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Abstract
The challenge of handling missing data is widespread in modern data analysis, particularly

during the preprocessing phase and in various inferential modeling tasks. Although numerous
algorithms exist for imputing missing data, the assessment of imputation quality at the
patient level often lacks personalized statistical approaches. Moreover, there is a scarcity of
imputation methods for metric space based statistical objects. The aim of this paper is to
introduce a novel two-step framework that comprises: (i) a imputation methods for statistical
objects taking values in metrics spaces, and (ii) a criterion for personalizing imputation using
conformal inference techniques. This work is motivated by the need to impute distributional
functional representations of continuous glucose monitoring (CGM) data within the context of
a longitudinal study on diabetes, where a significant fraction of patients do not have available
CGM profiles. The importance of these methods is illustrated by evaluating the effectiveness
of CGM data as new digital biomarkers to predict the time to diabetes onset in healthy
populations. To address these scientific challenges, we propose: (i) a new regression algorithm
for missing responses; (ii) novel conformal prediction algorithms tailored for metric spaces
with a focus on density responses within the 2-Wasserstein geometry; (iii) a broadly applicable
personalized imputation method criterion, designed to enhance both of the aforementioned
strategies, yet valid across any statistical model and data structure. Our findings reveal
that incorporating CGM data into diabetes time-to-event analysis, augmented with a novel
personalization phase of imputation, significantly enhances predictive accuracy by over ten
percent compared to traditional predictive models for time to diabetes.
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1 Introduction
Recent technological advancements are providing new scientific opportunities in biological
measurement systems [1]. Consequently, the emerging novel medical tests enable the monitoring
of patient conditions in real-time with high-resolution data [2]. This progress has catalyzed
the evolution of clinical systems towards precision and digital health paradigms [3, 4]. The
next step involves the development of a large number of statistical models to exploit the
inherent complexity of these new data structures and support decision-making in the paradigm
of personalized medicine [5].

One important example of recent technological advancements is seen with continuous glucose
monitoring (CGM) devices [6]. Nowadays, these devices are designed to be minimally invasive
and enable the detailed tracking of glucose levels at regular intervals over extended periods,
including weeks and months [7]. This provides a comprehensive view of the temporal dynamics
of an individual’s glucose metabolism [8]. Originally developed to significantly improve the
management of potentially dangerous situations, such as low blood sugar episodes in people
with type 1 diabetes (hypoglycemia), CGM devices have also proven to be particular useful for
managing and monitoring blood sugar levels in individuals with type 2 diabetes.

With the increased affordability and enhanced accuracy of non-invasive glucose measure-
ment technologies, their adoption is expanding among healthy populations. In the realm of
personalized nutrition, CGM devices are pivotal, facilitating the identification of optimal dietary
choices through monitoring real-time glucose fluctuations. Moreover, CGM devices have found
application in epidemiological research on medical cohorts composed on health individuals,
proving their utility in pinpointing individuals at elevated risk of developing diabetes mellitus
[9]. Recent studies have highlighted the advantage of leveraging long-term glucose trends, as
reflected by glycosylated hemoglobin levels, over traditional diabetes biomarkers within a general
population sample [10, 11]. However, the potential of CGM to predict diabetes incidence and
the timing of disease onset in non-diabetic populations is yet to be fully explored. This gap
underscores the necessity for efficient imputation strategies within two-step study designs, where
only a subset undergoes detailed medical assessments, including CGM monitoring, to address
this issue.

This paper delves into a pertinent scientific inquiry, aiming to develop a robust clinical
score for diabetes prediction that incorporates the distinct glucose profile captured by CGM
technology. We utilize data from the Spanish longitudinal diabetes study, AEGIS [11, 12],
adopting a two-step experimental design with a comprehensive ten-year follow-up [13]. This
methodological approach distinguishes our work from other studies that do not incorporate
CGM data [14, 15]. Historically, the prohibitive cost of CGM devices limited baseline data
collection to a secondary subsample of 580 individuals from a larger cohort of 1,516 randomly
selected from the general population. The ongoing advancements and cost reductions in CGM
technology anticipate its widespread use in healthy demographics, potentially integrating these
devices into routine public health diabetes screenings [16, 17]. This evolution underscores the
significance of our novel predictive models based on CGM data.

The concept of glucodensity provides more information than traditional CGM summaries [18].
Figure 1a (top panel) shows the glucodensity profiles of a randomly chosen diabetic and non-
diabetic subject, while the bottom panel displays these profiles across all subjects, categorized
into three groups: those with pre-existing diabetes, those who developed diabetes during the
study, and those free of diabetes at study’s end. We hypothesize that glucodensity offers
particular utility in non-diabetic populations, a stark contrast to traditional CGM composicional
metrics that are specifically tailored for disease-populations. Unlike these traditional CGM
metrics, which are defined by specific glucose thresholds applicable to diabetics, our method is
designed to discern subtle differences in glucose homeostasis over the complete range of CGM
values recorded by CGM monitor.
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(a) Glucodensity profiles from raw CGM data for a diabetic and non diabetic individual.

100

200

300

400

0 10 20 30 40 50
Time points

G
lu

co
se

 v
al

ue
s 

at
 b

as
el

in
e

DM status

Developed DM

DM at baseline

Free of DM

(b) Glucodensities profiles of all subjects with CGM, separated according to the status of
diabetes. Red: individuals with diabetes at baseline. Black: individuals without diabetes at
baseline who developed diabetes throughout the study. Grey: individuals free of diabetes
at the end of the study.

We are interested in improving the reliability and power of predictive models for the time
to diabetes [19]. For this purpose, we introduce an imputation step for CGM information that
minimizes the impact of using a two-step design [20] in terms of statistical efficiency. Generally,
in the field of functional data settings, there is a significant gap in the literature concerning the
imputation of statistical objects, even for Hilbert space-valued random variables [21]. Inadequate
imputation can severely affect predictive models [20] due to the large dimensionality of statistical
functional objects. To address this gap in the literature, our study introduces a novel metric space
imputation framework based on a weighted least squares global Fréchet model [22], incorporating
a conformal prediction [23] step for robust uncertainty quantification. The incorporation of
uncertainty quantification steps provides the opportunity to assess the imputation quality and
offer personalized imputation rules in line with precision medicine principles [24] This method
is applicable not just to glucodensity data [18] but also to other complex statistical objects in
separable metric spaces Ω [22].

In diabetes research, risk scores like FINDRISC [25] and GDRS [26] have been developed
using logistic or Cox regression models with scalar lifestyle and demographic variables. However,
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the integration of CGM data for long-term diabetes onset prediction in healthy populations
remains underexplored due to the scarcity of extensive long-term CGM cohorts. Our personalized
framework utilizes novel distributional glucodensity representations [18], enhancing the prediction
of diabetes onset and providing a more comprehensive understanding of glucose dynamics and
progression than traditional screening methods for diabetes mellitus disease.

1.1 Contributions

We briefly summarize the main methodological contributions of this paper as well as the key
findings from the analysis of the AEGIS study for modelling time to diabetes.

