
ar
X

iv
:2

40
3.

18
06

6v
1 

 [
ee

ss
.S

Y
] 

 2
6 

M
ar

 2
02

4

Path Integral Control with Rollout Clustering and Dynamic Obstacles

Steven Patrick1 and Efstathios Bakolas1

Abstract— Model Predictive Path Integral (MPPI) control has
proven to be a powerful tool for the control of uncertain systems
(such as systems subject to disturbances and systems with
unmodeled dynamics). One important limitation of the baseline
MPPI algorithm is that it does not utilize simulated trajectories
to their fullest extent. For one, it assumes that the average of all
trajectories weighted by their performance index will be a safe
trajectory. In this paper, multiple examples are shown where the
previous assumption does not hold, and a trajectory clustering
technique is presented that reduces the chances of the weighted
average crossing in an unsafe region. Secondly, MPPI does not
account for dynamic obstacles, so the authors put forward a
novel cost function that accounts for dynamic obstacles without
adding significant computation time to the overall algorithm.
The novel contributions proposed in this paper were evaluated
with extensive simulations to demonstrate improvements upon
the state-of-the-art MPPI techniques.

I. INTRODUCTION

For autonomous agents to be useful in unstructured en-

vironments, motion planning algorithms [1] must be used

to ensure avoidance of obstacles (both static and dynamic)

at all times. Additionally, the algorithms must be robust to

a variety of different disturbances introduced by the real

world: actuation noise, measurement error, process noise, and

unmodeled dynamics.

A class of trajectory optimization algorithms that has been

developed to address a subset of these sources of uncertainty

is Model Predictive Path Integral (MPPI) control [2]. The key

idea for MPPI control is to simulate multiple sequences of

control inputs over a given time horizon and initial condi-

tion to determine an optimal control sequence. With each

simulation, a realization from a random variable is used to

perturb the original input sequence. The resulting trajectory

is evaluated with a cost function, and then all of the results

from the independent simulations are combined to create a

control input sequence robust to the real-world disturbances.

The benefits of this algorithm are the speed of planning,

robustness to control noise, and versatility to different agent

dynamics [2]. MPPI has been applied to several robotics

problems, including racing on a dirt track [3], map-less

navigation [4], drone flights [5], and manipulation [6] to

name a few.

Literature Review: Several improvements upon the base-

line of MPPI have been proposed. One category of im-

provements change how the samples are generated. Instead

of using a handcrafted static distribution to sample from,

other works have used non-static distributions [7] or learned
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Fig. 1. Example of standard MPPI failing. Trajectories with low cost, and
therefore high value, are separated by a region with high cost trajectory.
The resulting weighted average used by MPPI is in the high cost, low
value, region.

distributions [8] to generate trajectories. Another improve-

ment is narrowing the search space of control inputs using

control barrier functions [9]. A major improvement from the

original MPPI is accounting for noise that does not enter the

system dynamics through the control input channels. In [10],

the authors account for process noise by having a nominal

system and a real system. This allows for a larger exploration

space of the MPPI algorithm, and it highlights how sampling

from distributions other than the standard Gaussian produces

better results. In [11], process noise was added to the simu-

lated trajectories and the likelihood of the state disturbance

was directly accounted for in the cost function. Even though

their system was shown to be more robust than other MPPI

variants, the number of trajectories to be simulated was

significantly greater. The increase in simulated trajectories

means the algorithm can only be applied to systems with a

GPU to plan in real-time.

Even with these improvements, there are still cases where

MPPI performs poorly. Figure 1 illustrates one such problem

where the standard weighted average scheme results in a

control input that is in a region of low value for the associated

cost function. Another disadvantage of using the baseline

MPPI method is it was developed for static environments.

When applied to dynamic environments, quick replanning is

used to account for moving obstacles. However, this type

of planning is likely to fail if the obstacles move quickly

or if the agent is close to the moving obstacle. Both cases

are likely to result in a collision since the agent is planning

under the false assumption that the world is static.

Contributions: To account for both of these issues, two

novel methods are proposed to augment MPPI (in fact,

the proposed improvements can be applied to any state-of-

the-art variant of MPPI). The first is based on clustering
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trajectories and using MPPI only on clusters of trajectories.

