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Abstract

We propose a new neural network based large eddy simulation framework for the incompressible
Navier-Stokes equations based on the paradigm “discretize first, filter and close next”. This leads to
full model-data consistency and allows for employing neural closure models in the same environment
as where they have been trained. Since the LES discretization error is included in the learning
process, the closure models can learn to account for the discretization.

Furthermore, we introduce a new divergence-consistent discrete filter defined through face-
averaging. The new filter preserves the discrete divergence-free constraint by construction, unlike
general discrete filters such as volume-averaging filters. We show that using a divergence-consistent
LES formulation coupled with a convolutional neural closure model produces stable and accurate
results for both a-priori and a-posteriori training, while a general (divergence-inconsistent) LES
model requires a-posteriori training or other stability-enforcing measures.

Keywords: discrete filtering, closure modeling, divergence-consistency, large eddy simulation,
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1. Introduction

The incompressible Navier-Stokes equations form a model for the movement of fluids. They
can be solved numerically on a grid using discretization techniques such as finite differences [28],
finite volumes, or pseudo-spectral methods [50, 55]. The important dimensionless parameter in the
incompressible Navier-Stokes equations is the Reynolds number Re = UL

ν , where L is a characteristic
length scale, U is a characteristic velocity, and ν the kinematic viscosity. For high Reynolds numbers,
the flow becomes turbulent. Resolving all the scales of motion of turbulent flows requires highly
refined computational grids. This is computationally expensive [54, 57, 56, 72].

Large eddy simulation (LES) aims to resolve only the large scale features of the flow, as opposed
to direct numerical simulation (DNS), where all the scales are resolved [54, 8]. The large scales of the
flow, here denoted ū, are extracted from the full solution u using a spatial filter. The equations for
the large scales are then obtained by filtering the Navier-Stokes equations. The large scale equations
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(filtered DNS equations) are not closed, as they still contain terms depending on the small scales.
It is common to group the contributions of the unresolved scales into a single commutator error
term, that we denote c(u, ū). Large eddy simulation requires modeling this term as a function of
the large scales only. The common approach is to introduce a closure model m(ū, θ) ≈ c(u, ū)
to remove the small scale dependency [54, 57, 8], where θ are problem-specific model parameters.
The closure model accounts for the effect of the sub-filter scales on the resolved scales. Traditional
closure models account for the energy lost to the sub-filter eddies. A simple approach to account
for this energy transfer is to add an additional diffusive term to the LES equations. These closure
models are known as eddy viscosity models. This includes the well known standard Smagorinsky
model [66, 37, 38].

The filter can be either be known explicitly or implicitly. In the latter case, the (coarse) dis-
cretization itself is acting as a filter. Note that the distinction explicit versus implicit is not always
clear, as an explicitly defined filter can still be linked to the discretization. Sometimes the filter is
only considered to be explicit when the filter width is fully independent from the LES discretiza-
tion size [6]. The type of filtering employed results in a distinction between explicit and implicit
LES. Explicit LES [43, 20, 21] refers to a technique where the filter is explicitly used inside the
convection term of the LES equations (as opposed to applying the filter in the exact filtered DNS
evolution equations, where the filter is applied by definition). The LES solution (that we denote
by v̄) already represents a filtered quantity, namely the filtered DNS solution ū. Applying the filter
again inside the LES equations can thus be seen as computing a quantity that is filtered twice. The
main advantage is stability [7] and to prevent the growth of high-wavenumber components [43, 20].
Note that this technique requires explicit access to the underlying filter. Implicit LES is used to
describe the procedure where the DNS equations are used in their original form, and the closure
model is added as a correction (regardless of whether the filter is known explicitly or not). Here, the
filter itself is not required to evaluate the LES equations, but knowledge of certain filter properties
such as the filter width is used to choose the closure model. In the standard Smagorinsky model
for example, the filter width is used as a model parameter. If the exact filter is not known, this
parameter is typically chosen to be proportional to the grid spacing.