• To the best of our knowledge, we propose the first global Fréchet regression model for
metric spaces with missing responses. Our new estimators, based on inverse-probability
weighted estimators, are utilized to impute missing glucodensity. Additionally, we provide
an algorithm for estimating the conditional variance of the quantile-based glucodensity
representation, assessing the uncertainty resulting from the imputation.

• We extend conformal inference algorithms to provide prediction regions for distributional
representations and define a personalized imputation criterion based on the uncertainty
related to the imputation. To the best of our knowledge, this is the first work validating
the quality of personalized imputations for functional and distributional responses.

• Utilizing the personalized imputation tools in the AEGIS study, we provide the following
scientific insights:

1. We impute the distributional representations of continuous glucose monitoring (CGM)
data using the proposed global Fréchet regression model.

2. With our conformal inference algorithm, we identify patients in whom glucodensity
can be imputed for follow-up and time-to-diabetes analysis in this longitudinal study.

3. In the time-to-event analysis of diabetes, we demonstrate that our glucodensity ap-
proach, aided by personalized imputation, outperforms traditional CGM metrics. The
proposed models show superior prediction accuracy compared to existing literature,
highlighting the effective incorporation of CGM data as a reliable source of information
for the progression of diabetes mellitus.

• The codes, along with the methods proposed and utilized in this study, are available for re-
producibility purposes. They are publicly accessible at https://github.com/CarlaDiaz/
Conformal_Imputation.

2 Background and related work

2.1 Statistical Models in Metric Spaces

One of the most prominent applications of statistical modeling in metric spaces is in biomedical
problems, particularly in personalized and digital medicine [27]. These applications often involve
complex statistical objects, such as curves and graphs, to record physiological functions and
measure brain connectivity patterns at a high resolution. A notable example is the concept
of "glucodensity" [18], a distributional representation of glucose profiles. This concept has
significantly advanced diabetes research methodologies [11] and has proved useful in analyzing
accelerometer data [28, 29, 30]. Methodologically, statistical regression analysis in metric
spaces is an emerging field [31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41]. Recent publications
have explored hypothesis testing [42, 43, 33, 44], variable selection [45], multilevel models [46],
dimension-reduction [47], semi-parametric [35, 48, 49], and non-parametric regression models
[50, 51, 52, 53].
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2.2 Missing Data Imputation and Statistical Methods for Two-Sample Design
Studies

The treatment of missing data, a longstanding issue in statistics, significantly impacts medical
study reliability, as emphasized by leading medical journals [54]. However, research addressing
missing data in metric space models remains scarce. In spaces embeddable in separable Hilbert
spaces (negative-type spaces) [55, 56], we have proposed new statistical hyphotesis for randomized
clinical trials and paired design [57, 11]. For a standard functional data, current methods primarily
utilize functional principal component analysis [58, 59, 60, 61] and multiple imputation [62, 63].
However, these approaches often inadequately address the uncertainty induced by imputation.
For distributional data [64, 28], it’s crucial to account for the constraints of the underlying space
of the distributional object.

Recent studies in standard settings have focused on addressing missing data in large cohorts
and high-dimensional data, emphasizing the importance of uncertainty quantification [65],
dimensionality reduction [66], and imputation step [67]. Machine learning algorithms, such
as XGBoost [68], along with optimal transport-based algorithms [69], have shown promise in
imputation tasks, proving to be more efficient in certain non-linear settings. In the field of digital
medicine, new methods have been developed for wearable data, such as data from accelerometers,
using specialized models that focus on aggregate summaries like physical activity counts [70].
Recent advances in two-sample designs have included proposals for optimal subsampling methods
and efficient influence function-based estimation techniques [71, 72]. To date, specific studies on
imputing functional data, especially density functions in non-vectorial spaces, remain unexplored.
The development of specific methods for functional data, such as medical images and distributional
representations for wearable information, is increasingly relevant in precision medicine for the
proliferation of summarizing the medical conditions of patients with complex statistical objects
[5].

3 AEGIS Study Overview and CGM Glucodensity Approach

3.1 Study Background

The A Estrada Glycation and Inflammation Study (AEGIS) [73], spanning over a decade,
longitudinally tracks 1516 subjects to explore health dynamics, focusing specifically on diabetes.
A distinctive aspect of AEGIS is the adoption of continuous glucose monitoring (CGM) technology,
offering in-depth glucose profiles for a significant subset of participants of health individuals at
two time points (years 0 and 5), which is a notable deviation from many clinical studies with
shorter durations and fewer participants.

3.2 Study Goals

AEGIS aims to: a) Identify biomarkers within CGM data for stratifying diabetes risk and com-
plications. b) Develop dynamic patient phenotypes based on glucose evolution. c) Characterize
metabolic changes to enhance personalized clinical interventions in diabetes research.

3.3 Data Collection and Participants

CGM data were recorded every 5 minutes, encompassing about one-third of the study’s par-
ticipants at various time points. Baseline data include dietary habits, laboratory values, and
questionnaires assessing metabolic capacity and lifestyle factors. Out of the 1516 participants,
622 were selected for CGM procedures, with 580 successfully completing the protocol and
providing analyzable data.
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3.4 Data Analysis Goals

The focus of this paper is to establish a novel diabetes risk model using high-resolution CGM
data from a 9-year longitudinal follow-up. This model, formulated using baseline data, aims to
highlight the superiority of CGM in comparison to traditional diabetes biomarkers such as A1C
and FPG.

3.5 CGM Data Collection Protocol

Participants were equipped with an Enlite™ sensor and iPro™ CGM device (Medtronic Inc.,
Northridge, CA, USA). Glucose concentrations were recorded at 5-minute intervals for 7 days.
The analysis omits the first day and any day with over 2 hours of data-acquisition failure.

3.6 Ethical Considerations

The study, sanctioned by the Regional Ethics Committee (Comité Ético de Investigación Clínica
de Galicia, code: 2012/025), adhered to the Helsinki Declaration guidelines. Informed consent
was obtained in writing from all participants.

3.7 Glucodensity Approach and Distributional Representations

Building upon our prior work [18], this paper introduces the "glucodensity approach" to analyze
CGM data, a notable advancement beyond conventional time-in-range metrics in diabetes
research. These traditional metrics often categorize glucose levels into fixed intervals, which may
not capture individual variations, particularly in non-diabetic cohorts.

3.7.1 Rationale Behind the Glucodensity Approach

The glucodensity method offers a refined understanding of glucose profiles by considering the entire
distribution of glucose values, rather than just the time within specific ranges. This approach
is crucial for unraveling the complexities of glucose dynamics, essential for comprehending the
progression to diabetes and its complications.

3.7.2 Modelling Framework

For each participant in the study, denoted as the i-th participant, we analyze their Continuous
Glucose Monitoring (CGM) data, represented as Gij where j = 1, . . . , ni. These data points are
crucial for capturing the distributional characteristics of glucose levels, which are essential for
understanding individual metabolic patterns.

