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The Cordiality Game and the Game Cordiality Number

Elliot Krop, Aryan Mittal, and Michael C. Wigal

Abstract. The cordiality game is played on a graphG by two players, Admirable
(A) and Impish (I), who take turns selecting unlabeled vertices of G. Admirable
labels the selected vertices by 0 and Impish by 1, and the resulting label on any
edge is the sum modulo 2 of the labels of the vertices incident to that edge. The
two players have opposite goals: Admirable attempts to minimize the number of
edges with different labels as much as possible while Impish attempts to maximize
this number. When both Admirable and Impish play their optimal games, we
define the game cordiality number, cg(G), as the absolute difference between the
number of edges labeled zero and one. Let Pn be the path on n vertices. We
show cg(Pn) ≤ n−3

3
when n ≡ 0 (mod 3), cg(Pn) ≤ n−1

3
when n ≡ 1 (mod 3),

and cg(Pn) ≤
n+1

3
when n ≡ 2 (mod 3). Furthermore, we show a similar bound,

cg(T ) ≤
|T |
2

holds for any tree T .
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1. Introduction and Definitions

It is natural to study combinatorial functions under the regime of two-person
games, often presenting new perspectives to old problems. One such example is
the classic cops and robbers formulation of tree-width [24]. More examples include
game chromatic number, see [1] and [25], and the more recent game domination
number [3], which has bloomed into numerous publications, of which we only list a
few, e.g., [4, 15, 17], and the monograph [2]. For more examples of graph-theoretic
games, see the extended bibliography [11] for more references.

With this in mind, we define a new game to study a simple “algebraic balance”
in graphs, which is motivated from the following definition. A graph G is cordial

if there exists a labeling of the vertices of G by 0 and 1, where labels on edges are
defined as the sum of incident vertex labels modulo 2 such that:

• the absolute difference in the number of vertices labeled 0 and 1 is no more
than one;

• the absolute difference in the number of edges labeled 0 and 1 is no more
than one.

In other words, a graph is cordial, if there exists a bipartition of its vertex set,
such that the size of each part is ⌈|V (G)|/2⌉ or ⌊|V (G)|/2⌋, and the number of
edges that goes across the cut induced by the bipartition is either ⌈|E(G)|/2⌉ or
⌊|E(G)|/2⌋. Cordial labelings were first defined in [6] and extended to k-cordial
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labelings in [16], which includes several difficult and outstanding problems. One
particular simple and natural problem is the 3-cordial conjecture.

A graph G is 3-cordial, if there exists a vertex labeling of G satisfying the
following two conditions:

• The vertices are labeled by the integers 0, 1, and 2 such that for any integer
in {0, 1, 2}, there is at most one more vertex labeled by one of the integers
than of vertices labeled by any other fixed integer.

• If for any edge, the label on that edge is found by summing its incident
vertices modulo 3, then there is at most one more edge labeled by one of
the integers than of edges labeled by a different fixed integer.

Conjecture 1.1 (Hovey [16]). All graphs are 3-cordial.

We know of no progress made on this problem in the last thirty years. Some
examples of other extensions and variants of cordiality problems from [16] can be
seen in [8, 9, 10, 19, 20].

Let G = (V,E) be a graph. The cordiality game is played on G by two players,
Admirable and Impish, who take turns selecting the unlabeled vertices of G. Ad-
mirable labels selected vertices by 0 and Impish labels selected vertices by 1. The
labels on edges are then determined by the sum of incident vertex labels modulo 2.
Admirable’s goal is to produce a labeling of E with the minimum number of dif-
ferent labels while Impish attempts to produce the labels of E with the maximum
number of different labels. In other words, after all the vertices are labeled, if we
let e0 be the number of edges labeled by 0 and e1 be the number of edges labeled
by 1, then we define the discrepancy to be d = |e1 − e0|. Then Admirable attempts
to minimize d and Impish attempts to maximize d. Note at the end of the game,
the vertex labelings induce a balanced bipartition of the graph.

