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Chaos plays a crucial role in numerous natural phenomena, but its quantum nature has remained
large elusive. One intriguing quantum-chaotic phenomenon is the scarring of a single-particle wave-
function, where the quantum probability density is enhanced in the vicinity of a classical periodic
orbit. These quantum scars illustrate the quantum suppression of classical chaos, offering a unique
way to explore the classical-quantum relationship beyond conventional limits. In this study, we
establish an ergodicity theorem for slacking a group of adjacent eigenstates, revealing the aspect
of antiscarring – the reduction of probability density along a periodic orbit generating the corre-
sponding scars. We thereafter apply these two concepts to variational scars in a disordered quantum
well, and finally discuss their broader implications, suggesting potential experimental approaches to
observe this phenomenon.

INTRODUCTION

Chaos lurks everywhere in our classical-perceived
world [1]: For example, it is the main player behind
the ever so infamous mission to forecast tomorrow’s
weather [2]. Nevertheless, the quantum nature of chaos
has remained ambiguous. This paradigmatic role of chaos
was already mused over by none other than A. Einstein in
the early days of quantum mechanics [3, 4]. Even though
“genuine” chaos in the spirit of classical mechanics does
not exist, chaos does appear in the quantum realm, but
in a different fashion [5–8]. Curiously, the investigation
of quantum signatures of chaos differs distinctly from the
study of chaos in classical mechanics: the latter consid-
ers the time-evolution of phase space points (see, e.g.,
Refs. [9–11]), whereas the former conventionally leans on
the statistical analysis of a sequence of the eigenvalues
of the Hamiltonian, or on an examination of the proba-
bility density distribution of individual eigenstates (see,
e.g., Refs. [11–17]).

Since a classically chaotic system is ergodic, i.e., al-
most all of its trajectories eventually explore the entire
accessible phase space in a uniform manner, a simple
solution would be to associate the corresponding high-
energy quantum states with the Wigner functions con-
structed as homogeneous over the energy shell [18–20].
Furthermore, the Gutzwiller trace formula [11, 21] reveal-
ing the energy eigenvalues in terms of classical periodic
orbits (POs) is very egalitarian: there is no particular
reason of why a given PO would have an outsized contri-
bution to a given eigenstate. These two points of view are
further supported by the quantum ergodicity theorems of
Shnirelman, Colin de Verdiere, and Zelditch [22–24] stat-
ing that the expectation value of an operator coincides
with the microcanonical average of the classical function
corresponding to the operator in the semiclassical limit
ℏ → 0. However, the theorem leaves the possibility of

FIG. 1. Probability density distribution of the eigenstate
n = 3223 (E ∼ 549) of a quantum well confined by a r5 poten-
tial and disturbed by potential bumps (red dots denoting the
locations and full widths at half maximum of the bumps). The
shown eigenstate of the perturbed system is strongly scarred
by a pentagram-shape periodic orbit (blue solid line) of the
unperturbed potential. Note that several bumps are located
on the scar path; in fact the scar is orientated in a such a way
that it maximizes the overlap with the perturbation stemming
from the bumps.

a subset of macroscopically nonergodic eigenstates with
vanishing contribution in the limit ℏ → 0. [25] Therefore,
in contrast to a tempting fallacy, not all eigenstates of a
classically chaotic system are doomed to be random and
features. For instance, as consequence of quantum inter-
ference, the probability density of a quantum state can
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be enhanced in the vicinity of a short, moderately unsta-
ble periodic orbit PO of the chaotic classical counterpart,
and hence the quantum state bears an imprint of the PO
– a quantum scar [25–28].

The scarring of a single-particle wave function was first
introduced by one of the present authors in Ref. [26], af-
ter which it has then evolved to be one of the promi-
nent phenomena in the field of quantum chaos. Quan-
tum scars bridge the gap between the classical and quan-
tum worlds. Besides a vast amount of theoretical inter-
est [29–38], quantum scars are reported in a diverse range
of experiments [39–52] and simulations [53–61]. While
quantum scars typically emerge in a closed system, an
analog of scars do exist in open systems [62–64] which
are connected to the concept of a pointer state [65–67],
and can have a significant effect on the transport prop-
erties [54, 68–73]. In fact, from the properties of scars
in the closed system, one can infer the extent of conduc-
tance fluctuations in the corresponding open system.

In addition to the original narrative above, two new
chapters have recently been opened in the saga of quan-
tum scarring. A new field of quantum many-body scar-
ing has emerged from the experimental observation of
weak ergodicity breaking in Rydberg atom quantum sim-
ulators [74–77], and in optical lattices [78, 79] that has
yielded a deluxe of theoretical knowledge upon the topic,
including an ambition to connect many-body scars to the
conventional scarring [80, 81]. These special states in a
many-body Hilbert space evade thermalization at finite
energy densities producing surprising persistent oscilla-
tions of local observables without relying on the aspects
of (near-)integrability or the protection given by a global
symmetry (see, e.g., Refs. [79, 82–105]). In general, this
hybrid phenomenon of quantum scarring and many-body
localization could have profound implications for funda-
mental and practical reason, such as in quantum-boosted
metrology [106]. In this regard, a key question has been
the fate of many-body scarring under disorder present in
realistic quantum devices [107–109].

