST, and OHST methods (with DNAM and OHST perhaps being slightly worse than the

others). The ST, FSS and ZFSS methods also performed well in most circumstances, but had erratic

performance for the 5× 5 Potts model with negative b. The problems with these methods, as well as HST,

may be due to the zero non-self transition probabilities that they can produce. DST, UST, UDST, and

OHST can also have zero non-self transition probabilities, but any bad effect of them may be mitigated by

the changing order of values with these methods. The ZDNAM method produces zero non-self transition

probabilities only in the context of moving to or from a higher-probability value (as in equation (112)),

which seems less problematic. For this reason, I at present recommend ZDNAM as most suitable for

general use.

Amongst the methods minimizing self transitions, these experiments give no evidence that a non-

reversible update method, such as DST or UST, provides an advantage over reversible methods, such

as ZDNAM or UDST. In contrast, using a scan order that leads to the overall method being non-reversible

usually has a large advantage. This highlights the need for better theoretical tools for analysing non-

reversible methods.

Efficient algorithms for all the methods evaluated are given in this paper, which I hope will facilitate

their use in applications and in general-purpose MCMC software. The programs used for the experimental

evaluations, written in R, along with the output files, are available at github.com/radfordneal/gibbsmod.

References

Ackley, D. H., Hinton, G. E., and Sejnowski, T. J. (1985) “A learning algorithm for Boltzmann machines”,

Cognitive Science, vol. 9, pp. 147–169.

Devroye, L. (1986) Non-Uniform Random Variate Generation, Springer-Verlag.

Frigessi, A., Hwang, C.-R., and Younes, L. (1992) “Optimal spectral structure of reversible stochastic

matrices, Monte carlo methods and the simulation of Markov random fields”, The Annals of Applied

Probability, vol. 2, pp. 610–628.

Gelfand, A. E. and Smith, A. F. M. (1990) “Sampling-based approaches to calculating marginal densities”,

Journal of the American Statistical Association, vol. 85, pp. 398–409.

Geman, S. and Geman, D. (1984) “Stochastic relaxation, Gibbs distributions and the Bayesian restoration

of images”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 6, pp. 721–741.

Geyer, C. J. (1992) “Practical Markov chain Monte Carlo”, Statistical Science, vol. 7, pp. 473-511.

82

Hastings, W. K. (1970) “Monte Carlo sampling methods using Markov chains and their applications”,

Biometrika, vol. 57, pp. 97–109.

He, B., De Sa, C., Mitliagkas, I., and Ré, C. (2016) “Scan order in Gibbs sampling: Models in which it

matters and bounds on how much”, https://arxiv.org/abs/1606.03432

Hoffman, M. D. and Gelman, A. (2014) “The No-U-Turn Sampler: Adaptively setting path lengths in

Hamiltonian Monte Carlo”, Journal of Machine Learning Research, vol. 15, pp. 1593-1623.

Horn, R. A. and Johnson, C. R. (2013) Matrix Analysis, 2nd edition, Cambridge University Press.

Landau, D. P. and Binder, K. (2009) A Guide to Monte Carlo Simulations in Statistical Physics, Third

Edition, Cambridge University Press.

Lauritzen, S. L. and Spiegelhalter, D. J. (1988) “Local computations with probabilities on graphical struc-

tures and their application to expert systems” (with discussion), Journal of the Royal Statistical Soci-

ety B, vol. 50, pp. 157-224.

Liu, J. S. (1996) “Peskun’s theorem and a modified discrete-state Gibbs sampler”, Biometrika, vol. 83,

pp. 681–682.

Mira, A. and Geyer, C. J. (1999), “Ordering Monte Carlo Markov chains”. Technical Report No. 632,

School of Statistics, University of Minnesota.

Neal, R. M. (1992a) “Bayesian mixture modelling”, in C. R. Smith, G. J. Erickson, and P. O. Neudorfer

(editors) Maximum Entropy and Bayesian Methods: Proceedings of the 11th International Workshop on

Maximum Entropy and Bayesian Methods of Statistical Analysis, Seattle 1991, pp. 197-211, Dordrecht:

Kluwer Academic Publishers.

Neal, R. M. (1992b) “Connectionist learning of belief networks”, Artificial Intelligence, vol. 56, pp. 71-113.

Neal, R. M. (2003) “Slice sampling” (with discussion), Annals of Statistics, vol. 31, pp. 705-767.

Neal, R. M. (2004) “Improving asymptotic variance of MCMC estimators: Non-reversible chains are bet-

ter”, https://arxiv.org/abs/math/0407281

Neal, R. M. and Rosenthal, J. S. (2023) “Efficiency of reversible MCMC methods: Elementary deriva-

tions and applications to composite methods”, https://arxiv.org/abs/2305.18268 (revised version

of March 2024).

Pearl, J. (1988) Probabilistic Reasoning in Intelligent System: Networks of Plausible Inference, San Mateo,

California: Morgan Kaufmann.

Peskun, P. H. (1973) “Optimum Monte-Carlo sampling using Markov chains”, Biometrika, vol. 60, pp. 607–

612.

Pollet, L., Rombouts, S. M.A., Van Houcke, K., and Heyde, K. (2004) “Optimal Monte Carlo updating”,

https://arxiv.org/abs/cond-mat/0405150

Suwa, H. (2022) “Reducing rejection exponentially improves Markov chain Monte Carlo sampling”,

https://arxiv.org/abs/2208.03935

83

Suwa, H. and Todo S. (2010) “Markov chain Monte Carlo method without detailed balance”,

https://arxiv.org/abs/1007.2262

Thomas, A., Spiegelhalter, D. J., and Gilks, W. R. (1992) “BUGS: A program to perform Bayesian inference

using Gibbs sampling”, in J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith (editors),

Bayesian Statistics 4, pp. 837–842, Oxford University Press.

Tjelmeland, H. (2004) “Using all Metropolis-Hastings proposals to estimate mean values”, Statistics

Preprint No. 4/2004, Norwegian University of Science and Technology.

84

	 Introduction
	 Review of Gibbs Sampling (GS) and its implementation
	 Asymptotic variance, Peskun-dominance, and efficiency-dominance
	 The Metropolis-Hastings Gibbs Sampling (MHGS) method
	 Efficiency improvement by Antithetic Modification (AM)
	 Nested Antithetic Modification (NAM) methods
	 The Upward Nested Antithetic Modification (UNAM) method
	 The Downward Nested Antithetic Modification (DNAM) method
	 The Zero-self DNAM (ZDNAM) method
	 The Shifted Tower (ST) and Half Shifted Tower (HST) methods
	 Flattened slice sampling methods (FSS and ZFSS)
	 Non-domination of reversible methods minimizing self transitions
	 Comparisons on simple distributions
	 Framework for empirical comparisons
	 Comparisons for Potts models
	 Comparisons for a Bayesian mixture model
	 Comparisons for a belief network
	 Conclusions