We define the game cordiality number, cg(G), to be the value of d when both
players play optimally. Further, to prove our claimed bounds, we create a variant
of the cordiality game where Impish starts rather than Admirable. In this case, the
discrepancy, assuming optimal play of both competitors, is denoted c′g(G), which we
call the Impish-starts game cordiality number. Finally, consider a further variant of
the cordiality game, in which Impish starts and may pass one time during play, so
that Admirable moves twice consecutively at some point in the game. For this game,
the discrepancy, assuming optimal play of both parties, is denoted c∗g(G). Note that

c′g(G) ≤ c∗g(G), as Impish may always choose a strategy that avoids passing his
turn.

Our cordiality game can be interpreted as a classic positional game under a small
adjustment. First introduced by Chvátal and Erdős [7], the Maker-Breaker game
has received significant attention prior in the literature, e.g., see [14, 18]. A family
F of winning subsets of some set X is known to both players prior. The players
alternate between selecting previously unselected elements. At the end, Maker wins
if he obtains a set of F , otherwise Breaker wins. For some fixed integer k ≥ 0,
let Fk be the family of vertex sets which are parts of a balanced bipartition of
discrepancy at most k. Note then for the cordiality game, Maker would play the
role of Admirable, Breaker taking the role of Impish. Clearly, setting k = cg(G), a
winning strategy for one game translates to the other.

In Section 2, we present an upper bound for cg(Pn) when Pn is a path on n
vertices. We prove
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cg(Pn) ≤











n−3
3

n ≡ 0 (mod 3)
n−1
3

n ≡ 1 (mod 3)
n+1
3

n ≡ 2 (mod 3)

In Section 3, we show that for any tree T , cg(T ) ≤
1
2
n. In Section 4, we introduce

a variant of the cordiality game and end with some open questions.
We finish this section with some notation. For a graph G, we let φ denote the

cut function for G. That is, for all S ⊆ V (G), φ(S) = |{uv ∈ E(G) : u ∈ S, v 6∈ S}|.
We let dis(S) denote the discrepancy of the cut induced by S, where dis(S) =
φ(S)− (|E(G)| − φ(S)) = 2φ(S)− |E(G)|. Note then the objective of the cordiality
game is dis(S) where S is the set of vertices labeled 0 or 1. Furthermore, we note
the parity of dis(S) is always the same as that of |E(G)|. A balanced partition of a
graph G is a partition of V (G) into two sets, say S1 and S2, such that ||S1|−|S2|| ≤ 1.

2. Paths

The problem of finding the exact value of cg(Pn) is surprisingly involved. We
begin with calculating the game cordiality number for small paths.

Lemma 2.1. We have the following:

i. cg(P3) = c′g(P3) = c∗g(P3) = 0,

ii. cg(P4) = c′g(P4) = c∗g(P4) = 1,
iii. cg(P5) = c′g(P5) = c∗g(P5) ≤ 2,

iv. cg(P6) = c′g(P6) = c∗g(P6) = 1.

Proof. Let Pn = v1v2 · · · vn and let S, S be a balanced bipartition of V (Pn).
In the case n = 3, dis(S) is always even. As |E(P3)| = 2, {v2}, {v1, v3} is the

only bipartition that achieves discrepancy greater than 0. Thus if Admirable plays
v2 first, this guarantees a bipartition of discrepancy zero. In the case Impish plays
first, Admirable just needs to avoid playing v2. Thus we may conclude cg(P3) =
c′g(P3) = c∗g(P3) = 0.

When n = 4, dis(S) is always odd. By observation, {v1, v3}, {v2, v4} is the only
balanced bipartition that achieves discrepancy greater than 1. Clearly if Admirable
has a strategy of playing once from each set, regardless of who starts, this guarantees
a resulting bipartition of discrepancy 1. Note as dis(S) ≥ 0 and odd, we may
conclude cg(P4) = c′g(P4) = c∗g(P4) = 1.

In the case n = 5, dis(S) is always even. As |E(P5)| = 4, the only balanced
bipartition that achieves discrepancy greater than 2 is {v1, v3, v5}, {v2, v4}. Again if
Admirable takes a strategy of playing once from each set, this is a strategy guaran-
teeing cg(P5) = c′g(P5) = c∗g(P5) ≤ 2.

