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Generalizing Better Response Paths and Weakly Acyclic Games

Bora Yongacoglu, Gürdal Arslan, Lacra Pavel, and Serdar Yüksel

Abstract— Weakly acyclic games generalize potential games
and are fundamental to the study of game theoretic control.
In this paper, we present a generalization of weakly acyclic
games, and we observe its importance in multi-agent learning
when agents employ experimental strategy updates in periods
where they fail to best respond. While weak acyclicity is
defined in terms of path connectivity properties of a game’s
better response graph, our generalization is defined using
a generalized better response graph. We provide sufficient
conditions for this notion of generalized weak acyclicity in both
two-player games and n-player games. To demonstrate that
our generalization is not trivial, we provide examples of games
admitting a pure Nash equilibrium that are not generalized
weakly acyclic. The generalization presented in this work is
closely related to the recent theory of satisficing paths, and
the counterexamples presented here constitute the first negative
results in that theory.

I. INTRODUCTION

Algorithms for seeking Nash equilibrium play an im-

portant role in the game theoretic approach to distributed

control [1]–[4]. In Nash-seeking algorithms, players in a

game iteratively adjust their strategies over time, and the

goal of the algorithm designer is to guide the collective

strategy profile to a Nash equilibrium of the game, where

play should stabilize. In this paper, we identify and study

mathematical properties of games with the aim of informing

the design of Nash-seeking algorithms. We do not, however,

present an explicit algorithm of our own and we abstract

away from learning theoretic considerations, focusing instead

on the structure of the underlying game.

This article presents a new class of games relevant to

game theoretic learning and Nash-seeking algorithms. We

refer to this class of games as generalized weakly acyclic

games (GenWAGs), since they constitute a meaningful gen-

eralization of weakly acyclic games and are defined in an

analogous manner [5]–[9]. In turn, weakly acyclic games

generalize potential games [10], a class of games used to

model cooperative and distributed control [11]–[13].

Whereas weakly acyclic games are defined in terms

graph theoretic properties of a game’s better response graph,

GenWAGs are defined using a game’s satisficing graph,

introduced in this paper, which contains the game’s better

response graph as a subgraph. The definition we propose

for a game’s satisficing graph is based on the concept of

satisficing paths, first presented in the context of multi-state
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Markov games in [14]. In that work, a satisficing path is any

sequence of strategy profiles for which the strategy of an

optimizing agent (that is, an agent whose strategy is a best

response to that of its counterparts at a given time) is not

altered in the next period. Despite thematic similarities, there

are salient differences between the graphs studied here and

the paths studied in [14]. In the latter, paths are defined on the

set of randomized/mixed strategies, and continuity arguments

play an important role in the analysis. By contrast, satisficing

graphs are defined here on the set of pure strategies, our

analysis centres on discrete objects, and our arguments do

not hinge on continuity. Moreover, while [14] provided some

sufficient conditions for existence of satisficing paths to

equilibrium, necessary conditions were not provided and it

was left open whether pathological counterexamples exist.

There are several factors motivating the study of gener-

alized weakly acyclic games. As we show in Theorem 1,

GenWAGs arise naturally in the analysis of certain learning-

relevant stochastic processes on the set of strategy profiles

in a game, with important special cases such as randomized

variants of inertial better/best response dynamics. A key

insight of this result is that Nash convergence can be guaran-

teed in a wider class of games by incorporating experimental

(possibly suboptimal) strategy revision when failing to best

respond, rather than rigidly requiring players to revise their

strategies to better or best responses. A second motivation

for studying generalized weakly acyclic games is the relative

simplicity of verifying sufficient conditions. For instance,

verifying the existence of a strict pure Nash equilibrium in a

two-player game (Theorem 2) or symmetry conditions in an

n-player game ( [14, Theorem 3.6]) is often more practical

than verifying path connectivity properties of the game’s

better response graph.

Contributions: This paper presents Generalized Weakly

Acyclic Games (GenWAGs). In Theorem 1 we show that

GenWAGs coincide exactly with the class of games for

which a specific Markov chain converges to a pure Nash

equilibrium. In Theorems 2 and 3, we provide sufficient

conditions for guaranteeing that a normal-form game is a

GenWAG. We also provide the first negative results in the

theory of satisficing and demonstrate that our generalization

is non-trivial: we provide an example of a game that is

not weakly acyclic but is a GenWAG, showing that the

generalization is strict, and we provide examples of games

that are not GenWAGs but nevertheless admit a pure Nash

equilibrium, showing that our class of GenWAGs is a strict

subset of the set of games admitting a pure Nash equilibrium.