The second is sampling trajectories from moving obstacles

and incorporating their probability of occurring into the cost

of the trajectory. The approach in this paper would be similar

to [11] if they augmented the state of the system with

dynamic obstacles but with a key difference. In this paper,

the cost function is parameterized by simulated obstacle

trajectories which reduces the computational load to account

for dynamic obstacles.

Outline: In Section II, a brief review of the baseline MPPI

algorithm is made. After that, the proposed improvements

upon the baseline MPPI algorithm in Section III are de-

noted. Then, the improvements are demonstrated in multiple

environments through non-trivial simulations in Section IV.

Finally, in Section V the results are discussed and future

improvements upon the proposed algorithm are expressed.

II. BACKGROUND

A. Model Predictive Path Integral (MPPI)

Consider an agent whose equations of motion can be

described by the following discrete-time state space model:

xi+1 = f(xi,ui), (1)

where xi ∈ Rn is the current state at time step i and ui ∈ Rm

is the control input to be applied at the same time step.

MPPI uses Eq. (1) to simulate several possible trajectories

given a sequence of control inputs over a time horizon, N .

The variable U is used to denote a sequence of control inputs

U = {u0,u1, . . . ,uN−1} whose application results in a state

sequence, X = {x0, . . . ,xN}, for a given initial condition,

x0. In addition, τ = (X,U) denotes the combined state and

input sequences and is referred to as an agent’s trajectory.

In the real world, Eq. (1) is an inaccurate model due to

assuming the control inputs are applied without noise. MPPI

accounts for this by assuming the disturbance to desired

control input is effected by additive noise: vi = ui + ǫi

where ǫi is a random normal variable with positive definite

variance, Σ, and zero mean. The realization of this control

input is determined by the distribution, P, referred to as the

uncontrolled distribution, whose probability density function

(PDF) is given by

p(V ) =

N−1
∏

i=0

((2π)m|Σ|)−1/2 exp

(

−
1

2
v
T
i Σ

−1
vi

)

(2)

where V = {v0,v1, · · · ,vN−1}. (3)

As seen in Eq. (2), the mean is zero because no control input

has been applied to the system, which is the reason why the

distribution P is referred to as the uncontrolled distribution.

By contrast, the controlled distribution, which is denoted as

Q, has the noiseless control input as its mean. The PDF of

Q is therefore given by

q(V ) =

N−1
∏

i=0

((2π)m|Σ|)−1/2

exp

(

−
1

2
(vi − ui)

TΣ−1(vi − ui)

)

. (4)

To determine the optimal control input given these potential

disturbances, MPPI minimizes the expectation of a cost

function over P. In particular,

U∗ = argmin
U

EP (J(V )) (5)

J(V ) = φ(xN ) +

N−1
∑

i=0

ψ(xi,vi)

= φ(xN ) +

N−1
∑

i=0

ψ(xi,ui + ǫi) (6)

where φ is the terminal cost function, and ψ is the running

cost function. In [12], it was shown that solving the stochastic

optimal control problem given in (5) is equivalent to finding

the minimum KL-Divergence between the controlled and un-

controlled distributions. The relationship was used to derive

a new distribution, Q∗, for importance sampling defined by

the following PDF:

q∗(V ) =
1

η
exp

(

−
1

λ
J(V )

)

p(V ), (7)

where η > 0 is a normalizing constant such that the integral

of the PDF, q∗(V ), over the sample space is 1. The sensitivity

parameter, λ > 0, allows the user to set how important

differences in cost between two trajectories are. A large λ
results in low sensitivity to cost differences and small λ
produce high sensitivity.