We now work towards understanding our game variants on P6. By parity, dis(S)
is odd and dis(S) ≥ 1 for any balanced bipartition S,S. There are only two choices
for S that achieve discrepancy 5, namely {v1, v3, v5} and its complement {v2, v4, v6}.
We now observe the balanced bipartitions which achieve discrepancy 3. To do so, we
would either need exactly 1 or 4 edges crossing the cut induced by the bipartition.
The former case only occurs with S being {v1, v2, v3} or {v4, v5, v6}. The latter case
occurs only with S being {v2, v3, v5}, {v2, v4, v5}, {v1, v4, v6}, or {v1, v3, v6}. Note
then for Admirable to obtain discrepancy 1 in the cordiality game, there is in total
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8 “bad labelings” to avoid. We list them as follows.

{v1, v3, v5}, {v2, v4, v6}, {v1, v2, v3}, {v4, v5, v6},

{v2, v3, v5}, {v2, v4, v5}, {v1, v4, v6}, {v1, v3, v6}.

We now give a strategy for Admirable which guarantees a balanced cut of discrep-
ancy 1, i.e., cg(P6) = 1. We may assume Admirable plays on v1 first. Note then
there is only four bad labelings for Admirable to avoid now, {v1, v3, v5}, {v1, v2, v3},
{v1, v4, v6}, or {v1, v3, v6}. Note v3 is in three of these bad sets. As Admirable plays
first and |P6| is even, we may suppose Admirable never plays v3. Thus to avoid the
final bad set {v1, v4, v6}, on Admirable’s second move, we may assume Admirable
plays on either v2 or v5. This guarantees that Admirable labels a set S such that
dis(S) = 1.

We now give a strategy for Admirable in which Impish plays first. In the case
where Impish is also allowed to pass his turn to Admirable once, the analysis is
almost the same which we note at the end. By symmetry, we may suppose Impish
plays v1,v2 or v3.

If Impish plays on {v1, v3} on his first move, then Admirable plays {v1, v3} for
his first move as well. Note then the only bad labeling for Admirable to avoid now
is {v1, v4, v6} or {v2, v3, v5} depending on his first move choice. This can clearly
be achieved. If Impish plays v2, then Admirable plays v5. Note then the only bad
labelings to avoid are {v4, v5, v6} and {v1, v3, v5}. To avoid these, if Impish plays on
{v4, v6} on his second move, then Admirable plays on {v4, v6}. In a similar manner,
if Impish plays on {v1, v3} on his second move, then Admirable plays on {v1, v3}.
If Impish chooses to pass on his second turn, Admirable simply plays on {v1, v3}
on his second move and then {v4, v6} on his third move. Thus we may conclude
c′g(P6) = c∗g(P6) = 1.

�

We now prove an upper bound for all paths.

Theorem 2.2. For any integer n ≥ 3,

cg(Pn) ≤











n−3
3

n ≡ 0 (mod 3)
n−1
3

n ≡ 1 (mod 3)
n+1
3

n ≡ 2 (mod 3)

Proof. Let Pn = v1v2 · · · vn. We now proceed by induction on n. By Lemma
2.1, we may suppose that the theorem holds for all paths of order less than n > 6
and consider Pn. We describe a strategy for Admirable which, regardless of the
moves Impish makes, will produce the claimed upper bounds.

Let P be the subpath of Pn induced on v1, . . . , vn−6 and P ′ be the P6 subpath
of P induced by vn−5, . . . , vn. We will prove the inequality

cg(Pn) ≤



















2⌊n
6
⌋ − 1 n ≡ 0 (mod 6)

2⌊n
6
⌋ n ≡ 1, 3 (mod 6)

2⌊n
6
⌋+ 1 n ≡ 2, 4 (mod 6)

2⌊n
6
⌋+ 2 n ≡ 5 (mod 6)

which can be easily reduced to the claimed statement.

Suppose n is odd. Admirable begins by playing an optimal game on P . From
that point, Admirable follows Impish between P and P ′. If Impish plays on P ,
Admirable continues playing an optimal game on P . If Impish plays on P ′, then



THE CORDIALITY GAME AND THE GAME CORDIALITY NUMBER 5

Admirable follows with a next optimal move on P ′. This strategy results in an
Impish-starts game on P ′ and an Admirable-starts game on P . Recall by Lemma
2.1, c′g(P

′) = c′g(P6) = 1. We apply the induction hypothesis on P and consider
that the edge between P and P ′, vn−6vn−5, as an unknown label. Since n − 6
(mod 6) = n (mod 6), the values in the proposed upper bound of cg(Pn) follows by
adding 2 to the bounds for cg(Pn−6).