Finally, we identify an open question on sufficient conditions

for games with three or more players.
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II. NORMAL-FORM GAMES

Our setting is that of finite n-player normal-form games.

An n-player game Γ is described by a triple

Γ = (n,A, r) ,

where n is the number of players, A = A1 × · · · × An is a

finite set of strategy profiles (also called action profiles, joint

actions, or pure strategies), and r = {ri}ni=1 is a collection

of reward functions, with ri : A → R being player i’s
reward function. The ith component of A is player i’s set

of actions/pure strategies Ai.

Notation. We use [n] := {1, . . . , n} to denote the set of

players. For an element a ∈ A, we write a = (ai)i∈[n].

To isolate the role of player i we write a = (ai, a−i), so

that a−i is interpreted as (a1, . . . , ai−1, ai+1, . . . , an). In a

slight abuse of notation, we write A = Ai × A
−i. For a

given player i ∈ [n], we refer to the remaining players in

[n] \ {i} as i’s counterplayers or counterparts.

Description of play. Each player i ∈ [n] selects its own

action ai ∈ Ai, resulting in an action profile a = (ai)ni=1.

Once this action profile has been selected, each player i ∈ [n]
receives a reward ri(a) = ri(ai, a−i). Player i’s objective

is to maximize its reward ri(ai, a−i) by optimizing over its

action choice ai ∈ Ai. Since player i’s objective function

depends on the action selections of its counterplayers, we

have the following definitions of better and best responding.

Definition 1: For player i ∈ [n] and an action profile

(ai, a−i) ∈ A, an action ai⋆ ∈ Ai is called a better response

to (ai, a−i) if ri(ai⋆, a
−i) ≥ ri(ai, a−i).

If ri(ai⋆, a
−i) ≥ ri(āi, a−i) for any āi ∈ Ai, then the action

ai⋆ is called a best response to a
−i.

We let Betteri(a) ⊆ Ai denote the subset of player i’s
pure actions that are better responses to a = (ai, a−i), and

we let Besti(a−i) ⊆ Ai denote the subset of player i’s pure

actions that are best responses to a
−i.

For an action profile a and a player i ∈ [n], we say that

player i is satisfied at a if ai ∈ Besti(a−i), and otherwise

we say that player i is unsatisfied at a. We let Sat(a) ⊆ [n]
denote the subset of players who are satisfied at an action

profile a, and let UnSat(a) ⊆ [n] denote the subset of

players who are unsatisfied at a.

The solution concept of interest to this paper is the

celebrated Nash equilibrium, which captures a situation in

which all players are simultaneously best responding to one

another.

Definition 2: A strategy profile a⋆ ∈ A is called a (pure)

Nash equilibrium if ai⋆ ∈ Best(a−i
⋆ ) for all ∀i ∈ [n].

Remark. In this paper, we study only the finite game Γ and

not its mixed extension. That is, we do not allow any player

i ∈ [n] to select its action ai randomly according to a mixed

strategy (a probability distribution over Ai). Consequently,

pure Nash equilibrium need not exist in a general finite

normal-form game, even though Nash equilibrium in mixed

strategies always exists.

III. GRAPH THEORETIC STRUCTURE IN GAMES

A. Best Response Paths and Graphs

To formalize the concepts of better and best response paths

mentioned in the introduction, we now introduce the best

response graph and better response graph of the game Γ.

In what follows, all graphs are directed, and our notational

conventions are such: D = (V,E) represents a directed

graph, where V represents the finite set of vertices of D
and E ⊆ V × V represents a collection of directed edges,

with (v1, v2) ∈ E meaning there is a directed edge from v1
to v2 in D.

Definition 3: The (multi-agent) best response graph of the

game Γ is a directed graph DBest(Γ) = (A, EBest), where,

for any (a1, a2) ∈ A×A, we have (a1, a2) ∈ EBest if and

only if the following conditions hold for each player i ∈ [n]:

1. ai1 ∈ Besti(a−i
1 ) ⇒ ai2 = ai1, and

2. ai2 6= ai1 ⇒ ai2 ∈ Besti(a−i
1 ).

Intuitively, a directed edge from action profile a1 to a2

exists when a2 is obtained by switching the strategies of (at

most) players in some subset of C1 ⊆ UnSat(a1), and for

each such player i ∈ C1, ai2 belongs to Besti(a−i
1 ). Note that

this construction allows for the actions of several players to

be changed simultaneously.

Consider the 2 × 2 discoordination game in Figure 1a.

In this game, Player 1 selects the row, Player 2 selects the

column. Player 1 is paid the first quantity in the chosen cell,

and Player 2 receives the second quantity. Player 1’s best

response is to copy the action of Player 2, and Player 2’s

best response is to mismatch the action of Player 1.

a b
A 1, 0 0, 1

B 0, 1 1, 0

(a) Discoordination game (b) Best response graph

Fig. 1: A discoordination game and its best response graph,

with self-loops omitted.

