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We explore the collective response in an excitonic insulator phase in Ta2NiSe5 using a semirealistic
model including relevant lattice and electronic instabilities. We calculate order-parameter susceptibil-
ity and Raman response within a time-dependent Hartree-Fock approach. Contrary to the standard
expectations, the amplitude mode frequency does not coincide with the single-particle gap but has a
higher frequency. We find a phase mode that is massive because the excitonic condensation breaks a
discrete symmetry only and that becomes heavier as the electron-lattice coupling is increased. These
features are expected to apply to generic realistic excitonic insulators. We discuss scenarios under
which the phase mode does not appear as a sharp in-gap resonance.

In semi-metals and narrow-band semiconductors, the
electron-hole attraction can lead to excitonic insulator
(EI) phase [1–3], characterized by excitonic condensation
that hybridizes conduction and valence bands. EI tran-
sition has similarities with the superconducting one but
with an order parameter that is not charged. Textbook
EIs involve the spontaneous breaking of U(1) symmetry
associated with separate conservation of charge in va-
lence/conduction orbitals and are realized in heterostruc-
ture/bilayer systems [4–9]. In bulk materials, the charge
in orbital subspace is not conserved even prior to excitonic
condensation and determining the broken symmetry is
more nuanced [10]. Prominent candidates for bulk EI are
1T-TiSe2 [11–13], Sb nanoflakes [14], Ta2Pd3Te5 [15–18]
and Ta2NiSe5 (TNS) [19].

TNS exhibits a resistivity anomaly at Tc = 325K where
the material undergoes a transition from semimetal to
a small-gap ∆ ∼ 0.15eV semiconductor [20–23]. Simul-
taneously, a structural transition occurs from a high-
temperature orthorhombic phase to a low-temperature
monoclinic phase. The structural change is small with
the monoclinic angle deviating from the high-symmetry
configuration by a mere 0.7 degrees [24].

Photoemission studies observed a flat valence band and
argued that it arises from gap opening due to excitonic
condensation [19, 25, 26]. Additionally, short time scales
and peculiar fluence dependencies observed in pump-probe
time-resolved studies [27–33] as well as the vanishing of
thermopower at low temperatures [34] have been inter-
preted in terms of electronic degrees of freedom and argued
to point to excitonic ground state. A realistic theoretical
investigation [10] identified excitonic order parameter ϕ
with B2g pattern of hybridization between Ni and Ta-
based orbitals, breaking discrete (mirror) symmetries of
the orthorhombic phase. This study aligns with earlier
considerations of excitonic phases obtained using simpler
models [35, 36].

Another line of research highlights structural as-
pects [37–39] and argues the transition is due to freezing of
an unstable B2g mode corresponding to a structural order
parameter X. Some pump-probe angle-resolved photoe-

mission spectroscopy (ARPES) studies [40] argue against
the presence of excitonic effects. Importantly, in equilib-
rium, ϕ and X have the same symmetry. A nonvanishing
X activates real electronic hybridizations of the same
kind as ϕ. This implies that the monoclinic distortion
can explain the flatness of the bands or the vanishing of
thermopower [34], challenging purely excitonic scenarios.

Electron-phonon coupling plays an important role [22,
23, 28, 40–42]. Raman spectroscopy [43–46] reveals a
strongly asymmetric shape of the B2g mode, with some
studies suggesting softening [43], but all observing signifi-
cant broadening of this phonon mode and hybridization
with a strong electronic background as the temperature
is lowered towards Tc. This broadening suggests that the
coupling between electronic and lattice degrees of free-
dom above Tc will manifest in some manner also below
Tc. Several recent studies take a balanced perspective,
emphasizing the relevance of both excitonic and struc-
tural aspects [47–49]. Very recent nonequilibrium Raman
study [48] found a nonequilibrium state without a gap
but with monoclinic distortion.

