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Finite and Symmetric Euler Sums and Finite and Symmetric

(Alternating) Multiple T -Values

Jianqiang Zhao∗
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Abstract. In this paper, we will study finite multiple T -values (MTVs) and their alternating versions,
which are level two and level four variations of finite multiple zeta values, respectively. We will first
provide some structural results for level two finite multiple zeta values (i.e., finite Euler sums) for small
weights, guided by the author’s previous conjecture that the finite Euler sum space of weight, w, is
isomorphic to a quotient Euler sum space of weight, w. Then, by utilizing some well-known properties
of the classical alternating MTVs, we will derive a few important Q-linear relations among the finite
alternating MTVs, including the reversal, linear shuffle, and sum relations. We then compute the upper
bound for the dimension of the Q-span of finite (alternating) MTVs for some small weights by rigorously
using the newly discovered relations, numerically aided by computers.
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1 Introduction

In [10], Kaneko and Tsumura proposed a study of multiple T -values (MTVs):

T (s) :=
∑

n1>···>nd>0
nj≡d−j+1 (mod 2)

d∏

j=1

1

n
sj
j

, s = (s1, . . . , sd) ∈ Nd, (1)

as level two variations of multiple zeta values (MZVs), which, in turn, were first studied by Zagier [24]
and Hoffman [3] independently:

ζ(s) :=
∑

n1>···>nd>0

d∏

j=1

1

n
sj
j

, s = (s1, . . . , sd) ∈ Nd, (2)

where N is the set of positive integers. These series converge if and only if s1 ≥ 2, in which case we say
s is admissible. As usual, we call |s| := s1 + · · · + sd the weight and d the depth. Note that the series
becomes Riemann zeta values when d = 1. One of the most important properties of these values is that
they can be expressed by iterated integrals. The main motivation to consider MTVs is that they are also
equipped with the following iterated integral expressions:

T (s) =

∫ 1

0

(
dt

t

)s1−1
dt

1− t2
· · ·

(
dt

t

)sd−1
dt

1− t2
(3)

which provide the MTVs with a Q-algebra structure because of the shuffle product property satisfied by
iterated integral multiplication (see, e.g., [27, Lemma 2.1.2(iv)]).
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In addition to MTVs, many other variants of MZVs have been studied due to their important con-
nections to a variety of objects in both mathematics and theoretical physics. For example, Yamamoto [23]
defined the interpolated version of MZVs, which connects ordinary MZVs to the starred version; Hoff-
man [4] defined an odd variant by restricting the summation indices nj ’s to odd numbers only; Xu and the
author [21, 22] further extended both Kaneko-Tsumura and Hoffman’s versions to allow for all possible
parity patterns.

On the other hand, the congruence properties of the partial sums of MZVs were first considered by
Hoffman [6] and the author [26] independently. Contrary to the classical cases, only a few variants of
these sums exist (see, e.g., [9, 12, 17]). In this paper, the author will concentrate on the finite analog of
MTVs defined by (1).

Let P be the set of primes. Then by putting

A :=
∏

p∈P

(Z/pZ)

/⊕

p∈P

(Z/pZ), (4)

we can define the finite multiple zeta values (FMZVs) according to the following:

ζA(s) :=

( ∑

p>n1>···>nd>0

d∏

j=1

1

n
sj
j

(mod p)

)

p∈P

∈ A.

Nowadays, the main motivation for studying FMZVs is to understand a deep conjecture proposed by
Kaneko and Zagier around 2014 (see Conjecture 1.1 below for a generalization). Although this conjecture
is far from being proved, many parallel results have been shown to hold for both MZVs and FMZVs
simultaneously (see, e.g., [13, 14, 15]). In particular, for each positive integer w ≥ 2, the element

βw :=
(Bp−w

w

)

w<p∈P
∈ A (5)

is the finite analog of ζ(w), where Bn’s are the Bernoulli numbers defined by

t

et − 1
=

∑

n≥0

Bn
tn

n!
,

which have played very important roles in many areas of mathematical studies, such as Clifford analysis [2]
and topology [11].

Furthermore, the connection goes even further to their alternating versions — the Euler sums and
finite Euler sums. For s1, . . . , sd ∈ N and σ1, . . . , σd = ±1, we define the Euler sums

ζ(s1, . . . , sd;σ1, . . . , σd) :=
∑

n1>···>nd>0

d∏

j=1

σ
nj

j

n
sj
j

.

In order to save space, if σj = −1, then sj will be used, and if a substring, S, repeats n times in the
list, then {S}n will be used. For example, the finite analog of −ζ(1̄) = −ζ(1;−1) = log 2 is the Fermat
quotient

q2 :=
(2p−1 − 1

p
(mod p)

)

3≤p∈P
∈ A. (6)

Write sgn(s̄) = −1 and |s̄| = s if s ∈ N. For s1, . . . , sd ∈ D := N ∪ N̄, we can define the finite Euler sums
as

ζA(s) :=

( ∑

p>n1>···>nd>0

d∏

j=1

sgn(sj)
nj

n
|sj |
j

(mod p)

)

p∈P

∈ A.

In [27, Conjecture 8.6.9], we extended the Kakeko–Zagier conjecture to the setting of the Euler sums.
For s = (s1, . . . , sd) ∈ Dd, define the symmetric version of the alternating Euler sums

ζS♯ (s) :=

d∑

i=0

( i∏

j=1

(−1)|sj | sgn(sj)

)
ζ♯(si, . . . , s1)ζ♯(si+1, . . . , sd)
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where ζ♯ (♯ = ∗ or �) are regularized values (see [27, Proposition 13.3.8]). They are called ♯-regularized
symmetric Euler sums. If s ∈ Nd, then they are called ♯-regularized symmetric multiple zeta values
(SMZVs).

Conjecture 1.1 (cf. [27, Conjecture 8.6.9]). For any w ∈ N, let FESw (resp. ESw) be the Q-vector space
generated by all finite Euler sums (resp. Euler sums) of weight w. Then, there is an isomorphism:

fES : FESw −→
ESw

ζ(2)ESw−2
,

ζA(s) 7−→ ζS♯ (s),

where ♯ = ∗ or �.

We remark that ζS
�

(s) − ζS∗ (s) always lies in ζ(2)ESw−2, see [27], Exercise 8.7. Thus, it does not
matter which version of the symmetric Euler sums is used in the conjecture.

Problem 1.2. What is the correct generalization of [27, Theorem 6.3.5] for symmetric Euler sums?
What is the correct extension of [27, Theorem 8.5.10] to finite Euler sums?

