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Abstract

We describe a novel algorithm that recovers the Hamiltonian and temperature of a quantum
state in thermal equilibrium using a restricted set of measurements. The algorithm works by
imposing a semidefinite constraint based on free energy minimization, which we interpret in
terms of thermodynamic stability. We benchmark the algorithm on the problem of learning a
nearest-neighbour Hamiltonian on a 100-qubit spin chain.

1 Introduction

A defining feature of the Gibbs state ρ = e−h/T / tr(e−h/T ) is that it minimizes the free energy:

ρ = argminF (1)

where F (σ) = −TS(σ)+tr(σh) and S is the von Neumann entropy. Conversely, given ρ, the condition
(1) uniquely specifies h, and this fact can in principle be used to recover the Hamiltonian of a Gibbs
state [1]. Thanks to the strict convexity of F , (1) is equivalent to the first-order condition

dF [δρ] ≥ 0 (2)

for any δρ in the tangent space at ρ. However, not only is computing the derivative of F difficult,
(2) also involves imposing a number of conditions that scales quadratically with the dimension of
the physical Hilbert space.

This work is based on a hierarchy of relaxations of the local minimality condition (2). These relax-
ations recently appeared in [2] and use a matrix version of the Araki-Sewell inequality [3]. For each
relaxation we give a classical algorithm that attempts to reconstruct the Hamiltonian H and the
temperature T from the expectation values of certain operators. Given a set of variational Hamil-
tonian terms h1, . . . hs, the algorithm either returns a candidate Hamiltonian h ∈ span(h1, . . . , hs)
and candidate temperature T , or returns a certificate that the state is not a Gibbs state of any
Hamiltonian in the span of h1, . . . , hs.

To analyze the algorithm, we introduce a condition which we call restricted thermodynamic stability
(RTS) that generalizes the Gibbs variational condition (2). Indeed, it is equivalent to (2) where δρ
is restricted to a certain conic region in the tangent space of ρ. Physically, the Gibbs variational
condition is related to stability of the state against perturbations. Correspondingly, we interpret the
RTS condition as stability with respect to a certain class of open system dynamics.

Although we prove correctness of the algorithm in the absence of measurement noise (Corollary
1), we do not give any bounds on sample complexity (number of copies of ρ needed for accurate
reconstruction) or classical computational complexity, leaving this to future work. Instead, we
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include numerical evidence that the algorithm achieves good reconstruction accuracy using modest
computational resources and in the presence of measurement noise.

Many other proposals for Hamiltonian reconstruction from Gibbs states [4, 5, 6, 7, 8, 9, 10] have
recently been advanced. Of these, [7, 8, 9, 10] include numerical tests. In comparison to these
approaches, algorithm described in the current work proves to be highly scalable while being robust
to noise. Some other advantages are its generality (the choice of variational Hamiltonian terms
h1, . . . , hs is unrestricted), ease of implementation, and the fact that it is physically motivated and
involves few hyperparameters.

We begin in Section 2 with a description of the algorithm and a guide to interpreting its output.
Section 3 concerns a theoretical analysis of the algorithm, including proof of correctness. In Section
4 we describe the results of numerical simulations on a 100-qubit spin chain. We conclude in Section
5 with some future directions for research.

The python implementation of the learning algorithm used in this work, as well as all routines used
for testing it, are available for use at

https://github.com/artymowicz/hamiltonian-learning

In the remainder of this section we establish some notation and recall some basic facts about Gibbs
states. Let H be the physical Hilbert space of a system, and assume that dimH < ∞. Write
A for the algebra of all linear operators on H. As a rule, we will use lowercase letters to denote
elements of A, ie. operators acting on the physical Hilbert space (this will be to differentiate them
from operators on the GNS Hilbert space which we introduce in later sections). We will denote the
adjoint of an operator a ∈ A by a∗.