This new distribution allows for the control input to be

defined as

ui =

∫

q∗(V )vidV (8)

With Eq. (8), importance sampling is used to optimize the

number of samples needed to get a reliable approximation

of the optimal control input. To accomplish this, Eq. (8)

is multiplied by PDFs that are strictly positive whenever

q∗(V )vi 6= 0. Clearly, Eq. (2) and (4) both satisfy this

condition and using them for importance sampling results

in the following

u
∗

i =

∫

q∗(V )

p(V )

p(V )

q(V )
q(V )vidV. (9)

The next step is to define the so-called weighting function,

which is denoted as w(V ) and defined as

w(V ) =
q∗(V )

p(V )

p(V )

q(V )
. (10)

Substituting in the weighting function into Eq. (9) results in

the new optimal control input calculated by

u
∗

i = EQ[w(V )vi]. (11)

The ratios q∗(V )/p(V ) and p(V )/q(V ) used to define w(V )
in Eq. (10) are known and given by

q∗(V )

p(V )
=

1

η
exp

(

−
1

λ
J(V )

)

(12)

p(V )

q(V )
= exp

(

N−1
∑

i=0

1

2
u
T
i Σ

−1
ui − v

T
i Σ

−1
vi

)

. (13)



Substituting Eq. (12) and (13) into Eq. (10) results in

Q(V ) =

N−1
∑

i=0

1

2
u
(k)T
i Σ−1

u
(k)
i − v

(k)T
i Σ−1

v
(k)
i (14)

w(V ) =
1

η
exp

(

−
1

λ
J(V ) +Q(V )

)

. (15)

In Eq. (15), η is the only remaining unknown. However, it is

is computationally intractable to determine the normalizing

constant for the PDF in Eq. (7). Instead, a Monte-Carlo

approach [9] is used wherein K realizations of control

disturbances are sampled.

η ≈
K
∑

k=1

exp

(

−
1

λ
J(Vk) +Q(Vk)

)

. (16)

The k-th sample, Ek, is used to generate a sequence of noisy

control inputs Vk from a noiseless control reference Uk:

Ek = {ǫ
(k)
0 , · · · , ǫ

(k)
N−1} (17)

Uk = {u
(k)
0 , · · · ,u

(k)
N−1} (18)

Vk = Uk + Ek. (19)

In theory, Uk, can be sampled arbitrarily from the allowed

bounds of the control inputs. In practice, it is more efficient

to use a single reference control input U0 and weight the

perturbations with the following equations

R(Ek) =
N
∑

i=0

1

2
u
(0)T
i Σ−1(u

(0)
i + 2ǫ

(k)
i ) (20)

w(Ek) =
1

η
exp

(

−
1

λ
J(U0 + Ek)−R(Ek)

)

(21)

η =
K
∑

k=1

exp

(

−
1

λ
J(U0 + Ek)−R(Ek)

)

(22)

u∗i = u
(0)
i +

K
∑

k=1

w(Ek)ǫ
(k)
i (23)

It can be seen that Eq. (14)-(16) is equivalent to Eq. (20)-

(22 when all Uk are equal. The use of Eq. (23) to determine

the final control input sequence can be seen in Algorithm

1. In this algorithm, there is an extra variable ρ not seen

in Eq. (20)-(23). The purpose of this variable is to render

the algorithm more stable by preventing rounding errors in

calculating the exponent of large negative numbers [10].

Algorithm 1 MPPI Control Algorithm

Require: U0, {E1, · · · , EK}, {S1, · · · , SK}, λ ⊲ Reference

Input, Perturbations, Cost of Trajectories, Sensitivity

1: ρ← min(S1, · · · , Sk)
2: η ←

∑K
k=1 exp

(

− 1
λ(Sk − ρ)

)

3: for k ← 1 to K do

4: wk = 1
η exp

(

− 1
λ(Sk − ρ)

)

5: end for

6: U ← U0 +
∑K

k=1 wkEk

III. METHODOLOGY

A. Rollout Clustering

As mentioned in Section I, MPPI can perform poorly when

the value function has multiple local maxima. To address this

limitation of MPPI, clustering rollouts into groups that do not

contain sharp discontinuities in the cost function is proposed.

The authors’ chosen clustering algorithm is a density-based

method [13] called DBSCAN [14]. The algorithm is a natural

choice for this problem because perturbations that are close

together and produce similar costs will be clustered together,

but sharp changes in the cost will cause a new cluster bound-

ary to form. Clustering in this manner prevents undesirable

valleys separating high-points of the value function from

affecting the expected value computation. Since the agent

does not know the number of valleys or high points along

the value function, this method was also chosen because it

allows for a dynamic number of clusters unlike K-means

[15].