On the other hand, the deeper understanding about
the role of disorder in two-dimensional nanostructures
was the initial spark for the second new branch of quan-
tum scarring [110–114] that we consider here in this
Letter. In this phenomenon, the scars in a pertur-
bated quantum system are however formed around POs
of the corresponding classical unperturbed counterpart
(see Fig. 1). This kind of scarring, coined the epithet
variational, has fundamentally distinct mechanism com-
pared to the conventional scars [113]: these perturbation-
induced (PI) scars arise as a a unique corpus of a special
near-degeneracy structure and the localized nature of a
perturbation. Overall, PI scars are not a rare occurrence,
instead they thrive in various disordered potential land-
scapes [110–114].

From a more pragmatic viewpoint, if high-energy
eigenstates of a generic QD were indeed featureless and

random due to chaos, e.g., stemming from the effect of
the boundary (see, e.g., Refs. [115–119]) or the magnetic
field (see, e.g., Refs. [120–122]), or from different kind of
impurities and defects (see, e.g. Refs. [123–125]), con-
trolled applications in this regime would be tedious to
realize. However, PI scars provide a way to regulate this
chaos by suppressing it locally in the shape of classical
POs. It has been demonstrated [110] that PI scars can be
utilized to efficiently propagate quantum wave packets in
a perturbed system, counterintuitively even with higher
fidelity than in the unperturbed counterpart containing
no scars. Besides being a common feature in nanostruc-
tures plagued by impurities, PI scars also have a salient
property being highly controllable. First, the existence
and geometry of the scars can be tuned by adjusting the
confining potential [113] or with an external magnetic
field [111]. In addition to random scattered impurities, a
distinct PI scar in a QD can arise from a single focused
perturbative potential, generated in a controlled manner
by, e.g., a conducting nanotip, which can pin the scar
into the desired orientation. [111] Combined, these two
features may open a pathway into coherently modulating
quantum transport in nanoscale devices by exploiting the
scarring – into scartronics, with significant potential as a
resource in the quantum-enhanced nanoelectonics of to-
morrow.

In this paper, we however investigate the inevitable
consequence of quantum scars, namely antiscarring [25]:
a depression of the probability density in a quantum state
along the path of the scar-generating PO. For instance,
it has been shown [68] that the existence of antiscarred
states yields anomalously long escape times in some de-
cay processes. Despite of the proliferation on the list
of possible antiscaring effects (see, e.g., Refs. [126–129]),
antiscarring as a phenomenon has remained elusive, in
particular being a lingering puzzle in the context of PI
scarring.

Reflecting upon the quandary around the subject, our
pursuit is therefore to settle the dilemma whether ergod-
icity is totally suppressed by scars in quantum-chaotic
systems, and to constitute a solid foundation for further
studies on antiscarring, and relating topics, such as eigen-
function thermalization [130–134]. With this motive as
our guiding directive, the paper is organized as follows: in
the following Sec. II, the investigated system of a quan-
tum well affected by impurities is described in detail, and
a brief theoretical outline for PI scars in the selected sys-
tem is given. In Sec. III, we then report and characterize
scarring-enhanced localization of the probability density
in some high-energy eigenstates of the disordered quan-
tum well. In particular, we observe strong PI scars with
the same geometry and orientation in multiple eigen-
states within moderately large energy windows; whereas
its classical analog exhibits chaotic behavior. This os-
tensible quantum-classical contradiction segues us into
the central theme of the manuscript, i.e., the enigmatic
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antiscarring that is presented in two parts in Sec. IV:
First, we shall present our stacking theorem of quantum
ergodicity, and then gauge the necessary of antiscarring
on the account of the theorem in the presence of quan-
tum scars. Next, besides being operative in all forms of
scarring, we analyze and explicitly demonstrate the effect
of antiscarring in the selected test framework of PI scars.
Finally, in Sec. V, we draw some conclusions with future
perspectives, illuminating some of widely held views on
the quantum nature of ergodicity, and conclude with the
brief summary in Sec. VI.