The best response graph of this game is displayed in

Figure 1b, with node labels (e.g. (A, a), etc.) and self-loops

omitted for visual clarity. For example, there is a directed

edge (B, a) → (A, a), because action A ∈ Best1(a). On the

other hand, there is no directed edge from (B, a) → (A, b),
because a ∈ Best2(B) and thus player 2 is satisfied at (B, a).

A (multi-agent) best response path in the game Γ is

defined as any path in the directed graph DBest(Γ).
Next, we define the better response graph for the game Γ.

This construction is similar to the best response graph, but

allows for suboptimal strategy revision when a player is not

satisfied.

Definition 4: The (multi-agent) better response graph of

the game Γ is a directed graph DBetter(Γ) = (A, EBetter),
where EBetter ⊆ A × A is characterized as follows: for a



pair (a1, a2) ∈ A × A, one has (a1, a2) ∈ EBetter if and

only if both of the following hold for each player i ∈ [n],

1. ai1 ∈ Besti(a−i
1 ) ⇒ ai2 = ai1, and

2. ai2 6= ai1 ⇒ ai2 ∈ Betteri(a1).

A multi-agent better response path is defined as a path in

the directed graph DBetter(Γ). We note that in the discoordi-

nation game of Figure 1a, the better and best response graphs

coincide (DBest(Γ) = DBetter(Γ)) but this is not generally

the case.

With the preceding definitions in hand, we are now ready

to present the definition of weakly acyclic games, which have

been defined in several related forms of differing generality

[5]–[9].

Definition 5: A game Γ is called weakly acyclic if, for

any action profile a ∈ A, there exists a multi-agent better

response path beginning at a and ending at a pure Nash

equilibrium.

In graph theoretic terms, this definition has two main parts.

First, the better response graph DBetter(Γ) must possess at

least one sink (a node with no outgoing vertices), which

corresponds to the existence of pure Nash equilibrium.

Second, there must exist a directed path in DBetter(Γ) from

any non-sink node to some sink node.

We observe that the discoordination game of Figure 1a is

not a weakly acyclic game, since it possesses no pure Nash

equilibrium and thus fails the first part of the definition.

There are also examples of games that admit pure Nash

equilibrium but are nevertheless not weakly acyclic because

they fail the second condition on the existence of paths

to pure equilibrium. For one such example, consider the

game in Figure 2. This game admits a unique pure Nash

equilibrium, (T, L), but is not weakly acylic because there

are no multi-agent better response paths from (for instance)

the initial action profile (M,C) to (T, L).

L C R
T 9, 9 0, 0 0, 0

M 0, 0 2,1 1,2

B 0, 0 1,2 2,1

Fig. 2: A game with a pure Nash equilibrium that is not

weakly acyclic

Weakly acyclic games appear in many studies on multi-

agent game theoretic learning with distributed and/or de-

centralized information, e.g. [15]–[17]. One reason for their

practical relevance is that weakly acyclic games are the

largest class of games for which randomized inertial better

response dynamics is guaranteed to converge to Nash equi-

librium. That is, suppose an initial action profile a1 ∈ A is

selected arbitrarily, and then for each time t ≥ 1, the strategy

of every player i ∈ [n] is set according to the following

randomized strategy update rule:

ait+1 =

{
ait, if ait ∈ Besti(a−i

t ),

ai ∼ Uniform(Betteri(at) ∪ {ait}), else.

(We have included ait in the latter case as a substitute for a

random inertia condition, as discussed in [16], [17].)

Although randomized, distributed inertial better response

dynamics converge in weakly acyclic games and have other

desirable qualities, such as being individually rational, one

obvious shortcoming is that such algorithms do not lead

to Nash equilibrium strategies in games lacking the weakly

acyclic structure. This remains true even when some strategy

profiles are Pareto optimal, such as the Nash equilibrium

(T, L) in the game of Figure 2. Thus, beyond weakly acyclic

games, one must rely on different graph theoretic structure

when designing Nash-seeking algorithms. This deficiency of

the weakly acyclic structure is addressed in the next sections.

B. Satisficing Paths and Graphs

Having established the need to identify structure beyond

that of weakly acyclic games, we now present the notion of

the satisficing graph of a game. The contents of this section

are thematically related to the notion of satisficing paths

presented in [14], but here we consider only pure strategies

and define explicit graphs for the first time.