A crucial but so far poorly addressed question is that of
the collective response [50, 51]. In this paper, we evaluate
the excitonic order parameter susceptibility and Raman
response in a ”minimal” six-band model [10] that we
extend by coupling to the relevant phonon mode with
B2g symmetry. We find several surprising features. The
amplitude mode is not pinned to the lower edge of the
single particle gap but has a larger energy. We find a strong
phase mode at a finite frequency that stiffens further
when the electron-phonon coupling is introduced. While
our study focuses on Ta2NiSe5, its findings concerning
collective behaviour in the presence of multiple bands,
order parameter with symmetry lower than U(1), and
coupling to phonon modes apply to other EI candidates,
e.g. Ta2Pd3Te5 [15–18].

Model and methods – Ta2NiSe5 is a layered compound.
Within each layer in the ’ac’ plane one encounters Ta-Ni-
Ta chains that form a quasi-one dimensional structure. We
follow Ref. [10] by retaining the low-energy bands spanned
by one Wannier orbital per each Ta and Ni atom and using

ar
X

iv
:2

40
3.

18
08

3v
1 

 [
co

nd
-m

at
.s

tr
-e

l]
  2

6 
M

ar
 2

02
4



2

the unit cell depicted in Fig. 1(a). In the orthorhombic
phase, the material has an inversion I and four reflection
symmetries for planes parallel and perpendicular to the
Ta-Ni-Ta chain (σA/B

∥,⊥ ) and the latter are broken as we
enter the monoclinic phase [10, 38].

The kinetic part of the Hamiltonian is represented in
the tight-binding form

Ĥkin =
∑
Rδ

Ψ̂†
R+δσT (δ)Ψ̂Rσ, (1)

where the sum is taken over all unit cells R and neighbour-
ing cells δ as parametrized by the matrix of tight-binding
hopping elements T , see SM for details. We have intro-
duced the spinor Ψ̂Rσ = {ĉ1σR, . . . , ĉ6σR} and ĉiσR is the
annihilation operator in unit cell R, orbital i and spin σ,
see Fig. 1(a). The electronic interaction energy is given
by

Ĥint = U
∑
Ri

n̂i↑Rn̂i↓R + V
∑

i∈{1,2}
Rσσ′

n̂iσR+δi n̂5σ′R (2)

+ V
∑

i∈{3,4}
Rσσ′

n̂iσR+δi
n̂6σ′R,

where the first term represents the on-site Hubbard inter-
action for all atoms. The second and third terms are the
nearest neighbour interactions, and the δi represents the
sum over all nearest neighbours of both Ni atoms.

The electronic order parameters measure the amount
of breaking of the four reflection symmetries, namely
σ

A/B
∥,⊥ . It is convenient to define operators correspond-

ing to the electronic order parameter as ϕ̂R =
{ϕ̂15R, ϕ̂25R, ϕ̂36R, ϕ̂46R}, where ϕ̂ijR =

∑
σ ĉ†

iσRĉjσR +
ĉ†

iσR±aĉjσR, where a is a unit-cell displacement in the
x direction. We choose +(−) for {ij} = 15, 25 (36, 46),
respectively. The electronic order parameter is then de-
fined as the thermal expectation value of the operator
ϕR = ⟨ϕ̂R⟩ and in equilibrium, all its components are real.
In the following, we will focus on the experimentally rele-
vant phase where expectation values have the same mag-
nitude and their sign alternates as ϕR = ϕ0{1, −1, −1, 1}
breaking σ

A/B
∥,⊥ symmetries consistent with the monoclinic

distortion.
Now, we will consider the coupling between electrons

and lattice distortion corresponding to optical shearing
mode with a frequency of 2 THz, see Fig. 1(a), modelled
as an Einstein phonon Ĥph = ω0

2
∑

R(X̂2
R + Π̂2

R) where
X̂R (Π̂R) are the lattice distortion (momentum) in the
unit cell R. In the monoclinic phase, the symmetry of
the crystal structure is C2h with the order parameter
transforming as the B2g irreducible representation and
therefore the electronic order ϕR and the lattice mode
XR (both in the B2g channel) are linearly coupled. A
similar conclusion can be obtained by considering a Peirls-
type of coupling, where larger (smaller) nuclei distance

leads to a smaller (larger) absolute value of the hopping
matrix element, see SM. For the distortion marked in
Fig. 1(a), it is easy to show the electron-lattice coupling
reduces to

Ĥel-ph = g
∑
R

X̂R(ϕ̂15R − ϕ̂25R − ϕ̂36R + ϕ̂46R), (3)

where we will treat the electron-phonon interaction g as
a free parameter. The system will lower its energy by
forming an intertwined lattice and electronic order in the
ground state [36, 52].