DBSCAN works by sequentially building clusters as the

data comes in. For a new data point, all previous clusters are

checked against a ball of radius ǫ centered at the new data

point. If there are any intersections, the point is either added

to an existing cluster, or multiple clusters are merged that

intersect with the ball. If no intersections are formed, then

the data-point is its own cluster. This process is repeated until

all the data points have been processed. The data point, dk,

for the k-th rollout are the perturbations from the control

input, E , and their associated trajectory cost, J(V ), from

Eq. (6): dk = {ǫ
(k)
N−1, · · · , ǫ

(k)
0 , J(Vk)}. With the clustered

data-points, a new distribution can be chosen to derive the

importance sampling weights. This distribution should have

a high probability for trajectories within a cluster but a low

probability for trajectories outside of the cluster. However,

this distribution has to satisfy two properties to be a valid

distribution for importance sampling. The first being it has

to have a valid probability density function. The second is

that the probability density function must be strictly positive

where the original PDF is non-zero.

To satisfy the two conditions and get the desired attributes,

a truncated Gaussian is used as a distribution for importance

sampling. The Gaussian from Eq. (7) is truncated such that

all noise realizations within a cluster evaluate to non-zero

values much greater than realizations outside of the cluster.

The resulting PDF is defined as

y(V ) =

{

υ exp
(

− 1
λJ(V )

)

p(V ), V ∈ Ω

σ exp
(

− 1
λJ(V )

)

p(V ), V ∈ Ωc
(24)

where Ω is a simply connected compact region that encom-

passes all of the samples of a given cluster, and Ωc is its

complement. Additionally, υ ≫ σ > 0 are normalizing

constants for y(V ) to be a valid probability density function.

Proposition 1

The truncated normal distribution, y(V ), is a valid impor-

tance sampling distribution.

Proof: Found in Appendix.
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Fig. 2. Example of standard MPPI (left) producing an undesirable result and Clustered MPPI (right) producing multiple valid solutions. The blue solid
line is the cost function, the X marks are sampled points, and the filled in stars are the result of the weighted average.

Remark 1: It can be seen that the weighting function

for the truncated Gaussian distribution can be calculated

using the weights from the original Gaussian distribution.

Therefore, no additional evaluations of the cost function

or extra simulations are required to find the importance

sampling weights of a subset of trajectories. It is therefore

unnecessary to calculate these parameters as well. Note

that the clustered MPPI approach adds little computational

burden to the baseline MPPI algorithm.

Remark 2: Just like in the original MPPI, the normalizing

constant, υ must be estimated with Monte-Carlo methods

similar to Eq. (16). This is done using the following equation

η ≈
∑

Vk∈Ω

exp

(

−
1

λ
J(Vk) +Q(Vk)

)

(25)

The other normalizing constant, σ, is not estimated since it

is chosen to be arbitrarily close to 0.

Algorithm 2 Clustered MPPI

Require: f,Σ ⊲ Difference Equation, Noise Covariance

Require: x0, U0 ⊲ Initial Condition, Control Reference

Require: K,N ⊲ # of Samples, # of Time Steps

Require: λ ⊲ Cost Sensitivity

Require: ψ, φ ⊲ Running Cost, Terminal Cost

1: for k ← 1 to K do ⊲ In Parallel

2: x̃
(k)
0 ← x0

3: for i← 0 to N − 1 do

4: ǫ
(k)
i ← sample N (0,Σ)

5: x̃
(k)
i+1 ← f(x̃i,ui + ǫ

(k)
i )

6: Sk += ψ(x̃
(k)
i ) + λuT

i Σ
−1

ǫ
(k)
i

7: end for

8: Sk += φ(x̃
(k)
N )

9: Xk, Ek ← {x̃
(k)
0 , · · · , x̃

(k)
N }, {ǫ

(k)
0 , · · · , ǫ

(k)
N−1}

10: end for

11: C1, · · · , CM ← dbscan({E0, S0}, · · · , {EK , SK})
12: for m← 1 to M do

13: U (m) ← MPPI(U0, EC(m), SC(m), λ) ⊲ Alg. 1

14: end for

15: U ← argminU(m) J(U (m)) ⊲ Eq. (6)

