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Abstract

Optimal experimental design (OED) provides a systematic approach to quantify and maximize
the value of experimental data. Under a Bayesian approach, conventional OED maximizes the
expected information gain (EIG) on model parameters. However, we are often interested in not the
parameters themselves, but predictive quantities of interest (Qols) that depend on the parameters in
a nonlinear manner. We present a computational framework of predictive goal-oriented OED (GO-
OED) suitable for nonlinear observation and prediction models, which seeks the experimental design
providing the greatest EIG on the Qols. In particular, we propose a nested Monte Carlo estimator
for the Qol EIG, featuring Markov chain Monte Carlo for posterior sampling and kernel density
estimation for evaluating the posterior-predictive density and its Kullback-Leibler divergence from
the prior-predictive. The GO-OED design is then found by maximizing the EIG over the design
space using Bayesian optimization. We demonstrate the effectiveness of the overall nonlinear GO-
OED method, and illustrate its differences versus conventional non-GO-OED, through various test
problems and an application of sensor placement for source inversion in a convection-diffusion field.

1 Introduction

Experiments play a central role in science and engineering. For example, they can provide data for us
to better understand the underlying dynamics of a complex system, to examine process behavior in
unexplored regimes, and to validate the performance of a designed engineering system under real-world
conditions. Different experiments also offer varying degrees of usefulness. Consideration of an experi-
ment’s value thus becomes particularly important when costs are high or resources are limited, such
as the case of choosing components for destructive testing, deploying sensors to hazardous locations,
and selecting experiments for flagship scientific facilities and instruments. The field of optimal exper-
imental design (OED) (see, e.g., [25, 14, 11, 2]) thus seeks to identify experiments that can provide
the greatest value.

In order to compare and optimize the value of experiments, a prerequisite is to define a utility
metric that appropriately and quantitatively reflects the value of an experiment with respect to the
experiment goal. For example, a common experiment goal is to reduce the uncertainty about unknown
model parameters. For linear inverse problems [2], this uncertainty can be portrayed through the
Fisher’s information matrix (FIM) that is inversely proportional to the parameter covariance matrix.
The well-known alphabetic optimality criteria are then formed via different operations on the FIM
(e.g., A-optimality maximizes the trace of FIM, D-optimality maximizes the log-determinant of FIM,
etc.). Bayesian versions of the alphabetic optimality criteria can also be formed by inserting the prior
covariance [11]. For nonlinear models, mutual information (MI) [25] between the parameters and
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observables (equivalently, the expected Kullback—Leibler (KL) divergence from the Bayesian prior to
the posterior) is commonly adopted to measure the expected information gain (EIG) (i.e., expected
uncertainty reduction) on the model parameters. The MI criterion can be shown to simplify to the
Bayesian D-optimal design when applied to a linear model.

In many situations, however, reducing the uncertainty of model parameters is not the ultimate goal.
Instead, the experiment goal may entail reducing the uncertainty towards a downstream purpose (e.g.,
estimating the failure probability of a component, predicting the operational envelope of a system, or
making a decision that minimizes risk at a future time) that depends on the learned model parameters
and their uncertainty. Forming and optimizing a criterion reflecting such goal steers OED to be directly
relevant to the scientific question which motivated the experimental effort, and can reveal designs that
that significantly differ from OED that does not take these goals into account. We refer to such an
approach a goal-oriented optimal experimental design (GO-OED).

In this paper, we specifically consider the case where the goal is to reduce uncertainty on predictive
quantities of interest (Qols) whose value or distribution can be derived from the model parameters—
i.e., a predictive GO-OED. Hence, any uncertainty on the model parameters must be propagated to
the Qols through a parameter-to-Qol mapping (i.e., prediction model) that in general differs from the
parameter-to-observable mapping (i.e., observation model). Understanding how uncertainty reduction
due to experimental data propagates from the model parameters to the Qols is non-trivial and requires
new algorthmic advances.

The simplest forms of alphabetic optimality that involve predictive quantities are the L- and
Da-optimal designs, which respectively optimizes the trace and log-determinant of the covariance
under a linear combination of the model parameters [2]. For more general linear prediction models, I-
optimality minimizes the predictive variance integrated over a region of the prediction model’s domain,
while V-optimality minimizes over a set of points and G-optimality minimizes the maximum predictive
variance over a region [2]. More recent efforts demonstrated gradient-based techniques for tackling
Bayesian D 4- and L-optimal designs [3], and advanced scalable offline-online decompositions and low-
rank approximations for reducing the complexity for high-dimensional Qols [39]. These formulations,
however, continue to require linearity in the observation and prediction models.

Nonlinear GO-OED’s theoretical formulation originates from [4], but computational approaches
were not considered. GO-OED’s computation is significantly more challenging than non-GO-OED that
focuses on the parameter EIG. A related effort, the OED for prediction (OED4P) framework [8], has
been proposed by introducing a stochastic inverse problem aimed at finding a distribution whose push-
forward through the parameter-to-observable mapping matches the observed data distribution [6, 7.
The corresponding update distribution for the parameters is similar to the Bayesian posterior, but
replaces the marginal likelihood with the initial push-forward distribution of the predictive Qols. As
a result of avoiding the marginal likelihood, the update distribution and its push-forward can be eas-
ily sampled, and the expected KL divergence from the initial to the update distributions (and for
their push-forward counterparts) can be estimated inexpensively. Like other data consistent inver-
sion approaches, OED4P is flexible but also struggles to scale with the dimensionality of the data
and the number of experiments as the push-forward mapping is harder to approximate. Moreover,
OEDA4P is built upon principles differing from Bayesian probability, where the latter features posterior
distributions that emerge from conditioning on new data instead.