Next, we suppose that n is even. The strategy for Admirable is the same as
the previous case. Admirable begins by playing an optimal game on P . From that
point, Admirable follows Impish between P and P ′. If Impish plays on P , Admirable
continues playing an optimal game on P . If Impish plays on P ′, Admirable follows
with a next optimal move on P ′. Due to the parity of n in this case, this strategy
allows for several variants of the cordiality game. If Impish completes a game on P
before moving to P ′, then the game on P ′ becomes an Admirable-starts game. If
Impish plays P ′ before completing the game on P , then the game on P ′ becomes
an Impish-starts game. If Impish does not finish the game on P ′, returns to P , and
completes the game there, then Admirable must make the next move on P ′, which
is equivalent to playing an Impish-starts game on P ′ where Impish may pass once.
Regardless of Impish strategy, by Lemma 2.1, cg(P6) = c′g(P6) = c∗g(P6) = 1. Thus
by induction on P , and treating vn−6vn−5 as an unknown label, this produces the
claimed upper bounds for cg(Pn) as before. �

For a lower bound, our methods are ineffective, and so from some empirical
considerations (n ≤ 12), we ask the following speculative question.

Open question 1. Does cg(Pn) assume the values 0 and 1 for infinitely many

integers n?

3. Trees

In Theorem 2.2, if our input path Pn is long, i.e. n ≥ 6, we break the instance
into two smaller paths, Pn−6 and P6, and then induct with a strategy of Admirable
following Impish. There are challenges to extending this proof strategy to an arbi-
trary tree T . A subtree B of a tree T is a branch, if there exists a subtree T ′ of
T such that B ∪ T ′ = T and |V (T ′) ∩ V (B)| = 1. Ideally, we would like to find a
small branch of constant size to break the instance into two smaller trees. If we do
so naively, we no longer have control on what this branch looks like, in particular,
the branch may be of odd order. Using the strategy of Admirable following Impish,
Impish may play the odd ordered branch entirely with some vertices still unlabeled
in the remainder of the tree, which would lead to Admirable playing twice in-a-row
on the remainder of the tree. Thus, to avoid this potential difficulty in analysis,
we consider how to remove a branch that is small enough to label, yet also of even
order.

Theorem 3.1. For any tree T of order n,

cg(T ) ≤
1

2
n.

Proof. We proceed by induction on the order n. Note that the theorem holds
trivially for trees of order 1, 2, and 3, so we suppose the statement is true for all
trees of order less than n > 3 and consider a tree T of order n.

We describe Admirable’s strategies and calculate discrepancies for various pos-
sible branches of T . We will then show that our bound holds in every instance.
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Let B be a branch of T , let T ′ be a subtree of T such that B ∪ T ′ = T and
|V (T ′) ∩ V (B)| = 1, and let v be the vertex which is both in B and T ′. Finally, we
let S be the subgraph of T induced by the vertices of B − v.

Throughout the proof, we will assume Admirable begins playing an optimal
game on T ′, and then following Impish between T ′ and S depending on where
Impish plays. In the case Impish played on T ′, and T ′ has no remaining unlabeled
vertices, Admirable will begin playing on S if possible. We also will choose B such
that |S| is always even. We remark that as |T ′|+ |S| = |T |, we have

• If |T ′| is even, then the game on S is either an Admirable-start game or an
Impish-start game where Impish may pass up to one time during play.

• If |T ′| is odd, then the game on S is an Impish-start game.

Note in the case |T ′| is even, S is an Admirable-start game if and only if every vertex
of T ′ has been previously played.

Case 1. Branch B isomorphic to P5 with end-vertex v in T ′

If T contains a branch isomorphic to P5 = (v, v1, v2, v3, v4), where deg(vi) = 2
for i = 1, 2, 3 and deg(v4) = 1, in T , then we define T ′ = T − {v1, . . . , v4} and let
S be the subgraph of T induced by v1, v2, v3, v4. By Lemma 2.1, cg(P4) = c′g(P4) =

c∗g(P4) = 1, we can apply the induction hypothesis to T ′ and consider the edge
between T ′ and S as one with an unknown label, to produce the bound

cg(T ) ≤ cg(T
′) + 2 ≤

1

2
(n− 4) + 2 =

1

2
n.