We solve the problem within the Hartree-Fock theory
for the electron-electron and electron-lattice interaction
within the symmetry-broken state and assume a homoge-
nous solution (ϕ = ϕR and X = XR). We focus on the dy-
namical two-particle susceptibilities χAB(ω) and consider
three types of susceptibilities. The excitonic susceptibil-
ity χexc is given by the order parameter autocorrelation
function with Â = B̂ = ϕ̂15 − ϕ̂25 − ϕ̂36 + ϕ̂46 + h.c. and
measure the collective response of the excitonic order for a
kick coupling to its amplitude direction (real part of order
parameter; out of equilibrium ϕ becomes complex-valued).
Furthermore, we can define the mixed lattice-exciton cor-
relation function χXϕ with Â = ϕ̂15−ϕ̂25−ϕ̂36+ϕ̂46+h.c.

and B̂ = X̂ which is a measure of correlations between the
excitonic and lattice excitations. Finally, the electronic
Raman response is determined using

Â = B̂ =
∑
Rσij

tRi;0j(Rij ·e1)(Rij ·e2)e−iR·kĉ†
iσkĉjσk, (4)

where ei is the polarization of the Raman pulse and we will
focus on ac channel, namely e1 = {1, 0} and e2 = {0, 1},
see SM for details. We take kB = ℏ = 1 and use eV as the
unit of energy when not explicitly written otherwise.

Results – We set the intra-band interaction U = 2.5
and the inter-band interaction V =0.9 and consider the
system at a low temperature with β = 1/T = 100 at which
the system is in the excitonic phase, see also Ref. [10].
Fig. 1(b) depicts the corresponding band structure and
the excitonic hybridization opens up a gap of 160 meV,
which is close to the experimental values [21, 22, 26]. The
orbital character of the bands is depicted with colours.
One sees a strong admixture of Ta character in the valence
bands close to the Γ point. Remarkably, the excitonic
hybridization does not strongly affect the lowest pair of
conduction bands. Rather, it strongly affects the two
higher conduction bands.

This observation has important consequences for the
collective response. In Fig. 1(c), we depict excitonic sus-
ceptibility χexc(ω) for different electron-lattice couplings
g, where we adjusted the nearest neighbours electronic in-
teraction V to fix the single-particle gap. For the weakest
coupling g = 0.0025, there are three dominant features:
around ω ≈ 350 meV there is a strong shoulder whose
energy matches the energy difference between highly hy-
bridized bands marked in Fig. 1(b) by a long arrow, a
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FIG. 1. (a) Unit cell with Ta (blue) and Ni (red) atoms. Arrows indicate B2g distortion. The full (dashed) lines mark the
positive (negative) value of the hybridization between Ta and Ni orbitals.(b) Band-structure in the symmetry-broken state where
blue (red) shading encodes the weight of Ta (Ni) orbitals. (c) Excitonic susceptibility χexc for a kick coupling to order parameter
amplitude for different electron-phonon interactions g. The vertical dashed lines indicate energies marked in (b). (d) The mass
of the phase mode ωθ versus g. The dashed line marks the edge of the single-particle continuum. (e) Cross-correlation function
between excitonic and lattice order parameters for several g from panel (c). We have fixed the single-particle gap for all examples
by adjusting the nearest neighbour electronic interactions; see SM for details. Parameters: β = 100, damping η = 0.003.

weaker shoulder at 270 meV and at very low energies
ω ≈20 meV a dominant peak. By comparison with the
real-time evolution of the order parameter, we attribute
the high energy peak to the amplitude mode and the
low energy resonance to the phase mode [53]. However,
due to the broken U(1) symmetry, the two modes are
coupled [54]. The weak shoulder is not associated with
the collective response. Its energy matches the transi-
tion between the top valence band and flat region on the
second conducting band close to the Γ point (van Hove
singularity).