We focus on the empirical quantile function of each participant’s glucose measurements. This
function is defined for each participant as Yi(ρ) = Q̂i(ρ), where ρ ranges over the interval [0, 1].
Here, Q̂i(ρ) denotes the generalized inverse of the empirical cumulative distribution function
(CDF) associated with the participant’s glucose levels. The empirical CDF, F̂i(a), is given by
the proportion of glucose measurements that do not exceed a certain level a, mathematically
expressed as F̂i(a) = 1

ni

∑ni
j=1 1{Gij ≤ a}, where Gij are the glucose values recorded for the i-th

participant.

3.7.3 Implications for Diabetes Prediction

Employing this distributional perspective on glucose monitoring provides a comprehensive view
of an individual’s glucose regulation and its deviations from normative patterns. This method
enables more precise and personalized risk assessments for diabetes, potentially leading to earlier
interventions and improved management strategies, contrasting with traditional diabetes risk
models that often rely on singular biomarkers like A1C or FPG.
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3.7.4 Advantages Over Traditional Metrics

The glucodensity approach [18] offers several advantages over traditional CGM metrics: i) It
captures a comprehensive view of glucose fluctuations over time, including high and low extremes
often overlooked in time-in-range analyses. ii) It facilitates identification of subtle glucose
patterns that might signify early metabolic changes leading to diabetes. iii) It is adaptable to
various populations, including non-diabetic ones, thereby enhancing its utility in preventive
medicine.

3.8 Covariates and Analysis

Our analysis included a subset of 580 participants with complete CGM data. Covariates included
demographic characteristics (age, sex, body mass index), laboratory measurements (lipid profile,
liver enzymes). Statistical models were adjusted for these covariates to isolate the effect of
glucose dynamics on diabetes risk prediction. A complete list of variables used in the creation of
predictive score are provided in Table 1.

Table 1. Summary of the predictor variables used in the regression analysis, for the whole sample and separated
by the Sex and the fact of having or not CGM at baseline. We represent the means and the standard deviations
(in brackets) of the continuous variables (Age, Body mass index (BMI), Glycosilated hemoglobin (HbA1c), Fasting
plasma glucose (FPG), Albumin, Insulin) for Men and Women with and without CGM at baseline. For the
categorical variables Smoking and Diabetes mellitus , we include the absolute frequency and percentage (in
brackets).

Total sample CGM Not CGM
Men Women Men Women Men Women

(n = 678) (n = 838) (n = 220) (n = 360) (n = 458) (n = 478)
Age 51.97 (17.58) 53.09 (17.52) 47.85 (14.79) 48.21 (14.48) 53.96 (18.47) 56.76 (18.69)
BMI 28.56 (4.64) 27.99 (5.40) 28.92 (4.74) 27.71 (5.33) 28.39 (4.59) 28.19 (5.46)
HbA1c 5.65 (0.83) 5.57 (0.65) 5.64 (0.88) 5.52 (0.69) 5.66 (0.81) 5.62 (0.62)
FPG 97.54 (24.50) 92.05 (21.03) 97.06 (23.37) 90.96 (20.85) 97.79 (25.04) 92.87 (21.15)
Albumin 4.48 (0.25) 4.35 (0.22) 4.51 (0.23) 4.36 (0.21) 4.46 (0.25) 4.35 (0.22)
Insulin 14.02 (13.50) 11.69 (7.31) 15.54 (18.41) 11.69 (7.41) 13.29 (10.29) 11.69 (7.24)
Smoking

Ex-smoker 267 (39.38%) 128 (15.27%) 77 (35.00%) 77 (21.39%) 190 (41.48%) 51 (10.67%)
Smoker 172 (25.37%) 124 (14.80%) 56 (25.45%) 62 (17.22%) 116 (25.33%) 62 (12.97%)

Diabetes mellitus 101 (14.90%) 82 (9.79%) 33 (15.00%) 31 (8.61%) 68 (14.85%) 51 (10.67%)

4 Mathematical Models

4.1 Imputation Step from Distributional Representations

4.1.1 Linear Regression Model for Metric Space Responses: Global Fréchet Model

We consider the multivariate random variable (X, Y ) ∈ X × Y, where X ∈ X = Rp and
Y ∈ Y , with Y = (Ω, d) being a separable metric space that adheres to the regularity conditions
introduced in [22]. These conditions ensure the existence and uniqueness of the Fréchet conditional
mean denoted as m(x) = E(Y |X = x) for all x ∈ X .

In this article, our focus lies on scenarios where the conditional Fréchet mean is expressed
through a linear regression model between the predictor and response variables. Such a regression
model is known as a global Fréchet regression and is defined as:

m(x) = arg min
y∈Y

E
([

1 + (x − µ)⊺Σ−1(X − µ)
]

d2(Y, y)
)

, (1)

where Σ = Cov(X, X), and µ = E(X). Given an i.i.d. (independent, identical, and
distributed) random sample Dn = {(Xi, Yi)}n

i=1, we can construct an estimator m̂(·) from the
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Global Fréchet model as follows:

m̂(x) = arg min
y∈Y

n∑
i=1

ωin(x)d2(y, Yi), (2)

where ωin(x) = 1
n

[
1 + (x − X)⊺Σ̂−1(Xi − X)

]
, with X = 1

n

∑n
i=1 Xi, and Σ̂ = 1

n

∑n
i=1(Xi −

X)(Xi − X)⊺.

Global Fréchet Regression from Weighted Least Squares

We extend the concept of global Fréchet regression, to incorporate sampling mechanisms induced
by missing data patterns, by following scalar response regression models with missing responses.
In particular, consider the weighted least squares (WLS) linear regression for scalar response
Yi ∈ R . Let Dn = {(Xi, Yi, wi)}n

i=1 be the observed random sample, where wi denotes the
weight of participant i. For Yi ∈ R, under a WLS model, the objective function is given by:

β̂ = arg min
β

n∑
i=1

wi(Yi − ⟨Xi, β⟩)2

= arg min
β

∥
√

W (Y − Xβ)∥2,

where β = (β1, . . . , βp)⊺ is a vector of model parameters, W = diag(w1, . . . , wn) is a weight
matrix, Y = (Y1, . . . , Yn), X = (X1, · · · , Xn), and ∥ · ∥ is the Euclidean norm. The solution is
β̂ = (X⊺WX)−1X⊺WY .
A future prediction at any x ∈ Rp is given by:

xβ̂ = x(X⊺WX)−1X⊺WY

= k(x)Y

=
n∑

i=1
ki,w(x)Yi,

where kw(x) = (X⊺WX)−1X⊺W with kw(x) = (k1,w(x), . . . , kn,w(x)) and ki,w(x) = si,w(x)∑n

i=1 si,w(x) .
The estimator for conditional mean can be reformulated as:

m̂(x) = arg min
y∈R

n∑
i=1

ki,w(x)(Yi − y)2. (3)

Proposition 1. The WLS estimator from the global Fréchet model is:

m̂(x) = arg min
y∈Y

1
n

n∑
i=1

ωin(x)d2(y, Yi), (4)

where

ωin(x) =
wi

[
1 + (x − X)⊺Σ̂−1(Xi − X)

]
∑n

j=1 wj

[
1 + (x − X)⊺Σ̂−1(Xj − X)

]
and X = 1

n

∑n
i=1 Xi, and Σ̂ = 1

n

∑n
i=1(Xi − X)(Xi − X)⊺.