PERTURBED QUANTUM WELL

To elucidate and further investigate antiscarring, we
consider a disordered quantum well (QW) described by
the following generic single-electron Hamiltonian without
spin given in atomic units:

H = − 1

2m
∇2 + Vext + Vimp. (1)

The external confining potential Vext defines the ge-
ometry of a QW. In the absence of impurities, it also
determines the energy scales and the integrability of the
system. Among various confinements, the power-law po-
tentials Vext ∝ rd with integer d > 0, are particularly
convenient for investigating the classical POs of the un-
derlining unperturbed system. In the following, we focus
on the potential of

Vext =
1

2
λr5,

that has become an archetypical system for studying PI
scars; it is in many ways a natural “sweet spot” for
studying the phenomenon as elaborated below (see also
Ref. [110]).

The local perturbations can be modeled by adding ran-
domly located bumps to the otherwise smooth confining
potential Vext ∝ r5, thus the total perturbation to be

Vimp = A
∑
i

exp

(
|r− ri|2

2σ2

)
,

where the impurities are distributed over the confining
potential in uniform manner of the average impurity den-
sity being two per unit square. The individual bumps are
assumed to be Gaussian-like with amplitude A and width
σ that are set to A = 24 and σ = 0.1 yielding strong
PI scarring within the considered impurity density. A
similar disorder model of randomly scattered bumps has
been studied with density-functional theory [135, 136]
and the diffusive quantum Monte-Carlo approach [124].
Furthermore, a Gaussian bump is a good approximation
for a perturbation caused by a conducting nanotip [137–
139]. The role of such external impurities in QDs can be

quantitatively identified through the measured differen-
tial magnetoconductance displaying the quantum eigen-
states [123].

In general, our Hamiltonian above has direct experi-
mental relevance as being a prototype model for semi-
conductor quantum wells influenced by impurities (see,
e.g., Refs. [123, 140–145]). It also offers an excellent
platform as a quantum counterpart of classical billiard
with realistic soft walls, to probe the nature of quan-
tum chaos [12, 13], e.g., with a statistical analysis of the
energy levels in addition to investigate PI scarring and
ergodicity, like in Ref. [112]. Besides indirectly observing
conductance fluctuations caused by scarred states, open
QWs are suitable for wave function imaging based on
shifts in the energy of the single-particle resonances, in-
duced by an AFM tip [146–148]. In addition, the scarred
eigenstates of an electron in a QW may be measured
with quantum tomography [149]. Outside of QWs, an-
other suggested route towards a proof-of-principle exper-
iment is to realize an analog condition in an optical sys-
tem [113], a frequently employed avenue to observe con-
ventional quantum scars (see, e.g., Refs. [45–51]).

While further experimental evidence on scarring will
be accrued, our Hamiltonian also presents an interest-
ing framework to study the phenomenon and its conse-
quences from a theoretical perspective. For instance, the
chosen confinement potential Vext ∝ r5 belongs to the
special class of functions exhibiting multiplicative scal-
ing behaviour, often referred as homogeneous. In a ho-
mogeneous, circular potential, POs at different energies
are similar up to a scaling in space and time. Thus, the
geometry of a PO is independent of its energy. Further-
more, due to the circular symmetry, different POs can
be easily enumerated with two integers a/b (see, e.g.,
Refs. [9, 150, 151]): after a oscillations around the radial
turning points, the particle has traveled around the ori-
gin b times before returning to its original configuration.
In our specific potential, a distinct non-trivial PO, i.e.,
excluding circular orbits and the bouncing balls corre-
sponding to the zero angular momentum case, is a five-
pointed star: the orbit closes on itself after two rounds
around the origin (a = 2) in the time of five radial oscil-
lation (b = 5). In addition, there exist other POs, such
as 3/7 and 5/11, but they are longer and their role will
be less important in our later analysis. For comparison,
the shortest non-trivial POs are longer in the wells of
d = 1, 3, 4; whereas the harmonic potential (d = 2) is
too special for drawing general conclusions, even though
an interesting case for studying scarring and its possible
applications [111, 113].

When introduced to the disorder Vimp caused by lo-
cal potential bumps, our classical system will become
mixed in the sense that it exhibits both chaotic and reg-
ular behavior. In general, chaos settles as the relative
size of the non-integrable part of the classical Hamilto-
nian is increased according to the Kolmogorov-Arnold-
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Moser (KAM) theorem [152–154]. In our prototype set-
up, the nature of chaos is characterized by two facts.
First, the bumps are relatively small in size (σ = 0.1),
and scattered with the low-enough impurity density to
preclude the bumps overlapping and thus forming ”su-
perbumps”. In other words, the bumps can be thus seen
as individual, spatially localized perturbations in the con-
fining potential. However, in the energy range considered
here, E ∼ 500, tens of bumps exist in the classically al-
lowed region. Second, the chosen amplitude of the bumps
(A = 24) is small in comparison to the considered energy
scale of E ∼ 500, thus setting each bump as a small, lo-
cal perturbation in the confinement potential. In the end,
together the bumps nevertheless form sufficient pertur-
bation enough to destroy classical long-time stability. In
particular, any stable structures (KAM islands) present
in the otherwise chaotic Poincaré surface of section are
small or only comparable to ℏ = 1. Thus, our perturbed
QW is by far too chaotic to support distinct scars in the
conventional fashion [25–28] where a scarred state cor-
responds to a moderately unstable PO in the classical
counterpart.