A state on A is a linear map ω : A → C satisfying ω(1) = 1 and ω(a∗a) ≥ 0 for all a ∈ A. These are
in one-to-one correspondence with density matrices ρ via ω(a) = tr(ρa). A state ω is called faithful
if ω(a∗a) = 0 implies a = 0, or equivalently, if its density matrix is invertible. Given a selfadjoint
operator h ∈ A, we say h is a symmetry of ω if ω([h, a]) = 0 for all a ∈ A, or equivalently if [ρ, h] = 0.
Given a positive number T , the Gibbs state corresponding to h at temperature T is the state given
by the density matrix ρ = e−h/T / tr(e−h/T ). A Gibbs state is always faithful, and any self-adjoint
operator h is a symmetry of its own Gibbs state.

2 Description of the algorithm

We begin now with a description of the algorithm. Let ω be a faithful state of A. The algorithm
requires the following input:

1. A set of selfadjoint traceless operators h1, . . . , hs ∈ A,

2. A choice of linearly independent operators b1 . . . br ∈ A such that span(b1, . . . , br) = span(b∗1, . . . , b
∗
r),

3. All expectation values of the form ω(b∗i bj) for 1 ≤ i, j ≤ r and ω(b∗i [hα, bj ]) for 1 ≤ i, j ≤ r
and 1 ≤ α ≤ s.

The operators h1, . . . , hr will be the variational Hamiltonian terms. We call the operators b1 . . . br
the perturbing operators – physically, these determine the class of perturbations with respect to
which we will enforce stability (see section 3). A reasonable choice for spin systems is the set of all
geometrically k-local Pauli operators for some k > 0.

Step 1

The first step is to orthonormalize the bi in an appropriate sense. Let a1, . . . , ar ∈ span(b1, . . . , br)
satisfy ω(a∗i aj) = δij . Such a set can be found by diagonalizing the quadratic form ω(b∗i bj) (which
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is necessarily nondegenerate because ω is faithful).

Step 2

For each α = 1, . . . , s let Hα to be the r × r matrix

(Hα)ij := ω(a∗i [hα, aj ]), (3)

and define the s× s matrix

Wαβ := tr((H†
α −Hα)(Hβ −H†

β)). (4)

If W is invertible, then the algorithm terminates. Otherwise, let h̃1, . . . , h̃q be a basis for the kernel

of W , and let (H̃α)ij = ω(a∗i [h̃α, aj ]).

Step 3

Define the following r × r matrix:

∆ij := ω(aja
∗
i ), (5)

and solve the semidefinite optimization problem:

maximize
y∈Rq,T∈R≥0 µ∈R

µ (6)

subject to T log(∆) +

q∑
α=1

yαH̃α − µI ⪰ 0, (7)

q∑
α=1

yαω(h̃α) = −1. (8)

Here (7) is the matrix Araki-Sewell inequality (33) with a regularization parameter, and (8) is a
normalization that removes the multiplicative gauge of the Hamiltonian1.

Let y∗, µ∗, T ∗ be the optimal values of the semidefinite program. Then the algorithm outputs the
candidate Hamiltonian h∗ :=

∑
α y∗αh̃α, candidate temperature T ∗ and the parameter µ∗ which is

used in the interpretation of the ouput.

Interpretation

Below is a summary of the possible outputs of the algorithm and their interpretations.

1. In step 2, if W is invertible then ω is not a stationary state of any operator in the span of
h1, . . . , hs.

2. In step 3:

(a) If the optimization (6) terminates with µ∗ < 0 then ω is not a Gibbs state of any Hamil-
tonian in the span of h1, . . . , hs

2.

(b) Otherwise,
∑

y∗αh̃α and T ∗ are candidates for the Hamiltonian and temperature of the
state ω.

1A similar, but not equivalent, algorithm could be obtained by removing the normalization condition (8) and
setting T = 1.

2However, numerics suggest that if µ∗ < 0 but the magnitude of µ∗ is small, then ω is close to being a Gibbs state
of

∑
y∗αh̃α (see Section 4).
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3 Restricted thermodynamic stability

The theoretical justification of the algorithm will be based on two notions. The first is a relaxation
of the notion of a symmetry of a state. For a collection of operators b1, . . . , br ∈ A, we say a self-
adjoint operator h ∈ A is a quasi-symmetry of ω with respect to b1, . . . , br if ω([b∗b, h]) = 0 for all
b ∈ span{b1, . . . , br}. Any symmetry of ω is a quasi-symmetry.