The pseudo-code for Clustered MPPI is given in Algo-

rithm 2. Starting in Line 1, the for loop simulates trajectories

by sampling perturbations to the reference control input and

then storing the cost, trajectory, and associated noise. After

the for loop in Line 11, the trajectory cost is concatenated

with its associated noise vector and the DBSCAN algorithm

is performed over the K data points. The result is an index

set, C, defining M clusters from the original samples. The

for loop in Line 14 calculates the new control input for each

cluster using Algorithm 1. Finally, in Line 15, the cluster

which produces the minimum cost using Eq. (6) is selected

as the control input.

An illustrative example of the difference in output between

the standard MPPI algorithm versus a clustered approach can

be seen in Figure 2. The y-axis is the value, also known as

the negative exponential of the cost J(V ), and the x-axis

is a deviation from a reference input. Troughs in the value

function can be encountered when the reference trajectory

has the agent going straight through an obstacle. In this

example, standard MPPI fails because the weighted average

between two high areas lies within the valley. In contrast,

Clustered MPPI separates these two high areas and the low

area into separate clusters and performs the weighted average

only including the points in the cluster. This produces two

valid selections of control input and one invalid.

B. Dynamic Obstacles

To account for dynamic obstacles, terminal and running

cost functions that are parameterized by realizations of

obstacle trajectories are proposed. This is in contrast to

methods like [11] where each control input deviation has an

independent sampling of obstacle trajectories. This leads to

a multiplicative increase in computation time for N pertur-

bations to the control input and P realizations of obstacle

trajectories: O(PN). The proposed approach is additive

where the P realizations are only done once which results

in an additive increase in computation time: O(P +N).

To reiterate, the l-th obstacle has P simulated trajectories

collected in the set Ol. The p-th trajectory of the l-th
obstacle, τ lp, consists of the obstacles state over the time



horizon.

τ lp = {ol,p
0 , · · · ,ol,p

N } (26)

Ol = {τ
l
1, · · · , τ

l
P } (27)

The collection of L dynamic obstacles trajectories,O, is used

to create a subset of the configuration space at each time step

where the controlled agent is considered in collision.

O = {O1, · · · ,OL} (28)

If a collision occurs between the controlled agent and the

p-th trajectory of the l-the obstacle, then the binary function

1
l
p equals 1 and 0 otherwise. The associated trajectory also

has a function, θ, that outputs the probability of the trajectory

occurring. For example, this probability can be derived from

Extended Kalman Filter estimate of the obstacle’s position

and heading of a differential drive robot. The new running

and terminal cost functions are defined as

ψ(xi|O) := ψ(xi) + β

L
∑

l=1

P
∑

p=1

θ(τ lp)1
l
p(xi, ti) (29)

φ(xi|O) := φ(xi) + β

L
∑

l=1

P
∑

p=1

θ(τ lp)1
l
p(xi, ti) (30)

In Eq. (29) and (30), β ∈ R+ is a scalar weight asso-

ciated with hitting an obstacle. With this formulation, the

cost function J(V ) only depends on the agent’s state after

the obstacles’ trajectories have been sampled. This has the

aforementioned benefit of reducing the computational cost

of accounting for dynamic obstacles over other state-of-

the-art methods. The combination of clustered MPPI with

simulating dynamic obstacles can be seen in Algorithm 3.

Algorithm 3 DC-MPPI

Require: f,Σ,x0, U0,K,N, λ ⊲ Alg. 2 Parameters

Require: {o
(1)
0 , · · · ,o

(L)
0 } ⊲ obstacles initial states

Require: {U
(1)
o , · · · , U

(L)
o } ⊲ obstacle reference inputs

Require: g,Σo ⊲ obstacle difference equation, obstacle

input variance

1: for l ← 1 to L do

2: for p← 1 to P do

3: {ul,p
0 , · · · ,ul,p

N−1} ← U
(l)
o

4: o
l,p
0 ← o

(l)
0

5: for i← 0 to N − 1 do

6: ǫ← sample N (0,Σo)
7: o

l,p
i+1 ← g(ol,p

i ,ul,p
i + ǫ)