In this paper, we present new computational approaches for a Bayesian predictive GO-OED method
that estimates and optimizes the EIG on the predictive Qols while accommodating nonlinear obser-
vation and prediction models. In particular, we propose a nested Monte Carlo (MC) estimator for the
EIG on the Qols, employing Markov chain Monte Carlo (MCMC) to achieve the required parameter
posterior sampling. These samples are then propagated through the prediction model to obtain cor-
responding posterior-predictive samples of the Qols. Using a tuned kernel density estimation (KDE),
approximate posterior-predictive density values can be obtained, allowing the KL divergence to be



computed from the Qol’s prior-predictive to posterior-predictive distributions. The GO-OED design
is then found by maximizing a MC average of this KL divergence under different samples of poten-
tial experimental observations using a stochastic optimization routine such as Bayesian optimization
(BO). Our approach to GO-OED can generally apply to any Bayesian inference problem for which
MCMC has been demonstrated to give efficient and accurate results. Further it is highly parallelizable,
reducing the effective computational challenge.

The key novelty and contributions of our work can be summarized as follows.

o We review the Bayesian predictive GO-OED formulation for nonlinear observation and nonlinear
prediction models based on optimizing the EIG on the predictive Qols.

e We propose computational methods for approximating the expected utility through a nested MC
estimator powered by MCMC and KDE, and optimizing it with BO.

e We demonstrate GO-OED on benchmark tests and a convection-diffusion sensor placement ap-
plication, while contrasting the differences between GO-OED and non-GO-OED results.

The remainder of this paper is structured as follows. Section 2 presents the nonlinear Bayesian
GO-OED formulation. Section 3 details the numerical methods used to solve the GO-OED problem.
Section 4 provides three examples of GO-OED problems to demonstrate our GO-OED method, along
with discussions and interpretations of the results. Finally, Sec. 5 offers concluding remarks, discussions
on limitations, and ideas of future work.

2 Problem Formulation
Consider an observation model in the form
y=G(6,d) +e€ (1)

where y € Y C R™ is the observation data, @ € ® C R™ the vector of model parameters,d € D C R™
the experimental design vector, G : @ x D — R™ a nonlinear observation forward model (parameter-
to-observable mapping), and € € R™ the observation error. Under the Bayesian perspective, 6 is
modeled as a random vector whose probability density function (PDF) represents the belief (i.e.,
uncertainty) about 8. When new data y is acquired from an experiment performed at design d, the
PDF of 0 is updated via Bayes’ rule:

_ p(y|6,d) p(6|d)
POy = )

where p(0|d) is the prior PDF, p(y|0,d) is the likelihood, p(y|d) is the marginal likelihood (model
evidence), and p(@]y, d) is the posterior PDF. The prior thus depicts the uncertainty in 6 before seeing
any data, and the posterior depicts the updated uncertainty after observing y from an experiment
performed at d. We can reasonably assume that the prior is unchanged by the design alone, i.e.,
p(0]d) = p(0@). The likelihood corresponding to Eqn. (1) can be evaluated through the PDF of e:
p(Y‘eﬂ d) = Pe (y - G(07 d))

Further consider a prediction model

(2)

z=H(0,n) 3)

where z € Z C R™ is the vector of predictive Qols that depends on the model parameters 6 (but
does not depend on the experimental design d) and prediction stochastic variable n € R™, and
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Figure 1: Overview of the relationships among different variables in the GO-OED framework.

H: © x R™ — Z is a nonlinear stochastic prediction forward model (parameter-to-Qol mapping).
Figure 1 illustrates the relationship of 8, y, d, and z through the observation and prediction models.
The prior-predictive and posterior-predictive PDFs for z are respectively

p(z) = /@ p(216) p(6) d. (4)
paly, d) = /@ p(218) p(6ly, d) 6. (5)

If the prediction is deterministic z = H(@) (i.e., no prediction stochasticity i) then the respective PDF's
are defined by pushforward probability measures under suitable conditions.! Whether stochastic or
deterministic, we proceed with using z to denote the predictive Qols.

We take a decision-theoretic approach [25] to quantify the value of an experiment. Let u(d,y, ) be
the wutility when y is obtained from an experiment performed at design d and the true data-generating
parameters are 6. Since 8 and y are unknown when designing the experiment, we take their joint
expectation to arrive at the expected utility

/ / (d,y,0) p(6,y|d) d6 dy. (6)

In non-GO-OED, u(d,y,0) is typically chosen to be the KL divergence from the @-prior to the 8-
posterior. This leads to a U(d) that is equivalent to the MI between 6 and y, or the EIG in 6 [25]. Since
GO-OED now targets the predictive Qols z, we follow [4] and analogously employ the KL divergence
from the z-prior-predictive to the z-posterior-predictive:

u(da Yy, 0) = DxrL (pz|y,d sz) (7)
_ p(zly,d)]| .
= /Zp(z|y,d) In [ (2) ] dz = u(d,y). (8)

Note that the utility itself, same as in the non-GO-OED case, does not dependent on 8. Substituting
Eqn. (8) into Eqn. (6), we obtain

// zly,d) [ p(z ‘(y’) )] p(yld) dzdy = Eyjq [DkL(Pajy.a |l P2)] 9)

- frvan[ ] o s

'In situations where we can separate Eqn. (3) into deterministic and stochastic parts, e.g., H(0,7) = H(0) +n, then
we make the distinction between prior-/posterior-predictive and prior-/posterior-pushforward PDFs. “Predictive” refers
to z, and “pushforward” refers to the deterministic prediction portion (e.g., H(0)). The two names coincide when the
prediction model is deterministic: z = H(0).




which is the expected KL divergence (or EIG) on the predictive Qols z (per Eqn. (9)) and also the
MI between y and z conditioned on d (per Eqn. (10)). Notably, as stated by Theorem 1 in [4],

1(z;y|ld) <Z(6;y|d) (11)

with equality if z is a one-to-one transformation of 8. That is, the EIG (or MI) on the predictive Qols
z is always less or equal than the EIG (or MI) on the parameters 6.