Definition 6: The (multi-agent) satisficing graph of the

game Γ is a directed graph DSat(Γ) = (A, ESat), where,

for any (a1, a2) ∈ A × A, we have (a1, a2) ∈ ESat if and

only if the following conditions hold for each player i ∈ [n]:

1. ai1 ∈ Besti(a−i
1 ) ⇒ ai2 = ai1, and

2. ai2 6= ai1 ⇒ ai2 ∈ Ai.

The second condition in the definition above is redundant,

but was included to elucidate the successive generalization

from the best response graph (Definition 3) to the better re-

sponse graph (Definition 4) and then from the better response

graph to the satisficing graph (Definition 6) of a game: since

Besti(a−i
1 ) ⊆ Betteri(a1) ⊆ Ai, we immediately have

EBest ⊆ EBetter ⊆ ESat. (1)

Intuitively, a directed edge from action profile a1 to action

profile a2 exists when a2 is obtained by switching the strate-

gies of (at most) players in some subset C̄1 ⊆ UnSat(a1),
and for each player i ∈ C̄1, the action ai2 can take any value.

In particular, ai2 need not be a better or best response to a
−i
2 .

A (pure) satisficing path for the game Γ is defined as

any directed path in DSat. From (1), one has that any

best response path (or any better response path) is also a

satisficing path, but the reverse is not generally true.

Definition 7: A game Γ is called a generalized weakly

acyclic game (GenWAG) if, for any action profile a ∈ A,

there exists a satisficing path beginning at a and ending at a

pure Nash equilibrium.

We now state some simple but useful results, which show

that GenWAGs are a meaningful generalization of weakly

acyclic games. First, in Lemma 1, we observe that all

weakly acyclic games are generalized weakly acyclic, but

the converse does not typically hold. Then, we provide an

example of a game that admits pure Nash equilibrium but is

not generalized weakly acyclic.



Lemma 1: If a game Γ is weakly acyclic, then it is also

generalized weakly acyclic. Moreover, there are games that

are generalized weakly acyclic but not weakly acyclic.

Proof. The first part follows from the fact that any multi-

agent better response path is automatically a pure satisficing

path. For the second part, we observe that the game presented

in Figure 2 is not weakly acyclic but is indeed generalized

weakly acyclic. ⋄

Since ESat is defined by a rather weak constraint, it is

natural to ask whether all games with pure Nash equilibrium

are generalized weakly acyclic. We now present an example

to show that the class of generalized weakly acyclic games

is not trivial. That is, we show that existence of pure Nash

equilibrium is not sufficient for a game to be generalized

weakly acyclic. Consider the game in Figure 3, below.

L C R
T 1, 1 0, 1 0, 1

M 1, 0 1,0 0,1

B 1, 0 0,1 1,0

Fig. 3: A game that is not generalized weakly acyclic

In this game, the unique pure Nash equilibrium is (T, L),
but the game does not admit pure satisficing paths to (T, L)
from any of the strategy profiles (M,C), (M,R), (B,C),
or (B,R).

The qualitative difference here between the games of

Figure 2 and Figure 3 has to do with indifference. In the

game of Figure 3, beginning at one of the strategy profiles

(M,C), (M,R), (B,C), or (B,R), reaching pure Nash

equilibrium (T, L) requires switching the actions of both

players. However, in each of these action profiles, there

is exactly one satisfied player and one unsatisfied player.

Upon switching the action of the unsatisfied player, one of

two situations arises: either (1) the satisfied player remains

satisfied, and is not compelled to change its behavior, but the

unsatisfied player remains unsatisfied; or (2) the unsatisfied

player becomes satisfied at the new action profile while the

previously satisfied player becomes unsatisfied. In any case,

there are no directed edges with tail in A \ {(T, L)} and

head (T, L).

IV. GENWAGS AND SATISFICING MARKOV CHAINS

In this section, we define satisficing Markov chains and

we characterize generalized weakly acyclic games as being

exactly those games for which a satisficing Markov chain

eventually converges to pure Nash equilibrium.

Definition 8: For a game Γ and an action profile a ∈ A,

a satisficing Markov chain beginning at a is a Markov chain

{at}∞t=1 on A with P(a1 = a) = 1 and satisfying the

following evolution rule for each t ≥ 1:

ait+1 =

{
ait, if ait ∈ Besti(a−i

t )

ai ∼ Uniform(Ai), else,
(2)

where the collection {ait+1}i∈[n] is jointly conditionally

independent given at.

