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Abstract

In multi-agent reinforcement learning (MARL), agents repeatedly interact across time and revise

their strategies as new data arrives, producing a sequence of strategy profiles. This paper studies

sequences of strategies satisfying a pairwise constraint inspired by policy updating in reinforce-

ment learning, where an agent who is best responding in period t does not switch its strategy in the

next period t + 1. This constraint merely requires that optimizing agents do not switch strategies,

but does not constrain the other non-optimizing agents in any way, and thus allows for exploration.

Sequences with this property are called satisficing paths, and arise naturally in many MARL al-

gorithms. A fundamental question about strategic dynamics is such: for a given game and initial

strategy profile, is it always possible to construct a satisficing path that terminates at an equilibrium

strategy? The resolution of this question has implications about the capabilities or limitations of

a class of MARL algorithms. We answer this question in the affirmative for mixed extensions of

finite normal-form games.

1. Introduction

Game theory is a mathematical framework for studying strategic interaction between multiple self-

interested agents, called players. Game theoretic models are pervasive in machine learning, ap-

pearing in multi-agent systems (Zhang et al., 2021; Gronauer and Diepold, 2022), single-agent re-

inforcement learning with multiple objectives (Hayes et al., 2022), in adversarial model training

(Goodfellow et al., 2014, 2020; Bose et al., 2020), and throughout online learning theory in the

form of worst-case performance guarantees (Cesa-Bianchi and Lugosi, 2006).

In an n-player game, each player i = 1, · · · , n, selects a strategy xi ∈ X i and receives a reward

Ri(x1, . . . , xn), which depends on the collective strategy profile x = (x1, . . . , xn) =: (xi,x−i).
Player i’s optimization problem is to best respond to the strategy x−i of its counterparts, choosing

xi ∈ X i to maximize Ri(xi,x−i). A strategy profile x∗ = (xi∗)
n
i=1 is called a Nash equilibrium if

all players are simultaneously best responding to one another:

Ri(xi∗,x
−i
∗ ) ≥ Ri(yi,x−i

∗ ), ∀yi ∈ X i, ∀i = 1, · · · , n.

The related tasks of computing, approximating, and learning Nash equilibrium have attracted en-

during attention in the broader machine learning community (Singh et al., 2000; Jafari et al., 2001;
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Hu and Wellman, 2003; Daskalakis et al., 2010; Nowé et al., 2012; Bravo et al., 2018; Flokas et al.,

2020; Hsieh et al., 2021; Lu, 2023).

In the field of multi-agent reinforcement learning (MARL), players use learning algorithms to

iteratively revise their strategies in response to the observed history of play, producing a sequence

{x̂t}t≥1 in the set of strategy profiles X := X 1×· · ·×X n. In the multi-agent setting, each player’s

learning problem is complicated by numerous inherent challenges. First, there is a non-stationarity

issue, as a given individual’s reward function changes whenever other agents revise their strategies,

which subsequently prompts the individual to revise its own strategy. Second, key information about

the game or about the strategies of other players may only be partially observable to an individual,

necessitating estimation of various quantities. Analyzing the convergence properties of MARL

algorithms can therefore be difficult, and the development of theoretical tools for such analysis is

an important aspect of multi-agent learning theory.

A number of MARL algorithms are designed to approximate dynamical systems {xt}t≥1 on the

set of strategy profiles X in which the next strategy for player i is selected as xit+1 = f i(xt), where

xt = (x1t , . . . , x
n
t ) is the strategy profile in period t. A representative sample of MARL algorithms

of this type is offered in the next section. This approach facilitates analysis of the convergence

behavior of the MARL algorithm, as it allows the analyst to separately consider the convergence of

the idealized dynamical process {xt}t≥1 induced by the update functions {f i}ni=1 on one hand and

then consider the approximation of {xt}t≥1 by the MARL algorithm’s iterates {x̂t}t≥1 on the other.

Our primary interest in this work centers on update functions satisfying a quasi-rationality con-

dition called satisficing: if xi is a best response to x−i, then f i(xi,x−i) = xi. That is, when an

agent is already best responding, the update rule instructs the agent to continue using this strategy.

This quasi-rationality constraint generalizes the well-studied best response update and is desirable

for stability of the resulting dynamics, as it guarantees that Nash equilibrium strategy profiles are

invariant under the dynamics. Moreover, the satisficing condition is only quasi-rational, in that it

imposes no constraint on strategy updates when an agent is not best responding, and so allows for

exploratory strategy updates. Such update rules are common in the literature on multi-agent learning

theory (Blume, 1993; Marden and Shamma, 2012; Chasparis et al., 2013).

The basic motivation of this paper is to better understand the capabilities of MARL algorithms

that operate using the satisficing principle in selecting successive strategies, potentially augmented

with random exploration when an agent is not best responding. Rather than studying a particular

collection of strategy update functions, we study the problem on the level of sequences in X, which

allows us to implicitly account for experimental strategy updates. A sequence (xt)t≥1 of strategy

profiles is called a satisficing path if, for each player i and time t, one has that xit+1 = xit whenever

xit is a best response to x−i
t . The central research question of this paper is such:

For a normal-form game Γ and an initial strategy profile x1, is it always possible to construct

a satisficing path from x1 to a Nash equilibrium of the game Γ?