Lastly, solving the GO-OED problem entails finding the optimal design from a design space D to
maximize the expected utility:

d* = argmax U(d). (12)
deD

3 Numerical Methods

3.1 Monte Carlo Estimation of the Expected Utility

In order to solve the GO-OED problem in Eqn. (12), we need to be able to evaluate U(d). However,
U(d) generally does not have a closed form and must be approximated numerically. We proceed to
build a MC estimator for U(d).

An initial MC estimator for Eqn. (9) may be written as

// zly,d ln[ p(z (y’) )] p(yld) dz dy

// [ 2y d } p(y,z|d) dz dy

/// { ’y’ ] p(0,y,z|d) d0 dz dy (13)
/// { ’y’ ] p(0) p(y|0,d) p(2|0) d6 dz dy

~ Ly {1 [p Dy, d)| = [p(z)] } (14)
i=1

where we can sample 8%) ~ p(0), y() ~ p(y|8©, d) (using observation model Eqn. (1)), () ~ p(z|8®)
(using prediction model Eqn. (3)). We do not explicitly have the prior-predictive PDF p(z(), but
using MC samples we can estimate this density. However, we cannot evaluate the posterior-predictive
PDF p(z®|y®,d) in the first term of Eqn. (14), nor can we directly estimate this conditional density
from MC samples since we do not have multiple z samples for each y(. This motivates the following
nested-loop MC estimator, continuing from Eqn. (13):

u(d) _/// [ zly,d ]p(é’,y,zld)dadzdy
/// [ ‘y’ ]p(}’|d)p(9|y7d)p(z|9)d0dzdy

1 Nout MNin

Z o LS [p@ )y, )]~ n [p)] (15)
w

where nqut and ny, are respectively the number of samples for the outer and inner loops. For the first

~
~

TNout

term, the outer loop is tasked with sampling y* ~ p(y|d), which is achieved by sampling é(i) ~ p(6)



followed by y®) ~ p(y|é(i), d). The inner loop then samples 807 ~ p(8]y@, d) and z() ~ p(z]007)).
For the second term, since In[p(z)] is independent from both y and d, the term may be estimated
separately from the above loops and from the optimization over d (i.e., omitted from the optimization

statement in Eqn. (12)). Here we write its estimation under the outer loop so to use the same 9"
samples to generate the prior-predictive z() samples, but noting that this is done only once at the
beginning of the d optimization and need not be repeated at each d (see Algorithm 1).

The key of the nested-loop MC structure is that it allows multiple z(*J) samples to be generated for
each y(i), and hence density estimation can be carried out for p(z]y(i), d). Furthermore, while the prior,
likelihood, and predictive sampling all can be done easily, 007) ~ p(0\y(i), d) is posterior sampling
and non-trivial. In the next section, we discuss our approach to these two numerical challenges in the
MC estimator for U(d): posterior sampling and density estimation.

3.2 Posterior Sampling and Density Estimation
3.2.1 Markov Chain Monte Carlo for Sampling p(8|y*,d)

We elect to perform posterior sampling via MCMC (see e.g., [1, 35, 5]), although the overall GO-
OED framework is agnostic to the choice of posterior sampling method. MCMC will asymptotically
sample the posterior distribution under sufficient conditions of ergodicity and detailed balance. In
particular, we adopt an existing parallel Python MCMC implementation called emcee [15]. Emcee
is built upon the affine invariant stretch move algorithm [17] that is designed to perform well under
all linear transformations and therefore insensitive to correlation among parameters. The algorithm
involves an ensemble of n,, walkers S = {61,602,---,0,,}. For the ith walker currently at 6;, the
proposal procedure first randomly samples a €; among the current positions of the other (n, — 1)
walkers and then computes

0, =0;+7(6;—6;) (16)

where v is drawn from a PDF p(y) satisfying p (%) = ~p(7) in order to achieve the affine invariant

property. For example [17] uses

1

— if~ye [l a]
vioBrE e 17
p(y) { 0 otherwise (17)

where a > 1 is an adjustable hyperparameter. Detailed balance is satisfied if the proposed point is
accepted with probability

(18)

o = min <1 7”9—1]9(‘%’3”(1)>

where the posterior density ratio can be calculated from just the prior and likelihood (marginal likeli-
hood terms cancel out in the ratio). The emcee package further parallelizes the algorithm by splitting
all walkers into two subsets, where walkers from within each subset are then updated by proposing
from the other subset. The use of multiple walkers can potentially provide better exploration of
multi-modal posteriors.

We note that in the GO-OED context, the posterior sampling is done conditioning on each y®
® that generated this y(?) (see the sampling procedure
described just below Eqn. (15)). Hence, MCMC can be accelerated by initializing the walkers at é(z),
which corresponds to an “oracle estimator” that is generally much closer to the center region of the

posterior than a randomly initialized point from the prior. Thus, MCMC in GO-OED is more benign,

sample, and we always have access to the true 0



and requires fewer iterations, than a typical Bayesian inference problem. However, for unidentifiable
and multi-modal posteriors, this technique is less effective and samplers suited for multi-modality may
be more appropriate [13, 23, 33, 30, 10]. As with general MCMC, convergence diagnostics should be
evaluated to make sure the choice of sampler and its parameters are amenable to the problem [12, 36].