Case 2. Branch B isomorphic to P3 with central vertex v in T ′.

v

v1

v2

Let the vertices of B be labeled as the above figure, and let S be the subgraph
induced by {v1, v2}. As Admirable plays first on T ′, and follows Impish between T ′

and S, playing on S first if and only if T ′ is completely labeled, the edges vv1 and
vv2 will always have different labels. Thus the claim follows by induction on T ′.

Case 3. Branch B isomorphic to P5 = {v1, v2, v, v3, v4} with vertex v in T ′.

v

v2 v1

v3 v4

Let B be labeled as the above figure and let S be the subgraph induced by
{v1, v2, v3, v4}. We now give strategies for Admirable on S that produces a discrep-
ancy of at most 2 for the edges induced by the branch B, regardless of the value of the
label on v. Note this occurs if both Admirable and Impish have played on {v2, v3}.
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To see this, vv2 and vv3 must have different signs. Thus we have discrepancy at
most 2 from edges v1v2 and v3v4.

We begin with the Admirable-start games. We may suppose Admirable plays
v2, and then plays on {v1, v4}. This guarantees both players played on {v2, v3}.

For an Impish-starts game, if Impish plays on {v2, v3}, then Admirable imme-
diately follows by playing on {v2, v3} as well. If Impish plays on {v1, v4}, then
Admirable again immediately follows by playing on {v1, v4} as well. Note this strat-
egy is robust against the case where Impish is also allowed to pass his turn.

Case 4. Branch B is illustrated below with vertex v in T ′.

v v1

v2 v3

v4

Let the vertices of B be labeled as in the figure, and let S be the subgraph
induced by {v1, v2, v3, v4}. We give a strategy for Admirable which produces a
discrepancy of at most 2 for the edges induced by B, regardless of the value of the
label on v. Note that v4v1v2v3 induces a path, thus it is sufficient to bound the
discrepancy of the edges v4v1, v1v2, v2v3 by one. This is true by Lemma 2.1.

Case 5. Branch B isomorphic to P5 = {v1, v, v2, v3, v4} with vertex v in T ′.

v

v1

v2 v3 v4

Let the vertices of B be labeled as the figure above, and let S be the subgraph
induced by {v1, v2, v3, v4}. As in the prior case, we give a strategy for Admirable
on S that produces a discrepancy of at most 2 for B, regardless of the value of the
label on v. Note this occurs if Admirable plays once on S1 = {v1, v2} and once on
S2 = {v3, v4}.

For Admirable-start games, we first play v1 and then Admirable on his second
move plays on {v3, v4}. When Impish plays first, if Impish plays on Si for i ∈ {1, 2},
then Admirable follows by playing on Si as well. In the case Impish is allowed to
pass and does so on his second move, Admirable plays in a way so that he plays on
both S1 and S2.

Case 6. Branch B isomorphic to P7 = {v1, v2, v3, v, v4, v5, v6} with vertex v in

T ′.

v

v1 v2 v3

v4 v5 v6
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Let the vertices of B be labeled as above and S be the subgraph induced by
{v1, v2, v3, v4, v5, v6}. Again, we give a strategy for Admirable on S that produces a
discrepancy of at most 2 for the branch B, regardless of label on v. To achieve this,
we describe the possible winning labelings for Admirable. In the first case, suppose
both Admirable and Impish play on {v1, v4}. Conditioned on this constraint, by
inspection, the sets inducing cuts of discrepancy at most 2 on S are the following,

{v1, v2, v5}, {v1, v2, v6}, {v1, v3, v6}, {v1, v5, v6},

{v2, v3, v4}, {v2, v4, v5}, {v3, v4, v5}, {v3, v4, v6}.

As the edges vv1 and vv4 must have different labelings, if Admirable labels one of
the above sets, this would be considered a winning labeling. Now consider the other
case, either only Admirable or Impish play on {v1, v4}. Under this assumption,
Admirable must guarantee the edges induced by S have discrepancy 0 under his
labeling. By inspection, the following are such labelings,

{v1, v2, v4}, {v1, v4, v5}, {v2, v3, v6}, {v3, v5, v6}.