The resolution of this question has implications for the possible effectiveness of a class of

MARL algorithms designed to seek Nash equilibrium. Indeed, the question has been answered

in the affirmative for two-player normal-form games by Foster and Young (2006) and for n-player

symmetric Markov games by Yongacoglu et al. (2023), and in both classes of games this has directly

lead to MARL algorithms with convergence guarantees for approximating equilibria. A positive

resolution of this question would remove a theoretical obstacle and establish that uncoordinated,
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distributed random search can effectively assist Nash-seeking algorithms achieve last-iterate con-

vergence guarantees in a more general class of games than previously possible.

Our Contributions. In this work, we give a positive answer to the preceding research question for

(the mixed extension of) any n-player normal-form game with finite action sets. That is, we show

that for a finite n-player game Γ and any initial strategy profile x1, there exists a satisficing path of

finite length beginning at x1 and ending at a Nash equilibrium of the game Γ. This partially answers

an open question posed by Yongacoglu et al. (2023).

We prove our main result by analytically constructing a satisficing path from an arbitrary initial

strategy profile to a Nash equilibrium. Our approach is somewhat counterintuitive, in that it does

not attempt to seek Nash equilibrium by improving the performance of unsatisfied players (players

who are not best responding at a given strategy profile), but rather by updating strategies in a way

that increases the number of unsatisfied players at each round. This tactic heavily leverages the

freedom afforded to unsatisfied players to explore their strategy space and avoids the well-observed

challenges of cyclical strategy revision that occurs when agents attempt to best respond to their

counterparts.

Notation. We let P and E denote probability and expectation, respectively. For a finite set A,

we let RA denote the vector space R|A| with components indexed by elements of A. We let ∆A

denote the set of probability measures over a set A. For n ∈ N, we let [n] := {1, 2, . . . , n}. For

a point x, the Dirac measure centered at x is denoted δx. Agent indices are typically superscripts,

while time/iteration indices are typically subscripts. Boldface characters are reserved for multi-

agent quantities. When discussing a fixed agent i, the remaining collection of agents are called i’s
counterparts or counterplayers.

Related Work

Beginning with fictitious play (Brown, 1951), a vast number of MARL algorithms have been pro-

posed for iterative strategy adjustment while playing a game under various assumptions on observ-

ability of counterplayer strategies. The most widely studied class of algorithms of this type involve

each player running a no-regret algorithm on its own stream of rewards. Fictitious play and its de-

scendants, such as stochastic fictitious play (Hofbauer and Sandholm, 2002) and generalized weak-

ened fictitious play (Leslie and Collins, 2006) are special cases of this class and have been exten-

sively studied. Although the convergence behavior of fictitious play and its variants has been studied

in several game models, including normal-form games and Markov games, convergence results are

typically available only for games exhibiting special structure, such as zero-sum rewards or other

advantageous properties amenable to analysis (Hofbauer and Sandholm, 2002; Baudin and Laraki,

2022; Sayin et al., 2022a,b).

The formalization of the fictitious play property is especially relevant to this paper. A game

is said to have the fictitious play property if the empirical frequencies of strategies converge to a

Nash equilibrium from any initialization. Examples of games with and without the fictitious play

property date to (Robinson, 1951) and (Shapley, 1964), respectively, and the identification of games

with and without this property was viewed as an important research question (Monderer and Sela,

1996; Monderer and Shapley, 1996a).
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The convergence properties of the fictitious play algorithm are intimately connected to those of

best response dynamics, a full information dynamical system evolving in continuous time where

the evolution rule for player i’s strategy is governed by its best response multi-function. By har-

nessing such connections, convergence results for fictitious play and a number of other MARL

algorithms have been obtained by analyzing the dynamical systems induced by specific update rules

(Benaı̈m et al., 2005; Leslie and Collins, 2005; Swenson et al., 2018b).

A second research direction relevant to the present work involves (im)possibility results for

strategic dynamics defined by strategy update functions, taking the form xit+1 = f i(xt) in discrete

time or an analogous form in continuous time. The question of when such dynamics converge to

Nash equilibrium has received persistent attention. In the case of deterministic strategy updates,

Hart and Mas-Colell (2003) studied strategic dynamics in continuous time and showed that if the

strategy update functions, analogous to f i above, satisfy regularity conditions as well as a desir-

able property called uncoupledness, by which f i cannot depend on the reward functions of i’s
counterplayers, then the resulting dynamics are not Nash convergent in general. These results were

recently generalized by Milionis et al. (2023), who obtained impossibility results in both continuous

and discrete time while requiring only continuity of the deterministic dynamical system. Additional

possibility and impossibility results were presented by Babichenko (2012), who studied strategic

dynamics in a different setting, where players observe only their own actions and not the actions of

their counterplayers.

Passing from deterministic strategic dynamics to stochastic strategic dynamics, a number of pos-

itive results were obtained by incorporating exogenous randomness into one’s strategy update, along

with finite recall of recent play (Hart and Mas-Colell, 2006; Foster and Young, 2006; Germano and Lugosi,

2007).

In the regret testing algorithm of Foster and Young (2006), players revise their strategies ac-

cording to whether or not their most recent strategy met a satisfaction criterion: if xit performed

within ǫ of the optimal performance against x−i
t , player i continues using it and picks xit+1 = xit.