8: end for

9: τ lp ← {o
l,p
0 , · · · ,ol,p

N }
10: end for

11: Ol ← {τ l1, · · · , τ
l
P }

12: end for

13: φ← φ({O1, · · · ,OL}) ⊲ Eq. (29)

14: ψ ← ψ({O1, · · · ,OL}) ⊲ Eq. (30)

15: U ← Clust. MPPI(f,Σ,x0, U0,K,N, λ, φ, ψ) ⊲ Alg. 2

For clarity and compactness, the DC-MPPI pseudo-code is

only written for one dynamic obstacle. The for loop starting

in Line 1 simulates how a dynamic obstacle move over time.

Lines 13 and 14 create a terminal and running cost function

respectively based on the trajectories of the obstacles that

were simulated. The resulting terminal and running cost

function only rely on the agent’s state. Finally, Line 14 sends

all of the necessary data to Algorithm 2 to calculate the final

control input.

The improvements of both clustering the trajectories and

accounting for dynamic obstacles can be seen in Figure 4.

The reference control input is for the agent to go straight

forward at 1 m/s. The deviation from the control input is only

in the heading. The dynamic obstacle is directly between the

agent and the goal causing a valley in the value function as

seen in all of the bottom plots of Figure 4. Only the baseline

MPPI algorithm chooses a control input within this trough

since it does not cluster. The other algorithms are able to

choose control inputs that produce safe trajectories if the

obstacle was stationary. However, the obstacle is dynamic.

Therefore, the region of bad trajectories expands in the DC-

MPPI algorithm, but not for the Clustered algorithm. This

results in the DC-MPPI algorithm getting out of the way

of the obstacle rather than going towards the goal like the

clustered algorithm and the baseline.

IV. EXPERIMENTS

All simulations were performed in MATLAB 2022b on

a laptop with Intel i7 processor and 32GB of RAM. MAT-

LAB’s implementation of DBSCAN was used for clustering.

Furthermore, MATLAB’s ode45 was used to rollout trajec-

tories.

A. Static Obstacles

For the first experiment, an agent with Dubins car dynam-

ics is maneuvering in a 2D plane and avoiding randomly

placed obstacles. The state of the agent is its position,

(x, y),and its direction of motion, θ. The dynamics of the

system are given by





ẋ
ẏ

θ̇



 =





v cos(θ)
v sin(θ)

0



+





0
0
1



ω. (31)

The linear velocity, v, is constant and positive, and the agent

only has control over the angular velocity, ω. When choosing

ω, the agent must always satisfy 0 < Rmin ≤ v/ω where

Rmin is the minimum turning radius.

The running cost and terminal cost are equal to the

distance of, respectively, the current position and terminal

position of the system from the goal position (xg , yg) along

with a penalty cost for being in collision with a static cost

map: 1(x). The collision cost is weighted by the hyper-

parameter α > 0.

φ(x) = ψ(x) =
√

(x− xg)2 + (y − yg)2 + α1(x) (32)
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Fig. 3. Random forest environment example. The agent is the magenta
dot, the goal is the green star, and the obstacles are light and dark red.

The proposed method was tested along with the standard

MPPI formulation and another state-of-the-art method [10]

using the authors’ own implementation of each algorithm.

The start and goal positions were randomly generated for

locations that were not in collision of any static obstacles

within a randomly generated environment. The obstacles

are static and non-uniform in shape, and an example can

be seen in Figure 3. The first iteration of MPPI is warm-

started with a straightforward initial guess, but all subsequent

MPPI calculations are initialized with the previous iteration’s

solution. 500 trajectories are simulated and the perturbation

from the control reference is kept constant for the entire

trajectory. The hyper-parameters were set λ = 1, α = 1, 000,

Σ = 0.1. Lastly, the algorithms were tested with 3 different

noise profiles: noiseless, input noise, process and input noise.