Thus, in all cases, we will give a strategy for Admirable for playing on S that
guarantees one of the above twelve labelings.

We first handle Admirable-start games on S. Admirable beings by playing v1.
First suppose Impish does not play v6 on their first move. Then on Admirable’s
second move, he plays v6. For Admirable third move, he avoids playing v4. As
Admirable played first and |S| is even, this is always possible. The possible labelings
for Admirable are

{v1, v2, v6}, {v1, v3, v6}, {v1, v5, v6},

all of which are one of the possible twelve winning labelings. Now suppose Impish
plays v6 on his first move. On Admirable’s second move, they play v2. If Impish
does not play v4 on his second turn (or he passes), Admirable would then play v4,
Admirable would play v4, obtaining the set {v1, v2, v4}, a winning set. If Impish plays
on v4 on his second move, Admirable would then play v5, which would guarantee
the winning set {v1, v2, v5}.

We now consider Impish-start games. By symmetry, we may assume Impish
plays on {v1, v2, v3}. First suppose Impish plays v1. Admirable would then play v3.
If Impish does not play v4 (or passes) for his second move, Admirable plays v4 for
his second move. Regardless of Admirable’s third move, he would obtain one of the
following labelings,

{v2, v3, v4}, {v3, v4, v5}, {v3, v4, v6},

all of which are winning. So suppose Impish plays v4 on his second move. From
here Admirable would play v6 on his second move. Irrespective of Admirable’s third
move, he obtains one of the following winning labelings,

{v2, v3, v6}, {v3, v5, v6}.

Now suppose Impish plays v2 on his first move. Admirable would then follow by
playing v5. Regardless of how Impish plays (or passes), Admirable can guarantee
he labels exactly one vertex from {v1, v3} and exactly one vertex from {v4, v6}. The
possible labelings Admirable may obtain are

{v1, v4, v5} {v1, v5, v6} {v3, v4, v5} {v3, v5, v6},

all of which are winning.
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Now suppose Impish plays on v3 for his first move, Admirable would then follow
by playing v1. If Impish does not play v5 or passes on their second move, Admirable
plays v5. The possible final labels for Admirable in this case would be

{v1, v2, v5} {v1, v4, v5} {v1, v5, v6}

all of which are winning. If Impish plays v5 on this second move, Admirable would
then play v2. The possible final game states for Admirable are

{v1, v2, v6} {v1, v2, v4}

which are both winning.

Case 7. Branch B is illustrated below with vertex v in T ′.

v v1

v2 v3

v4 v5 v6

Let the vertices of B be labeled as pictured above and let S be the subgraph
induced by {v1, v2, v3, v4, v5, v6}. Note that S induces a subgraph isomorphic to P6.
By Lemma 2.1, the optimal discrepancy was shown to be 1 for P6, taking into the
account the edge between v and v1 in B produces a discrepancy of at most 2.

We now finish the proof by showing that T has a branch B as described as in the
prior seven cases. By Theorem 2.2, we may assume T has a vertex of degree at least
three. Let T ′ be the tree obtained from T by suppressing all degree two vertices and
let T ′′ be the tree obtained from T ′ by deleting all leaves of T ′. Let u ∈ V (T ′′) be a
leaf of T ′′. Note then dT ′(u) = dT (u) ≥ 3, as u ∈ V (T ′) and u was not a leaf of T ′.
Thus, u must be adjacent to at least two leaves in T ′, as dT ′′(u) ≤ 1. Furthermore,
if |V (T ′′)| = 1, we have that dT ′′(u) = 0 and u is adjacent to at least three leaves in
T ′.

We now observe u in T . Let Q1, . . . , Qk be the components of T − u which are
paths. If |V (T ′′)| = 0, then u is adjacent to at least three leaves in T ′, thus dT (u) =
k ≥ 3. Otherwise, |V (T ′′)| > 1, k ≥ 2, and by our choice of u, dT (u) = k + 1 ≥ 3.