The second notion is a relaxation of the notion of a Gibbs state. It is inspired by local thermodynamic
stability, which was introduced by Araki and Sewell in [3] and generalizes the usual notion of thermal
equilibrium. Namely, Araki and Sewell considered states in infinite volume for which any local
perturbation of the state increases the free energy. They showed that these states are characterized
by a correlation inequality which is alternatively known as the Araki-Sewell, Roestropff-Araki-Sewell,
or energy-entropy balance inequality. Below we introduce a variant of the local thermodynamic
stability condition (Definition 1), and prove that it implies a matrix version of the Araki-Sewell
inequality (Proposition 3). This matrix version of the Araki-Sewell inequality first appeared in [2],
although a similar inequality can be found in the 1985 article [11].

Let b1, . . . , br ∈ A be any collection of operators (not necessarily self-adjoint). Given an anti-
Hermitean matrix M and a positive semidefinite matrix Λ, the Lindbladian superoperator LM ,Λ :
A → A is a linear map defined as

LM ,Λ(a) :=
∑
ij

{
−1

2
M ij [b

∗
i bj , a] +Λij(b

∗
i abj −

1

2
(b∗i bja+ ab∗i bj))

}
, a ∈ A. (9)

It generates a time-evolution etLM,Λ : A → A which describes open dynamics of the system weakly
coupled to its environment[12, 13]. The matrics M ij and Λij describe the internal couplings and
couplitngs to the enviromnent, respectively. Given a self-adjoint h ∈ A and a temperature T > 0
the free energy of a state ω is

F (ω) = −TS(ω) + ω(h) (10)

where S(ω) is the von Neumann entropy (ie. − tr(ρ log ρ) of the corresponding density matrix).

Definition 1. Let ω be a faithful state and h a selfadjoint operator. We say the pair (ω,h) satisfies
restricted thermodynamic stability (RTS) at the temperature T > 0 with respect to the operators
b1, . . . , br if for any Lindbladian LM ,Λ of the form (9) we have

d

dt

∣∣∣∣
t=0

F (ωt) ≥ 0, (11)

where ωt = ω ◦ etLM,Λ .

We now give a characterization of the RTS condition in terms of the Gelfand-Naimark-Segal con-
struction (see Appendix A for an exposition). Let Hω be the GNS Hilbert space of ω, and πℓ and
πr the left- and right- representations of A on Hω. For any self-adjoint h ∈ A we write H for the
corresponding GNS Hamiltonian:

H := πℓ(h)− πr(h) ∈ B(Hω). (12)

Note that even though h is self-adjoint, H need not be. In fact one can check that H is self-adjoint
if and only if h is a symmetry of ω.

The first-order change in the expectation value of h under the Lindblad evolution (9) has a straight-
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forward expression in terms of the matrix elements of H. With ωt = ω ◦ etLM,Λ , we have

d

dt

∣∣∣∣
t=0

ωt(h) = ω(LM ,Λ(h)) (13)

=
1

2

∑
ij

M ijω(b
∗
i [h, bj ]− [b∗i , h]bj) +Λijω(b

∗
i [h, bj ] + [b∗i , h]bj) (14)

=
1

2

∑
ij

M ij⟨bi|H −H†|bj⟩+Λij⟨bi|H +H†|bj⟩. (15)

Let ∆ be the modular operator of ω. Analogously to (15) above, the matrix elements of log(∆) give
the first-order changes of the entropy of ω under Lindbladian evolution, as we now show. Using a
prime to indicate time-derivative at t = 0, we have

− tr(ρ log(ρ))′ = − tr(ρ′ log(ρ))− tr(ρ log(ρ)′). (16)

Using the power series of log about the identity operator and the cyclicity of the trace, the second
term can be seen to equal − tr(ρ′) = 0. The first term, meanwhile, equals