3.2.2 Kernel Density Estimation for p(z) and p(z|y®,d)

We perform density estimation for the prior- and posterior-predictive PDFs, respectively p(z) and
p(z|y®,d), using KDE. Given samples (21,22, - - - ,2,), the estimated PDF from KDE is

pra(s) = - > Ku(s — ) (19)
=1

where Kyy is the kernel and H is its bandwidth matrix. We use the Scikit-Learn KDE implementation
[31] that employs an isotropic Gaussian kernel with H = diag(h?, h?,..., h?):

17t (zj — 2i;)°
Kua(z — ) = J];[l o {_J%QJ] . (20)

Thus, h plays the role of standard deviation of the kernel, and smaller h leads to sharper peaks around
each sample while larger h induces a more diffusive effect. Many methods for choosing h exist [29, 9, 22]
but they become expensive if needs to be repeated for p(z|y®, d) with every y* sample and at each
new d. In order to maintain a reasonable computational cost for bandwidth selection, at each d,
we perform 5-fold cross-validation to select the optimal A during the first few ¢ outer-loop iterations,
and then choose the average value of those optimal h’s and fix it in all subsequent computations
for that d. Bandwidth can certainly affect the estimation of U(d), where too small of a bandwidth
produces sharper posteriors and therefore higher perceived EIG and overestimate of U(d), while too
large a bandwidth tends to underestimate U(d). We will explore the effects of KDE bandwidth in the
numerical experiments.

3.3 Bayesian Optimization

Lastly, we need an optimization algorithm to solve Eqn. (12). Such algorithm needs to handle noisy ob-
jectives since only MC estimates of U(d) are available. Grid search may be feasible for low dimensional
d (e.g., ng < 3) but the number of grid points grows exponentially with ng. While previous efforts
have investigated derivative-free (e.g., nonlinear simplex and simultaneous perturbation stochastic ap-
proximation) [19] and gradient-based (e.g., Robbins-Monro and sample average approximation) [20]
optimization methods in the context of non-GO-OED, the former can be slow in convergence and the
latter requires gradient access and more prone to local optima.

We explore the use of BO in this work favoring its globally convergent properties, high sample
efficiency and noise tolerance, and suitability for expensive objective function evaluations [32, 37, 16,
38]. In particular, we adopt the Nogueira Python BO package [28]. BO describes the objective function
U as a Gaussian process (GP) [34, 18], and its GP prior can be updated to a posterior analytically
when new “observations” (i.e., evaluations) of U become available. The next evaluation point for U
is then determined by optimizing a relevant acquisition function derived from the GP, which does
not require gradient of U. We summarize below the three main BO steps along with our choice of
algorithm settings.



3.3.1 Step 1: Gaussian Process Regression

BO uses a GP to represent the uncertainty of a random function U : D — R that we wish to optimize.
The GP is specified by a mean function m(d) and covariance kernel k(d,d’). While different kernel
choices are possible, we adopt the Matérn kernel [34], a popular choice that also generalizes the radial

basis function:
k(d,d) = F(y)lzy_l <\/l27d(d,d’)> B, <\/l27d(d, d’)) (21)

where v controls the smoothness, [ is the length scale, d(-,-) is the Euclidean distance, I' is the gamma
function, and B, is the modified Bessel function. We further fix v = 2.5 but re-tune the hyperparameter
I every time the GP is updated. As new evaluations of the random function U = [U(l), ey U(k)]T
at locations D = [d(l), . ,d(k)]T become available, the GP’s prior mean and covariance are updated
to the posterior mean m(d|{D,U}) and covariance Cov[U(d),U(d")|{D, U}] following standard GP
regression update formulas [34].

3.3.2 Step 2: Acquisition Function

The selection of the next d to evaluate U is guided by an acquisition function. Thus, the acquisition
function needs to be inexpensive to evaluate and optimize, and reflects the potential value of a new
evaluation U(d) towards the overall optimization problem in Eqn. (12). Many choices of acquisition
function have been proposed in the BO literature, such as the upper confidence bound (UCB), proba-
bility of improvement (PI), and expected improvement (EI) (see, e.g., [21, 26, 40]). We select a simple
99.5% UCB in this work.

3.3.3 Step 3: Optimization Update

The next location d*1) to evaluate U is then selected by maximizing the acquisition function. This
inner optimization subproblem is inexpensive by design and needs not be solved very accurately in
practice. We solve it using the limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm with
box constraints (L-BFGS-B) [27][Ch. 7] and with multiple restarts. Upon obtaining U(d*+1)), the
GP can then be updated via Step 1. The cycle can be repeated until we reach a stopping criterion
(e.g., maximum allowable iteration, lack of improvement to the highest value of U(d) encountered).

3.4 Summary of the Overall Algorithm
Pseudocode for our overall MCMC-based GO-OED algorithm is provided in Algorithm 1.

4 Numerical Experiments and Results

We present a series of numerical experiments with increasing complexity and designed to illuminate
different aspects of the GO-OED approach. Section 4.1 starts with several cases with one-dimensional
(1D) parameter, observation, and design spaces. The primary purposes of these examples are to
validate GO-OED by comparing it with accessible and accurate non-GO-OED results under situations
where theory shows they should agree, and to explore GO-OED’s numerical behavior (e.g., effect of
KDE bandwidth). Section 4.2 increases to two-dimensional (2D) parameter, observation, and design
spaces with a focus to present the effectiveness of BO. Lastly, Sec. 4.3 presents a problem of sensor
placement in a convection-diffusion field with predictive Qols that include future concentrations at
various locations and flux across a boundary. The last problem involves even higher dimensional
settings and provides illustrations that involves physics-based modeling.



Algorithm 1 MCMC-based GO-OED.