Otherwise, player i experiments and selects xit+1 according to a uniformly positive probability dis-

tribution over X i. Conditional strategy updates similar to this have appeared in several other works,

such as (Chien and Sinclair, 2011; Candogan et al., 2013; Chasparis et al., 2013), and the regret test-

ing algorithm has been extended in several ways (Germano and Lugosi, 2007; Arslan and Yüksel,

2017).

A game is said to have the satisficing paths property if it admits a finite length satisficing path

ending at equilibrium with an arbitrary initial strategy profile. As we discuss in the next section,

satisficing paths can be interpreted as a natural generalization of best response paths. Consequently,

the problem of identifying games that have the satisficing paths property is a theoretically rele-

vant question analogous to characterizing exact potential games (Monderer and Shapley, 1996b) or

determining when a game has the fictitious play property.

The concept of satisficing paths was first formalized by Yongacoglu et al. (2023) in the context

of multi-state Markov games, where it was shown that n-player symmetric Markov games have the

satisficing paths property and this fact could be used to produce a convergent MARL algorithm.

However, the core idea of satisficing paths appeared earlier, before this formalization: in the con-

vergence analysis of the regret testing algorithm in (Foster and Young, 2006), it was shown that

two-player normal-form games have the satisficing paths property, though this terminology was not

used.
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2. Model

A finite, n-player normal-form game Γ is described by a list

Γ = (n,A, r),

where n is the number of players, A = A1 × · · · × An is a finite set of action profiles, and r =
(ri)i∈[n] is a collection of reward functions, where ri : A→ R describes the reward of player i as a

function of the action profile. The ith component of A is player i’s action set Ai.

Description of play. Each player i ∈ [n] selects its action ai according to a probability vector xi ∈
∆Ai . That is, ai ∼ xi. The vector xi is called player i’s mixed strategy, and we denote player i’s set

of mixed strategies by X i := ∆Ai . Players are assumed to select their actions simultaneously, or at

least without observing one another’s actions, and the collection of actions {ai : i ∈ [n]} is assumed

to be mutually independent. The set of mixed strategy profiles is denoted X := X 1 × · · · X n and

corresponds to the set of product measures on A. After the action profile is selected, each player i
receives reward ri(a1, . . . , an).

Player i’s performance criterion is its expected reward, which depends jointly on its mixed

strategy and the strategies of i’s counterplayers. For each strategy profile x ∈ X, player i’s expected

reward is

Ri(xi,x−i) = Ea∼x

[
ri(a1, . . . , an)

]
,

where Ea∼x signifies that aj ∼ xj for each player j ∈ [n] and we have used the convention that

x = (xi,x−i) and x−i = (x1, . . . , xi−1, xi+1, . . . , xn). Since player i’s objective depends on the

strategies of its counterplayers, the relevant optimality notion is that of (ǫ-) best responding.

Definition 1 A mixed strategy xi∗ ∈ X
i is called an ǫ-best response to the strategy x−i ∈ X−i if

Ri(xi∗,x
−i) ≥ Ri(xi,x−i)− ǫ ∀xi ∈ X i.

The standard solution concept for n-player normal form games is that of (ǫ-) Nash equilibrium,

which entails a situation in which all players are simultaneously (ǫ-) best responding to one another.

Definition 2 For ǫ ≥ 0, a strategy profile x∗ = (xi∗,x
−i
∗ ) ∈ X is called an ǫ-Nash equilibrium if,

for every i ∈ [n],

Ri(xi∗,x
−i
∗ ) ≥ Ri(xi,x−i

∗ )− ǫ ∀xi ∈ X i.

Putting ǫ = 0 in the definitions above, one recovers the classical definitions of best responding

and Nash equilibrium. For any ǫ ≥ 0, the set of ǫ-best responses to a specified strategy x−i is

denoted BRi
ǫ(x

−i) ⊆ X i.

2.1. Satisficing Paths

This section contains several definitions useful for the of study strategic dynamics in normal-form

games and presents satisficing paths as a generalization of best response paths.

5



YONGACOGLU ARSLAN PAVEL YÜKSEL

Definition 3 A sequence of strategy profiles (xt)t≥1 in X is called a best response path if, for every

t ≥ 1 and every player i ∈ [n], we have

xit+1 =

{
xit, if xit ∈ BRi

0(x
−i
t ),

some xi⋆ ∈ BRi
0(x

−i
t ), else.

The preceding definition of best response paths can be relaxed in several ways, and such re-

laxations are often desirable to avoid non-convergent cycling behavior. A common relaxation

involves synchronizing players or incorporating inertia, so that only a subset of players switch

their strategies at a given time, which can be help achieve coordination in cooperative settings

(Marden and Shamma, 2012; Swenson et al., 2018a; Yongacoglu et al., 2022).

Beyond cooperative settings, the use of best response dynamics to seek Nash equilibrium may

not be justified. In purely adversarial settings, for instance, best response paths cycle and fail to

converge (Balcan et al., 2023), and some alternative strategic dynamics are needed to drive play to

equilibrium. Consider the following generalization of the best response update:

xit+1 =

{
xit, if xit ∈ BRi

0(x
−i
t ),

f i(xit,x
−i
t ) else.