On the quantum side, the eigenstates |r,m⟩ of the un-
perturbed, circularly symmetric system are labeled by
two quantum numbers (r,m), corresponding to radial
and angular motion, respectively. In the absence of a
magnetic field, the states |r,±m ⟩ are exactly degener-
ate. Moreover, there are also near-degeneracies, or quasi-
degeneracies, intimately connected to classical POs: Ac-
cording to the Bohr-Sommerfeld quantization, if a state
defined by the quantum numbers (r,m) is nearby in ac-
tion to a classical PO with a ratio a/b in the radial
and angular oscillation frequencies, the relative states
|r + ka,m − kb⟩, where k ∈ N, will consequently be
nearby in energy. In general, the smaller values of a
and b yield more accurate near-degeneracy, which will
also result in stronger scarring. These groups of nearly-
degenerate states are colloquially referred as a resonant
set, which is the first ingredient on the scar recipe.

Like illustrated in Fig. 2, the second ingredient is a set
of impurities localized in space that is mixed with the
presence of resonant sets in the cauldron of (degenerate)
perturbation theory to cook up scarred eigenstates. In a
more precise manner, a superposition of the states from
a common resonant set will exhibit beating in both the
radial and angular directions. Because the beat frequen-
cies of the states are in sync, the interference pattern will
trace out the shape of the classical PO of the classical
resonant a/b. Subsequently, an adequately perturbation
generate eigenstates that are linear combinations of a sin-
gle resonant set. Based on the variational theorem, the
states corresponding to extremal eigenvalues extremize
the perturbed Hamiltonian. Because the states in a res-
onant set are (nearly) degenerate, this basically means
extremizing the perturbation. In the extremization, the
system prefers the scarred states since the bumps caus-

FIG. 2. Variational scarring: To bake up perturbation-
induced scars, such as shown in Fig. 1, the degenerate-
perturbation-theory recipe consists of two general ingredi-
ents: the separibility of the unperturbed system, and moder-
ate, localized perturbations. First, due the separability, there
are special near-degeneracies, so-called resonant sets, in the
eigenstates |r,m⟩ of the unperturbed system that are con-
nected to the periodic orbits of its classical counterpart. In
particular, a sufficiently minor perturbation will generate lin-
ear combinations |ψ⟩ that are mostly contained in the near-
degenerate part of some resonant set (Erm ∼ E). Second,
scarred eigenstates are preferred since the total perturbation
Vimp is composed of individual perturbations narrow in space,
e.g., separated into distinct bumps scattered through the con-
finement potential. Second, driven by the variational princi-
ple, an effective way to extremize the expectation value of
the perturbation ⟨ψ|Vimp|ψ⟩ is achieved by selecting a scarred
state, and tuning its orientation coinciding with as many or as
few spatially localized perturbations as possible. This kind of
heuristic argumentation founded in the perturbation theory
explains well the existence of scarred states, and their prop-
erties, such as the preferred orientations discussed later.

ing the perturbation are localized. Thus, scarred states
can effectively maximize (minimize) the perturbation by
selecting paths coinciding with as many (few) bumps as
possible. As a result, the extremal eigenstates arising
from each resonant set often contain scars of the corre-
sponding PO.

As a general remark, we want to point out the ubiq-
uitous nature of PI scarring. First, our heuristic line of
reasoning above goes beyond the circular QW considered
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here, for instance, substantiated in Refs. [113, 114]. Sec-
ond, our argumentation does not assert if the bumps are
repulsive or attractive. Although we focus on the repul-
sive bumps, PI scars persist also in perturbed potential
landscapes with attractive dips. On the other hand, our
argumentation does not quantify the localization of the
bumps for PI scarring to occur; the specific details de-
pend on the given system, e.g., on the density, width, and
amplitude of the bumps along with the level of the near
degeneracy in the unperturbed quantum system. Finally,
we stress the robustness of PI scars against the changes
in system features, such as a deviation from the opti-
mal bump parameters [110, 112], or the inclusion of an
external magnetic field [111, 112].

SCAR OBSERVATIONS

As expected from the scar phenomenology above, when
perturbed by randomly positioned Gaussian-like bumps,
some of the high-energy eigenstates of the QW are
strongly scarred by POs of the unperturbed system. Fig-
ure 1 shows an example of a scar found in the eigenstates
of the prototype system of our interest. To be specific,
we solve the four thousand lowest eigenstates and ener-
gies of the Hamiltonian of Eq. 1 by employing the itp2d
software [155] based on the imaginary time propagation
method [156].