Our primary motivation for studying alternating MTVs is to better understand this mysterious
relation, fES. One of the main results of this paper is the discovery of the linear shuffle relations among
the finite alternating MTVs given by Theorem 3.2. For example, it immediately implies the highly
nontrivial result in Proposition 3.16: for all d ∈ N, we have

TA({1}
2d) = 0.

We now briefly describe the content of this paper. We will start the next section by defining fi-
nite MTVs and symmetric MTVs, which can be shown to appear on the two sides of Conjecture 1.1,
respectively. The most useful property of MTVs is that they have the iterated integral expressions (3),
satisfying shuffle multiplication. This leads us to the discovery of the linear shuffle relations for the finite
MTVs (and their alternating version) in Section 3 and some interesting applications of these relations.
Section 4 is devoted to presenting a few results about the alternating MTVs and providing their struc-
tures explicitly when the weight is one or two. In the last section, we consider both the finite MTVs and
their alternating version by computing the dimension of the weight w piece for w < 9 and then compare
these data to their Archimedean counterparts, as obtained by Xu and the author [21, 22].

2 Symmetric and Finite Multiple T -Values

It turns out that finite MTVs are closely related to another variant called finite MSVs. For all admissible
s = (s1, . . . , sd) ∈ Nd, we define the finite multiple T -values (FMTVs) and the finite multiple S-values
(FMSVs) as

FA(s) :=

( ∑

p>n1>···>nd>0
nj≡d−j+1 (mod 2) if F=T,
nj≡d−j (mod 2) if F=S

d∏

j=1

1

n
sj
j

(mod p)

)

p∈P

∈ A.

It is clear that

FA(s) =
1

2d

∑

σ1,...,σd=±1

( ∏

1≤j≤d
2|d−j if F = T
2∤d−j if F = S

σj

)
ζA(s;σ).

Motivated by Conjecture 1.1, we provide the following definition.

Definition 2.1. Let d ∈ N and s = (s1, . . . , sd) ∈ Nd. Let F = S or T . We define the ♯-regularized
MTVs (♯ = ∗ or �) and MSVs as

F♯(s) :=
1

2d

∑

σ1,...,σd=±1

( ∏

1≤j≤d
2|d−j if F = T
2∤d−j if F = S

σj

)
ζ♯(s;σ) (F = T or S).
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We define the ♯-symmetric multiple T -values (SMTVs) and ♯-symmetric multiple S-values (SMSVs)
as

FS
♯ (s) :=






d∑

i=0

( i∏

ℓ=1

(−1)sℓ
)
F♯(si, . . . , s1)F♯(si+1, . . . , sd), if d is even;

d∑

i=0

( i∏

ℓ=1

(−1)sℓ
)
F̃♯(si, . . . , s1)F♯(si+1, . . . , sd), if d is odd,

where F̃ = S + T − F and we set, as usual,
∏0

ℓ=1 = 1.

Proposition 2.1. Suppose fES is defined as per Conjecture 1.1. Let ♯ = ∗ or �. Then, for all s =
(s1, . . . , sd) ∈ Nd, we have fESTA(s) = T S

♯ (s) and fESSA(s) = SS
♯ (s) modulo ζ(2).

Proof. Suppose d is even and s ∈ Nd. Then, modulo ζ(2)

fESTA(s) =
1

2d

∑

ε1,...,εd=±1

( ∏

1≤j≤d
j≡d (mod 2)

εj

)
fESζA

(
s

ε

)

=
1

2d

∑

ε1,...,εd=±1

( ∏

1≤j≤d
2|j

εj

)
ζS♯

(
s

ε

)

=
1

2d

∑

ε1,...,εd=±1

( ∏

1≤j≤d
2|j

εj

) d∑

i=0

( i∏

ℓ=1

(−1)sℓεℓ
)
ζ♯

(
si, . . . , s1
εi, . . . , ε1

)
ζ♯

(
si+1, . . . , sd
εi+1, . . . , εd

)

=
1

2d

d∑

i=0

( i∏

ℓ=1

(−1)sℓ
) ∑

ε1,...,εd=±1

( ∏

1≤j≤d
2|j

εj

)( i∏

ℓ=1

εℓ

)
ζ♯

(
si, . . . , s1
εi, . . . , ε1

)
ζ♯

(
si+1, . . . , sd
εi+1, . . . , εd

)

=
1

2d

d∑

i=0

( i∏

ℓ=1

(−1)sℓ
)( ∑

ε1,...,εi=±1

∏

1≤j≤i
2∤j

εjζ♯

(
si, . . . , s1
εi, . . . , ε1

))

×

( ∑

ε1,...,εi=±1

∏

i<j≤d
2|j

εjζ♯

(
si+1, . . . , sd
εi+1, . . . , εd

))

=
1

2d

d∑

i=0

( i∏

ℓ=1

(−1)sℓ
)
T♯(si, . . . , s1)T♯(si+1, . . . , sd)

=T S
♯ (s).

The MSVs and the odd d cases can all be computed similarly and are left to the interested reader.

Hence, we expect that whenever certain relations hold on the finite side, then the same relations
should hold for the symmetric version, at least modulo ζ(2), and vice versa. Sometimes, they are valid
for the symmetric version even without modulo ζ(2). For example, the following reversal relations hold
for both types of sums by [25, Propositions 2.8 and 2.9]. For s = (s1, . . . , sd), we state ←−s = (sd, . . . , s1).

Proposition 2.2 (Reversal relations). For all s ∈ Nd, if d is even, then

TA(
←−
s ) = (−1)|s|TA(s) and SA(

←−
s ) = (−1)|s|SA(s),

T S
∗ (←−s ) = (−1)|s|T S

∗ (s) and SS
∗ (
←−
s ) = (−1)|s|SS

∗ (s),

and if d is odd, then

TA(
←−
s ) = (−1)|s|SA(s) and SA(

←−
s ) = (−1)|s|TA(s),

T S
∗ (←−s ) = (−1)|s|SS

∗ (s) and SS
∗ (
←−
s ) = (−1)|s|T S

∗ (s).
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3 Linear Shuffle Relations for Finite Alternating Multiple T -

Values

One of the most important tools for studying MZVs and Euler sums is to consider the double shuffle
relations that are produced in two ways to express these sums: one as series (by definition) and the other
as iterated integrals. This idea will play the key role in the following discovery of the linear shuffle
relations for finite multiple T -values (FMTVs) and their alternating version.