The update defined above is characterized by a “win stay, lose shift” principle, which only

constrains the player to continue using a strategy when it is optimal. On the other hand, the player

is not forced to use a best response when xit /∈ BRi
0(x

−i
t ), and may experiment with suboptimal

responses according to a function f i : X→ X i.1 Allowing the function f i to be any function from

X to X i, one generalizes best response updates and obtains a much larger set of sequences (xt)t≥1

and greater flexibility to approach equilibrium from new directions. This motivates the following

definition of satisficing paths.

Definition 4 A sequence of strategy profiles (xt)
T
t=1, where T ∈ N ∪ {∞}, is called a satisficing

path if it satisfies the following pairwise satisfaction constraint for any player i ∈ [n] and any t:

xit ∈ BRi
0(x

−i
t )⇒ xit+1 = xit. (1)

The intuition behind satisficing paths is that they are the result of an iterative search process in

which players settle upon finding an optimal strategy (i.e. a best response to the strategies of coun-

terplayers) but are free to explore different strategies when they are not already behaving optimally.

Note, however, that the definition above is merely a formal property of sequences of strategy profiles

in X and is agnostic to how a satisficing path is produced. The latter point will be important in the

coming sections, where we analytically obtain a particular satisficing path as part of an existence

proof.

We note that Condition (1) constrains only optimizing players. It does not mandate a particular

update for the so-called unsatisfied player i, for whom xit /∈ BRi
0(x

−i
t ). In particular, xit+1 can

be any strategy without restriction, and xit+1 /∈ BRi
0(x

−i
t ) is allowed. In addition to best response

paths, constant sequences (xt)t≥1 with xt ≡ x are always satisficing paths, even when x is not a

Nash equilibrium. Moreover, since arbitrary strategy revisions are allowed when a player is unsatis-

fied, if x1 ∈ X is a strategy profile for which all players are unsatisfied, then (x1,x2) is a satisficing

path for any x2 ∈ X.

1. As a special case, f i may simply be a best response selector, recovering the best response update.
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Definition 5 The game Γ has the satisficing paths property if for any x1 ∈ X, there exists a sat-

isficing path (x1,x2, . . . ) such that, for some finite T = T (x1), the strategy profile xT is a Nash

equilibrium.2

Satisficing paths were initially formalized by Yongacoglu et al. (2023), who proved that two-

player games and n-player symmetric games have the satisficing paths property. However, whether

general-sum n-player games have the satisficing paths property was left as an open question.

3. Main result

Theorem 6 Any finite normal-form game Γ has the satisficing paths property.

Proof sketch. Before presenting the formal proof, we describe the intuition of its main argument. In

the proof of Theorem 6, we construct a satisficing path from an arbitrary initial strategy x1 to a Nash

equilibrium by repeatedly switching the strategies of unsatisfied players in a way that grows the set

of unsatisfied players after the update. Once the set of unsatisfied players is maximal, we argue that

a Nash equilibrium can be reached in one step by switching the strategies of the unsatisfied players.

The final point represents the main technical challenge in the proof, as switching the strategies of

unsatisfied players changes the objective functions for the previously satisfied players. We address

this challenge by showing the existence of a Nash equilibrium on the boundary of a strategy subset

in which previously satisfied players remain satisfied.

To give the complete proof, we will require some additional notation, detailed in the next subsection,

and some supporting results, detailed in Appendix A and Appendix B.

3.1. Additional notation

In order to describe the construction of our satisficing path from x1 to a Nash equilibrium, we

require the following sets, defined for any x ∈ X:

Sat(x) :=
{
i ∈ [n] : xi ∈ BRi

0(x
−i)

}
, and UnSat(x) := [n] \ Sat(x).

A player in Sat(x) ⊆ [n] is called satisfied (at x), and a player in UnSat(x) is called unsatisfied

(at x). For x ∈ X, we also define

Access(x) :=
{
y ∈ X : yi = xi, ∀i ∈ Sat(x)

}
.

Access(x) is the subset of strategies that are accessible from strategy x, to mean one can obtain

strategy y ∈ Access(x) ⊆ X from x by switching (at most) the strategies of players who were

unsatisfied at x. We define a subset NoBetter(x) ⊆ Access(x) as

NoBetter(x) := {y ∈ Access(x) : UnSat(x) ⊆ UnSat(y)}

= {y ∈ Access(x)|∀i ∈ UnSat(x), i ∈ UnSat(y)} ,

The set NoBetter(x) consists of strategies y that are accessible from x and also fail to improve

the status of players who were previously unsatisfied. The set name NoBetter(x) is chosen to

2. A more general definition, involving ǫ ≥ 0 best responding and strategy subsets was studied in (Yongacoglu et al.,

2023). In this paper, we consider true optimality and no strategic constraints, which additionally aids clarity.
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suggest that the players unsatisfied at x are not better off at y ∈ NoBetter(x), since they are

unsatisfied at both x and y. We observe x ∈ NoBetter(x), hence NoBetter(x) is non-empty.

Finally, we define a set Worse(x) ⊆ NoBetter(x) as

Worse(x) := {y ∈ NoBetter(x) : UnSat(x) ( UnSat(y)}

= {y ∈ NoBetter(x)|∃i ∈ Sat(x) : i ∈ UnSat(y)}.

The set Worse(x) consists of strategies that are accessible from x, that leave all previously

unsatisfied players unsatisfied, and flip at least one previously satisfied player to being unsatisfied.