Like present in the menagerie of Fig. 3a), some of the
numerically solved states are very strongly scarred. For
instance, in our paragon shown in Fig. 1 almost 80% of
the probability density resides in the vicinity of the pen-
tagon path. In Fig. 3b), the same state is re-illustrated
with a Gaussian wavepacket which is designed to align
with the pentagram for evaluating the level of scarring
below. As visible in Fig. 1, the pentagram in question is
oriented so that it maximizes the overlap with the bump,
but these type of pinning scars are partnered by “counter-
scarred” states that instead minimize the perturbation
by avoiding bumps, an example presented in Fig. 3c).
Moreover, as also palpable in Fig. 1, in the energy zone
of order∼ 500, the local wavelength of the scarred eigen-
states is comparable to the full width at half maximum of
the Gaussian bumps, which is 2σ

√
2ln(2) ≈ 0.235. For

clarity, we want to point out that scars are not a rare
occurrence. Although the exact proportion and strength
of scars alter between different random realizations of
bumpy potential landscapes, we note that scarred states
among all the first 4000 eigenstates seem to vary from
10% up to 60% at the considered impurity parameters
of A = 24 and σ = 0.1. In this work, we have not at-
tempted to specify quantitatively how common the scars
or preferred orientations are among all random realiza-
tions of the perturbation locations.

Besides the most evident five-pointed-star geometry by
the PO of resonance 2/5, we as well observe scarred states

FIG. 3. Kaleidoscope of high-energy eigenstates in the pro-
totype potential well perturbed by Gaussian bumps. Subplot
(a) shows the probability densities of 80 eigenstates lying in
the neighborhood of the scar presented in Fig. 1, indicated
by a red box. As illustrated in (b), this state is taken a ref-
erence scar to prepare a Gaussian wavepacket for analyzing
the stability and existence of preferred scar orientations (see
Fig. 4), and for the scarmometer (see Fig. 5). In addition
to pentagram scars, such as in (b) oriented to overlap with
the bumps as much as possible, there are counter scars which
have instead aligned to minimize the perturbation. An exam-
ple of this kind of antipodal state is tagged with a blue box in
(a), and enlarged in (b) along with the corresponding PO of
the unperturbed potential drawn as a solid blue line and red
markers denoting the locations of the bumps. The eigenstate
carpet (a) reveals also other interesting features than the pen-
tagrams emphasized in (b) and (c). For instance, there are
states scarred longer POs than associated with the 5/2 res-
onance: Subplots (d) and (e) portray two scars connected
to classical resonances 7/3 and 9/4 appearing in the form of
a heptagram and enneagram that are the second and third
shortest nontrivial POs of the unperturbed system, respec-
tively. Besides various scars, there are several bouncing-ball
states, such as shown in (f), and ring-like states, called rem-
nants, such as shown in (g). In addition to these kind of single
geometrical shapes, some states are mixtures of the defined
echelons. For example, subplots (h) and (i) display a cross-
breed of bouncing ball with a pentagram scar and remnant,
respectively.

connected to higher-order classical resonances, for exam-
ple, Figs. 3d) and e) show two scars reflecting the PO
of 7/13 and 9/4 resonance, respectively. Furthermore,
excluded from the scar taxonomy into a separative fam-
ily, some states contain features of classical “bouncing-
ball-like” motion, as seen in Fig. 3f). Another respective
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category of eigenstates encompasses remnants, or linger-
ing phantoms of the destroyed circular symmetry of the
unperturbed quantum system, as illustrated in Fig. 3g).
These remnant states are related to the eigenstates of the
unperturbed system that are weakly affected by the ap-
plied perturbation Vimp. Blurring the boundaries in this
kind of crude classes, there also exist mixes states, such
as a combination of a scar and a bouncing-ball state (see
Fig. 3h), or a merge of a bouncing-ball and a remnant
state (see Fig. 3i). There is also a possibility that a state
contains a trace of two scars.

Prior to venturing back to the observed classical be-
ings living in the quantum-chaotic realm, we want to
emphasize two points. First, the observed scars can-
not be explained by dynamical localization [157–160]: it
corresponds to localization in angular momentum space,
whereas the scars are localized in position space. Sec-
ond, a similar reconstruction of classical-like states from
(nearly) degenerate basis states has also been considered
previously in Refs. [161–168], but this kind of pseudo-
scarring is substantially weaker to the PI scarring re-
ported here; such scars being rare with no indication on
the role of local perturbations. In the same vein, either
dynamical localization nor pseudo-scarring are able to
explain that PI scars generally orient to coincide with as
many bumps as possible, and have preferred orientations.