This is directly obtained by extending the WLS estimation criterion (3) for global Fréchet
model.
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Linear Regression Model for Missing Metric Space Responses

Estimation with Missing Observations

In cases where some distributional observations Yi are missing (δi = 0 for some i ∈ {1, . . . , n}),
we introduce a special weighting estimator of the form:

m̂(x) = arg min
y∈Y

n∑
i=1

ωin(x)d2(y, Yi), (5)

ωin(x) =
wi

[
1 + (x − X)⊺Σ̂−1(Xi − X)

]
∑n

j=1 wj

[
1 + (x − X)⊺Σ̂−1(Xj − X)

] , wi =
δi

P̂ (δ=1|X=Xi)∑
i=1

δi

P̂ (δ=1|X=Xi)

. (6)

In essence, here we perform inverse-probability weighting (IPW) and consider only the
non-missing observations (δi = 1) in the construction of regression model.

4.2 Closed-Projection Algorithm for 2-Wasserstein Metric

In the context of our research, each observation indexed by i = 1, 2, . . . , n represents a patient
under study, with Yi denoting the distribution or the functional outcome corresponding to the
i-th participant. We proceed by constructing the regression model, directly focusing on modeling
the point-wise mean of the quantile function Yi(t), t ∈ [0, 1] as a function of the covariates. This
choice is motivated by the connection of the quantile function to the 2−Wasserstein distance,
and essentially models the Wasserstein barrycenter of the distributional outcome [74] based on
the covariates.

The 2-Wasserstein distance, denoted as dW2(µ, ν), serves as a powerful tool for measuring
the dissimilarity between probability measures, making it an ideal choice for our analysis. When
considering µ and ν as two suitable measures on R with finite second moments, and Qµ and Qν

as their respective quantile functions, the Wasserstein distance dW2(µ, ν) between µ and ν is
known to be equivalent to the L2 distance between Qµ and Qν , as expressed in Equation 7:

dW2(µ, ν) =
[∫ 1

0
(Qµ(t) − Qν(t))2dt

]1/2
. (7)

This elegant equivalence allows us to bridge the gap between probability measures and quantile
functions, offering profound insights into the Wasserstein distance’s significance. See [64] for
various advantages offered by the quantile function based distributional representation as opposed
to histogram or densities.

As a consequence, the Fréchet mean [75] of a random measure can be characterized by the
point-wise mean of the corresponding random quantile process. Therefore, by introducing a
regression model for the random quantile function Yi, we implicitly construct a model for the
conditional Fréchet mean of the underlying glucose distribution measure [33].

Let Xi ∈ Rp represent the p-dimensional covariate vector. In this scenario, the global linear
Fréchet model takes the form:

m(Xi, t) = E(Yi(t)|Xi) = α(t) + β(t)⊺Xi, t ∈ [0, 1]. (8)

Here, α(t) represents the intercept function, and β(t) denotes the coefficient function.
Assuming we have access to a sample Dn = {(Xi, Yi, wi)}n

i=1, where Yi serves as the response
quantile function and Xi ∈ Rp, we employ the weighted least squares criterion to estimate the
parameters. The procedure can be outlined in two steps. Firstly, for any t ∈ [0, 1], we compute
the estimates:
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(
α̂(t), β̂(t)

)
= argmin

a∈R,b∈Rp

n∑
i=1

wi [Yi(t) − a − b⊺Xi]2 . (9)

These estimates lead to the initial fitted quantile functions:

Y ∗
i (t) = α̂(t) + β̂⊺(t)Xi, t ∈ [0, 1]. (10)

However, as a function of t, it may occur that Y ∗
i (t) is not monotonically increasing. Hence

we project this fitted value onto the nearest monotonic function in the L2[0, 1] sense, resulting
in valid fitted quantile functions Ŷi(t) [22]. This process yields fitted values Ŷi(t) for any set
of observed covariates Xi, thus providing valuable insights into the conditional Fréchet mean
(based on 2−Wasserstein metric) within the context of our research.

4.3 Conformal inference for distributional representation and missing re-
sponses

Conformal inference, a framework for uncertainty quantification in diverse settings, has emerged
as a significant tool in statistics, especially in medical applications. Key advantages of confor-
mal prediction include: i) Providing model-independent prediction regions, ii) Offering non-
asymptotic guarantees under broad exchangeability assumptions, iii) Delivering fundamentally
non-parametric predictive regions.

This paper introduces a novel algorithm for conformal inference in distributional regression
models, tailored for responses lying within a 2-Wasserstein space. This framework facilitates the
definition of point-wise residuals and involves predictors in a separable Hilbert space, denoted
as H. By leveraging the supremum norm, we streamline computation of prediction regions for
response quantile functions, focusing on conditional scenarios with covariates to establish Type
II tolerance regions. Practically, we connect the regression model, symbolized by m(·, ·), with the
conditional mean estimator (m(Xi, t)). Our goal is to construct a prediction region, Cα(X), with
a confidence level α, ensuring P (Y ∈ Cα(X)) = 1 − α. This region either minimizes volume or
conforms to specified geometric constraints. Utilizing conformal inference on a random sample,
Dn, we assure non-asymptotic guarantees: P (Y ∈ Ĉα

n (X)) ≥ 1 − α, converging to the oracle
prediction region as n → ∞.

In this study, we observe Dn = {(Xi, Yi, δi)}n
i=1, where i indexes patient data, and δi indicates

missing data. The missingness, contingent on covariates Y (i.e., Y ⊥ δ|X), disrupts sample
exchangeability. Achieving marginal non-asymptotic guarantees hinges on the true missing data
weights wi, a rarity in practice. However, with increasing n, the marginal coverage is guaranteed,
assuming precise estimation of the regression model and missing data mechanism. The core steps
of our proposed conformal prediction algorithm are delineated in Algorithm 1. The calibration
sample, Dcalibration, is pivotal in conformal inference. It is used to calibrate the algorithm and
establish necessary confidence levels or significance thresholds for prediction regions, based
on nonconformity scores. This calibration ensures the regions accurately reflect the intended
uncertainty level and maintain correct coverage probabilities in the non-asymptotic regime.

Theorem 1. For any function estimator of the regression function m(·, ·), m̂(·, ·), invariant
to permutations, and a random sample Dn = {(Xi, Yi, wi)}n

i=1 that is exchangeable (assuming
knowledge of wi), the prediction region Ĉα

n (X) for a new observation X, defined by Algorithm 1,
satisfies:

P (Y ∈ Ĉα
n (X)) ≥ 1 − α

Proof. Available in the Supplementary Material.
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Algorithm 1: Conformal Prediction Algorithm for Distributional Responses and
Missing Data

1: Partition the sample set Dn into three distinct and independent random samples: Dtrain1,
Dtrain2, and Dcalibration.