The linear shuffle relations for Euler sums are given in [27, Theorem 8.4.3]. First, we extend MTVs
and FMTVs to their alternating version. For all admissible (s,σ) ∈ Nd × {±1}d (i.e., (s1, σ1) 6= (1, 1)),
we define the alternating multiple T -values as

T (s;σ) :=
∑

n1>···>nd>0
nj≡d−j+1 (mod 2)

d∏

j=1

σ
(nj−d+j−1)/2
j

n
sj
j

.

This is basically the same definition we used in [20], except for a possible sign difference. If we denote
the version in loc. cit. as T ′(s;σ), then

T (s;σ) = T ′(s;σ)
∏

d−j≡0,1 (mod 2)

σj . (7)

We changed to our new convention in this paper because of the significant simplification in this special
case. However, the old convention is still superior when treating the general alternating multiple mixed
values. Similar to the convention for Euler sums, we will save space by putting a bar on top of sj if
σj = −1. For example,

T (2̄, 1) =
∑

n>m>0

(−1)n−1

(2n− 2)2(2m− 1)
.

In order to study the alternating MTVs, it is to our advantage to consider the alternating multiple
T -functions of one variable, as follows: for any real number, x, define

T (s;σ;x) :=
∑

n1>···>nd>0
nj≡d−j+1 (mod 2)

xn1

d∏

j=1

σ
(nj−d+j−1)/2
j

n
sj
j

.

In the non-alternating case, this function is the A-function (up to a power of 2) used by Kaneko and
Tsumura in [10]. For all η1, . . . , ηd = ±1, it is then easy to evaluate the iterated integral:

∫ x

0

(
dt

t

)s1−1
dt

1− η1t2
· · ·

(
dt

t

)sd−1
dt

1− ηdt2

=
∑

k1>···>kd>0

x2(k1+···+kd)+d
d∏

j=1

η
kj

j

(2kj + 2kj+1 + · · ·+ 2kd + d− j + 1)sj
.

Let

y0 =
dt

t
, y1 =

dt

1− t2
, y−1 :=

dt

1 + t2
.

By changing the indices nj = 2kj + 2kj+1 + · · ·+ 2kd + d− j + 1, we immediately obtain

T (s;σ;x) =

∫ x

0

p
(
y
s1−1
0 yσ1

· · · ysd−1
0 yσd

)
:=

∫ x

0

y
s1−1
0 yη1

· · · ysd−1
0 yηd

,

where ηj = σ1 · · ·σj for all j ≥ 1 and p,q represent the conversions between the series and the integral
expressions of alternating MTVs:
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p(u) := y
s1−1
0 yσ1

. . . y
sj−1
0 yσ1···σj

. . .ysd−1
0 yσ1···σd

, (8)

q(u) := y
s1−1
0 yσ1

. . . y
sj−1
0 yσj/σj−1

. . . ysd−1
0 yσd/σd−1

. (9)

Namely, p pushes a word used in the series definition to a word used in the integral expression, whereas
q goes backward. See [20] for more details.

In order to state the linear shuffle relations among FMTVs and their alternating version, first,
we quickly review the algebra setup and the corresponding results for Euler sums. Let A∗

1 (resp. A∗
2)

be the Q-algebra of words on {x0, x1} (resp. {x0, x1, x−1}) with concatenation as the product. Let
A

1
j (j = 1, 2) be the sub-algebra generated by the words not ending with x0. Then, for each word

u = x
s1−1
0 xη1

. . . xsd−1
0 xηd

∈ A
1
2, we define

ζA(u) := ζA(s1, . . . , sd;σ1, . . . , σd)

where σ1 = η1 and σj = ηj/ηj−1 for all j ≥ 2. Set τ(1) = 1 and

τ(xs1−1
0 x1 . . . x

sd−1
0 x1) = (−1)s1+···+srx

sd−1
0 x1 . . .x

s1−1
0 x1.

Theorem 3.1 ([27, Theorem 8.4.3]). For all words, w,u ∈ A1
1, v ∈ A1

2, and s ∈ N, we have

(i) ζA(u� v) = ζA(τ(u)v);

(ii) ζA((wu)� v) = ζA(u� τ(w)v);

(iii) ζA((x
s−1
0 x1u)� v) = (−1)sζA(u� (xs−1

0 x1v)).

For alternating MTVs, we can similarly let T∗
1 (resp. T∗

2) be the Q-algebra of words on {y0, y1} (resp.
{y0, y1, y−1}) with concatenation as the product. Let T1

j (j = 1, 2) be the sub-algebra generated by the

words not ending with y0. Then, for each word u = y
s1−1
0 yσ1

. . . ysd−1
0 yσd

∈ A
1
2, let p,q : A1

2 → A
1
2 be

the two maps defined in (8) and (9). Then, we can extend the definition of alternating MTVs and their
corresponding one-variable functions to the word level:

F∗(u) := F (s;σ), F
�

(u) := F∗

(
q(u)

)
, F∗(u) = F

�

(
p(u)

)
,

where F (−) can be either T (−), TA, or T (−;x) or even their partial sums, such as

Tn(s;σ) :=
∑

n>n1>···>nd>0
nj≡d−j+1 (mod 2)

d∏

j=1

σ
(nj−d+j−1)/2
j

n
sj
j

.

For all words w ∈ T1
2, we set TA(w) := TA,�(w) = TA,∗

(
q(w)

)
. Further, set τ(1) = 1 and

τ(ys1−1
0 y1 . . . y

sd−1
0 y1) = (−1)s1+···+sry

sd−1
0 y1 . . .y

s1−1
0 y1.

Theorem 3.2. For all words w,u ∈ T
1
1, v ∈ T

1
2 and s ∈ N, we have

(i) TA(u� v) = TA(τ(u)v) if dep(u) + dep(v) is even;

(ii) TA((wu)� v) = TA(u� τ(w)v) if dep(u) + dep(v) + dep(w) is even;

(iii) TA((y
s−1
0 y1u)� v) = (−1)sTA(u� (ys−1

0 y1v)) if dep(u) + dep(v) is odd.

Proof. By taking u = ∅ and then setting w = u, we see that (ii) implies (i). By decomposing w into
strings of type y

s−1
0 y1, we see that (iii) implies (ii). So, we only need to prove (iii).

For simplicity, write a = y0 and b = y1 for the rest of this proof. Observe that for any odd prime p,
the coefficient of xp of T (s;σ;x) is nontrivial if and only if dep(s) is odd. Therefore, if the depth d of
the word w is even, the coefficient of xp in T∗

(
q(bw);x

)
is given as

Coeffxp

[
T∗

(
q(bw);x

)]
= Coeffxp

[
T
�

(
bw;x

)]
=

1

p
Tp,�(w)
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since q(bw) = bq(w). Observe that

b

(
(as−1

bu)� v − (−1)su� (as−1
bv)

)
=

s−1∑

i=0

(−1)i(as−1−i
bu)� (aibv).