The indicated existence of these special scar orienta-
tions can be demonstrated by identifying scarred states
with wavepackets. Inspired by the studies of conventional
scarring [25], we can take advantage of a test wavepacket
initialized on a PO to pin point eigenstates scarred by
a given PO. In extension, the same strategy can be fur-
ther utilized to systemically analyze preferred scar ori-
entations. Here, we have selected a squeezed Gaussian
wavepacket |ϕ(α)⟩ engineered according to the chosen
reference scar in Fig. 1. The orientation of the penta-
gram orbit employed to devise the probe wavepacket is
described by the coordinate α: it is determined in a such
way that the wavepacket aligns with the positive y-axis
α = 0, rotating clockwise with increasing angle. For ex-
ample, in Fig. 3(b), we present our test Gaussian super-
imposed over the reference scar of Fig. 1 that has been
employed to design the wavepacket. In this particular
case, the angle α is α̃ = 13π/50 ≈ 0.80.

First, we consider the maximal orientation angle αmax

yielding the highest overlap between a target eigenstate
and the probe Gaussian wavepacket |ϕ(α)⟩ with the given
orientation. Figure 4 shows the overlap of the wavepacket
with the target eigenstates of n = 2500 . . . 3800 as func-
tion of the angle αmax within an angular window of
2Π/5 after which the PO is the same. The considered
target states cover an energy range of 458 · 618. For
each eigenstate, a circle is marked on the maximal angle
with the radius determined by the squared magnitude
of its overlap. For this particular realization of the ran-
dom bumps, three orientations are clearly preferred. The

rightmost and leftmost branches undergo angle drifting
as a function of energy: the later in a less dramatic de-
gree; whereas the former also seem to spill out two weaker
sub-branches. On the other hand, the middle branch is
stable and close to vertical, evincing that the correspond-
ing scars share the same orientation.

FIG. 4. Scatter plot demonstrating the existence and sta-
bility of the preferred scar orientations for n = 2500 · · · 3800
which converts into the energy range of 458 · · · 618. For each
eigenstate, a circle is marked on the orientation angle α de-
termined by the highest overlap between the eigenstate and
the reference Gaussian wavepacket presented in Fig. 3. The
radius of the circle depicts the squared magnitude of the over-
lap. In the figure, three branches of high overlaps are visible
that account to the preferred scar orientations. Whereas the
leftmost and rightmost branches evolve relatively slowly in an-
gle implying rotation in the corresponding scar orientations,
the middle branch is instead approximately upright within
the whole energy window of interest. The upright branch of
α̃ ≈ 13π/50 stands for the reference state shown in Fig. 3
that is further employed to pick up states scarred in the simi-
lar fashion within the framework of scarmometer, embellished
in Fig. 5.

The robustness of the preferred orientations revealed
in Fig. 4 can be understood within the framework of PI
scarring outlined above, and illustrated in Fig. 2). By the
previous argumentation, the scar orientations are mostly
selected by the positions of the perturbations. Since the
inner and outer radii of the POs change slowly with en-
ergy, the orientations that extremize the total perturba-
tion Vimp will be determined largely by the same impu-
rities for many different resonant sets. In the particular
case of Fig. 4, the increase of energy results in the average
radius of the PO swelling by roughly 0.24 units, which
is commensurate to the characteristic length scale of the
individual bumps (σ = 0.1).
Since the scars appear in the same preferred orienta-

tions across a wide energy range, a single wavepacket can
cover many scarred eigenstates in its spectrum. In subse-
quent, a wavepacket initialized on a specific PO of the un-
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perturbed system can be employed to pinpoint scars with
a particular orientation in the perturbed system. This
kind of method to isolate scars is illustrated in Fig. 5. In
particular, the average energy of the chosen test Gaus-
sian ϕ as well its orientation, parametrized by a rotation
angle α, were set to matched with the sample scarred
eigenstate of n = 3223, shown in Fig. 1. Further, we can
also squeeze the wavepacket so that its full width at half
maximum profile roughly corresponds to the width of the
scar, thus yielding a sharper detection tool.

Figure 5 shows this scar detector where the states
scarred similarly to the target state n = 3223 appear-
ing as large overlaps with the test wavepacket illustrated

in Fig. 3(b):

F(n) = |⟨En|ϕ(t0 = 0;α)|2. (2)

In Fig. 5, we show the corresponding eigenstates respect
to the largest peaks satisfying the criteria F(n) > 0.01
(blue lines) that not only share the similar geometry but
also the orientation. To clarify, there are this type of
scars outside the considered energy window, but these
states are not recognized by the given scarmometer for
two main reasons: the size of the scars scales as the clas-
sical that is a function of energy, and at same time their
orientation can change, thus yielding diminishing over-
lap with the test wavepacket. The states in-between the
scar peaks show a rich collections of probability density
patterns, as depicted in Fig.3.