− tr(ρ′ log(ρ)) = − tr(ρLM ,Λ(log(ρ))) (17)

= −ω(LM ,Λ(log ρ)) (18)

= M ij⟨bi|
log(∆)− log(∆)†

2
|bj⟩+Λij⟨bi|

log(∆) + log(∆)†

2
|bj⟩, (19)

where in the last line we used (15) and the expression

log(∆) = πℓ(log(ρ))− πr(log(ρ)) (20)

from Appendix A. Since ρ and log(ρ) commute, log(∆) is Hermitean and the first term in (19)
vanishes, leaving us with

d

dt

∣∣∣∣
t=0

S(ωt) = −
∑
i,j

Λij⟨bi| log(∆)|bj⟩. (21)

Equations (15) and (21) allow us to characterize the RTS and quasi-symmetry conditions as fol-
lows:

Proposition 1. Let ω be a faithful state, h ∈ A a selfadjoint operator, and H given by (12). Let
b1, . . . , br ∈ A a collection of operators and write P : Hω → span(|b1⟩, . . . , |br⟩) for the orthogonal
projection.

i) h is a quasi-symmetry of ω with respect to the operators b1, . . . , br if and only if PHP † is
self-adjoint.

ii) The pair (ω, h) has RTS at temperature T > 0 with respect to the operators b1, . . . , br if and
only if

P (T log∆ +H)P † ≥ 0. (22)

Proof. i) PHP † is self-adjoint if and only if

0 = ⟨b|H −H†|b⟩ (23)

= ω(b∗[H, b])− ω([b∗, H]b) (24)

= 2ω([b∗b, h]) (25)
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for any b ∈ span{b1, . . . , br}.

ii) Suppose P (T log∆+H)P † ≥ 0. Since log ρ commutes with ρ, log∆ is hermitian, and so PHP †

hermitian too. It follows that for any anti-hermitian M and any positive-semidefinite Λ we have

d

dt

∣∣∣∣
t=0

F (ω ◦ etLM,Λ) =
∑
i,j

Λij⟨bi|T log(∆) +H|bj⟩ ≥ 0. (26)

Conversely, suppose ω satisfies RTS. Setting M = 0 in (9) gives

0 ≤ d

dt

∣∣∣∣
t=0

F (ω ◦ etLΛ) =
∑
i,j

Λij⟨bi|T log(∆) +H|bj⟩. (27)

Since this holds for any positive-semidefinite r × r matrix Λ, it follows that P (T log(∆) +H)P † ≥
0.

We can in short order deduce from Proposition 1 that the RTS condition depends only on the span
of |b1⟩, . . . , |br⟩, and that if (ω, h) satisfy RTS then h is necessarily a quasi-symmetry of ω. The next
Proposition relates the RTS condition to the Gibbs condition.

Proposition 2. Let b1, . . . , br ∈ A be a collection of operators, h ∈ A a selfadjoint operator, and
T > 0. If ω is the Gibbs state of h at temperature T , then the pair (ω, h) has RTS at temperature T
with respect to the operators b1, . . . , br. The converse holds if span(b1, . . . , br) = A.

Proof. If ω is the Gibbs state of h at temperature T then it is easy to check using the explicit
expression (20) that T log(∆) + H = 0, so thanks to part ii) of Proposition 1, ω automatically
satisfies RTS for any set of perturbing operators.

For the second statement, suppose that ω and h satisfy RTS with respect to b1, . . . , br and that
span(b1, . . . , br) = A. By part ii) of Proposition 1 we have T log∆+H ≥ 0. We will show that this
implies T log∆ +H = 0. Let J be the modular involution, which is defined as

J |a⟩ := |ρ1/2a∗ρ−1/2⟩. (28)

For any a ∈ A we have

⟨Ja|H|Ja⟩ = tr(ρ ρ−1/2aρ1/2[h, ρ1/2a∗ρ−1/2]) (29)

= tr(aρ1/2hρ1/2a∗)− tr(ρ1/2aρa∗ρ−1/2h) (30)