Input: Prior p(0); observation forward model G(0,d); likelihood p(y|€, d); prediction model H(6,n);
predictive-likelihood p(z|@); MC sample size nout, nin; initial design dg; emcee hyperparameters
Ny, a; KDE kernel hyperparameter h; BO hyperparameters v, [, termination criteria;

1: Draw ngy prior samples 8 ~ p(8), prior-predictive samples z(?) ~ p(z|9(i));
2: Estimate prior-predictive PDF p(z) using KDE (Sec. 3.2.2);
3: Set k = 0, initial do;
4: while BO termination criteria not met do
50 fori=1,...,nqyx do

, () (i) () ,
6:  Sample 6" ~p(8), y' ~ p(yl0 ", d);
7 fOI‘jZl,...,nindO
8: Sample posterior 877 ~ p(@ly? . d) via MCMC (Sec. 3.2.1);
9: Sample posterior-predictive z(#7) ~ p(z|0(i’j));
10: Estimate posterior-predictive PDF p(z|y(?,d) using KDE (Sec. 3.2.2);
11: end for
12:  end for

- el IR 6D 1@ )] 1 [l Ean. (15

13:  Estimate U(dy) ~ - ; — ;ln [p(z ly‘", )} n [p(z )} (see Eqn. (15));

14:  Update GP mean and covariance (Sec. 3.3.1);

15:  Optimize updated GP acquisition function to identify next point dp4; to evaluate objective
(Sec. 3.3.2 and 3.3.3);

16: k=k+1;

17: end while

18: Return dj, as the numerical estimate for d*, and U(dy) for U(d*);

4.1 1D Nonlinear Test Problems

We begin with a 1D test problem from [19] to explore some basic properties of our GO-OED approach.
Consider a nonlinear observation model:

y(0,d) = G(0,d) + e
= 03d% + Gexp (—[0.2 — d|) + (22)

where all variables are scalar, d € [0,1], € ~ N'(0,10~%), and prior # ~ #(0,1). With this observation
model, below we present cases involving different combinations of prediction models.

Case Bn First, we set up a benchmark (Bn) case where the prediction model is 6 itself:
z=H(0) =86. (23)

GO-OED therefore coincides with non-GO-OED and near-identical results are expected. As a high-
accuracy reference solution, we estimate U(d) using a gridding method on a fine grid of 2000 nodes
for discretizing the parameter space @ = [0,1]. The unnormalized posterior PDF (i.e., likelihood
times prior) is calculated on this grid and then normalized by approximating the marginal likelihood
through the mid-point integration rule. However, gridding is not scalable to higher dimensional 6 and
only implementable for prediction models of z = 6, therefore it is not be available for other test cases.
Figure 2a shows the expected utility computed using gridding (GRID), adaptive bandwidth (ADBW)
(KDE bandwidth adaptively optimized at each d using cross-validation as described in Sec. 3.2.2), and



fixed bandwidth (BW) (KDE bandwidth fixed across all d, illustrated at two pre-selected values) meth-
ods. MCMC used for ADBW and BW employed 1000 iterations with an additional 50 for burn-in.
While all methods preserve the general trend in the expected utility, the discrepancies of ADBW
and BW compared to the GRID reference is noticeable. Both ADBW and BW exhibit variance and
bias, which result from the underlying MCMC and KDE computations. The optimized bandwidths
for ADBW are shown in Fig. 2b across d, varying roughly between 0.0035 and 0.006. As shown in
Fig. 2a, the expected utility when setting BW to roughly ADBW’s lower (0.0035) and upper (0.006)
bandwidth limits approximately creates an envelopes around the ADBW expected utility curve. This
is consistent with the anticipated behavior described in Sec. 3.2.2, where a lower bandwidth tends to
form narrower posterior distributions and overestimate the EIG, and vice versa for higher bandwidth.
Overall, ADBW and BW perform similarly, suggesting that fixing bandwidth across the design space
may be sufficient in practice.

35 0.0060

0.0055

0.0050

U(d)
Bandwidth

0.0045

0.0040

--- BW:0.0035
—-— BW:0.006 0.0035

0.0 02 0.4 06 08 1.0 0.0 02 04 06 08 1.0
d d

(a) Expected utility (b) Optimized bandwidth values from ADBW

Figure 2: Case Bn: expected utility (left) and optimized KDE bandwidth in ADBW across d (right). GRID
uses the gridding method for discretizing ® and is treated as the reference solution. ADBW and BW are
the GO-OED estimators proposed in this paper, where ADBW uses adaptive bandwidth and BW uses fixed

bandwidth. All methods agree on the general trends although bias and variance are noticeable for the three
GO-OED methods.

Case T1 In case T1, we adopt a nonlinear prediction model that differs from the observation model:
z=H(f) =sinf + Oexp (0 + 0.5 — 6]). (24)

Since the prior for  has compact support between [0, 1], the predictive Qol is bijective for the param-
eter within this range. From Eqn. (11), a bijective parameter-to-observation mapping should lead to
the same EIG as the non-GO-OED case just as in Case Bn. This is confirmed by the expected utility
curves shown in Fig. 3a, all agreeing with the trend of the non-GO-OED GRID results in Case Bn
(which is equivalent to this case). The GO-OED methods here, however, exhibit additional variance
and bias from the KDE and MCMC compared to those in the Bn case. This is likely due to the
increased sensitivity and variability of the mapping from 6 to z. The optimized bandwidths from
ADBW is shown in Fig. 3b across d, varying roughly between 0.01 and 0.02. Similar to the previous
case, in Fig. 3a we observe that the expected utility curves when setting BW to around ADBW’s lower
(0.01) and upper (0.02) bandwidth limits create an envelope around ADBW, although the upper curve
(from the lower bandwidth limit) is quite tight. Given the challenges in identifying a suitable fixed
bandwidth a priori, we will focus on the ADBW for upcoming cases.
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Figure 3: Case T1: expected utility (left) and optimized KDE bandwidth in ADBW across d (right). A low
bandwidth leads to an overestimated EIG, a high bandwidth leads to an underestimated EIG.