2: Estimate the regression function m(·, ·) using the global linear Fréchet model (8) as m̂(·, ·)
using the random sample Dtrain1.

3: For each observation i ∈ Dtrain2 and time point t ∈ [0, 1], do steps 4 ,5 and 6.
4: Compute the estimated response m̂(Xi, t).
5: Calculate the residual ri(t) = |Yi(t) − m̂(Xi, t)|.
6: Derive the modulation function ŝ(Xi, t) from the sample {(Xi, ri)}i∈Dtrain2 , where

ŝ(Xi, t) = ŝd(Xi, t).
7: For each observation i ∈ Dcalibration perform steps 8 and 9.
8: Define the nonconformity score Ri = supt∈[0,1]

|Yi(t)−m̂(Xi,t)|
ŝ(Xi,t) .

9: Estimate the empirical distribution G̃∗(t) as
1∑

i∈Dcalibration,δi=1 wi

∑
i∈Dcalibration,δi=1 wi1{Ri ≤ t}.

10: Compute the empirical quantile q̂1−α at level 1 − α.
11: Construct the prediction region Ĉα

n (X, t) = [m̂(X, t) − q̂1−αŝ(X, t), m̂(X, t) + q̂1−αŝ(X, t)].

4.4 Personalized Imputation with Conformal Inference

This paper’s primary objective is to develop a rigorous mathematical framework for assessing
the validity of imputed response values in patient data. For each patient i, we consider the
scenario where the random response Yi(t) = Ŷi(t) for t ∈ [0, 1] is imputed, signified by δi = 0.
The appropriateness of the imputation for each patient is evaluated in light of the associated
uncertainty, encapsulated by the parameter r̂i. Specifically, for each patient i and a given
confidence level α ∈ (0, 1), the uncertainty radius r̂i is calculated as the maximum deviation
across the interval [0, 1], defined by r̂i = maxt∈[0,1] |q̂1−αŝ(X, t)|, where q̂1−α represents the
quantile associated with the confidence level α, and ŝ(X, t) denotes the standard deviation of
the imputed values at time t.

For a given threshold γ > 0, we define the set of imputed observations as follows:

Sδ = {i ∈ [n]; δi = 0 and r̂i ≤ γ}. (11)

Our goal is to ascertain or estimate the optimal threshold parameter γ̂ that yields high-quality
imputations. This determination is based on an interval quality measure of the response Y or
a surrogate outcome Z, especially in cases involving binary events (like disease occurrence) or
time-to-event responses (such as censored responses).

4.4.1 Practical Implementation and Model Evaluation

In practice, we evaluate a set of m threshold values for γ, denoted as γm = {γ1 < γ2 < · · · < γm}.
For each threshold value γs, we assess the performance of a statistical model T , which is
constructed using observations from the set:

Bγs = {i ∈ [n]; δi = 0 and i ∈ Sγs}. (12)

The model at threshold γs is then given by:

Tγs = T ({(Xi, Ŷi) : i ∈ Bγs} ∪ {(Xi, Yi) : i : δi = 1}). (13)
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4.4.2 Model Selection and Contextual Application

The model T encompasses a variety of statistical methods, including but not limited to regression
models, logistic regression, and survival models. The choice of T is contingent upon the nature of
the data and the specific research question, aiming to capture the relationship between covariates
X and response variable Y or surrogate outcome Z.

In scenarios predicting binary events, T may be a logistic regression model, whereas for
time-to-event data, a survival analysis model may be more appropriate. The selection and
evaluation of T are thus context-dependent, guided by the specific objectives and characteristics
of the study.

4.5 Asymptotic Theory for Linear Imputation in Metric Spaces

To clarify and enhance the presentation of the statistical justification for the consistency of mean
imputation within a bounded metric space, denoted by (Ω, d), we revise the description and
notation for improved readability. The foundational equations and assumptions are outlined as
follows:

We define the functions:

M(γ, x) = E
[
ω(X, x)d2(Y, γ)

]
, Mn(γ, x) = 1

n

n∑
i=1

ωin(x)d2(Yi, γ). (14)

These functions are critical for assessing the effectiveness of mean imputation, with M representing
the expected metric deviation squared between observed values and an imputation parameter γ,
and Mn denoting its empirical counterpart based on a sample of size n.

The following assumptions are necessary for a fixed x ∈ Rp:
(P0) Both the theoretical and empirical minimizers µp(x) and µ̂p(x) are confirmed to exist and

be unique, with µ̂p(x) being almost surely unique. Moreover, for any ϵ > 0, we ensure that
infd(γ,µp(x))>ϵ M(γ, x) > M(µp(x), x), guaranteeing a unique minimum.

(P1) There exists a lower bound ϵ > 0 for the propensity score π(x) for any fixed x ∈ Rp,
ensuring the practical applicability of the propensity score.

(P2) The difference between the estimated propensity score π̂(x) and the true propensity score
π(x) diminishes at the rate of Op(n−1/2), confirming the reliability of the propensity score
estimation as the sample size grows.

Assumption (P0) is crucial for establishing the consistency of the M -estimator µ̂p(x), implying
that the convergence of Mn to M in the empirical process ensures the convergence of their
minimizers. The existence of these minimizers is straightforward if Ω is a compact set. Assumption
(P1) introduces a necessary condition related to the propensity score, and (P2) addresses the
accuracy of the propensity score estimate.
Theorem 2. Under assumptions (P0) to (P2) and with the condition that Ω is bounded, for
any fixed x ∈ Rp, the following convergence holds:

d(m̂(x), m(x)) = op(1), (15)

where m̂(x) and m(x) represent the imputed and actual mean values, respectively. This equation
demonstrates that the imputed means converge in probability to the actual means as the sample
size increases, validating the consistency of the mean imputation method.

5 Simulation Study
In this Section, we investigate the performance of our proposed distributional imputation method
via simulations. For this purpose, we consider the following data generating scenarios.
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5.1 Generation of the simulated data

In this Subsection, we describe the data generation mechanisms for the simulation scenarios.
We consider three following scenarios for the missing data mechanism.

Missing data mechanism

• Non-dependent: The probability that the response is missing does not depend on the
covariates. In particular, we set P (δi = 0|Xi) = pi = 0.5.

• Linear: The probability that the response is observed (not missing) depends on a linear
combination of the covariates as logit(P (δi = 1|Xi)) = XT

i β, where logit(x) = log( x
(1−x)).