Four interesting observations distinguish the realistic
EI from the ideal U(1) symmetry-breaking one. Firstly,
the phase mode that is massless in the ideal EI acquires
a finite mass ωθ due to interchain hoppings that violate
U(1) symmetry [10]. Its mass grows further with the
electron-lattice coupling, see Fig. 1(d) and can exceed
the single-particle gap. While it is difficult to determine
the exact frequency of the massive phase mode due to
the uncertainties in the microscopic parameters, we can
estimate its lower boundary from the response in the
purely electronic case which gives a value of order tens
of the meV. Note that the origin of the finite mass is
distinct from the case of superconductors where the phase
mode acquires a large mass due to the Anderson-Higgs
mechanism. Secondly, the amplitude mode is seen to
oscillate with a frequency of 350 meV, which is larger
than the single particle gap (in contrast to the standard
case where one finds the amplitude mode pinned to the
single particle gap [53]). This comes from the fact that
the lowest conduction band is almost unaffected by the
excitonic hybridization. Thirdly, the ”phase” and the
”amplitude” mode are coupled. The response occurs in
both modes following a kick coupling to the amplitude of
the electronic order. Finally, for stronger electron-lattice
coupled systems, e.g. g ≥ 0.005, there is also a visible

resonance at the phonon energy ω0 = 8 meV, see Fig. 1(c).
One can directly study the exciton-lattice coupling by

considering the corresponding cross-correlation χXϕ, see
Fig. 1(e). For all examples studied, there is a strong cor-
relation between high-energy excitonic and low-energy
lattice modes despite an order of magnitude different
energy scales. Any distortion of the electronic order at
high energies would strongly distort the lattice mode.
We believe this is a natural explanation of recent opti-
cal pump-Thz probe experiments on Ta2NiSe5 [51, 55]
observing a strong THz amplification of reflectivity.

Phenomenologically, we can understand the above re-
sponse within the time-dependent Landau theory for lat-
tice coupled with the real part of the electronic order
parameter [56]

F [ϕ] = m|ϕ̇|2+a|ϕ|2+b|ϕ|4+c(g)X|ϕ| cos(θ)+d cos θ+Fph,

where we have written the order parameter with am-
plitude and phase ϕ = |ϕ|e−iθ (θ may differ from 0 in
time-dependent solution), a, b, c, d, m are phenomenolog-
ical parameters and Fph is the contribution of the free
energy coming from the lattice. The coupling between the
order parameters is described by c(g) which monotonously
increases with electron-lattice coupling strength g, see
Ref. [56] for explicit relations, and d describes breaking
of the U(1) symmetry on the purely electronic level [10].
We see that the stronger the electron-lattice coupling, the
larger the lattice distortion becomes, see also Fig. 2(d),
and the more the phase mode stiffens. Furthermore, the
distortion of the excitonic amplitude mode acts as a
force term on the lattice distortion, explaining the cross-
correlation across large energy scales.

Further intuition is obtained by studying the excitonic
susceptibility shown in Fig. 2. Panels (b) and (d) show
the temperature dependence of ϕ and X, respectively.
Due to the linear coupling, the two quantities vanish
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FIG. 2. (a,c) The temperature dependence of the excitonic
susceptibility χexc below (left) and above Tc (right) for weak
g = 0.0025 (a) and strong g = 0.01 electron-lattice coupling (c).
(b) and (d) shows the temperature dependence of the elec-
tronic order parameter ϕ and lattice distortion X, respectively.
Damping parameter η = 0.01.

at the same Tc. The dimensionless lattice distortion X
is measured in X0 =

√
ℏ/(2Mω0) = 0.07Å (setting M

to reduced mass of Ta and Ni ion) and by comparison
with experimental distortion of X0,exp = 0.04 one infers
electron-lattice coupling is small, e.g. g = 0.0025. For
such g the excitonic susceptibility above Tc shows a clear
softening of the excitonic response, see Fig. 2(a), and for
T < TC there is a gradual hardening of the amplitude
and phase mode. On the contrary for large g = 0.01
(panel (c)), the excitonic susceptibility does not show any
softening above critical temperature T > Tc and as we
lower the temperature both the phase and the amplitude
modes harden and the former gets substantially sharper.
According to Ref. [46], the experimental Raman data is
consistent with the former scenario.