Case T2 and T3 In cases T2 and T3, we adopt observation models where z is no longer bijective
with 8. These illustrations will show that reducing the uncertainty of parameters 6 is not equivalent to
reducing the uncertainty of predictive Qol z, leading to different optimal designs. Consider prediction
model T2:
— 1000425, 0 <6 <0.15
z=H(#)=1<5,015<6<0.7 (25)
500 + 25, 0.7 <6 <1.0

and prediction model T3:

z=H(0) =

I R

5 5,9 ] with p©=0.3, 0 =0.2. (26)
o o

The expected utility curves for T2 and T3 are shown in Fig. 4, which are significantly different from
that of Bn and T1. Notably, T2 continuously increases with d roughly at a constant rate and reaches
an optimal around d = 1.0, and T3 does not “tail up” as much as T1/Bn when d approaches 1.0 while
reaching an optimal around d = 0.2.

To further illuminate the optimal design behavior of non-GO-OED versus GO-OED, we produce
in Fig. 5 example posterior distributions when d = 0.2 (T3 GO-OED optimum) and d = 1.0 (non-
GO-OED optimum). These examples are demonstrated by conditioning on y simulated at § = 0.1
and 6 = 0.9 for parameter variety (recall prior § ~ U(0,1)). From Fig. 5a where the y is simulated
at § = 0.1, d = 0.2 yields a narrower posterior (KL divergence from prior to posterior, or information
gain, of 3.15) while d = 1.0 offers a slightly wider posterior (information gain 2.44). Figure 5b presents
another example for when y is simulated at § = 0.9, where the opposite is observed (information gain
3.89 at d = 1.0 is higher than information gain 3.23 at d = 0.2). The variability in information gain
thus can alter the ranking of the two designs. When this procedure is repeated for many samples of
f and y and taking the expectation, it is the expected information gain on 6 that becomes higher at
d = 1.0 than at d = 0.2.

We perform the same assessment for the posterior-predictive distributions, shown in Fig. 6. To
begin, we note that the prior-predictive, shown in Fig. 6a, is no longer uniform after 6 is transformed
through the T3 prediction model in Eqn. (26) but rather highly concentrated towards the two ends and
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Figure 4: Case Bn, T1, T2, T3: expected utility comparisons. The benchmark case (Bn, GRID) has z = 6 and
therefore equal to the parameter EIG. Case T1 has a nonlinear but bijective mapping from the parameter to
the Qol and so has the same EIG as Bn. Cases T2 and T3 are non-bijective Qols and their EIGs are lower
compared to the parameter EIG, per Eqn. (11).

slightly higher on the left side. The subsequent information gains on the Qols will thus be computed
relative to a KDE fit to this prior-predictive distribution. In Fig. 6b we see the case where y is
simulated at = 0.1 and design d = 0.2 yields a narrower posterior-predictive (information gain 2.49)
while design d = 1.0 offers a slightly wider posterior-predictive (information gain 1.76). Figure 6c¢
presents another example for when y is simulated at # = 0.9, where again the opposite is observed
(information gain 2.11 at d = 1.0 is higher than information gain of 1.91 at d = 0.2). First, we note
that these information gain values are all lower than their # information gain counterparts from Fig. 5;
this is again consistent with the inequality in Eqn. (11). Second, the variability in information gain can
again alter the ranking of the two designs. Upon taking the ezpected information gain over different 6,
y, and z values leads to an overall higher EIG on z at d = 0.2 than at d = 1.0; this ranking is inverted
compared to that in the 8 EIG.

4.2 2D Nonlinear Test Problems

Next, we present test problems that entail 2D parameter, observation, and design spaces. The first
example modifies the observation model from Eqn. (22) to incorporate a 2D 0:

y=G(0,d)+e=03d>+ 0yexp (—[0.2 — d|) + € (27)

where now the prior becomes 8 ~ U([0, 1] x [0,1]) and all other settings remain the same. We consider
two subcases with new prediction models:

z = H(#) = cos b cosbyexp [— (61 — 0.4)% + (63 — 0.6)2], (Easom Eqn.) (28)
z=H(0) = (1—601)*+5(0 — 6%)°. (Rosenbrock Eqn.) (29)
The non-GO-OED (via the gridding method) and GO-OED expected utilities are shown in Fig. 7.
Both Easom and Rosenbrock subcases maximize z EIG with a design around d = 0.7. To understand
these results, we see that when d is small 8 is not easily identifiable, but as d increases up to 0.2 both
#,1 and 6> improve their identifiablilty, with 65’s signal peaking at d = 0.2. As d further increases, 0;’s

identifiability continues to improve while 6’s decreases again. This explains the trend of the non-GO-
OED EIG curve in Fig. 7. However, the d = 0.2 peak disappears for the z EIG curves under the Easom
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Figure 5: Case T3: example posterior distributions. The left plot conditions on y simulated at § = 0.1, and
d = 0.2 yields a narrower posterior; the right plot conditions on y simulated at § = 0.9, and d = 1.0 yields a
narrower posterior. The variability in information gain thus can alter the ranking of the two designs. When
repeated for many samples of  and y and taking the expectation, it is the expected information gain on 6 that
is higher at d = 1.0 than at d = 0.2.

and Rosenbrock prediction models. This can be understood from the forms of Eqn. (28) and (29).
As noted above, for small d information is only gained about #2 and not ;. However, knowing 6
alone does not provide much information about these Qols without knowing some information about
f1. When d is larger we find more balanced information gain about both parameters alowing more
information to be gained about these two functions.

Expanding further to 2D design and 2D observation spaces, the next case involves a multi-
dimensional observation model:

_ [63d3 + Oz exp (— 0.2 — da|)

y=HO.d)+ =155 g ep(— (02— dy)

+e€ (30)

where € ~ N (0, 10*411). The prediction models are the same Easom and Rosenbrock equations from
Eqn. (28) and Eqn. (29), respectively. The 2D GO-OED expected utility contours are shown in Fig. 8.
In contrast to the 1D results in Fig. 7, the GO-OED contours now exhibit the local maximum at
design values around 0.2. This is because the 2D observation model in Eqn. (30), through having both
0, and 6 pre-multiplying the two exponential terms, allows the learning of both parameters well at
ds = 0.2. Aslong as dy is small, the observation model means that both parameters are well identified
so the Qols will also be well identified.