The algorithms were evaluated in 1000 different randomly

generated environments and report the number of collision

occurred, percentage failure which includes crashing and not

reaching the goal in a timely manner. The authors define

a timely manner as being less than the triple the time it

would take the agent to go around the entire map without

any obstacles. The results can be seen in Table I. For the

static trials, DC-MPPI was not included since it produces the

same output as Clustered MPPI when there are no moving

obstacles. It can be seen that the proposed method reduces

the number of collisions and number of failures for all noise

configurations while adding minimal computation time.

B. Dynamic Obstacles

For the dynamic environment, the agent has the same

dynamics as the previous experiment. The state of the

agent is its position (x, y) and heading θ and respective

velocities: vx, vy, vθ . The control inputs are ux, uy, uθ. The

environment was populated with 100 dynamic obstacles.

These dynamic obstacles have Dubins car dynamics from Eq.

(31) and they all have a 1 meter collision radius. The starting

locations of the obstacles are uniformly distributed over

[0, 75]× [0, 50]m2 space and the orientations are uniformly

distributed over [0, 2π) rad. The linear and angular velocities

are similarly distributed with v ∈ [0.5, 1.5] m/s and ω ∈

Test Algorithm # Collisions % Failure Avg.
Time (ms) Comp.

No Noise
Baseline 11 1.2 190

Tube-MPPI [10] 9 1.2 364
Clustered 6 0.9 193

Control Noise
Baseline 59 6.0 195

Tube-MPPI [10] 44 4.5 376
Clustered 26 2.9 199

Control and
Baseline 48 4.9 355

Tube-MPPI [10] 49 5.0 376
Process Noise Clustered 37 3.9 360

TABLE I

QUANTITATIVE PERFORMANCE OVER 1000 RUNS.

[−0.5, 0.5] rad/s. The obstacles’ velocities are not explicitly

known to the agent, but a Gaussian distribution is known of

the potential linear and angular velocities of the obstacles is

known. This distribution is used to sample potential obstacle

trajectories as seen in Figure 4. The first time step of

the environment can be seen in Figure 5. Additionally, an

example of how trajectories are sampled for the agent and

obstacles and the samples effect on the value function of the

separate algorithms can be seen in Figure 4.

The same hyper-parameters were used in this experi-

ment as the previous one. For DC-MPPI, 25 samples of

each obstacle were used and β = 10. Using the baseline

MPPI algorithm resulted in 3 instances of obstacle collisions

whereas DC-MPPI had no collisions. Without the dynamic

obstacle sampling, the Clustered algorithm performed better

than MPPI with 2 collisions. It can be seen in the video1

that both the baseline and Clustered MPPI algorithms collide

with moving obstacles when an obstacle passes through the

reference path. It should also be noted that Clustered MPPI

has marginal impact on the computational time required with

an average 288 milliseconds per time step for Clustered

MPPI compared to 283 milliseconds per time step for the

baseline algorithm. This is in contrast to DC-MPPI which

averaged 454 milliseconds. The increase in computation time

is clearly worth the decrease in collisions. Additionally,

the a-priori knowledge of the obstacles velocities does not

diminish the applicability of this paper’s novel algorithm to

the real world. When applied to a real system, a simple

Extended Kalman Filter [16] would be sufficient to generate

a distribution to sample obstacle trajectories from.

V. CONCLUSION

In this paper, two improvements upon MPPI were pre-

sented. The first of which is clustering trajectories so that the

resulting control input sequence is prevented from producing

unsafe trajectories. This improvement is specifically meant

to separate clusters of good trajectories thereby preventing

an unsafe average between neighboring clusterings. It was

shown that the clustering step adds little computation time

to the MPPI algorithm, and demonstrated clear cases where

the baseline fails. The efficacy of DC-MPPI depends greatly

1Video link: https://youtu.be/G68DbQO1ouM

https://youtu.be/G68DbQO1ouM
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0 10 20 30 40 50 60 70

X (m)

0

10

20

30

40

50

Y
 (

m
)

Fig. 5. Dynamic environment example. Agent is magenta circle, obstacles
are red, green and blue circles with their direction of motion indicated by
black arrows. The goal is the green star. The yellow and cyan lines are the
first iteration of DC-MPPI with the yellow being the reference input and
the cyan being the result.

on the hyper-parameter selection for DBSCAN. For high-

dimensional control input spaces, holes can appear in the

middle of a cluster. Therefore, hyper-parameters should be

selected where clusters stay relatively small (< 20% of the

trajectories) to prevent this from happening.