Definition 8 is motivated by a family of closely related

game theoretic learning algorithms [14], [15], [18]–[26]. In

these learning algorithms, each player i has a baseline action

ait that it periodically revises to ait+1.1 Learning phases occur

between baseline action revision times, and in a learning

phase player i may experiment with non-baseline actions

and use the resulting reward observations to evaluate the

performance of its various alternative actions, a ∈ Ai. At the

end of such a learning phase, each player i revises its baseline

action from ait to ait+1. Although the particular revision

mechanism may vary, it is typically characterized by a “win

stay, lose shift” condition similar to that of (2), whereby

unsatisfied agents consider randomized experimental action

revision and satisfied agents continue using their previous

baseline action.2 A number of Nash-seeking algorithms and

multi-agent learning algorithms from this family, including

[14], [18], [20] and [27], have been studied by first analyzing

the convergence properties of a Markov chain {at}∞t=1 and

then using {at}∞t=1 to approximate a sequence of learned

strategy iterates {ât}∞t=1.

We now review some Markov chain terminology as it

relates to Definition 8. For action profiles a, ã ∈ A, ã is

said to be accessible from a if there exists a positive integer

m = m(a, ã) such that P(am+1 = ã|a1 = a) > 0. That

is, the satisficing Markov chain beginning at a transits to ã

in finitely many steps with non-zero probability. The action

profiles a and ã are said to communicate if a is accessible

from ã and ã is accessible from a. It is easy to see that

communication defined this way allows one to partition A

into equivalence classes called communicating classes, where

a and ã belong to the same communicating class if and only

if a and ã communicate. A communicating class A
′ ⊆ A

is called absorbing if the probability of transiting out of A′

is zero when the Markov chain starts in A
′. That is, A′ is

absorbing if

P


⋃

t≥1

{at /∈ A
′}

∣∣∣∣∣∣
a1 ∈ A

′


 = 0.

An action profile a† ∈ A is said to be absorbing if the

singleton {a†} is an absorbing communicating class. Before

presenting the main result of this section, we prove that an

action profile a† is absorbing for the satisficing Markov chain

if and only if it is a pure Nash equilibrium of the game.

Lemma 2: For a game Γ and an action profile a†, we have

that a† is absorbing for the satisficing Markov chain {at}∞t=1

if and only if a† is a Nash equilibrium of Γ.

1The subscripts t and t+1 here denote successive revision times, which
usually do not correspond to successive periods of actual play of the game.

2The definition of “winning” is handled differently by different algo-
rithms. In some cases, such as [23] or [24], players maintain a mood variable

to guide their revisions. In others, such as [22] and [26], players set a scalar
aspiration level and winning is defined as exceeding this aspiration level.
In still others, such as [14] or [18], the best response condition of (2) is
used as the winning condition.



Proof. Suppose a† ∈ A is a Nash equilibrium of Γ. By the

best response condition of (2), one has

P(ai2 = ai†|a1 = a†) = 1, ∀i ∈ [n].

Thus, P(a2 = a†|a1 = a†) = 1n = 1, which shows that

{a†} is absorbing.

For the reverse direction, suppose {a†} is absorbing. Then,

by (2), the best response condition holds for each player.

(Otherwise there exists a player whose action is switched

with non-zero probability, which would contradict the fact

that a† is absorbing.) Since all players are best responding,

a† is a Nash equilibrium. ⋄

We now present the first of our main results, which says

that GenWAGs are the largest class of games for which

satisficing Markov chains are guaranteed to converge to Nash

equilibrium.

Theorem 1: A game Γ is generalized weakly acyclic if

and only if for every a ∈ A, the satisficing Markov chain

beginning at a converges to a pure Nash equilibrium almost

surely.

Proof. (⇒) To prove the forward direction, let a ∈ A

be arbitrary, suppose {at}∞t=1 is a satisficing Markov chain

beginning at a, and suppose Γ is generalized weakly acyclic.

Since Γ is a GenWAG, there exists a satisficing path

connecting any initial point ã ∈ A to a Nash equilibrium.

Let T (ã) ∈ N be the length of a shortest such path beginning

at ã, and let ρ(ã) > 0 be the probability that the satisficing

Markov chain follows such a path when initialized at ã. Since

A is finite, we have

max
ã∈A

T (ã) =: τ < ∞, and min
ã∈A

ρ(ã) =: ρ > 0

By Lemma 2, any pure Nash equilibrium is a sink in the

satisficing graph and thus corresponds to an absorbing state

for the satisficing Markov chain.

From the preceding discussion, one obtains the following

inequality:

P (at+τ /∈ Nash|at = ã) ≤ (1− ρ),

for any ã ∈ A and any t ≥ 1, where Nash denotes the set

of pure Nash equilibria of Γ. Recursively, one then obtains

P (at+mτ /∈ Nash|at = ã) ≤ (1− ρ)m,

for any t,m ≥ 1 and ã ∈ A. Taking m → ∞, one sees that

{at}∞t=1 converges to some pure Nash equilibrium almost

surely for any initial condition a1 = a.