FIG. 5. Extracting scars with a specific geometry and orientation with a wavepacket “scarmometer”. Figure shows the overlap
of the eigenstates ψn with a Gaussian wavepacket ϕ that is designed in respect to the scarred state n = 3223, as illustrated
in Fig. 3(b). For the strongest peaks with F(n) > 0.1, the associated probability density of the eigenstate is also included,
underlining that the shown states are all scarred to a varying degree by the five-pointed PO, but the orientation among the
scars is same, as perused in Fig. 4. The states situated between the scar peaks showcase a diverse array of patterns, like
heptagram-shape scars, remnants and bouncing balls as illustrated in Fig. 3.

ANTISCARRING

In this section, we shall address a shadow cast by the
observed PI scars – antiscarring. This is carried out in

two steps: first providing an ergodicity theorem for a
group of eigenstates, subsequently implies the existence
of antiscarring that we exemplify in case of the studied
disordered QW.
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Stacking theorem

To amalgamate the conceptual idea behind the exis-
tence of antiscarring, we first argue that the collective,
average probability density of the eigenstates must even-
tually become ergodic in the following sense:

(Eigenstate) Stacking Theorem: A sum
of eigenstates of a Hamiltonian is uniform
in phase space over a stacking window of
∆ε ≥ ℏ/Tmin, where Tmin is the fundamental
period of the shortest PO in the correspond-
ing classical system.

To prove the stacking theorem above, we can, with-
out losing generality, start by selecting an eigenstate
|E0⟩ from the spectrum of the Hamiltonian describing
the given quantum system. This state |E0⟩ serves as
a reference point to our stacking neighborhood ∆E =
[E0 −∆ε/2, E0 +∆ε/2] where the energy window ∆ϵ is
chosen to be larger than set by the shortest PO in the
corresponding classical system (∆ϵ ≳ ℏ/Tmin).
To proceed, we need to decide a method to measure

the uniformity of a phase space. Adopting an insight
presented in Ref. [25], a very convenient litmus test for
the uniformity is to project all the eigenstates onto suf-
ficiently spatially narrow Gaussians |Φ(t0)⟩ over phase
space (but by no means necessary option). These Gaus-
sians are prepared so that they all share the energy expec-
tation value of E0 corresponding to our reference state
|E0⟩. Furthermore, we require that all the test states
|Φ(t0)⟩ have the same width of ∆ε, thus preventing the
time-evolved states to return and to overlap with them-
selves within the window of

∆t =
ℏ
∆ε

≤ Tmin. (3)

In addition, the assumption of the equal dispersion for
all test Gaussians ensures an eligible probe for the pop-
ulation of the phase space.

Next we stack together eigenstates in our energy inter-
val ∆E measuring them in respect to our test Gaussian
as ∑

En∈∆E

|⟨Φ(t0)|En⟩|2

=

∫
∆E

∫ ∞

−∞
eiEt/ℏ⟨Φ(t0)|Φ(t)⟩dtdE

=

∫ ∞

−∞
Ω∆t(t)e

iE0t/ℏP (t) dt,

where P (t) = ⟨Φ(t0)|Φ(t)⟩ is the fidelity of the test Gaus-
sian, and variable energy window ∆E is implied by the
finite time window ∆t in the transform limited cut-off
function Ω∆t(t). Notably, this integral carries only in-
formation about behavior the before any critical or in-
teresting dynamics occurs, gleaned from the long-term
system-specific details.

By construction, the integral and hence the sum is the
same for every test state |Ψ(t0)⟩. In other words, their
population summing over the stack of states within ∆E
is uniform. Furthermore, these test states are situated
everywhere in phase space centered on the energy shell
E0. Therefore an sum over a sufficiently large range of
eigenstates is uniform in phase space, as claimed by the
theorem.

Antiscars

More interestingly, since there can be strongly scarred
states among the eigenstates as illustrated in disordered
QW above, the stacking theorem warrants the existence
of antiscarred states, with low instead of high probabil-
ity in the region of strong scars. However, this effect
can be obscure at an single eigenstate level due to the
multitude of various antiscarred states that support the
scars. Therefore, in order to make this phenomenon more
tangible, we construct the cumulative scar density