Hence, if dep(u) + dep(v) is odd, then, by first applying T
�

(−;x) to the above and then extracting the
coefficients of xp from both sides, we obtain

1

p

(
Tp,�

(
(as−1

bu)� v
)
− (−1)sTp,�

(
u� (as−1

bv)
))

=

s−1∑

i=0

(−1)iCoeffxp

[
T
�

(as−1−i
bu;x)T

�

(aibv;x)
]

=
s−1∑

i=0

(−1)i
p−1∑

j=1

Coeffxj

[
T
�

(as−1−ibu; t)
]
· Coeffxp−j

[
T
�

(aibv; t)
]

from shuffling the product property of the iterated integrals. Now, the last sum is p-integral since p−j < p
and j < p, and therefore, we obtain

Tp,�(a
s−1

bu)� v) ≡ (−1)sTp,�(u� (as−1
bv)) (mod p)

which completes the proof of (iii).

Remark 3.3. In [8], Jarossay showed that the corresponding results of Theorem 3.1 hold for SMZVs.
Theorem 3.2, Conjecture 1.1 and Proposition 2.1 clearly imply that similar statements also hold true for
SMTVs when the depth conditions are satisfied, as in Theorem 3.2. However, it is possible to prove this
unconditionally by using the generalized Drinfeld associator Ψ2 and considering the words of the form
x
s1−1
0 (x1 + x−1) · · · x

sd−1
0 (x1 + x−1) in [27, Theorem 13.4.1]. The details of this work will appear in a

future paper.

We can now derive a sum formula for FMTVs.

Theorem 3.4. Suppose d ∈ N is odd. For all s1, . . . , sd ∈ N, we have

TA(1, s) + TA(s, 1) +
d∑

j=1

sj+1∑

a=1

TA(s1, . . . , sj−1, a, sj + 1− a, sj+1, . . . , sd) = 0.

Proof. This follows immediately from the linear shuffle relation

TA(y1� y
s1−1
0 y1 . . .y

sd−1
0 y1) = −TA(y1y

s1−1
0 y1 . . . y

sd−1
0 y1)

by taking s0 = 1 and u = 1 in Theorem 3.2(iii).

The following conjecture is supported by all k ≤ 9, numerically.

Conjecture 3.5. For all k ∈ N, we have

TA(2, {1}
k) =

(−1)k

2k−1
TA(1, k + 1), T S

�

({1}w) =
(−1)k

2k−1
T S
�

(1, k + 1).

Proposition 3.6. If k is odd, then for all ℓ ≤ k, we have

TA({1}
ℓ, 2, {1}k−ℓ) =

(−1)ℓ

ℓ+ 1

(
k + 1

ℓ

)
TA(2, {1}

k). (10)

If, in addition, we assume Conjecture 3.5 holds, then

TA({1}
ℓ, 2, {1}k−ℓ) =

(−1)ℓ+k

2k−1(ℓ + 1)

(
k + 1

ℓ

)
TA(1, k + 1). (11)
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Proof. For all ℓ ≤ k, we see the linear shuffle relations

TA(y1 � yℓ1y0y
k−ℓ
1 ) = −yℓ+1

1 y0y
k−ℓ
1 .

Thus, by setting aℓ = TA({1}ℓ, 2, {1}k−ℓ), we obtain

(ℓ+ 2)aℓ+1 + (k − ℓ+ 1)aℓ = 0.

Hence,

aℓ+1 = −
k − ℓ+ 1

ℓ+ 2
aℓ =

(k − ℓ+ 1)(k − ℓ+ 2)

(ℓ+ 2)(ℓ+ 1)
aℓ−1 = · · ·

=(−1)ℓ−1 (k − ℓ+ 1)(k − ℓ+ 2) · · · (k + 1)

(ℓ + 2)(ℓ+ 1) · · · 2
a0

=(−1)ℓ−1 (k + 1)!

(ℓ+ 2)!(k − ℓ)!
a0 =

(−1)ℓ−1

ℓ + 2

(
k + 1

ℓ+ 1

)
a0,

which yields (10). Then, (11) follows immediately if we assume Conjecture 3.5.

3.1 Values at Small Depths/Weights

First, we observe that since ζA(s) = 0 for all s ∈ N according to [27, Theorem 8.2.7] we must have

SA(s) = −TA(s) =
1

2
ζA(s̄) =

{
−q2, if s = 1;
(21−s − 1)βs, if s ≥ 2,

(12)

where q2 is the Fermat quotient (6), and βs is given in (5). Further, in depth two, according to Proposi-
tion 2.6 in our arxiv paper 2402.08160, we see that for all a, b ∈ N, if w = a+ b is odd, then

SA(a, b) =TA(a, b) =
(−1)a

2

(
1− 2−w

)(w
a

)
βw. (13)

The depth three case is already complicated, and we do not have a general formula. This is expected
since such a formula does not exist for FMZVs. In the rest of this section, we will deal with some
special cases.

Next, we prove a proposition that improves a result that Tauraso and the author obtained more than
a decade ago by applying the newly discovered linear shuffle relations above.

Proposition 3.7. We have

ζA(1, 1, 1) = 0, ζA(1̄, 1̄, 1̄) = −
4

3
q3p −

β3

2
, ζA(1, 1, 1̄) = ζA(1̄, 1, 1) = −

q3

3
−

7

8
β3,

ζA(1̄, 1, 1̄) = 0, ζA(1, 1̄, 1) =
2q3

3
+

β3

4
, ζA(1̄, 1̄, 1) = −ζA(1, 1̄, 1̄) = −q

3
p −

21

8
β3.

Proof. It immediately follows on from [19, Propositions 7.3 and 7.6] that

ζA(1̄, 1̄, 1̄) = −
4

3
q3p −

1

2
β3, ζA(1, 1̄, 1) = −2ζA(1̄, 1, 1)−

3

2
β3, ζA(1̄, 1, 1̄) = 0,

ζA(1, 1, 1̄) = ζA(1̄, 1, 1), ζA(1̄, 1̄, 1) = −ζA(1, 1̄, 1̄) = −q
3
p −

21

8
β3.

According to the linear shuffle relations for finite Euler sums, we have

−ζA(bcc) = ζA(b� cc) =ζA(bcc) + ζA(cbc) + ζA(ccb)

which readily yields the identity

2ζA(1, 1̄, 1) + ζA(1̄, 1̄, 1̄) + ζA(1̄, 1, 1̄) = 0, (14)

which in turn quickly implies all the evaluations in the proposition.
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Corollary 3.8. We have

TA(1, 1, 1) = −SA(1, 1, 1) =
3

16
β3.