(⇐) We argue the backward direction by contrapositive.

That is, we will argue that if Γ is not a GenWAG, then

there exists some initial condition a1 = a ∈ A such that the

satisficing Markov chain will fail to converge almost surely

to a Nash equilibrium.

Indeed, if Γ is not a GenWAG, then there is some action

profile a ∈ A for which there are no satisficing paths begin-

ning at a and terminating at a pure Nash equilibrium of the

game Γ. This implies that for the satisficing Markov chain,

the communicating class of a contains no Nash equilibrium

strategy profiles, and the satisficing Markov chain beginning

at a1 = a will avoid Nash equilibrium strategy profiles at

all times. ⋄

V. A SUFFICIENT CONDITION, A COUNTEREXAMPLE,

AND A CONJECTURE

We previously encountered an example of a game, shown

in Figure 3 of Section III, that possessed pure Nash equilib-

rium but was not generalized weakly acyclic. This showed

that existence of pure Nash equilibrium alone is not sufficient

for a game to be generalized weakly acyclic, and constitutes

the first negative example in the theory on satisficing paths

and graphs. In this section, we present sufficient conditions to

complement that observation. We also identify a conjecture

as an open question for future research.

A. A Sufficient Condition for Two-Player Games

Definition 9: For a player i and an action profile a
−i, an

action ai⋆ ∈ Ai is a strict best response to a
−i if

ri(ai⋆, a
−i) > ri(ai, a−i), ∀ai 6= ai⋆.

Definition 10: A pure Nash equilibrium a⋆ is strict if for

each i ∈ [n], ai⋆ is a strict best response to a
−i
⋆ .

Theorem 2: Let Γ be a two-player game and suppose

Γ admits a strict pure Nash equilibrium a⋆. Then, Γ is

generalized weakly acyclic.

Proof. Let a1 = a ∈ A be our initial strategy profile. We

proceed in cases.

Case 1: If UnSat(a) = ∅, then a is a pure Nash

equilibrium itself and so the path (a) is a satisficing path

beginning at a and terminating at pure Nash equilibrium.

Case 2: If UnSat(a) = {1, 2}, then neither player is

satisfied at a, and so (a, a′) ∈ ESat is a valid satisficing

path for any a
′ ∈ A, since (vacuously) it does not change

the action of any player that was previously best responding.

Selecting a
′ = a⋆, one obtains a satisficing path from a to

a pure Nash equilibrium of Γ.

Case 3: UnSat(a) = {i} for some i ∈ {1, 2}. That is,

exactly one player, i, is unsatisfied at a, while the other

player, j 6= i, is satisfied at a. We put a2 = (ai⋆, a
j) and

note (a1, a2) ∈ ESat.
If aj = aj⋆, then we have constructed our path and there

is nothing left to show, since a2 = a⋆ is a pure Nash

equilibrium. Otherwise, if aj 6= aj⋆, then since a⋆ is a strict

Nash equilibrium, one has that aj /∈ Bestj(ai⋆). Then, we

put a3 = (ai⋆, a
j
⋆) = a⋆, and note that (a2, a3) ∈ ESat,

completing the proof. ⋄

B. A Sufficient Condition for n-Player Games

To state the results of this section, we require some

additional notation. For a (possibly empty) player subset

N ⊆ [n], we denote a partial action profile a
N = (ai)i∈N

as the action profile a with components for players in the

subset N . We write a
−N to denote a[n]\N , and we then have

a = (aN , a−N ). We let AN = ×i∈NAi.

Definition 11: Let Γ = (n,A, r) be an n-player game.

Let N ⊆ [n] be an m-player subset, with 0 ≤ m ≤ n, and



let a−N be a partial action profile. The subgame induced by

a
−N is an m-player game Γ†,

Γ† =
(
m, A† = A

N , r†
)
,

with player set N , action sets A
i
† = A

i for i ∈ N , and the

following reward functions for each i ∈ N :

ri†
(
a
N
)
= ri

(
a
N , a−N

)
, ∀aN .

Intuitively, the subgame induced by a
−N is the game that

one obtains when the actions of players in [n] \N are fixed

at a−N . The players of [n] \N become fixed aspects of the

environment, and the remaining players in N play a smaller

game. We say that Γ† is an induced subgame of Γ if there

exists a player subset N and a partial action profile a
−N for

which Γ† is the subgame induced by a
−N .

Note: In the definitions above, we allow N to be empty and

we also allow N = [n]. Thus, a game Γ is always an induced

subgame of itself.