While the expected utility contours have all been constructed so far by estimating U(d) on a tensor
grid of d, such brute-force grid search is computationally expensive and may only be done for low
dimensional d. An optimization algorithm, such as the BO algorithm presented in Sec. 3.3, would be
more efficient to seek out d* directly. Here we assess the BO performance in searching for the optimal
design via the Easom prediction subcase. As seen in Fig. 9a, BO first randomly select 3 initial points
(black) and then uses the UBC acquisition function to select the next points (in orange). We see these
points cluster towards the eventual numerical optimum (red star) but maintains some exploration
of the design space as well. The combination of exploitation and exploration can be seen further in
Fig. 9b that plots the convergence history of BO. The U(d) values encountered in BO holds an overall
increasing trend, but also scattered with low dips that are indicative of the occasional exploration.
We will employ BO for all subsequent numerical demonstrations.
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Figure 6: Case T3: Prior-predictive distribution and example posterior-predictive distributions. The bottom-
left plot conditions on y simulated at § = 0.1, and d = 0.2 yields a narrower posterior; the bottom-right plot
conditions on y simulated at # = 0.9, and d = 1.0 yields a narrower posterior. The variability in information
gain thus can alter the ranking of the two designs. When repeated for many samples of 6, y, and z and taking
the expectation, it is the expected information gain on z that is higher at d = 0.2 than at d = 1.0.

4.3 Convection-Diffusion Example

In this example, we apply GO-OED for the design of sensor locations in a 2D convection-diffusion
field. In this scenario, the concentration ¢ (e.g., of a chemical contaminant) at location x = (z,y) and

time t is governed by the convection-diffusion partial differential equation (PDE):
Odc(x,t;0
(3(37) =V?%—u(t) -Ve+ 8(x,t;0), xe[-1,2>, t>0 (31)

where 8 = (0,,6,) € [0,1]? is the (unknown) source location with a uniform prior U([0,1]?), u =
(50t,50¢) is the (known) convection velocity, and the source function S has the form:

s 16 —x|I3

with s = 2 and h = 0.05 representing source strength and source width respectively. No-flux (homo-
geneous) Neumann boundary conditions are applied on all four boundaries of the square domain, and
the initial condition is ¢(x,0;0) = 0.
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Figure 8: Expected utility contours for the 2D 6, d, and y case.

Numerical Solver and Surrogate Model To numerically solve the PDE, we use second-order
finite volume method on a uniform grid with Az = Ay = 0.01, and the fractional step method for time
marching with stepsize At = 5 x 10~%. The fractional step method combines an explicit second-order
Adams—Bashforth discretization for the convective term and an implicit second-order Crank—Nicolson
discretization for the diffusive term. Moreover, we employ the QUICK scheme [24] on the convective
term to increase numerical stability. Example solutions of the concentration field at different time
snapshots are shown in Fig. 10.

The OED cases (detailed setups to be presented later) will entail making observations at t; = 0.05
for predicting various Qols at future time t3 = 0.2—hence, the concentrations c¢(x, t1,0) and c(x, t2, 0)
will be needed. While it is possible to directly use the finite volume forward model through the entire
OED procedure, we construct deep neural network (DNN) surrogate models for quantities ¢(x,t1;8)
and c(x,t2;0) in order to accelerate the computations. Each DNN has a four-dimensional input layer
taking x and @, five hidden layers with 40, 80, 40, 20 and 10 nodes, and a scalar output c. To
facilitate training of these surrogate models, finite volume solution fields are obtained at 2000 random
0 samples drawn from the prior. The full dataset for the region of interest x € [0,1]? thus entails
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red star is the numerical optimal design found by BO.
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Figure 10: Example numerical solutions of the concentration field at different time snapshots with 8 =
[0.257,0.528]. The solution is solved using finite volume in the wider computational domain [—1,2]? but dis-
played here in the region of interest [0, 1]°.

2000 x (1&?) X % = 2 x 107 total points for c(x,t1,8), and also for c(x,ts,0). Each dataset is
randomly shuffled and then divided to training and testing with an 80-20 split. Figure 11 provides
comparisons of the the predicted concentration fields at ¢; and t5 using DNN surrogates (left columns)
and finite volume (right columns), which agree very well with testing mean-squared errors around 1076
and 107 for c(x,t1;0) and c(x, ta; ), respectively. More crucially, the DNN surrogates accelerate each
forward model evaluation by about 10° times compared to finite volume.

We begin by setting up an observation model for a design problem of selecting the coordinates of
a single sensor d € [0, 1]? at which the concentration can be observed:

y=G(0,d)+e=c(x=d,t,0) +e, (33)

with € ~ AN(0,0.05%I). For a non-GO-OED that seeks to maximize the EIG on 8, the expected utility
contour is shown in Fig. 12 where the optimal design appears around an inner ring roughly radius 0.2
from the center and slightly shifted to the top-right due to the convection direction to the top-right.

Future Concentration Qols For GO-OED, we first investigate when the predictive Qol is set to

z=H(0)=c(x =&, t2,0) (34)
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Figure 12: Convection-diffusion 1-sensor design: non-GO-OED expected utility contour.

with four subcases of (a) & = (0.1,1.0), (b) & = (1.0,1.0), (c) & = (0.1,0.1), and (d) & = (1.0,0.1).
Each subcase corresponds to predicting the concentration near one of the four corners at future time ¢s.
The expected utility contours for the subcases are shown in Fig. 13, which appear drastically different
from the non-GO-OED result in Fig. 12. The regions of high expected utility roughly coincide with
location of the predictive Qols: for example, for subcase (a) where the Qol is in near the top-left
corner, the GO-OED optimal design also follows towards the top-left. The more elongated contour
for subcase (b) results from the convection in the top-right direction, where there is value in taking
the earlier measurement at t; upstream of the targeted top-right &€ at ts.