Proof. The corollary is an immediate consequence of the definitions using Proposition 3.7. Alternatively,
we can prove it directly, as follows: since ζA(1, 1̄, 1̄) = −ζA(1̄, 1̄, 1) from a reversal, and ζA(1, 1, 1) = 0,
we obtain

8TA(1, 1, 1) = ζA(1̄, 1, 1̄) + ζA(1̄, 1̄, 1̄) + ζA(1, 1̄, 1)−ζA(1, 1, 1̄)− ζA(1̄, 1, 1)

= − ζA(1, 1̄, 1)− 2ζA(1, 1, 1̄) (by (14))

= ζA(2̄, 1) + ζA(1̄, 2)− ζA(1)ζA(1, 1̄) (by shuffle)

=
3

2
β3.

according to [27, Theorem 8.6.4].

Proposition 3.9. We have

T S
�

(1, 1, 1) = −SS
�

(1, 1, 1) =
3

16
ζ(3).

Proof. The weighted three Euler sums are all expressible in terms of ζ(2̄, 1), ζ(1̄, 1, 1) and ζ(1̄, 2) by [27,
Proposition 14.2.7]. Hence, one easily deduces that

ζS
�

(1, 1, 1) = ζS
�

(1̄, 1, 1̄) = 0,

ζS
�

(1̄, 1, 1) = ζS
�

(1, 1, 1̄) = ζ(1̄, 1, 1) + ζ(1̄)ζ
�

(1, 1)− ζ
�

(1, 1̄)ζ
�

(1) + ζ
�

(1, 1, 1̄)

= ζ(1̄, 1, 1) + ζ(1̄)
T 2

2
−
(
ζ(1̄)T − ζ(1̄, 1̄)

)
T + ζ(1̄)

T 2

2
− ζ(1̄, 1̄)T + ζ(1̄, 1̄, 1)

= ζ(1̄, 1, 1) + ζ(1̄, 1̄, 1),

ζS
�

(1̄, 1̄, 1) = − ζS
�

(1, 1̄, 1̄) = 3ζ(1̄, 1̄, 1) + 3ζ(1̄, 1, 1),

ζS
�

(1, 1̄, 1) =2ζ
�

(1, 1̄, 1)− 2ζ(1̄, 1)ζ
�

(1) = −2ζ(1̄, 1̄, 1̄)− 2ζ(1̄, 1, 1̄),

ζS
�

(1̄, 1̄, 1̄) = 2ζ(1̄, 1̄, 1̄) + 2ζ(1̄)ζ(1̄, 1̄) = 4ζ(1̄, 1̄, 1̄) + 4ζ(1̄, 1, 1̄).

In [27, Proposition 14.2.7], we have

ζ(3) = 8ζ(2̄, 1), ζ(1̄, 1̄, 1) = ζ(1̄, 2)− 5ζ(2̄, 1) + ζ(1̄, 1, 1),

ζ(1̄, 1, 1̄) = ζ(2̄, 1) + ζ(1̄, 1, 1), ζ(1̄, 1̄, 1̄) = ζ(1̄, 2) + ζ(1̄, 1, 1).

Thus, we get

T S
�

(1, 1, 1) =
1

4

(
ζ(1̄, 1̄, 1̄) + ζ(1̄, 1, 1̄)− ζ(1̄, 1, 1)− ζ(1̄, 1̄, 1)

)
=

6

4
ζ(2̄, 1) =

3

16
ζ(3),

SS
�

(1, 1, 1) = −
1

4

(
ζ(1̄, 1̄, 1̄) + ζ(1̄, 1, 1̄)− ζ(1̄, 1, 1)− ζ(1̄, 1̄, 1)

)
= −

3

16
ζ(3),

as desired.

In general, we can use linear shuffles to derive many relations from the finite Euler sums. For example,

b� acb : 2ζA(1, 2̄, 1̄) + ζA(2, 1̄, 1̄) + 2ζA(2̄, 1̄, 1) = 0,

b� acc : 2ζA(1, 2̄, 1) + ζA(2, 1̄, 1) + ζA(2̄, 1̄, 1̄) + ζA(2̄, 1, 1̄) = 0,

ab� bc : 3ζA(2, 1, 1̄) + ζA(2, 1̄, 1̄) + ζA(1, 2̄, 1̄) + ζA(1, 2, 1̄) + ζA(1, 1̄, 2̄) = 0,

ab� cb : 2ζA(2, 1̄, 1̄) + 2ζA(2̄, 1̄, 1) + 2ζA(1̄, 2̄, 1) + ζA(1̄, 1̄, 2) = 0,

ab� cc : 2ζA(2, 1̄, 1) + ζA(2̄, 1̄, 1̄) + ζA(2̄, 1, 1̄) + ζA(1̄, 2̄, 1̄) + ζA(1̄, 2, 1̄) + ζA(1̄, 1, 2̄) = 0,

b� bac2 : 3ζA(1, 1, 2̄, 1) + ζA(1, 2, 1̄, 1) + ζA(1, 2̄, 1̄, 1̄) + ζA(1, 2̄, 1, 1̄) = 0,

b� c4 : 2ζA(1, 1̄, 1
3) + ζA(1̄

3, 1, 1) + ζA(1̄, 1, 1̄
2, 1) + ζA(1̄, 1

2, 1̄2) + ζA(1̄, 1
3, 1̄) = 0.
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We can also use reversal and shuffle relations to express all finite Euler sums of weight up to 6
according to the explicitly given basis in each weight. Aided by Maple computation, we arrive at the
following main theorem on the structure of finite Euler sums of a lower weight.

Theorem 3.10. Let FESw be the Q-vector space generated by finite Euler sums of weight w. Then, we
have the following generating sets for w < 7:

FES1 = 〈q2〉, FES2 = 〈q22〉, FES3 = 〈q32, β3〉, FES4 = 〈q42, q2β3, ζA(1, 3̄)〉,

FES5 = 〈q52, q
2
2β3, β5, ζA(1̄, 2, 2), ζA(1̄, 2̄, 2)〉,

FES6 = 〈q62, q
3
2β3, β

2
3 , q2β5, ζA(1̄, 1, 2, 2), ζA(1̄, 2, 2, 1), ζA(1̄, 2, 1, 2), ζA(1̄, {1}

3, 2)〉.