First suppose there exists i such that |Qi| ≥ 4. Then there exists some v ∈
V (Qi) ∪ {u} such that v is the endpoint of a branch B isomorphic to P5. Thus
by Case 1, we may suppose |Qi| ≤ 3 for all i. By Cases 2, 3, and 6, for each
j ∈ {1, 2, 3}, there can be at most one i such that |Qi| = j. By Case 5, there cannot
be two distinct i, i′ such that |Qi| = 1 and |Qi′ | = 3. Note this implies k = 2, and
without loss of generality, |Q1| = 2 and either |Q2| = 1 or |Q2| = 3. Note this
implies dT (u) = 3 as well. Depending on the order of Q2, either Case 4 or Case 7 is
applicable, thus the claim follows.

�

We do not believe that the upper bound in Theorem 3.1 is sharp. In fact, we
posit that paths are the worst case for the cordiality game.

Conjecture 3.2. For any tree T of order n, cg(T ) ≤ cg(Pn).
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4. The Balance Game

While studying cordiality game strategies, it becomes evident that Admirable
cannot simply greedily label edges 0 or 1, as Impish can decide to “play into”
this strategy and further imbalance the edge labelings. As a curiosity, one may
wonder what happens if each player instead adopts a greedy objective of trying to
maximize the number of edges with a particular label. To consider this proposition,
we introduce a new game.

Let G be a graph with vertices V and edges E. The balance game is played
in a similar fashion as the cordiality game, but with a modified discrepancy d.
We remove the absolute value from our previous definition of d and define the
(signed) discrepancy of the balance game to be d = e1 − e0. The objectives of
Admirable and Impish are still to minimize and maximize d, respectively. However,
these objectives can now be interpreted as Admirable and Impish attempting to
maximize the number of 0s and 1s, respectively, in the labeling of E. We define the
game balance number, bg(G), to be the value of d when both players play optimally.
As in the cordiality game, this game too can be interpreted as an instance of a
Maker-Breaker game. For k ≥ 0, let Fk be the family of vertex sets S such that S
and V \S is a balanced partition of V and 2φ(S)− |E(G)| ≤ k. Again, Maker plays
the role of Admirable, and Breaker plays the role of Impish.

Notice that for any graph G, Admirable can choose to play according to the op-
timal cordiality game strategy on G. This will produce a balance game discrepancy
of ±cg(G), depending on whether 0s or 1s form a majority of the edge labels. Hence,
we have bg(G) ≤ cg(G). Our proof method for paths translates to the balance game
as the following theorem illustrates.

Theorem 4.1. For any integer n ≥ 2, bg(Pn) ≥ 0.

Proof. Let Pn = v1v2 · · · vn. Note the theorem follows if n = 2. We proceed
by induction on n ≥ 3. Let P be the subpath of Pn induced on v1, v2, . . . , vn−2 and
P ′ be the P2 subpath of P induced by vn−1, vn. We present a strategy for Impish
that, regardless of the moves Admirable makes, will produce the desired bound.

If Admirable plays on P , Impish continues by playing the optimal game on P . If
Admirable plays on P ′, then Impish plays the remaining vertex on P ′. If Admirable
finishes a game on P before moving to P ′, Impish plays vn. Regardless of the parity
of n, this results in an Admirable-starts game on P and the edge vn−1vn being
labeled 1. We apply the induction hypothesis on P and consider that the edge
between P and P ′, vn−2vn−1, has an unknown label, which produces the claimed
lower bound of 0. �

We are not aware of any graph that violates this lower bound. We leave as an
open question on whether there exists a graph G with an accompanied Admirable
strategy which produces a negative discrepancy.

Open question 2. For any graph G, does bg(G) ≥ 0?

As an aside, the balance game has an interesting physical interpretation through
the well-known Ising Model from statistical physics, e.g., see [12, Section 1.4.2] for
the relevant definitions. Two players assign spin states, one assinging “up”, the
other player “down”, to the remaining unassigned particles in alternating turns,
competing over the energy of the final configuration at game completion. Open
Question 2, reinterpreted, states: does the optimal strategy for the game keeps the
Hamiltonian of the model nonnegative (with the assumption of an external magnetic
field being absent)?
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The complexity of Maker-Breaker games is well-studied, see for example [5, 21,
23]. As the Maker-Breaker instances of the cordiality game and balance game have
a large amount of combinatorial structure on the associated set system, this leads
to the following natural question.

Open question 3. Are the corresponding Maker-Breaker games to the cordiality

and balance game PSPACE-complete?
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