In particular, if y ∈ Worse(x), this means |UnSat(y)| ≥ |UnSat(x)| + 1. We observe that

Worse(x) may be empty, and Worse(x) ⊆ NoBetter(x) ⊆ Access(x).

3.2. Proof of Theorem 6

Remark 7 In the proof below, we analytically construct a satisficing path from x1 to a Nash

equilibrium. The process of selecting successive strategies x1,x2, · · · and switching the component

strategy of each player is done centrally, by the analyst, and should not be mistaken for some type

of distributed learning algorithm.

Proof Let x1 ∈ X be any initial strategy profile. We must produce a satisficing path of finite

length terminating at a Nash equilibrium. Equivalently, we must produce a sequence x1, . . . ,xT

with xt+1 ∈ Access(xt) for each t and xT a Nash equilibrium, where the length T may depend on

x1. In the trivial case that x1 is a Nash equilibrium, we put T = 1. The remainder of this proof

focuses on the non-trivial case, where x1 is not a Nash equilibrium.

To begin, we produce a satisficing path x1, . . . ,xk as follows. We put t = 1, and while both

Sat(xt) 6= ∅ and Worse(xt) 6= ∅, we arbitrarily fix xt+1 ∈ Worse(xt) and increment t ← t+ 1.

By construction, we have

∅ 6= UnSat(x1) ( · · · ( UnSat(xt) ( UnSat(xt+1)

for each non-terminal iteration t, where the inequality holds because x1 is not a Nash equilibrium.

Thus, the number of unsatisfied players is strictly increasing along this satisficing path. Since the

number of unsatisfied players is bounded above by n, and since we have assumed |UnSat(x1)| ≥ 1,

this process terminates in at most n − 1 steps. Letting k denote the terminal index of this process,

we have k ≤ n− 1.

By the construction of the path (x1, . . . ,xk), (at least) one of the following holds at index k:

either Sat(xk) = ∅ or Worse(xk) = ∅. In other words, either no player is satisfied at xk, or there

is no accessible strategy that grows the subset of unsatisfied players.

Case 1: Sat(xk) = ∅, and all players are unsatisfied at xk. In this case, we may switch the strategy

of each player i ∈ [n] to any successor strategy. That is, Access(xk) = X. We fix an arbitrary

Nash equilibrium z⋆, put xk+1 = z⋆, and let T = k + 1. Then, (x1, . . . ,xT ) is a satisficing path

terminating at equilibrium.

Case 2: Sat(xk) 6= ∅ and Worse(xk) = ∅. In this case, there are no accessible strategies that

strictly grow the set of unsatisfied players, which is also non-empty.
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Since Worse(xk) = ∅, the following holds: for any strategy y ∈ NoBetter(xk) and any

satisfied player i ∈ Sat(xk), we have that i ∈ Sat(y). (Otherwise, if i ∈ UnSat(y), then y ∈
Worse(xk), since it flipped a satisfied player. But this contradicts the emptiness of Worse(xk).)

We now argue that there exists a strategy profile x⋆ accessible from xk such that all players

unsatisfied at xk are satisfied at x⋆. That is, there exists an accessible strategy x⋆ ∈ Access(xk)
such that

UnSat(xk) ⊂ Sat(x⋆). (2)

To see that such a strategy x⋆ exists, note that fixing the strategies of the m players satisfied at

xk defines a new game, say Γ̃, with n−m players, and the new game Γ̃ admits a Nash equilibrium

x̃⋆ = (x̃i⋆)i∈UnSat(xk). We extend x̃⋆ to be a strategy profile in the larger game Γ by putting xi⋆ = xik
for players i ∈ Sat(xk) while putting xj⋆ = x̃j⋆ for players j ∈ UnSat(xk). By construction, we

have that xj⋆ ∈ BRj
0(x

−j
⋆ ) for each j ∈ UnSat(xk), so (2) holds.

From the set containment in (2), it is clear that x⋆ /∈ NoBetter(xk), since NoBetter(xk)
consists of strategies accessible from xk in which unsatisfied agents remain unsatisfied, while the

previously unsatisfied agents are satisfied at x⋆. We now state a key technical lemma, which asserts

that although x⋆ does not belong to NoBetter(xk), it does lie on its boundary.

Lemma 8 There exists a sequence {y}∞t=1, with yt ∈ NoBetter(xk) for each t, such that

lim
t→∞

yt = x⋆.

A proof of Lemma 8 given in Appendix B.

To conclude the proof, we will argue that x⋆ is in fact a Nash equilibrium for the game Γ.

That is, in addition to (2), we also have Sat(xk) ⊂ Sat(x⋆). To do so, we introduce functions

F i : X→ R for each player i ∈ [n], given by

F i(xi,x−i) = max
ai∈Ai

Ri(δai ,x
−i)−Ri(xi,x−i),

for each x = (xi,x−i) ∈ X. The functions {F i}ni=1 have the following useful properties, which are

well known (Maschler et al., 2020), and are summarized in Appendix A. For each player i ∈ [n],

a. F i is continuous on X,

b. F i(x) ≥ 0 for all x ∈ X, and

c. For any x−i ∈ X−i, a strategy xi is a best response to x−i if and only if F i(xi,x−i) = 0.