Further, we considered scenarios with pX ∈ {1, 2, 5}, denoting the number of scalar
predictors. The models for missing responses (δi = 0 denotes missing) in each case are as
follows:

– 1 covariate:
logit(P (δi = 1|Xi)) = −0.75 + 1.55Xi

– 2 covariates:

logit(P (δi = 1|Xi)) = −0.75 + 1.89X1i − 0.37X2i

– 5 covariates:

logit(P (δi = 1|Xi)) = −0.75 + 0.82X1i − 0.37X2i + 0.09X3i + 0.53X4i + 0.75X5i

• Non-linear: The probability that the response is not missing is a non-linear function
of the covariates. The models for missing responses (δi = 0 denotes missing) for varying
number of covariates are:

– 1 covariate:
logit(P (δi = 1|Xi) = −0.75 + 2.55X2

i

– 2 covariates:

logit(P (δi = 1|Xi) = −0.75 + 1.89X3
1i − 0.37X2

2i + 0.75X1i

– 5 covariates:

logit(P (δi = 1|Xi) = −0.75+1.12X3
1i−0.37X2

2i+1.09X3i+0.1 sin(2πX4i)+0.75 cos(2πX5i)

In all three cases above, the mean probability that the response is missing is 0.5. Also, the
main data generation mechanism for the distributional outcome and scalar covariates is the
same for all scenarios and described below.

Data generation mechanism

The data generation mechanism considered for the distributional outcome Yi(t) and the scalar
predictors Xi is same across all the scenarios. The scalar covariates are independently generated
as Xij ∼ U[0, 1], j ∈ {1, . . . , pX} and i ∈ {1, . . . , n}. Let T = [0, 1] be the quantile grid, which
in this case is composed by 50 equidistant points in [0, 1]. The distributional response Yi(t) are
generated as

Yi(t) =
pX∑
j=1

Xijβj(t) + σlp√
(SNR)

εi. (16)
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The signal-to-noise-ratio (SNR) was set to SNR = 30. Here σlp is the empirical standard
deviation of the linear predictor ∑pX

j=1 Xijβj(t), and εi ∼ N(0, 1) independently. We set βj(t) = t
across all the covariates. Four different sample size n ∈ {500, 1000, 2000, 5000} are considered
for this simulation study across all possible combination of scenarios (missing data mechanism
and pX).

In Figure 2 we display the trajectories of the distributional outcomes for one simulated
dataset with sample size 500 for 1 (left panel), 2 (middle panel), and 5 covariates (right panel),
which can all noticed to be non-decreasing.

1 covariate 2 covariates 5 covariates

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0

1

2

3

4

5

Quantile levels, t

Y

Figure 2. Trajectories of the distributional outcomes Yi(t) for one simulated dataset with sample size 500 for 1
(left panel), 2 (middle panel), and 5 covariates (right panel).

5.2 Simulation Results

As explained in Section 4, the WLS estimator from the the global Fréchet model includes inverse
probability weighting in the estimations, these weights being proportional to the probability
that the response is not missing. We estimate P̂ (δi = 1|Xi) using a generalized additive model
(GAM) for the binary response δ. The mgcv R package [76] is used for the GAM implementation.
Finally, for each subject i ∈ {1, . . . , n}, the weights are defined as:

wi = 1δi=1

P̂ (δi = 1|Xi)
=

0 if the distributional outcome is missing,
1

P̂ (δi=1|Xi)
if the distributional outcome is known,

(17)

Next, we impute the missing responses using the WLS global linear Fréchet model (8). The
final imputed values for the missing responses Ŷi(t) are obtained using the closed–projection
algorithm for 2− Wasserstein Metric illustrated in Section 4.2. Finally, we evaluate marginal
coverage of the proposed conformal inference algorithm on the dataset with missing responses
(where δi = 0) for a 95% confidence region, i.e., α = 0.05.

Figure 3 displays the distribution of estimated coverage across all simulation scenarios.
When the mechanism of missing response does not depend on the covariates (Non-dependent
scenario, top panel), the median coverage is close to the nominal coverage of 0.95, regardless of
the sample size or the number of covariates. The variability in the estimated coverage, decrease
with increasing sample size. In contrast, for scenarios where the missing response mechanism
depends on the covariates (linearly or non-linearly), the median coverage is somewhat lower, but
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always higher than 0.9 and increasing with sample size. The drop in the estimated coverage in
these cases is expected, as we are using estimated weights instead of actual weights, and it is
known that conformal inference is not accurate for cases where the exact weights are unknown
and must be estimated. Nonetheless, this reduction is small, particularly for higher sample sizes,
and the nominal coverage rate of 95% lies within the two standard error limit of the average
estimated coverage.
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Figure 3. Boxplots of the estimated coverage provided by the conformal inference algorithm for 500 M.C
replications across every simulation scenario.

The prediction performance of the WLS global linear Fréchet model (4) was evaluated by
means of in-sample R2 and out of sample Root Mean Squared Error (RMSE). The distribution
of R2 across all the simulation scenarios are displayed in Figure 4. The prediction performance
appears to be pretty robust, the median R2 being higher than 0.8, with a low variability with
increasing sample size. The more complex the data generating mechanism, the lower the R2,
which is expected. The Root Mean Squared Error (RMSE) on the test data (δi = 0) was
computed as,

RMSE =

√√√√ 1
50|Itest|

∑
i∈Itest

50∑
t=1

(Yi(t) − Ŷi(t))2, (18)

where |Itest| is number of subjects in the test set. Distribution of the Root Mean Squared Error
(RMSE) are shown in Figure 5. Across all cases, the RMSE is small and appears to be decreasing
with increasing sample size. Comparing the results across different number covariates, it should
be noticed that the variability in the distributional outcome increase with increasing number of
covariates as evident from Figure 2. Focusing on the sample size n = 500, for the 1 covariate
scenario, the expected RMSE from data generation is approximately 0.041, the estimated median
RMSE of the non-dependent scenario is 0.042, while for the linear one it is 0.053 and for the
non-linear one (the most complex) it is 0.061. Similarly, for the case of 2 covariates (n = 500),
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Figure 4. Distribution of the R2 from the global linear Fréchet model across every simulation scenario.
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Figure 5. Distribution of the Root Mean Squared Error (RMSE) from the global linear Fréchet model model
across every simulation scenario.

the expected RMSE was 0.069, the estimated median RMSE across the non-dependent, linear
and non-linear scenario were 0.072, 0.090, 0.097 respectively. Finally, for the case of 5 covariates
(n = 500), the expected RMSE was 0.069, the estimated median RMSE across the non-dependent,
linear and non-linear scenario were 0.151, 0.161, 0.180 respectively. Overall, we see that the
error increase with increase in complexity in the data generation mechanism, but, except for a
few outliers, the proposed imputation method provide a robust performance.
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6 Modeling time to diabetes using distributional CGM informa-
tion

Diabetes is a complex metabolic disorder where the body struggles to regulate insulin effectively,
leading to inconsistent blood sugar levels. It primarily presents in two forms: Type 1 and Type
2. Factors such as genetics, lifestyle, and environmental conditions play crucial roles in the
development of diabetes. With an increase in sedentary lifestyles and an aging population, the
incidence of diabetes is on the rise. This trend highlights the critical need for innovative public
health strategies that focus on early detection and tailored management of the disease.