Theorem 3: Let Γ be an n-player game. Suppose that

for any induced subgame Γ† of Γ, the induced subgame

Γ† admits a unique pure Nash equilibrium and this Nash

equilibrium is strict. Then, Γ is generalized weakly acyclic.

For brevity, we say that a game has the induced sub-

game property (ISP) if it satisfies the condition appearing

Theorem 3. That is, a game has the ISP if any induced

subgame admits a unique pure Nash equilibrium and this

Nash equilibrium is strict. We also remark that if a given

game has the induced subgame property, then any induced

subgame also has the ISP.

Proof. We prove this theorem by induction on the number

of players. The base case of m = 2 players is a special case

of Theorem 2. Our induction hypothesis is such: for some

m ≥ 2, if Γ† is an m-player game that has the ISP, then Γ†

is generalized weakly acyclic.

Now let Γ be an n-player game that has the ISP, and

suppose n = m + 1. We will argue that our induction

hypothesis implies that Γ is generalized weakly acyclic.

Let a1 = a ∈ A be an arbitrary initial action profile for

the game Γ. We prove the result by showing that there exists

a satisficing path from a1 to the unique Nash equilibrium of

Γ, which is strict and which we denote by a⋆ ∈ A.

We begin by ruling out trivial cases. If UnSat(a1) = [n],
then for any a

′ we have that (a1, a
′) is a valid edge in

ESat(Γ). We may then take a
′ = a⋆ to be the unique Nash

equilibrium of Γ, and the proof is complete in this case.

Thus, we focus on the case where Sat(a1) 6= ∅, and there

exists some player i who is satisfied at a1: ai1 ∈ Besti(a−i
1 ).

Recalling that m = n − 1, consider the (n − 1)-player

subgame Γ† induced by fixing the action of player i to be

ai1. Since Γ has the ISP and Γ† is an induced subgame of

Γ, it follows that Γ† also has the ISP and, by the induction

hypothesis, that Γ† is generalized weakly acyclic. Thus, for

any (n−1)-player strategy profile ã
−i
1 of the game Γ†, there

exists a directed path in the graph DSat(Γ†) from ã
−i
1 to

the unique Nash equilibrium of the (n− 1)-player game Γ†.

Denote such a path by ã
−i
1 , · · · , ã−i

k , where each ã
−i
t ∈ A

−i,

and note that ã−i
k is a strict Nash equilibrium for the subgame

Γ†.

Using the (n − 1)-player joint actions ã
−i
1 , . . . , ã−i

k , we

construct n-player strategy profiles for Γ by fixing player i’s
component at ai1:

at = (ai1, ã
−i
t ), ∀ t ≤ k.

Since player i’s action is fixed at ait = ai1 for t ≤ k, the

sequence (at)
k
t=1 is a valid satisficing path of the original

game Γ (i.e., in the directed graph DSat(Γ)). Depending on

whether or not ak is a Nash equilibrium for the game Γ, we

again proceed in cases to complete the proof.

Since ã
−i
k was selected to be the Nash equilibrium of the

induced subgame Γ†, for each player j 6= i, it holds that

ajk ∈ Bestj(a−j
k ). That is, player j is satisfied at a

−i
k . If

player i is also satisfied at ak, then ak is the Nash equilibrium

of Γ and the proof is complete.

If, on the other hand, player i is not satisfied at ak (that

is, ai1 /∈ Besti(a−i
k )), then we define

ak+1 := (ai⋆, a
−i
k ).

In other words, we change the action of player i from ai1 to

ai⋆, its component of the unique Nash equilibrium of Γ.

Let Γ⋆
† denote the (n − 1)-player subgame of Γ induced

by fixing player i’s action at ai⋆. Since Γ has the ISP, Γ⋆
†

admits a unique pure Nash equilibrium, which is readily

verified as being a
−i
⋆ = (aj⋆)j 6=i, the action profile in which

players j 6= i play their components of a⋆, the unique Nash

equilibrium of Γ. Moreover, by our induction hypothesis, Γ⋆
†

is generalized weakly acyclic. Thus, from any initial action

profile ä
−i
1 in the (n − 1)-player game Γ⋆

† , there exists a

satisficing path ä
−i
1 , . . . , ä−i

L in the directed graph DSat(Γ
⋆
†)

beginning at ä−i
1 and terminating at ä−i

L := a
−i
⋆ , the unique

pure Nash equilibrium of Γ⋆
† .

Using ä
−i
1 := a

−i
k+1 = a

−i
k in the discussion above, we

define n-player strategy profiles (ak+t)
L
t=1 as

ak+t =
(
ai⋆, ä

−i
t

)
, t = 1, 2, . . . , L.