We have evaluated Raman response within the Peierls
approximation, see SM for details. The data shown in
Fig. 3 exhibit similar behaviour as the order parameter
susceptibility with strong and rather broad amplitude
mode above the single-particle gap which gradually stiff-
ens with decreasing temperatures and the phase mode,
whose mass grows with increasing g. Like in the excitonic
susceptibility one sees a softening of the electronic re-
sponse as we approach Tc from above and the hardening
of the phase and amplitude mode as one approaches the
ground state.

The finding of amplitude mode above the single-particle
gap is consistent with Raman experiments that do find a
peak at about 400meV [45]. Despite the amplitude mode
being a rather broad resonance due to coupling with the
continuum, we can still observe several coherent oscilla-
tions in the real-time signal (not shown) and its strong
sensitivity on the buildup of the order, see Fig. 2. Our iden-
tification of the amplitude mode energy opens a promising
perspective for probing it via nonlinear spectroscopy [57]

FIG. 3. (a) Raman spectrum in the B2g channel χac for several
electron-lattice interactions g in the low-temperature state at
β = 100. Temperature dependence of the Raman spectrum for
g = 0.0025 below (b) and above Tc (c).

in analogy to superconductors [58–61].
On the other hand, there is no sharp phase mode in the

experimental data. How can one reconcile the experimen-
tal data with our results? The first observation is that
we use the dissipationless Hartree-Fock approximation.
Including the electron-lattice scattering should lead to a
finite lifetime of the phase mode. As their coupling is non-
linear, estimating its lifetime requires simulation with the
inclusion of fluctuations effects, which goes beyond the
scope of the present manuscript. In Raman experiments,
there indeed is a broad ‘excitonic continuum’ [45] with a
gap of ≈ 20 meV which could be a natural candidate for
the overdamped phase mode. The second option is that
the electron-lattice coupling is strong enough that the
phase mode enters the single-particle continuum. Once
again, the inclusion of scattering would strongly reduce
its lifetime. This scenario is less probable as it is incon-
sistent with the experimental observation of electronic
softening across the critical temperature and estimations
of the lattice distortion. The last and most exotic option
is that the phase mode acquires a larger mass due to
long-range quadrupole-quadrupole interaction. Because
the quadrupole interaction falls with the fifth power of
the distance, we expect that such an effect is small, but
should be nevertheless investigated in future.

In conclusion, we calculated collective and Raman re-
sponses in Ta2NiSe5. In contrast to the standard excitonic
insulator response, we have identified the amplitude mode
living well above the single-particle gap and matched
the Raman spectroscopy data, opening the possibility of
Higgs spectroscopy in this material. We find a massive
phase mode with a mass that rapidly grows with the
strength of the electron-lattice interaction. We argue that
the response found in this work is generic for systems with
coupled excitonic and lattice symmetry-broken states. In
the experiments, the phase mode is not observed (or at
least is not a clear resonance) and we propose different
scenarios for the discrepancy which remains an important
problem for future research and should be resolved for
the excitonic picture to be viable.
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Details of the model

In this work, we follow Ref. [10] which used density-
functional theory input to construct a tight-binding Hamil-
tonian through the Wannierization technique as a min-
imal realistic model of a 2D layer of Ta2NiSe5. A two-
dimensional problem with six bands gives the effective
Hamiltonian, and they consider nearest neighbour hop-
ping in the vertical and horizontal directions. The matrix
elements of the kinetic energy Tδ are given in Table I.

For later usage, it is convenient to write the interac-
tion term in Eq. (5) in a uniform form with full-density
interaction as

Ĥint =
∑
k,q

V ij
q n̂ikn̂jk+q,

where we have introduced the full density operator at
momentum k for orbital i as n̂ik =

∑
qσ ĉ†

iσk+qĉiσq. The
interaction vertex matrix is given by

Vk =


U/2 0 0 0 V1(k) 0

0 U/2 0 0 V1(k) 0
0 0 U/2 0 0 V2(k)
0 0 0 U/2 0 V2(k)

V ∗
1 (k) V ∗

1 (k) 0 0 U/2 0
0 0 V ∗

2 (k) V ∗
2 (k) 0 U/2

 ,

(5)
with V1 = V (1 + expikx) and V2 = V (1 + exp−iky ).