This section explores the creation of advanced statistical models aimed at predicting diabetes
onset by analyzing individual glucose regulation profiles. These profiles are carefully constructed
using data from continuous glucose monitoring (CGM) systems over a week. CGM data provides
an in-depth analysis of blood sugar variations over time, offering insights beyond conventional
health metrics. We utilize a approach called glucodensity, detailed in Section 3.7, to encapsulate
CGM data insights. Nevertheless, CGM data was not available for all participants. To address
this, we developed a strategy for imputing missing CGM data, described in Section 4.1. This
method is further refined with personalized adjustments (Section 4.4), improving the accuracy
of our prediction model.

Our analytical pipeline has the following steps. Initially, we use a generalized additive model
to evaluate the probability of missing data, leading to the calculation of missing data weights
(see Section 6.1). Then, we proceed to the imputation phase, incorporating inverse-probability
weighting estimators (Section 6.1.2). After imputing data—combining both imputed and original
data—we test the model’s effectiveness in predicting diabetes onset using Cox models (Section 6.2).
These models blend CGM and non-CGM data to examine the impact of CGM information on
prediction precision through time-dependent ROC curves. By applying personalized imputation
criteria (Section 6.3), we further enhance the model’s predictive performance and explore the
potential of CGM data in accurately forecasting diabetes onset.

6.1 Imputing missing Glucodensities using inverse probably weighting esti-
mator

6.1.1 Computing the missing-data weights

As a preliminary step in our analysis, we categorize each participant with a binary label: “0”
indicating the absence of Continuous Glucose Monitoring (CGM) data and “1” for those with
available CGM data. Interestingly, of the total 1516 subjects in our study, 580 AEGIS-I subjects
(38%) were equipped with a CGM device at baseline.

Our next objective is to estimate the probability of the availability of CGM data, considering
variables such as Age, Sex, HbA1c, FPG (Fasting Plasma Glucose), Smoking habits, Albumin
levels, and BMI (Body Mass Index). To accomplish this, we employ a Generalized Additive
Model (GAM) with a logistic link function, as proposed by [76], which can be mathematically
represented as follows:

log
( P(CGM = 1|X = x)

1 − P(CGM = 1|X = x)

)
∼ s(Age)+Sex+s(HbA1c)+s(FPG)+Smoking+s(BMI)+s(Albumin),

(19)
where s(·) indicates a smooth function for each variable, estimated using thin-plate regression
splines, and CGM ∈ {0, 1} represents the binary status of CGM usage. This model demonstrate
a moderate predictive power, with a deviance explained of 10.14% and an adjusted R2 of
0.11. Figure 6 depicts the influence of these variables, highlighting a notable decrease in CGM
participation beyond the age of 65. Conversely, participation likelihood increases for individuals
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Figure 6. Smooth effect of “Age”, “HbA1c”, “FPG”, “BMI”, and “Albumin” on the probability of having CGM.

with elevated HbA1c values and is higher among women. These observations suggest that we
are dealing with a "Missing Not At Random" (MNAR) data scenario.

Finally, based on the predictions from the above GAM, we compute the weights for the i-th
patient as follows ωi = δi

n·π̂(Xi) , where Xi denotes the characteristics of the i-th patient, and
π̂(Xi) represents the estimated conditional probability P(CGM = 1|Xi).

6.1.2 Fitting the global Fréchet model from missing responses

For each participant, labeled as the i-th individual, we calculate their glucose quantile representa-
tion, Yi(ρ) = Q̂i(ρ), over a spectrum of 101 evenly distributed points, τ =

{
j

100 : j = 0, 1, . . . , 100
}

.
This is achieved by leveraging the empirical distribution, F̂i(t) = 1

ni

∑ni
j=1 I{Gij ≤ t}, which

is based on their glucose readings. After establishing the weights and glucodensity quantiles
we proceed with the 2-Wasserstein weighted Fréchet regression model based on the covariates:
Age, Sex, HbA1c, FPG, Smoking habits, Albumin levels, and BMI. This model demonstrates
a coefficient of determination (R2) of 0.63, indicating a significant portion of the variance is
explained. The model’s coefficients varying over quantile levels are displayed in Figure 7.

Figure 8 showcases the residual patterns for each participant with CGM data. Specifically,
individuals diagnosed with diabetes at the beginning of the study are marked in red, indicating
notably higher residuals for this group. This suggests increased uncertainty in predicting
glucodensity quantiles among these participants. Following this, in additional analysis presented
in supplementary material, we applied a weighted Fréchet regression model to examine the
squared residuals, linking them with the same variables previously considered in the Fréchet
regression model. The purpose of this analysis was to probe into the conditional variability, and
employ a framework of conformal prediction to enhance our understanding of the underlying
patterns.
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Figure 7. Estimated functional β− coefficients of the Fréchet weighting estimator.
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6.2 Survival analysis following imputation in AEGIS

In this Section, we go a step further and take the follow-up time into account, to estimate the
probability of time-to-diabetes using survival models. To do so, we are sticking only to the 1293
individuals without diabetes which also have a follow-up time of more than half a year. We
used the Fréchet regression model to obtain the CGM-imputed and non-imputed quantile CGM
profiles, Yi(t), for t ∈ [0, 1] and i = 1, . . . , n = 1293 among which 789 individuals (61%) have
imputed CGM. The subjects are followed up approximately over a 10 year period, with median
follow-up time being 7.4 years. Among the initial sample 75 individuals developed diabetes
(5.8%), by the end of the study. The goal of this subsection is to estimate the risk of diabetes over
time as a function of the functional principal components (fPC) of the glucodensities, adjusting
or not for other covariates, using an additive Cox regression model.

6.2.1 Survival models with all imputed patients and CGM information
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Figure 9. Smooth effect of the covariates of model that only incorporate CGM information.

In our comparative analysis, we start with a time-to-diabetes model, utilizing Continuous
Glucose Monitoring (CGM) data exclusively. Specifically, we use both CGM-imputed and
non-imputed quantile CGM profiles, Yi(t), for t ∈ [0, 1] and i = 1, . . . , n = 1293, as functional
predictors and extract the first three functional principal component (fPC) scores that account
for 98% of the data variability. Subsequently, we adopt an additive Generalized Additive Model
(GAM) Cox model as delineated in the ‘mgcv‘ package in R, fitting the time to diabetes onset
over a 9-year follow-up. We incorporate the three principal components, pcj , j = 1, 2, 3, in the
Cox regression model as follows:

hi(t) = h0(t) exp {s(pci1) + s(pci2) + s(pci3)} ,

where hi(t) signifies the hazard function over time for the i-th subject, and s(·) denotes the
smooth function of each covariate. The influence of the three principal component scores on
the risk model is displayed in Figure 9 reveals non-linear dynamics, with the third score, in
particular, showing a linear escalation in diabetes risk. An extended model also incorporates the
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Figure 10. Smooth effect of the continuous covariates of model with CGM and non CGM information).

demographic and clinical covariates Sex, Age, BMI, HbA1c, and Insulin—alongside the PCA
scores, and is given by

hi(t) = h0(t) exp {Sexi + s(Agei) + s(BMIi) + s(HbA1ci) + s(Insulini) + s(pci1) + s(pci2) + s(pci3)} .