Since the component of player i is fixed at aik+t =
aik+1 = ai⋆, the sequence (ak+t)

L
t=1 is a satisficing path

of the original game Γ. Furthermore, the extended sequence

(a1, . . . , ak, ak+1, . . . , ak+L) is also a satisficing path of the

game Γ. This concludes the proof, since a⋆ = ak+L is the

unique pure Nash equilibrium of Γ. ⋄

C. An Open Question for Future Work

In the preceding sections, we encountered an example of

a two-player game (Figure 3) in which indifference posed a

problem for generalized weak acyclicity. In that example,

a (unique) non-strict pure Nash equilibrium existed, but

this equilibrium was not accessible from all starting action

profiles because players had non-unique best responses and

could not be compelled to switch actions.

While indifference may threaten generalized weak acyclic-

ity, we also encountered sufficient conditions for generalized

weak acyclicity based on non-indifference. The strictness



hypotheses of Theorems 2 and 3 assume the existence of

equilibrium action profiles in which players are not indiffer-

ent between alternative actions but instead strictly prefer one

alternative to the rest.

In the case of two-player games, existence of a strict

pure Nash equilibrium was sufficient for generalized weak

acyclicity. Of note, uniqueness of Nash equilibrium was

not assumed in the two-player case of Theorem 2. On the

other hand, our multi-player result, Theorem 3, assumes the

existence and uniqueness of a pure Nash equilibrium and

further that such an equilibrium is strict. It is natural to ask

whether this uniqueness assumption can be relaxed while still

preserving generalized weak acyclicity, or whether a patho-

logical counterexample exists. We conclude the technical part

of this paper by offering a conjecture as an open question

for future research.

Conjecture. Let Γ be an n-player game. Suppose that for

any induced subgame Γ† of Γ we have that Γ† admits a

strict pure Nash equilibrium. Then, the game Γ is generalized

weakly acyclic.

VI. CONCLUSION AND FUTURE DIRECTIONS

We have presented GenWAGs, a generalization of the class

of weakly acyclic games. We have demonstrated by example

that this generalization is non-trivial, in the sense that there

are examples of games that are GenWAGs but not weakly

acyclic, and furthermore the class of GenWAGs does not

include all games with pure Nash equilibrium. We have

argued that the class of GenWAGs is practically relevant

for exploratory multi-agent learning applications because of

its connection to the satisficing Markov chain, and we have

provided multiple sufficient conditions for a game to be

generalized weakly acyclic.

As an open question for future work, we ask whether

the existence of a pure Nash equilibrium that is strict is

a sufficient condition for a game to be generalized weakly

acyclic when there are at least three players.
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[16] G. Arslan and S. Yüksel, “Decentralized Q-learning for stochastic

teams and games,” IEEE Transactions on Automatic Control, vol. 62,
no. 4, pp. 1545–1558, 2016.

[17] B. Swenson, C. Eksin, S. Kar, and A. Ribeiro, “Distributed inertial
best-response dynamics,” IEEE Transactions on Automatic Control,
vol. 63, no. 12, pp. 4294–4300, 2018.

[18] D. Foster and H. P. Young, “Regret testing: Learning to play Nash
equilibrium without knowing you have an opponent,” Theoretical
Economics, vol. 1, no. 3, pp. 341–367, 2006.

[19] F. Germano and G. Lugosi, “Global Nash convergence of Foster and
Young’s regret testing,” Games and Economic Behavior, vol. 60, no. 1,
pp. 135–154, 2007.

[20] H. P. Young, “Learning by trial and error,” Games and Economic

Behavior, vol. 65, no. 2, pp. 626–643, 2009.
[21] B. S. Pradelski and H. P. Young, “Learning efficient Nash equilibria

in distributed systems,” Games and Economic behavior, vol. 75, no. 2,
pp. 882–897, 2012.

[22] G. C. Chasparis, A. Arapostathis, and J. S. Shamma, “Aspiration
learning in coordination games,” SIAM Journal on Control and Opti-
mization, vol. 51, no. 1, pp. 465–490, 2013.

[23] J. R. Marden, H. P. Young, and L. Y. Pao, “Achieving Pareto opti-
mality through distributed learning,” SIAM Journal on Control and
Optimization, vol. 52, no. 5, pp. 2753–2770, 2014.

[24] J. R. Marden, “Selecting efficient correlated equilibria through dis-
tributed learning,” Games and Economic Behavior, vol. 106, pp. 114–
133, 2017.

[25] Z. Hu, M. Zhu, P. Chen, and P. Liu, “On convergence rates of game
theoretic reinforcement learning algorithms,” Automatica, vol. 104,
pp. 90–101, 2019.

[26] B. Yongacoglu, G. Arslan, and S. Yüksel, “Decentralized learning
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