The second is creating a cost function that accounts for

dynamic obstacles. Adding dynamic obstacles allows for

MPPI to prevent collisions where fast replanning is not

sufficient. In the experiments, it was shown that the proposed

improvements reduced the number of collisions with a slight

increase in the overall computation time. With a GPU

speedup, this additional time would significantly reduce.

Importantly, the proposed improvements can be added to

the majority of MPPI variants like [11] without much re-

tooling. As seen in Algorithms 2 and 3, the novel algorithms

can be considered a pre-processing step to the original MPPI

algorithm.

APPENDIX

Proof: Let one consider the distribution Y whose

probability density function is given by Eq. (24). For y(v)
to be a valid PDF, the following must be true

1 = υ

∫

Ω

exp

(

−
1

λ
J(V )

)

p(V )dΩ

+ σ

∫

Ωc

exp

(

−
1

λ
J(V )

)

p(V )dΩc. (33)

Because of the constraint in Eq. (33) on υ and σ, the

variables are dependent upon one another. A new importance

sampling scheme using y(V ) can be made through the

following,

u
∗

i =

∫

y(V )q(V )vidV

=

∫

y(V )

p(V )

p(V )

q(V )
q(V )vidV

=υ

∫

Ω

exp
(

− 1
λJ(V )p(V )

)

p(V )

p(V )

q(V )
q(V )vidΩ

+ σ

∫

Ωc

exp
(

− 1
λJ(V )p(V )

)

p(V )

p(V )

q(V )
q(V )vidΩ

c

=υ

∫

Ω

exp

(

−
1

λ
J(V )

)

p(V )

q(V )
q(V )vidΩ

+ σ

∫

Ωc

exp

(

−
1

λ
J(V )

)

p(V )

q(V )
q(V )vidΩ

c (34)



The ratio p(V )/q(V ) was defined in Eq. (13). Therefore, a

new weighting function w∗(V ) is used and defined as

w∗(V ) =

{

υw(V ), V ∈ Ω

σw(V ), V ∈ Ωc
(35)

w(V ) =
1

ρ
exp

(

−
1

λ
J(V ) +Q(V )

)

(36)

ρ =υ

∫

Ω

exp

(

−
1

λ
J(V ) +Q(V )

)

dΩ

+ σ

∫

Ωc

exp

(

−
1

λ
J(V ) +Q(V )

)

dΩc (37)

Q(V ) =

N−1
∑

i=0

1

2
u
(k)T
i Σ−1

u
(k)
i − v

(k)T
i Σ−1

v
(k)
i . (38)

As previously mentioned, there is only 1 degree of freedom

for the variables υ and σ. Thus the limit can be taken with

respect to σ approaching 0. Taking this limit with Eq. (34)

results in

lim
σ→0

(u∗

i ) = υ

∫

Ω

w(V )q(V )vidΩ (39)

To ensure y(V ) is still a valid PDF, Eq. (33) must still hold

resulting in

1

υ
=

∫

Ω

exp

(

−
1

λ
J(V )

)

p(V )dΩ

+
limσ→0(σ)

υ

∫

Ωc

exp

(

−
1

λ
J(V )

)

p(V )dΩc

=

∫

Ω

exp

(

−
1

λ
J(V )

)

p(V )dΩ. (40)

ρ =υ

∫

Ω

exp

(

−
1

λ
J(V ) +Q(V )

)

dΩ (41)

With the normalizing constants derived, the final weighting

for importance sampling within Ω becomes

w∗(V ) =
1

η
exp

(

−
1

λ
J(V ) +Q(V )

)

(42)

η =

∫

Ω

w∗(V )dΩ (43)

and 0 otherwise. Thus it has been shown that y(V ) has the

needed properties to be a valid PDF, and it is a PDF that is

strictly positive when p(V ) is non-zero. With all conditions

satisfied for y(V ) to be a valid PDF for importance sampling

with respect to p(V ), the proof is complete.
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