= −ω(a∗[h, a]) (31)

= −⟨a|H|a⟩, (32)

where in the third line we used the fact that [ρ, h] = 0. The same calculation with log(ρ) replacing h
shows that ⟨Ja| log(∆)|Ja⟩ = −⟨a| log(∆)|a⟩. It follows that for every eigenvalue λ of T log(∆)+H, -
λ is also an eigenvalue. Combined with the fact that T log∆+H ≥ 0, we conclude that T log∆+H =
0, as claimed. From this we see that log(ρ)−h/T is in the center of A, which means it is a multiple
of the identity, and so ρ = e−h/T / tr(e−h/T ).

Now we come to the matrix analog of the Araki-Sewell inequality.

Proposition 3. If (ω, h) satisfies RTS at T > 0 then

T log(∆) +H ≥ 0. (33)

The converse holds if span(|b1⟩, . . . , |br⟩) is invariant under the modular flow of ω.
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Proof. The matrix log(∆) is related to log(∆) by an operator version of Jensen’s inequality [14]:

log(∆) = log(P∆P †) ≥ P log(∆)P †, (34)

and so we have:

T log(∆) +H ≥ P (T log∆ +H)P †, (35)

which, thanks to Proposition 1, proves the first statement. For the second statement, span(|b1⟩, . . . , |br⟩)
is invariant under the modular flow of ω precisely when P commutes with ∆, in which case we have
equality in (35).

We conclude this section with a correctness result for the algorithm.

Corollary 1. Suppose ω is a Gibbs state of a Hamiltonian h =
∑s

α=1 yαhα at temperature T , and
let (h∗, T ∗, µ∗) be the output of the semidefinite program (6) with variational Hamiltonian terms
h1, . . . , hs.

i) (Feasibility) The triple (h, T, 0) is a feasible point of the program (6). In particular µ∗ ≥ 0.

ii) (Recoverability) Suppose b1, . . . , br span the entire algebra A. Then (h∗, T ∗, µ∗) = (h, T, 0).

Proof. i): by Proposition 2, ω satisfies RTS. The statement then follows from Proposition 3.

ii): if b1, . . . , br span A then any solution of the constraint (7) with µ ≥ 0 satisfies (33), which by
Propositions 2 and 3 implies that ω is the Gibbs state h∗ at temperature T ∗, and so (h, T ) = (h∗, T ∗)
and T log(∆) +H = 0. This last equality implies in turn that µ = 0.

Theoretical justification of algorithm

Now we make explicit the connection between the results proved in this section and the algorithm.
The operators a1, . . . , ar constructed in step 1 are chosen so that |a1⟩, . . . , |ar⟩ form an orthonormal
basis of span(|b1⟩, . . . , |br⟩), and we have

∆ij := ω(aja
∗
i ) = ⟨ai|∆|aj⟩ (36)

and

Hij := ω(a∗i [h, aj ]) = ⟨ai|H|aj⟩. (37)

for any selfadjoint h ∈ A. In other words we have ∆ = P∆P † and H = PHP †.

In step 2, the kernel of W computes the space of quasi-symmetries of ω that lie in the span of
h1, . . . , hα. Indeed, by Proposition 1 i), a self-adjoint h ∈ A is a quasi-symmetry if and only if
H is self-adjoint, and we have have W = F †F , where F : Rs → Matr×r(C) is the map taking
x 7→

∑s
α=1 xα(Hα −H†

α).

Correctness of step 3 is given by Corollary 1.

4 Numerical results

We now turn to the results of numerical simulations of the algorithm.
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Corrections to ideal algorithm

In the presence of noise in the expectation values of ω, it is inappropriate to use the exact kernel of
the matrix W constructed in step 2. Instead, a threshold ϵW > 0 was chosen as a hyperparameter,
and we let h̃1, . . . , h̃q be the eigenvectors of W with eigenvalue smaller than ϵW . Since the matrices

H̃α can no longer be assumed to be self-adjoint, we symmetrize their definition:

(H̃α)ij :=
ω(a∗i [h̃α, aj ]) + ω(a∗j [h̃α, ai])

2
. (38)

The proof of feasibility in Corollary 1 still holds, since for ϵW = 0 this reduces to the original
algorithm, while increasing ϵW (for a fixed ω) increases µ∗ (indeed, increasing ϵW only increses the
feasible region of the program (6)).