Electron-lattice model

Recent Raman studies [41, 43–46] have unambiguously
identified that the dominant lattice mode responsible
for the orthorhombic to monoclinic transition is the B2g

whose distortion pattern is marked in Fig. 1(a). Here,
we will model the electron-lattice coupling using the
Peierls-like model, where the lattice distortion leads to
a larger (smaller) overlap between orbitals depending on
the relative distance between atoms. Taking into account
the phase arrangement of orbitals in real space, we can
write the couplings between Ni 5 and Ta 1 from Fig. 1(a)
as

Ĥel-ph = g
∑
Rσ

X̂R
[

− ĉ†
1σRĉ5σR + ĉ†

1σR+aĉ5σR + . . .
]
,

(6)

where we have introduced the electron-phonon coupling
g, the operator of the lattice distortion at site R in the
B2g channel X̂R. We can use similar arguments for other
hoppings leading to Eq. 3.

Method: Time-dependent Hartree-Fock

We will employ the Hartree-Fock approximation for
the ground-state and its time-dependent version for the

evaluation of the susceptibility. Furthermore, we assume
that the system is homogenous. The Hartree term is given
by

ΣH
ii (t) =

{
V ii

k=0ni(t) intraorbital
2V ij

k=0nj(t) interorbital,
(7)

where we have assumed the local density ni = ni,R and
employed the Einstein notation. The Fock term is given
as

ΣF
ij,k(t) = −

∑
q

V ij
q ⟨ϕ̂ij,k-q⟩(t) (8)

The electron-phonon interaction is described on a sim-
ilar level as the electron-electron interaction with the
decoupling

Ĥel-ph = −g⟨X̂⟩
[
ϕ̂15 − ϕ̂25 − ϕ̂36 + ϕ̂46 + h.c.

]
−gX̂

[
⟨ϕ̂15⟩ − ⟨ϕ̂25⟩ − ⟨ϕ̂36⟩ + ⟨ϕ̂46⟩ + h.c.

]
,

where the symbols with a hat marks the operator X̂
and X = ⟨X̂⟩ its expectation values. Within the given
approximation, the expectation value of the lattice follows
the classical equation of motion given by

Ẍ = −ω2
0X + gω0 [ϕ15 − ϕ25 − ϕ36 + ϕ46 + h.c.] (9)

which for the excitonic order parameter in the B2g channel,
namely ϕ = ϕ0{1, −1, −1, 1} simplifies to

Ẍ = −ω2
0X + 8gω0Re[ϕ0]. (10)

In equilibrium, we solve the Hartree-Fock equations
by a standard self-consistency cycle. For real-time evo-
lution, we propagate the density matrix as ρ(t + dt) =
e−iĤeff[ρ]dtρ(t)eiĤeff[ρ]dt, where Ĥeff[ρ] presents an effective
Hamiltonian including the kinetic, the Hartree-Fock and
the electron-lattice contribution. The effective Hamilto-
nian Ĥeff[ρ] depends on the single-particle density matrix
and we perform a non-linear iteration at each timestep.
The dominant computational complexity for the time
propagation is the evaluation of the Fock self-energy,
which includes an internal sum for each momentum. Here,
we use the fast Fourier transform to evaluate the Fock term
in the real space, leading to a linear complexity (with log-
arithmic corrections) in the number of momentum points.
The latter is crucial for the convergence of problems at
long times. Finally, the equation of motion for the lattice
degrees of freedom is solved using the multistep method.
For the predictor we employ the 5th-order polynomial
extrapolation and the corrector step is performed with
the 5th-order Adams-Moulton method.
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TABLE I. Elements of the hopping matrix T (δ) obtained from Ref. [10] using first principle calculations and Wannierization.