The estimated effects are displayed in Figure 10 and underscore the nonlinear effects of PCA
scores and reveals an increased diabetes risk associated with higher BMI and HbA1c levels.
Intriguingly, the risk diminishes with age, suggesting a protective effect against diabetes in
individuals maintaining a non-diabetic state and favorable metabolic health over time.

6.2.2 Comparing CGM and non-CGM models in terms of AUC over time

In this section, we evaluate and compare the predictive performance of three distinct models
through the lens of the time-dependent Receiver Operating Characteristic (ROC) curve:

1. Employing solely Continuous Glucose Monitoring (CGM) data.

2. Relying exclusively on non-CGM information.

3. Integrating both CGM and non-CGM data.

Figure 11 presents the Area Under the Curve (AUC) for each of these models. A notable
enhancement in predictive accuracy is observed when CGM data is combined with traditional
biomarkers. To determine the statistical significance of the differences observed between the
AUC curves, we performed bootstrap resampling with 1000 iterations to calculate the 95%
confidence intervals for the AUC differences. As illustrated in Figure 12, the confidence intervals
do not encompass 0, underscoring that the comprehensive model incorporating both CGM and
non-CGM information significantly outperforms the model based solely on non-CGM data in
terms of AUC. The Concordance Index (C-index) for the comprehensive model, which includes
all imputed CGM data as well as non-CGM information, stands at 0.82, highlighting its superior
predictive capacity.
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Figure 11. AUC curves for the three survival models considered: i) only CGM-information; ii) only non-CGM
information; iii) CGM and non CGM information.

6.3 Personalized imputations vs. globally imputed CGM models

Table 2. C statistics for the survival models with the different subsets depending on the maximum radius of the
confidence bands of the glucodensities, and the number of subjects.

Radius Number of individuals C index
0 504 0.891
80 511 0.891
90 524 0.892
100 568 0.898
110 566 0.899
120 595 0.882
130 633 0.885
140 686 0.881
150 727 0.877
160 776 0.876
170 822 0.865
180 865 0.874
190 914 0.869
200 992 0.875
370 1293 0.781

We develop personalized imputation criteria for glucodensity quantiles, contrasting these
findings with outcomes derived from predictive models employing a uniform imputation strategy
across the entire patient cohort. For a thorough analysis, we examine various radii within a
pre-defined grid. Table 2 displays the Concordance Index (C-index) values obtained for each
defined subset, based solely on the imputed glucodensity quantiles. These analyses are conducted
under the condition that the maximum confidence interval radius does not surpass the predefined
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Figure 12. Difference of AUC over time for the model that contain funcional and non functional CGM
information. The 95% confidence bands calculated by bootstrap resampling with 1000 samples are shown in grey.
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Figure 13. AUC over time for survival models with the different subsets depending on the maximum radius of
the confidence bands of the quantiles of the glucodensities.

limit, and the table also lists the number of subjects analyzed at each radius. Importantly, our
dataset includes 504 individuals with actual glucodensity measurements. Notably, the optimal
C-index (0.90), occurs at a radius of 110 and encompasses 62 subjects with imputed Continuous
Glucose Monitoring (CGM) data. Figure 13 illustrates the Area Under the Curve (AUC) over
time for all studied radii, indicating that the overall predictive accuracy exceeds traditional CGM
risk assessments, a point elaborated upon in our previous discussions. In overall the C-score
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with the model with non-functional information is 0.805, there are a improvement of more of
ten percent. This improvement highlights the benefit of integrating personalized CGM data into
the analysis.

Finally, to elucidate the effectiveness of our personalized imputation approach, Figure 14
displays the conditional Fréchet mean based on the glycemic condition of four representative
subjects, showcasing the point-wise results and the predictive bands for the patients, each
assigned a distinct maximum radius, and therefore having different levels of uncertainty.
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Figure 14. Conditional Fréchet mean and associated prediction regions in Patients with varying glycemic
conditions.

7 Discussion
In this study, we delve into a less-explored area of statistical research: personalized imputation
strategies for biomedical applications, underscoring the significance of handling missing data,
which profoundly impacts both outcomes and predictors [20, 77]. Unlike previous work focusing
primarily on optimal sampling techniques and the development of efficient estimators for scalar
variables [71, 72], our methodology extends to statistical objects within metric spaces [22],
marking a significant advancement in statistical modeling for high-resolution medical data.

Methodologically, this paper introduces several notable contributions: a weighted least
squares estimator for linear models in metric spaces [22], specialized imputation methods for
these spaces, innovative non-asymptotic inference techniques for conformal prediction algorithms
based on the 2-Wasserstein distance, asymptotic theory for conditional mean imputation within
a bounded metric space, and a comprehensive personalized imputation method applicable to
various clinical outcomes. This approach underscores the importance of balancing imputation
accuracy and reliability, especially in predicting time-to-event outcomes, advocating for a direct
assessment of improvements in predictive capacity rather than a sole reliance on biomarkers.

Our approach is demonstrated through its application in biomedicine, specifically in predicting
the onset of diabetes in a longitudinal study utilizing data from continuous glucose monitors
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(CGM). This application not only addresses the widespread use of advanced medical tests in
public health initiatives and screening campaigns but also showcases an improvement in model
performance by more ten percent when integrating CGM data as a digital biomarker , compared
to models relying solely on traditional biomarkers. This improvement in predictive accuracy,
validated by the C-score, is consistent with traditional biomarkers and findings from other studies
[25, 26]. A key innovation of our model is its ability to integrate high-resolution glucose data
through the ‘glucodensity’ concept [18] using distributional representations [64, 78], offering
novel perspectives for the early identification of diabetes risk. Our results suggest the potential
of CGM data to create quantifiable methods to assess the glucose homeostasis of the individual
in health-populations, a relatively unexplored topic [79]. We explore for the first time the
incorporation of CGM information and glucodensity into predicting time to diabetes. In the
future, it may be useful in establishing diagnostic thresholds for diabetes from a personalized
standpoint based on CGM data.

Multiple research directions remain to be explored based on this current research. For
longitudinal or multilevel statistical objects, e.g., distributional profiles, the imputation method
would need to carefully account for the correlation present within various sub-clusters [80, 81].
Another interesting direction would be to extend the proposed imputation method to multivariate
metric-spaced valued objects, where the distribution of one object could inform another [82, 83].

By addressing the challenges associated with missing data in digital medicine and the
statistical treatment of metric spaces, our study highlights the crucial role of personalization in
statistical methodologies, evidenced by a substantial real-world application. As the collection of
high-resolution longitudinal data becomes more common, the methodologies introduced herein
are poised to become increasingly essential in extensive biomedical studies and the integration
of data from wearable devices with genetic information [84].
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