For sufficiently small values of σnoise, the spectrum of W was found to have a low-lying part with a
spectral gap to the rest of the eigenvalues. ϵW was set according to the formula

ϵW = 400max(σ2
noise

√
m, 10−11), (39)

where m denotes the number of terms a∗i [hα, aj ] such that [hα, aj ] ̸= 0. This formula was found
empirically to produce an ϵW lying in the spectral gap of W , and is not expected to be universal
across different values of n and choices of perturbing operators. We note that in practice, while
choosing ϵW to be too low caused the output to be inaccurate, choosing ϵW to lie above the gap did
not significantly affect the accuracy of the result.

Learning the XXZ Hamiltonian

The MPS purification technique [15] was used to prepare thermal states of the following anisotropic
Heisenberg ferromagnet:

h = −
n−1∑
i=1

(σx
i σ

x
i+1 + σy

i σ
y
i+1 +

1

2
σy
i σ

y
i+1). (40)

with n = 100. Both the set of perturbing operators b1, . . . , br and the set of variational Hamiltonian
terms h1, . . . , hs were chosen to be the 1192 geometrically 2-local Pauli operators. Measurement
error was simulated by adding Gaussian noise with variance σnoise to the expectation value of each
Pauli operator. The learning algorithm itself was implemented in Python, using the MOSEK solver
[16] for the semidefinite optimization3.

Hamiltonian recovery error was quantified using the overlap as in [19]: let y ∈ Rs be the vector
of recovered Hamiltonian coefficients and z ∈ Rs the vector of true Hamiltonian coefficients. The
Hamiltonian recovery error is then defined as the relative angle of the two, which for small angles
approximately equals the reciprocal of the signal-to-noise ratio:

θ = arccos

(
|⟨y|z⟩|
∥y∥∥z∥

)
≈ ∥y − z∥

∥z∥
. (41)

Note that this metric is not sensitive to the overall scaling of the Hamiltonian. This degree of freedom
of the Hamiltonian is fixed by the normalization (8) anyway and instead appears in the temperature
T . Interestingly, the algorithm reconstructed the “projective” degrees of freedom of the Hamiltonian
terms much more accurately than it did its overall scale (or equivalently, the temperature).

3The convex modeling language CVXPy [17] and the open source solver SCS [18] were used in prototyping but
not in the final code.
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Figure 1: Numerical results for the 100-qubit anisotropic Heisenberg model (40) at several tempera-
tures. Left: Recovery error θ as a function of noise amplitude σnoise, averaged over 10 runs. Dotted
line is (mean) + (standard deviation). Right: Ratio of recovered temperature to actual temperature,
averaged over 10 runs. Shaded region is (mean) ± (standard deviation).

The Hamiltonian recovery error θ and the recovered temperature T are plotted against σnoise in
Figure 1. A temperature-dependent noise threshold is found between σnoise ≈ 10−5 and σnoise ≈
10−3 above which the matrix ∆ ceases to be positive definite. The algorithm could possibly be
emended to work for higher noise values by projecting onto the orthocomplement of the nonpositive
eigenspace of ∆, but we leave this to future work.

As one shrinks the noise amplitude, the recovery error first decreases (for high temperatures, this
decrease is linear to a good approximation). This persists up until, at some temperature-dependent
critical value of the noise amplitude, the recovery error plateaus. We interpret this two-stage be-
haviour as follows. In the limit of zero measurement error, perfect recovery is not guaranteed because
the condition (33) is weaker than the Gibbs condition. Instead, (33) defines a convex set of candidate
Hamiltonians, and the algorithm picks one of these by maximizing the regularization parameter µ.
The recovery error is then on the order of the diameter of this convex set. Thus for low enough
levels of measurement noise the recovery error is roughly constant.