Let {Fk}k≥0 be the Fibonnacci sequence defined by F0 = F1 = 1 and Fk = Fk−1+Fk−2 for all k ≥ 2.
Then, Theorem 3.10 provides strong support for the next conjecture.

Conjecture 3.11. For every positive integer w, the Q-space FESw has the following basis:

{
ζA(1̄, b2, . . . , bd) : d ≥ 0, bj = 1 or 2, 1 + b2 + · · ·+ bd = w

}
.

Consequently, dimQ FESw = Fw−1 for all w ≥ 1.

One may compare this to the conjecture on the ordinary Euler sums proposed by Zlobin [27, Con-
jecture 14.2.3].

Conjecture 3.12. For every positive integer w the Q-space ESw has the following basis:

{
ζ(b1, b2, . . . , bd) : d ≥ 1, bj = 1 or 2, b1 + b2 + · · ·+ bd = w

}
.

Consequently, dimQ ESw = Fw for all w ≥ 1.

Theorem 3.10 implies that the set in Conjecture 3.11 is a generating set for all w < 7 since

ζA(1̄, 1) = − 2q2, ζA(1̄, 1) = q22, ζA(1̄, 2) =
3
4β3, ζ([1, 1̄, 1) = 2

4q
3
2 +

1
4β3,

ζA(1̄, 1, 2) =
9
4q2β3 − ζA(1, 3̄), ζA(1̄, {1}

3) = 1
12q

4
2 +

7
8q2β3 +

1
4ζA(1, 3̄),

ζA(1̄, 2, 1) =
1
2ζA(1, 3̄)−

12
4 q2β3,

ζA(1̄, 2, 1, 1) =
695
128β5 −

5
4ζA(1̄, 2, 2)− 2ζA(1̄, 1, 1, 2)−

9
4q

2
2β3,

ζA({̄1}
4, 1) = − 1

60q
5
2 −

23
24q

2
2β3 −

1
8ζA(1̄, 2, 2)−

1
2ζA(1̄, 1, 1, 2)−

25
256β5,

ζA(1̄, 1, 2, 1) =
33
8 q

2
2β3 −

555
128β5 +

5
4ζA(1̄, 2, 2) + 2ζA(1̄, 1, 1, 2),

ζA(1̄, 1, 2, 1, 1) = −
1
2A+ 2B + C +D + 9

4β
2
3 + 5

8q
3
2β3 +

205
64 q2β5,

ζA({̄1}
4, 2) = − 3

4A+ 19
8 B + 1

4C +D + 201
32 β2

3 + q32β3 −
645
256q2β5,

ζA(1̄, 2, {1}
3) = 1

2A−
19
8 B − 5

4C − 2D − 1113
256 β2

3 −
5
4q

3
2β3 −

1685
256 q2β5,

ζA(1̄, {1}
5) = 1

4A−
13
16B −

1
8C −

1
2D −

1
6q

3
2β3 +

817
512q2β5 −

811
512β

2
3 + 1

360q
6
2,

where A = ζA(1̄, 1, 2, 2), B = ζA(1̄, 2, 1, 2), C = ζA(1̄, 2, 1, 2), and D = ζA(1̄, 2, 2, 1).
By using the evaluations of finite Euler sums, we can find all FMTVs of weight less than 7. For ex-

ample, we have

TA(1, 1, 2) = −
1

8
ζA(1, 3̄)−

21

16
q2β3,

TA(1, 2, 2) = −
1605

256
β5 +

9
2q

2
2β3 + 3ζA(1̄, 1, 1, 2).

We then have the following structural theorem for these FMTVs:
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Theorem 3.13. Let FMTw be the Q-vector space generated by FMTVs of weight w. Then, we have the
following generating sets for w < 7:

FMT1 = 〈q2〉, FMT2 = 〈0〉, FMT3 = 〈β3〉, FMT4 = 〈q2β3, ζA(1, 3̄)〉,

FMT5 = 〈β5, ζA(1̄, 2, 2), ζA(1̄, 1, 1, 2)〉, FMT6 = 〈β2
3 , q2β5, ζA(1̄, 2, 1, 2)〉.

Moreover, by using numerical computation aided by Maple (see [27, Appendix D], for the pseudo
codes), we can find a generating set of FMTw for every w ≤ 13. We will list the corresponding dimensions
at the end of this paper.

3.2 Homogeneous Cases

In this subsection, we will compute finite Euler sums ζ(s) when s is homogeneous, i.e., s = ({s}d) for
some s ∈ D. Then, we will consider the corresponding results for FMTVs.

Proposition 3.14. Let Nodd be the set of odd positive integers. For any d, s ∈ N, we have

ζA({s̄}
d) ∈

∑

k0∈N, k1,...,kℓ∈Nodd

δs,1k0+k1+···+kℓ=d

q
δs,1k0

2 βskj
· · ·βskj

Q,

where δs,1 is the Kronecker symbol. In particular, ζA({s̄}d) = 0 for all even s.

Proof. Let Π = (P1, . . . , Pℓ) ∈ [d] denote any partition of (1, . . . , d) into odd parts, i.e., all of |Pj |’s are
odd numbers, where |Pj | is the cardinality of the set Pj . Let

C(Π) = (−1)d−ℓ(|P1| − 1)! · · · (|Pℓ| − 1)!.

Observe that ζA(n̄) = ζA(n) = 0 if n is even. Then, it follows easily from [5, (18)] that

ζA(s̄) =
∑

Π=(P1,...,Pℓ)∈[d]

C(Π)ζA
(
s|P1|

)
· · · ζA

(
s|Pℓ|

)
.

The proposition follows from (12) immediately.

Example 3.15. There are many ways to partition 6 elements, say {a1, . . . , a6} into odd parts: one way
to get ({1}6),

(
6
5

)
ways to obtain (1, 5) (e.g., {a2}, {a1, a3, . . . , a6}),

(
6
3

)
/2 ways to obtain (3, 3), and

(
6
3

)

ways to obtain (1, 1, 1, 3). Hence,

ζA({1̄}
6) = 4

45q
6
2 +

3
4q2β5 +

1
8β

2
3 + 2

3q
3
2β3

when using the formula in (12). We would like to point out that the term 3qpBp−5/20 (corresponding to
the second term 3

4q2β5 on the right-hand side above) was accidentally dropped from the right-hand side
of [19, (36)].

One may compare the next corollary with the well-known result that ζA({1}d) = 0 for all d ∈ N (see,
e.g., [27, Theorem 8.5.1]).

Proposition 3.16. For all d ∈ N, we have

TA({1}
2d) = 0.

Proof. Taking s = ({1}2d−1) in Theorem 3.4 yields the proposition at once.