ρscar(r) =
∑

En∈F

F(n)>Fc

|⟨r|En⟩|2

and in a complementary to it, the scar-reduced probabil-
ity density

ρantiscar(r) =
∑

En∈F

F(n)<Fc

|⟨r|En⟩|2

where ∆E is the stacking window and Fc is a criteria for
(strongly) scarred stated according to the scarmometer.
Notable, if the stacking window is large enough in the
sense of Eq. 3, the sum of these densities ρscar and ρantiscar

is uniform as dictated by the theorem proven above.
Figure 6 illustrates these densities calculated for a spe-

cific portion of the system spectrum as shown in Fig. 5.
The scar criterion is defined as Fc = 0.005 , represented
by the red dashed line in Fig. 5. This criterion effectively
filters out pentagram-shaped scars from other types of
states. The left panel of Fig. 6 displays the cumulative
density of scarred states ρscar, while the right panel show-
cases the scar-reduced density ρantiscar, which represents
the cumulative density of states not identified by the scar-
mometer within the energy range of n = 3000, · · · , 3700.
Given that the included scars exhibit a shared orienta-
tion, their collective density pattern reflects the periodic
orbit responsible for the scarring. Notably, there are sig-
nificant probability density accumulations at the tips and
self-crossing point of the pentagram, where the classical
particle spends more time on the orbit and is therefore
more likely to be located. The blurriness observed at the
tips is attributed to the slight rotational drift of the scars
as a function of energy (see Fig. 4). On the other hand,
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despite the diverse appearance of non-scarred states de-
picted in Fig. 3, their cumulative density reveals a de-
pression emerging alongside the scarring PO. Even more
notably, the intricate details of this antiscar construction

mirror precisely with the cumulative density composed
of the identified scars. This observation validates the as-
sertion of the stacking theorem that these two densities
will precisely combine to form a uniform density.

FIG. 6. Antiscarring: The left panel displays a cumulative density plot for a set of scarred eigenstates with a scarmometer value
F(n) greater than 0.005. These scars are strong and exhibit similar spatial orientations, resulting in a concentrated collective
density along the five-point periodic orbit. In contrast, the right panel shows the remaining non-scarred states within the range
of n = 3000, · · · , 3700. While these non-scarred states do not exhibit pentagram-shaped patterns, their cumulative density
closely resembles that of the scarred states down to minute details. This construction reveals the subtle impact of antiscarring
on the non-scarred states.

In this works, we have only illustrated antiscarring
specifically in a disordered quantum well, where the
strength and similar orientation of perturbation-induced
scars accentuates the effect. However, conventional scar-
ring mechanisms also remain effective in this scenario.
An important avenue of future research is to assessment
the impact of antiscarring in the context of many-body
scars.

From an experimental standpoint, the presence of an-
tiscarred states due to the conventional scars leads to
unusually extended escape times in certain decay pro-
cesses [68], making them possibly detectable in trans-
port measurements. Additionally, open QWs offer a suit-
able platform for imaging wave functions by observing
shifts in the energy of single-particle resonances induced
by an atomic force microscopy tip [147, 148, 169], open-
ing a possible pathway to detect antiscarring signatures.
Moreover, the scarred eigenstates of an electron in a
quantum well can be measured using quantum tomog-
raphy [149] to study the fingerprints of antiscarring. On
the other hand, we see that this phenomenon could be di-
rectly visualized through scanning tunneling microscopy
in graphene-based quantum dots, in a manner discussed
in Refs. [170, 171]. Conversely, the antiscarring signa-
tures could also be detected through classical wave ex-
periments commonly used to visualize conventional scar-

ring, such as those involving microwave cavities [47, 48],
acoustic cavities [52], fluid surface waves [61], or optical
systems [45, 46, 49]. Finally, we want to point out the po-
tential presence of already observed antiscarring effects
in simulations and experiments, such as Refs. [126–129]

SUMMARY

In conclusion, our results confirm a foundational quan-
tum feature of ergodicity, which has been an quintessen-
tial concept in the edifice of classical chaos. Our main
qualitative conclusion is the fact that an enhancement of
a quantum scar is always accompanied by a compensa-
tion of depressed probability density in the neighborhood
of the scar-tracing orbit in other eigenstates, colloqui-
ally known as antiscarring. Besides theoretically justify-
ing the onset of the phenomenon, we explicitly demon-
strate the antiscarring effect in a disordered quantum well
that hosts multiple strong, pentagram-like scars sharing
a common orientation within a large-enough energy win-
dow to support quantum ergodic behaviour.

This work benchmarks and thereby solidifies the dual
phenomenon of ubiquous quantum scarring. In the cur-
rent epoch of single and many-body scarring, straight-
forward applications offer the possibility to enter unex-
plored regimes that give further insight into some of the
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most subtle and strange aspects of the quantum nature
of chaos. At a more concrete level, the results may pave
a way to enhance QW performance by utilizing scars in
a controlled manner. In a bigger picture, we expect that
our work will inspire future investigations on quantum
scarring and on the quantum nature of ergodicity inti-
mately connected to the eigenstate thermalization hy-
pothesis, not to exclude the new window of shedding fur-
ther light upon the conundrum called quantum chaos.

We thank J. Cotler, E. Räsänen, and L. Kaplan for use-
ful discussions. Furthermore, J. K.-R. thanks the Emil
Aaltonen Foundation and the Oskar Huttunen Founda-
tion for financial support.
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