Let (yt)
∞
t=1 be a sequence in NoBetter(xk) converging to x⋆, which exists by Lemma 8. For

any previously satisfied player i ∈ Sat(xk), since Worse(xk) = ∅ and yt ∈ NoBetter(xk), from

a previous observation, we have that i ∈ Sat(yt). Equivalently, xik ∈ BRi
0(y

−i
t ). Re-writing this

using the function F i and the notation yit = xik for satisfied players i ∈ Sat(xk), we have

F i(yit,y
−i
t ) = 0, ∀t ∈ N,

9
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for any i ∈ Sat(xk). By continuity of F i, we have

0 = lim
t→∞

F i(yt) = F i
(
lim
t→∞

yt

)
= F i(x⋆),

establishing that player i is satisfied at x⋆. Since i ∈ Sat(xk) was generic, we have Sat(xk) ⊂
Sat(x⋆). Then, by (2), we also had UnSat(xk) ⊂ Sat(x⋆), so indeed Sat(x⋆) = [n], and x⋆ is a

Nash equilibrium accessible from xk.

We put T = k+1 and xT = x⋆, which completes the proof, since (x1, . . . ,xT ) is a satisficing path

terminating at a Nash equilibrium.

4. Discussion

On decentralized learning

Multi-agent reinforcement learning algorithms based on the “win stay, lose shift” principle char-

acteristic of satisficing paths are especially well suited to decentralized applications, since players

are often able to estimate the performance of their current strategy as well as the performance of

an optimal strategy, even under partial information. In decentralized problems, coordinated search

of the set X of strategy profiles for a Nash equilibrium is typically infeasible, and players must

select successor strategies in a way the depends only on quantities that can be locally accessed or

estimated.

For instance, consider a trivial coordinated search method, where player i selects xit+1 uniformly

at random fromX i whenever xt was not a Nash equilibrium and selects xit+1 = xit only when xt is a

Nash equilibrium. This process is clearly ill-suited to decentralized applications, because player i’s
strategy update depends on both a locally estimable condition (whether player i is best responding

to x−i
t ) as well as a condition that cannot be locally estimated (whether another player j 6= i is best

responding to x
−j
t .) The satisfaction (“win stay”) constraint plays a key role as a local stopping

condition for satisficing paths, and rules out coordinated search of the set X such as the trivial

update outlined above. Examples of decentralized or partially decentralized learning algorithms

leveraging satisficing paths in their analysis include (Foster and Young, 2006; Marden et al., 2009;

Arslan and Yüksel, 2017; Yongacoglu et al., 2023). The analytic results of this paper suggest that

algorithms such as these can be extended to wider classes of games and enjoy equilibrium guarantees

under different informational constraints on the players.

On complexity and dynamics

In Theorem 6, we showed that for any finite n-player normal-form game Γ and any initial strategy

profile x1 ∈ X, there exists a satisficing path x1, . . . ,xT of finite length T = T (x1) terminating at

a Nash equilibrium xT . From the proof of Theorem 6, one makes the following observations.

1. The length of such a path can be uniformly bounded above as T (x1) ≤ n.

2. There exists a collection of strategy update functions
{
f i
Γ : X→ X i

∣∣i ∈ [n]
}

whose joint

orbit is the satisficing path described by the proof of Theorem 6. That is, f i
Γ(xt) = xit+1

for each player i ∈ [n], every 0 ≤ t ≤ T − 1, and every x1 ∈ X, where xit is player i’s
component of xt in the satisficing path initialized at x1.

10
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The proof of Theorem 6 is semi-constructive. At each step along the path, we describe how the

next strategy profile should be picked (e.g. xt+1 ∈Worse(xt)), but we do not suggest an algorithm

for computing it. In at least one place, namely Case 1 where we put xT := z⋆, the path construction

involves moving jointly to a Nash equilibrium in one step. The computational complexity of such a

step is prohibitive (Daskalakis et al., 2009), underscoring that ours is an analytical existence result

rather than a computational prescription.

Although we have shown that there exists a discrete-time dynamical system on X that converges

to Nash equilibrium in n steps and can be characterized by update functions {f i
Γ}

n
i=1, we note that

our possibility result does not contradict the impossibility results of (Hart and Mas-Colell, 2003;

Babichenko, 2012) or (Milionis et al., 2023). In particular, the functions {f i
Γ}

n
i=1 need not be (and

usually will not be) continuous, violating the regularity conditions of Hart and Mas-Colell (2003)

and Milionis et al. (2023), and furthermore the functions {f i
Γ}

n
i=1 depend crucially on the game Γ in

a way that violates the uncoupledness conditions of (Hart and Mas-Colell, 2003) and (Babichenko,

2012).

Open questions and future directions

Several interesting questions about satisficing paths remain open. We now briefly describe some

that we find especially practical or theoretically relevant.

While this paper dealt with satisficing paths defined using a best responding constraint, the

original definition was stated using an ǫ-best responding constraint, according to which a player

who was ǫ-best responding was not allowed to switch its strategy. Putting ǫ = 0, one recovers the

definition used here, but one may also select ǫ > 0, which can be desirable to accommodate for

estimation error in multi-agent reinforcement learning applications. The added constraint reduces

freedom to switch strategies, and thus makes it more challenging to construct paths starting from a

given strategy profile. On the other hand, the collection of Nash equilibria is a strict subset of the set

of ǫ-Nash equilibria, and one can attempt to guide the process to a different terminal point in a larger

set. At this time, it is not clear to us whether the main result of this paper holds for small ǫ > 0. It

is clear, however, that the proof technique used here will have to be modified, since we have relied

on Lemma 8, whose proof involved an indifference condition and invoked the fundamental theorem

of algebra, and relaxing to ǫ > 0 would render such an argument ineffective.