Cases Hopping matrix elements t(δ)
Intra-chain Ta-Ta Tii (ax,0)= Tii (-ax,0)=-0.72 eV

Tii (0,0)=1.35 eV, i=1,...,4
Intra-chain Ni-Ni Tii (ax,0)= Tii (-ax,0)= 0.30 eV,

Tii (0,0)=-0.36eV, i=5,6
Intra-chain Ta-Ni T15(ax,0)=T25(ax,0)=-T25(0)=-T15 (0)=-T36(0)=-T46(0)=T36(-ax,0),T46 (-ax,0)= -0.035 eV
Inter-chain Ta-Ni T35(ax,0)=-T35(-ax,0),t45(ax,ay)=-T45(-ax,ay)=-0.04 eV,

T26(ax,0)=-T26(-ax,0)=T16(ax,-ay)=-T16 (-ax,-ay)=T45(-ax,ay)
Inter-chain Ta-Ta T23(0)=T23(ax,0)=T41(-ax,ay)=T41(0,ay)=-0.02 eV
Inter-chain Ni-Ni T65(0)=T65(ax,0)=T65(ax,ay)=T65(0,ay)=-0.03 eV

Evaluation of two-particle susceptibilities

One typically obtains the two-particle susceptibilities by
solving the Bethe-Salpeter equation [62]. However, as such
procedure is tedious in multi-orbital and symmetry-broken
systems [53, 54, 63], we rather perform a time-dependent
Hartree-Fock simulation where we add a time-dependent
source field to the Hamiltonian [56, 64]

Ĥ(t) = Ĥ + η(t)Â (11)

where we write the perturbation in terms of the operator
Â and its time dependence η(t). In practice, we use a
Gaussian pulse η(t) = η0 exp−(t−t0)2/σ2 with center at
t0 = 4 and the width σ = 1. By restricting its height η0
to be in the linear response regime, one can use the Kubo
formalism and the susceptibility is given by the ratio of
the Fourier transform for the observable B and the source
field χBA(ω) = ⟨B̂⟩(ω)/η(ω).

Comparison with Raman spectroscopy

Tight binding Hamiltonian is Hkin =
∑

k H(k) with

Ĥ(k) =
∑
Rσij

ĉ†
iσR

[
Tij(R)e−iR·k]

ĉjσR, (12)

The current (i.e. velocity) in the e direction is given by

v̂k · e = −i
∑
Rσij

ĉ†
iσk

[
Tij(R)(Rij · e)e−iR·k]

ĉjσk, (13)

where Rij = Ri−Rj and Ri = R+ri with ri the position
of atomic orbital i in the unit cell.

Raman scattering operator for the incoming and out-
going polarization directions denoted by e1 and e2 is

e1 · Ŝk · e2 = (14)∑
Rσij ĉ†

iσk
[
tij(R)(Rij · e1)(Rij · e2)e−iR·k]

ĉjσk.

For aa scattering the normalized direction vectors e1,2
both point in the a direction, for ac scattering e1 = a/|a|
and e2 = c/|c|.

(a) (b)

FIG. 4. Band-structure in the symmetry-broken state where
blue (red) shading encodes the weight of Ta (Ni) orbitals for the
electron-lattice coupling g = 0.005 and the nearest neighbour
interaction V = 0.781 eV (a) and the electron-lattice coupling
g = 0.01 and the nearest neighbour interaction V = 0.7725
eV (b).

Bandstructure with increasing electron-lattice
interaction

By increasing the electron-lattice interaction, naturally
also the bandgap is modified. In order to make a fair
comparison between different cases, we fix the size of the
single-particle gap in the spectral function by adjusting
the nearest neighbour interaction V for increases in the
electron-lattice interaction g, see Fig. 4. The higher-lying
mixed conducting band moves to higher energies consis-
tent with the amplitude mode’s evolution to higher ener-
gies with increasing electron-lattice coupling, see Fig. 1(c).


	Collective modes and Raman response in Ta2NiSe5
	Abstract
	Acknowledgments
	References
	Details of the model
	Electron-lattice model
	Method: Time-dependent Hartree-Fock
	Evaluation of two-particle susceptibilities
	Comparison with Raman spectroscopy
	Bandstructure with increasing electron-lattice interaction