We posit that the only way to lower the levels of these plateaux is to enlarge the set of perturbing
operators, which tightens the constraint (33). This is relevant if one wants to prove asymptotic
bounds on the number of copies of the state and the computational resources needed to specify the
Hamiltonian up to an arbitrarily low error.

Note however that for the particular Hamiltonian under consideration, the plateaux start at noise
amplitudes σnoise of around 10−9 to 10−8. Assuming that expectation values are estimated from
independent copies of the state, this would require on the order of 1016 to 1018 samples, far beyond
what is experimentally feasible anyway. So for practical applications it may be more important to
understand the high-noise regime rather than the locations of the plateaux.

5 Discussion and outlook

Let us conclude by describing two directions for future research. While Corollary 1 establishes the
correctness of the algorithm, it suffers from two important limitations which must be overcome
if one is to prove sample complexity and computational complexity bounds. First, neither the
feasibility nor the recoverability statements of Corollary 1 take into account measurement noise in
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the expectation values of the state, which is unavoidable whenever these are estimated using finitely
many copies of the state.

Second, the recoverability statement only holds when the set of perturbing operators is grown to
a complete set of operators. The utility of this algorithm depends on approximate recoverability
when the set of perturbing operators is far smaller than a complete set. Section 4 gives numerical
evidence that this is indeed the case, but a proof is still lacking.

The second point above leads one to consider states that satisfy RTS for some Hamiltonian h, but
are not Gibbs states of h. The algorithm described here can never tell these apart from true Gibbs
states. Aside from their implications for the analysis of the algorithm, it is an interesting physical
question to rule out or characterize such “false Gibbs states”, which are thermodynamically stable
against some perturbations but not others.
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A The Gelfand-Naimark-Segal construction

In this appendix we give a brief introduction to Gelfand-Naimark-Segal (GNS) construction which
is central to the theoretical analysis in section 3. The GNS construction is a fundamental tool in
the theory of operator algebras and is well described in standard references [20, 21]. However, these
references work in the general setting of infinite-dimensional C∗-algebras, where the discussion is
plagued with analytic subtleties. We avoid these subtleties because we work in finite dimensions,
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so it is worthwhile to introduce the concepts we need in a streamlined and self-contained manner
here.

Let ω be a faithful state of A = B(H), and ρ ∈ A its density matrix. The bilinear form (a, b) 7→
ω(a∗b) endows A with the structure of a Hilbert space, which we call the GNS space and denote by
the symbol Hω (although A and Hω are isomorphic as vector spaces, it is important to maintain
their distinction as mathematical objects). For an operator a ∈ A we denote the corresponding
vector in the GNS space by |a⟩ ∈ Hω. The GNS space Hω carries two distinguished representations
of the algebra A. These are the left representation:

πℓ(a) : |b⟩ 7→ |ab⟩, (42)

and the right representation:

πr(a) : |b⟩ 7→ |ba∗⟩. (43)

Notice that these representations commute in the sense that πr(a)πℓ(b)|c⟩ = πℓ(b)πr(a)|c⟩ for all
a, b, c ∈ A. The modular operator ∆ is the complex-linear operator on Hω corresponding to the
sesquilinear form (a, b) 7→ ω(ba∗). That is, for any a, b ∈ A we have

⟨a|∆|b⟩ := ω(ba∗) (44)

= tr(ρba∗) (45)

= tr(ρa∗(ρbρ−1)) (46)

= ω(a∗(ρbρ−1)) (47)

= ⟨a|πℓ(ρ)πr(ρ
−1)|b⟩, (48)

and so ∆ can be expressed as

∆ = πℓ(ρ)πr(ρ
−1). (49)

The modular flow of ω is the one-parameter group of unitaries on Hω given by t 7→ ∆it. It is
generated (in the sense of the Stone’s theorem) by the selfadjoint operator log(∆), which can be
expressed as

log(∆) = πℓ(log(ρ))− πr(log(ρ)). (50)
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