Next, we illustrate a few cases with multiple sensors and combinations of Qols. Consider the
GO-OED case where the concentration at two locations, £; and &5, are of interest:

_ _ C(X:£7t276)
z—=H(6) = [C(X - S;,tg,g)] . (35)

We consider two subcases of (a) & = (0.08,0.98) and &, = (0.12,0.98) and (b) &; = (0.1,1.0) and
& = (1.0,1.0). Figure 14 shows the sensor combinations encountered in BO (each combination is
connected by a straight line) and the expected utility value is indicated by color intensity. The

combination with the highest expected utility (i.e., the optimal 2-sensor design) is highlighted in red.
In subcase (a), while both the Qol locations &; and &, are near the top-left corner, we see the sensor
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Figure 13: Convection-diffusion 1-sensor design: GO-OED expected utility contours for subcases (a)—(d), where
each predictive Qol is the concentration at future time ¢5 and location £ (marked by red star).

combinations with high expected utility tend to spread from top-left towards crossing the diagonal
line of dy = dy. Subcase (b) similarly does not simply place the two sensors near the £ locations.
The high-value design patterns change further when designing for 3 sensors in Fig. 15, where now
the optimal 3-sensor combination is connected by a triangle. Overall, the 3-sensor patterns appear
more spread out, possibly as a result of having a larger number of observation opportunities. These
observations suggest the non-trivial effects from the experiment dynamics and sensor coordination
toward the experiment goals.

Future Flux Qol Our final cases involve an Qol that is functional of the concentration field,
namely the flux through the right boundary of the region of interest at to. Such quantity is useful for
understanding the total contaminant crossing the boundary into a sensitive or protected area to the
right. The prediction model becomes

1
z:H(O) :/ _ M dy, (36)
Ox (1,y),t2,0

-1

which we estimate using second-order center difference upon obtaining c¢(x,t2,0) values from the
DNN surrogate model. Figure 16 shows the 2-sensor combinations encountered in BO with the best
combination highlighted in red. In general, combinations of top-left-to-bottom-right tend to provide
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Figure 14: Convection-diffusion 2-sensor design: GO-OED for subcases (a) and (b), where the predictive Qols
are the concentration at ty and two locations &; and &, (marked by red stars). The plot shows the sensor
combinations encountered in BO (each combination is connected by a straight line) with the optimal combination
shown in red; the expected utility value is indicated by color intensity.

higher EIG for this flux Qol, and the sensors are not simply placed geographically close to the flux
being considered (i.e., close to the right boundary).

The last example illustrates a 3-sensor design while combining two different types of Qol together:
the concentration at & = (0.1,1.0) and the flux through the right boundary. Figure 17 shows the
3-sensor combinations encountered in BO with the best combination highlighted in red. We again
observe a more spread-out pattern, likely due of having a larger number of observation opportunities.

5 Conclusions

We presented a computational method for Bayesian GO-OED that estimates and optimizes the EIG
on the predictive Qols under nonlinear observation and prediction models. This was achieve by
establishing a nested MC estimator for the Qols’ EIG, which used MCMC for the necessary posterior
sampling. Posterior-predictive samples were then generated by propagating the posterior samples
through the prediction model, and subsequently posterior-predictive PDF was approximated via KDE,
finally allowing the KL divergence to be computed from the Qols’ prior-predictive distribution to
the posterior-predictive distribution. The GO-OED design was then found by maximizing the EIG
estimate in the design space using BO.

A number of numerical experiments were provided to illuminate different aspects of the GO-OED
framework. These included 1D test problems for validating GO-OED results against alternate com-
puting methods, and exploring GO-OED’s numerical behavior (e.g., KDE bandwidth) in simple, con-
trolled settings. 2D examples then followed to demonstrate the effectiveness of BO. Finally, a problem
of sensor placement in a convection-diffusion field involving physics-based modeling was investigated
to illustrate different predictive Qols that included concentrations at various locations and flux across
a boundary, all at a future time. Throughout these examples, we demonstrated that GO-OED and
non-GO-OED design configuration may differ significantly.

A key limitations of this paper’s GO-OED is its dependence on MCMC and KDE. While MCMC
can be accelerated by initializing the walkers from the true sample-generating parameter values, it
can still be slow for complex posterior manifolds and high dimensional parameter spaces. This can
introduce high estimator variance. KDE in principle converges to the true density as sample size
increases, its finite approximation error can still greatly shift the optimal design locations. The

19



2.0 2.0
1.8
1.5
1.6
1.0 1.4
1.2
0.5
1.0
. T T y - 0.8
0.0 0.2 0.4 0.6 0.8 1.0
a1
(a) &, = (0.08,0.98), &, = (0.12,0.98) (b) &, = (0.10,1.00), &, = (1.00,1.00)

Figure 15: Convection-diffusion 3-sensor design: GO-OED for subcases (a) and (b), where the predictive Qols
are the concentration at ty and two locations &; and &, (marked by red stars). The plot shows the sensor
combinations encountered in BO (each combination is connected by a triangle) with the optimal combination
shown in red; the expected utility value is indicated by color intensity.

adaptive tuning of bandwidth is also not infallible (i.e. still leading to bias), and becomes expensive if
re-tuning is required frequently (e.g., for every MC sample). Promising directions of future work thus
entail seeking more efficient methods for estimating the EIG, for example through more sophisticated
density estimations such as Gaussian mixture models, transport maps, and normalizing flows; deriving
and optimizing bounds for EIG; and building density ratio estimators that can also accommodate
implicit likelihood situations.
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