A second interesting question for future work is whether multi-state Markov games with n > 2
players have the satisficing paths property. The case with n = 2 was resolved by Yongacoglu et al.

(2023), but the proof technique used there did not generalize to n ≥ 3. By contrast, our proof

technique readily accommodates any number of players, but is designed for stateless normal-form

games. Our proof used multi-linearity of the expected reward functions {Ri}ni=1, which does not

generally hold in the multi-state setting.

In this work, satisficing paths were defined in a way that allowed an unsatisfied player i to

change its strategy to any strategy in its set X i, without constraint. This is interesting in many

problems where the set of strategies can be explicitly and directly parameterized, but may be unre-

alistic in games where the set of strategies is poorly understood or in which a player can effectively

represent only a subset of its strategies Y i ( X i. In such games, the question more relevant for

algorithm design is whether the game admits satisficing paths to equilibrium within the restricted

subset Y1 × · · · × Yn. This point was implicitly appreciated by both Foster and Young (2006) and

Germano and Lugosi (2007) and explicitly noted in Yongacoglu et al. (2023).
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5. Conclusion

Satisficing paths can be interpreted as a natural generalization of best response paths in which play-

ers may experimentally select their next strategy in periods when they fail to best respond to their

counterplayers. While (inertial) best response dynamics drive play to equilibrium in certain well-

structured classes of games, such as potential games and weakly acyclic games (Fabrikant et al.,

2010), the constraint of best responding limits the efficacy of these dynamics in games with cycles

in the best response graph (Pangallo et al., 2019). In such games, best response paths leading to

equilibrium do not exist, and multi-agent reinforcement learning algorithms designed to produce

such paths will not lead to equilibrium.

In this paper, we have shown that every finite normal-form game enjoys the satisficing paths

property. By relaxing the best response constraint for unsatisfied players, one ensures that paths to

equilibrium exist from any initial strategy profile. Multi-agent reinforcement learning algorithms

designed to produce satisficing paths, rather than best response paths, thus do not face the same

fundamental obstacle of algorithms based on best responding. While algorithms based on satisfic-

ing have previously been developed for two-player games normal-form games, symmetric Markov

games, and several other subclasses of games, the findings of this paper suggest that similar algo-

rithms can be devised for the wider class of n-player general-sum normal-form games.
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Proofs of technical lemmas

We now discuss the properties of the auxiliary functions {F i : i ∈ [n]} that were used in the proof

of Theorem 6, and we prove Lemma 8.

We remark that for each player i ∈ [n], we identify their set of mixed strategies X i = ∆Ai with

the probability simplex in RAi

. Thus, X i inherits the Euclidean metric from R|Ai|. Neighborhoods

and limits in X i (or its subsets) are defined with respect to this metric. Similarly, we inherit a

Euclidean metric for X. For ζ > 0, we let Nζ(x) denote the ζ-neighborhood of the strategy profile

x ∈ X.

Appendix A. Properties of the auxiliary functions

We begin by discussing the properties of the auxiliary functions {F i : i ∈ [n]}, as they are relevant

to characterizing best responses. The facts below are well-known. For a reference, see the text of

Maschler et al. (2020).

Recall that for each player i ∈ [n], the function F i : X→ R is defined as

F i(xi,x−i) = max
ai∈Ai

Ri(δai ,x
−i)−Ri(xi,x−i), ∀x ∈ X.

We now show that for any i ∈ [n], the following hold:

a. F i is continuous on X,

b. F i(x) ≥ 0 for all x ∈ X, and

c. For any x−i ∈ X−i, a strategy xi is a best response to x−i if and only if F i(xi,x−i) = 0.

The expected reward function Ri(x) = Ea∼x

[
ri(a)

]
can be expressed as a sum of products:

Ri(x) =
∑

ã∈A

ri(a)Pa∼x (a = ã) =
∑

ã∈A

ri(ã1, . . . , ãn)

n∏

j=1

xj(ãj), ∀x ∈ X.

From this form, it is immediate that Ri is continuous on X. Moreover, it can easily be shown

that Ri is multi-linear in x. That is, for any j ∈ [n], fixing x−j , we have that xj 7→ Ri(xj ,x−j) is

linear.3

Since Ri is continuous on X and Ai is a finite set, one has that the pointwise maximum of

finitely many continuous functions is continuous. Thus, the function

x−i 7→ max
ai∈Ai

Ri
(
δai ,x

−i
)

is continuous on X−i. Since F i(xi,x−i) = maxai∈Ai Ri
(
δai ,x

−i
)
−Ri(xi,x−i) is the difference

of continuous functions, F i is also continuous. This proves item a.