We now derive the symmetric MTV version of Proposition 3.16.

Proposition 3.17. For all d ∈ N, we have

T S
�

({1}2d) = 0.
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Proof. For any ℓ ∈ N, we have the relation for the regularized value (see, e.g., [7, Section 2])

∫ ε

0

(
dt

1− t2

)ℓ

=
1

ℓ!

(∫ ε

0

dt

1− t2

)ℓ

=
1

ℓ!

(
1

2

∫ ε

0

(
dt

1− t
+

dt

1 + t

))ℓ

,

which implies that

T
�

({1}ℓ) =
1

ℓ!2ℓ

(
ζ
�

(1) + log 2
)ℓ

.

According to the definition,

T S
�

({1}2d) =
2d∑

i=0

(−1)iT
�

({1}i)T
�

({1}2d−i) =
1

22d

2d∑

i=0

(−1)i

ℓ!(2d− ℓ)!

(
ζ
�

(1) + log 2
)2d

= 0

as desired.

By conducting extensive numerical experiments, we found that the following relations must be valid.

Conjecture 3.18. For all odd w ∈ N, we have

TA({1}
w) = −SA({1}

w) =
2w−1 − 1

22w−2
βw, T S

�

({1}w) = −SS
�

({1}w) =
2w−1 − 1

22w−2
ζ(w).

The conjecture holds when w = 3 according to Corollary 3.8 and Proposition 3.9. Aided by Maple,
we can also rigorously prove the conjecture for w = 5 and w = 7 by using the tables of values of finite
Euler sums produced by reversal, shuffle, and linear shuffle relations, and the table of values for Euler
sums is available online [1].

Moreover, Conjecture 3.18 still holds true for TA({1}w) = T S
�

({1}w) = 0 when w is even because of
Propositions 3.16 and 3.17. However, for S-values, we have another conjecture.

Conjecture 3.19. For all even w ∈ N, there are rational numbers cj ∈ Q, 1 ≤ j ≤ w/2, such that

SA({1}
w) =

w/2∑

j=1

cjSA(j, w − j), SS
�

({1}w) =

w/2∑

j=1

cjS
S
�

(j, w − j).

Moreover, SA(j, w − j) and 1 ≤ j ≤ w/2 are Q-linearly independent, and SS
�

(j, w − j) and 1 ≤ j ≤ w/2
are Q-linearly independent.

Note that SA(j, w − j) ∈ A when SS
�

(j, w − j) are all real numbers.

4 Alternating Multiple T -Values

We now turn to the alternating version of MTVs and derive some relations among them. These values
are intimately related to the colored MZVs of level 4 (i.e., multiple polylogarithms evaluated for the
fourth roots of unity). We refer the interested reader to [21, 22] for the fundamental results concerning
these values.

Recall that for any (s,σ) ∈ Nd ×{±1}d , we have defined the finite alternating multiple T -values as

T (s;σ) :=

( ∑

p>n1>···>nd>0
nj≡d−j+1 (mod 2)

d∏

j=1

σ
(nj−d+j−1)/2
j

n
sj
j

)

p∈P

∈ A.

We have seen from Theorem 3.2 in Section 3 that these values satisfy the linear shuffle relations. It is
also not hard to get the reversal relations when the depth is even, as shown below.
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Proposition 4.1 (Reversal relations of finite alternating MTVs). Let s ∈ Nd for some even d ∈ N.
Then,

TA(
←−
s ,←−σ ) = (σ1, . . . , σd)

(p−1−d)/2(−1)|s|TA(s,σ), (15)

where the element (−1)(p−1−d)/2 =
(
(−1)(p−1−d)/2 (mod p)

)
3≤∈P

∈ A.

Proof. Let p be an odd prime. Then, by changing the indices nj → p− nj , we obtain

Tp(s,σ) :=
∑

p>n1>···>nd>0
nj≡d−j+1 (mod 2)

d∏

j=1

σ
(nj−d+j−1)/2
j

n
sj
j

≡ (−1)|s|
∑

p>nd>···>n1>0
p−nj≡d−j+1 (mod 2)

d∏

j=1

σ
(nj−p+d−j+1)/2
j

n
sj
j

(mod p).

Let tj = sd+1−j, εj = σd+1−j , and kj = nd+1−j. Then, by changing the indices, we obtain j →
d+ 1− j (since d is even)

Tp(s,σ) ≡ (−1)|s|
∑

p>n1>···>nd>
p−kj≡j (mod 2)

d∏

j=1

ε
(kj−p+j)/2
j

k
tj
j

≡ (−1)|s|
∑

p>n1>···>nd>
p−kj≡j (mod 2)

(σ1 · · ·σd)
(d−p+1)/2

d∏

j=1

ε
(kj−d+j−1)/2
j

k
tj
j

≡ (σ1 · · ·σd)
(d−p+1)/2(−1)|s|

∑

p>k1>···>kd>
kj≡d−j+1 (mod 2)

d∏

j=1

ε
(kj−d+j−1)/2
j

k
tj
j

≡ (σ1 · · ·σd)
(d−p+1)/2(−1)|s|Tp(t, ε)

≡ (σ1 · · ·σd)
(d−p+1)/2(−1)|s|Tp(

←−
s ,←−σ )

as desired.

It should be clear to the attentive reader that T -values are always intimately related to the S-values
when the depth is odd because of the reversal relations. Even though we did not consider this in the
above, it plays a key role in the proof of the next result.

Proposition 4.2. Let q2(p) = (2p−1 − 1)/2 for all p > 2. Then, we have

SA(1̄) = −q2/2, TA(1̄) =
(
(−1)

p−1
2 q2(p)/2 (mod p)

)

p>2
∈ A.

Proof. Recall that

Sp(1) :=
∑

p>k>0,2|k

1

k
, Sp(1̄) :=

∑

p>k>0,2|k

(−1)k/2

k
.

According to [18, Theorem 3.2], we see that

Sp(1) + Sp(1̄) =
∑

p>k>0,2|k

(
1

k
+

(−1)k/2

k

)
=

∑

p>k>0,4|k

2

k
≡ −

3

2
qp(2) (mod p).

Since Sp(1) = ζp(1̄)/2 = −qp(2), we immediately see that SA(1̄) = −q2/2. By taking the reversal, we
obtain

Tp(1̄) =
∑

p>k>0,2∤k

(−1)(k−1)/2

k
=

∑

p>k>0,2|k

(−1)(p−k−1)/2

p− k
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≡ − (−1)
p−1
2 Sp(1̄) ≡ (−1)

p−1
2

qp(2)

2
(mod p),

as desired.

As we analyzed in [27, p. 239], there is overwhelming evidence that q2 6= 0 in A. In [16, Theorem 1],
Silverman even showed that if abc-conjecture holds, then

∣∣∣
{
p ≤ X : q2(p) 6= 0 (mod p)

}∣∣∣ = O(log(X)) as X →∞.

In we are sure the following conjecture is true.

Conjecture 4.3. For every pair of positive integers m > a > 0, gcd(m, a) = 1, there are infinitely many
primes p ≡ a (mod m) such that q2(p) 6≡ 0 (mod p).

Theorem 4.4. If Conjecture 4.3 holds for m = 4, then TA(1) and TA(1̄) are Q-linearly independent.

Proof. If c1TA(1) + c2TA(1̄) = 0 in A for some c1, c2 ∈ Q, then, according to Proposition 4.2, we see
that (c1 + c2)qp(2) ≡ 0 (mod p) for infinitely many primes p ≡ 1 (mod 4). If Conjecture 4.3 holds the
form m = 4, then c1 + c2 ≡ 0 (mod p) for infinitely many primes p ≡ 1 (mod 4). This would force
c1 + c2 = 0. A similar consideration for primes p ≡ 3 (mod 4) implies that c1 − c2 = 0. Hence, we must
have c1 = c2 = 0, which shows that TA(1) and TA(1̄) are Q-linearly independent.

Define the finite Catalan’s constant as

GA :=
(Ep−3

2

)

3<p∈P
∈ A.

Proposition 4.5. Let FAMTw be the vector space generated by finite alternating MTVs over Q. We
have the following generating sets of FAMTw for w < 3:

FAMT1 = 〈q2, (−1)
p′

q2〉, FAMT2 = 〈GA, (−1)
p′

GA〉.

Proof. The w = 1 case is trivial. For w = 2, we already know TA(1, 1) = TA(2) = 0 from Theorem 3.13.
Let a = y0, b = y1, and c = y−1 in the rest of the proof. For alternating values, we first have the linear
shuffle relation

TA(b� c) = −TA(bc)⇒ 2TA(bc) + TA(cb)⇒ 2TA(1, 1̄) + TA(1̄, 1̄) = 0.

By using complicated computation (see Proposition 4.4 of our arxiv paper 2402.08160 and notice
(7)), we have the additional relation

TA(2̄) = GA = −2TA(1, 1̄).

Then, from the reversal relation (15), we easily see that TA(1̄, 1) = −(−1)p
′

TA(1, 1̄). This completes the
proof of the proposition.

5 Dimensions of FMT and AMT

We first need to point out that it is possible to study the alternating MTVs by converting them into
colored MZVs of level 4 and then applying the setup in [17]. For example,

T (2̄, 3̄) =
∑

n1>n2>0

(−1)n1−2(−1)n2−1

(2n1 − 2)2(2n2 − 1)3

=
∑

k1>k2>0

ik1(1 + (−1)k1)ik2−1(1 − (−1)k2)

k21k
3
2
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= − i
(
Li2,3(i, i) + Li2,3(i,−i)− Li2,3(−i, i)− Li2,3(−i,−i)

)
.

The caveat is that we need to extend our scalars to Q[i] in general. At the end of [17], we observed that
dimQ FCMZ

4
w ≤ 2w for all w ≥ 1, where FCMZ

4
w is the space spanned by all colored MVZ of level 4 and

weight w over Q. By the following, we expect that the

dimQ FAMTw ≤ dimQ FAMw ≤ 2w,

where FAM is the space spanned by all the finite multiple mixed values. Here, according to [21], the multi-
ple mixed values mean we allow all possible even/odd combinations in the definition of such series instead
of a fixed pattern, such as that which appears in MTVs and MSVs).

Conjecture-Principle-Philosophy 5.1. Let S be a set of colored MZVs (including MZVs and Euler
sums) or (alternating) multiple mixed values (or their variations/analogs, such as finite, symmetric,
interpolated versions, etc.). Then, the following statements should hold.

(1) Suppose all elements in S have the same weight. If they are linearly independent over Q, then they
are algebraically independent over Q.

(2) If the weights of the values in S are all different, then the values are linearly independent over Q

(but, of course, may not be algebraically independent over Q).

(3) If there is only one nonzero element in S, then it is transcendental over Q.

For example, we expect that ζ(n)’s are not only irrational but are also transcendental for all n ≥ 2.
We also expect that q2 and βk are transcendental for all odd k ≥ 3 and are all algebraically independent
over Q

Recall that MTw (resp. FMTw) is the Q-vector space generated by MTVs (resp. finite MTVs) of
weight w. Similarly, we denote by AMT (resp. FAMT) the space generated by alternating MTVs (resp.
finite alternating MTVs) of weight w. From numerical computation, we conjecture the following upper
bounds for the dimensions of FMTw and FAMTw. In order to compare to the classical case, we tabulate
the results together in the following. The main software we used was the open source computer algebra
system GP-Pari.

w 0 1 2 3 4 5 6 7 8 9 10 11 12 13

FMTw 0 1 0 1 2 3 3 6 9 15 17 32 44 76
MTw 1 0 1 1 2 2 4 5 9 10 19 23 42 49

FAMTw 0 2 2 6 12 20 40 76
AMTw 0 1 2 4 7 13 24 44 81
FAMw 0 1 2 4 8 16

With strong numerical support, Xu and the author conjecture that {dimQ AMTw}w≥1 form the
tribonacci sequence (see [22, Conjecture 5.2]). For MTVs, Kaneko and Tsumura conjecture in [10] that,
for all k ≥ 1

dimQ MT2k = dimQ MT2k−1 + dimQ MT2k−2.

From numerical computation, we can formulate its finite analog as follows:

Conjecture 5.2. For all k ≥ 1,

dimQ FMT2k+1 = dimQ FMT2k + dimQ FMT2k−1.
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6 Conclusions

The author’s main purpose in this paper is to study the finite and symmetric MTVs and their alternating
versions, which are level two and level four variations of finite MZVs. It was found that there are many
nontrivial Q-linear relations among these values, such as the reversal and the linear shuffle relations. We
also numerically discovered some identities, which were proposed as conjectures. Due to the limitation of
computing power, we then computed the structures of MTVs (their alternating versions) when the weight
was less than 7 (resp. 4) by using finite Euler sums and the relations that we discovered. Throughout
the study, we were guided by the Conjecture Principle Philosophy 5.1, which provides the big picture in
which the main objects of this paper lie. We plan to investigate the symmetric versions of these values
more in a future paper.
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