From the multi-linearity of Ri, we have that, for fixed x−i ∈ X−i, the optimization problem

supxi∈X i Ri(xi,x−i) is equivalent to a linear program

sup
xi∈RAi

w⊤
x−ix

i, subject to

{
1⊤xi = 1,

xi ≥ 0
,

3. Of course, scaling inputs of Ri means the resulting argument is no longer a probability vector. However, one can

simply linearly extend Ri to be a function on Rd, where d =
∑n

j=1
|Aj |.
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where wx−i ∈ RAi

is a vector defined by wx−i(ai) := Ri(δai ,x
−i).

The vertices of the feasible set for the latter linear program are precisely the points {δai : a
i ∈

Ai}. This implies that maxai R
i(δai ,x

−i) ≥ Ri(xi,x−i) for any xi,x−i. Items b and c follow.

From this formulation, one can also see that a player i ∈ [n] is satisfied at x ∈ X if and only if its

strategy xi is supported on the set of maximizers argmaxai∈Ai{Ri(δai ,x
−i)}.

Appendix B. Proof of Lemma 8

Recall that in the proof of Theorem 6, x⋆ was defined to be some strategy accessible from xk ∈ X

such that all players unsatisfied at xk were satisfied at x⋆. The statement of Lemma 8 was the

following.

Lemma 8 There exists a sequence {y}∞t=1, with yt ∈ NoBetter(xk) for each t, such that

limt→∞ yt = x⋆.

Proof Suppose, to the contrary, that no such sequence exists. Then, there exists some ζ > 0
such that for every z ∈ Access(xk) ∩ Nζ(x⋆), one has z /∈ NoBetter(xk). That is, some player

unsatisfied at xk is satisfied at z. Equivalently, for some i ∈ UnSat(xk), we have zi ∈ BRi
0(z

−i).
This implies that for that player i, that value of ζ , and the strategy profile (zi, z−i) ∈ Nζ(x⋆), z

i is

supported on the set argmaxai∈Ai{Ri(δai , z
−i)}.

For each ξ ≥ 0, we define a strategy profile wξ ∈ X as follows:

wi
ξ :=

{
(1− ξ)xik + ξUniform(Ai), if i ∈ UnSat(xk)

xik, else.

Fixing ξ > 0 at a sufficiently small value, by the continuity of the functions {F i}i∈[n], we have that

wξ ∈ NoBetter(xk). By the earlier discussion, we have that wξ /∈ Nζ(x⋆).

A very important aspect of this construction is that wi
ξ(a

i) > 0 for each i ∈ UnSat(xk) and

action ai ∈ Ai, so that wi
ξ is fully mixed for each player who was unsatisfied at xk.

Next, for each λ ∈ [0, 1] and player i ∈ UnSat(xk), we define

ziλ = (1− λ)xi⋆ + λwi
ξ.

We also define ziλ = xik for players i ∈ Sat(xk). For sufficiently small values of λ, say λ ≤ λ̄, we

have that zλ ∈ Nζ(x⋆), which implies zλ /∈ NoBetter(xk).

This implies that there exists a player i† ∈ UnSat(xk) for whom

zi
†

λ ∈ BRi†

0

(
z−i†

λ

)
, for infinitely many λ ∈

(
0, λ̄

]
.

(The existence of such a player is perhaps not obvious. As we previously noted, for λ < λ̄, we

have zλ /∈ NoBetter(xk), which means there exists some player i†(λ) that was unsatisfied at xk

and is satisfied at zλ. The identity of this player may change with λ. To see that some particular

individual must satisfy this best response condition infinitely often, one can apply the pigeonhole

principle to the set {λ̄, λ̄/2, . . . , λ̄/m} for arbitrarily large m.)
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By our definition of zi
†

λ as a convex combination involving Uniform(Ai†), we have that zi
†

λ is

fully mixed and puts positive probability on each action in Ai† . Using the characterization involv-

ing F i† , the fact that zi
†

λ ∈ BRi†

0

(
z−i†

λ

)
and the fact that zi

†

λ is fully mixed together imply that

Ri†(δa, z
−i†

λ ) = Ri†(δa′ , z
−i†

λ ), for any a, a′ ∈ Ai† . This can be equivalently re-written as

∑

a−i†

ri
†

(a,a−i†)
∏

j 6=i†

{
(1− λ)xj⋆(a

j) + λwj
ξ(a

j)
}

=
∑

a−i†

ri
†

(a′,a−i†)
∏

j 6=i†

{
(1− λ)xj⋆(a

j) + λwj
ξ(a

j)
}

⇐⇒
∑

a−i†

[
ri

†

(a,a−i†)− ri
†

(a′,a−i†)
] ∏

j 6=i†

{
(1− λ)xj⋆(a

j) + λwj
ξ(a

j)
}
= 0 (3)

for any a, a′ ∈ Ai† .

The lefthand side of the final equality (3) is a polynomial in λ of finite degree, but admits

infinitely many solutions (from our choice of i†). This implies that it is the zero polynomial. In

turn, this implies that the left side of (3) holds for any λ ∈ [0, 1], and in particular for λ = 1. This

means zi
†

1 ∈ BRi†

0 (z
−i†

1 ), meaning z1 /∈ NoBetter(xk). On the other hand, we have z1 = wξ ∈
NoBetter(xk), a contradiction.

Thus, we see that there exists a sequence {yt}
∞
t=1, with yt ∈ NoBetter(xk) for all t, such that

limt→∞ yt = x⋆.
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