Recently, machine learning has been used to learn closure models, focusing mostly on implicit
LES [4, 5, 6, 19, 29, 36, 35, 41, 47, 65, 63, 64]. The idea is to represent the closure model m(ū, θ) by
an artificial neural network (ANN). ANNs are in principle a good candidate as they are universal
function approximators [3, 13]. However, using ANNs as closure models typically suffers from sta-
bility issues, which have been attributed to a so-called model-data inconsistency: the environment
in which the neural network is trained is not the same in which it is being used [6]. Several ap-
proaches like backscatter clipping, a-posteriori training and projection onto an eddy-viscosity basis
have been used to enforce stability [52, 41, 4] – for an overview, see [60]. Our view is that one of
the problems that lies at the root of the model-data inconsistency is a discrepancy between the LES
equations (obtained by first filtering the continuous Navier-Stokes equations, then discretizing) and
the training data (obtained by discretizing the Navier-Stokes equations, and then applying a discrete
filter).

Our key insight is that the LES equations can also be obtained by “discretizing first” instead
of “filtering first”: following the green instead of the red route in figure 1. In other words, by
discretizing the PDE first, and then applying a discrete filter, the model-data inconsistency issue
can be avoided and one can generate exact training data for the discrete LES equations. Training
data obtained by filtering discrete DNS solutions is fully consistent with the environment where the
discrete closure model is used. The resulting LES equations do not have a coarse grid discretization
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∂ū

∂t
= F(ū) +∇ · τ −∇p̄

Du = 0
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D̄ū = 0

dū
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= F̄ (ū) + c− Ḡp̄

D̄v̄ = 0

dv̄

dt
= F̄ (v̄) +m(v̄)− Ḡp̄

D̄v̄ = 0

dv̄

dt
= F̄ (v̄) +m(v̄)− Ḡp̄

Consistent training data

New LES

Figure 1: Proposed route (in green) to a discrete LES model, based on“discretize first, then filter” instead of “filter
first, then discretize” (in red).

error, but an underlying fine grid discretization error and a commutator error from the discrete
filter, which can be learned using a neural network. In our recent work [1], we showed the benefits
of the “discretize first” approach on a 1D convection equation. With the discretize-first approach we
obtain stable results without the need for the stabilizing techniques mentioned above (backscatter
clipping, a-posteriori training, projection onto an eddy-viscosity basis).

In the current paper, the goal is to extend the “discretize first” approach to the full 3D in-
compressible Navier-Stokes equations. One major challenge that appears in incompressible Navier-
Stokes is the presence of the divergence-free constraint. We show that discrete filters are in general
not divergence-consistent (meaning that divergence-free DNS solutions do not stay divergence-free
upon filtering) and we propose a novel divergence-consistent discrete filter. Overall, the main result
is that our divergence-consistent neural closure models lead to stable simulations.

In addition, we remark that divergence-consistent filtering is an important step towards LES
closure models that satisfy an energy inequality. Such models were developed by us in [70] for one-
dimensional equations with quadratic nonlinearity (Burgers, Korteweg - de Vries). When extending
this approach to 3D LES, the derivation of the energy inequality hinges on having a divergence-free
constraint on the filtered solution field.

Our article is structured as follows. In section 2, we present the discrete DNS equations that serve
as the ground truth in our problem, based on a second order accurate finite volume discretization
on a staggered grid. In section 3, we introduce discrete filtering. Unclosed equations for the large
scales are obtained. We show that the filtered velocity is not automatically divergence-free. We
then present a novel divergence preserving discrete filter on the staggered grid. In section 4, we
present our discrete closure modeling framework, resulting in two discrete LES formulations. We
discuss the validity of the LES models in terms of divergence-consistency. A discussion follows on
the choice of closure model and how we can learn the closure model parameters. In section 5, we
present the results of numerical experiments on a decaying turbulence test case. Section 6 ends
with concluding remarks.
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Figure 2: Finite volume discretization on a staggered grid. The pressure is defined in the volume center, and the
velocity components on the volume faces.

2. Direct numerical simulation of all scales

In this section, we present the continuous Navier-Stokes equations and define a discretization
aimed at resolving all the scales of motion. The resulting discrete equations will serve as the ground
truth for learning an equation for the large scales.

2.1. The Navier-Stokes equations

The incompressible Navier-Stokes equations describe conservation of mass and conservation of
momentum, which can be written as a divergence-free constraint and an evolution equation:

∇ · u = 0, (1)

∂u

∂t
+∇ · (uuT) = −∇p+ ν∇2u+ f, (2)

where Ω ⊂ Rd is the domain, d ∈ {2, 3} is the spatial dimension, u = (u1, . . . , ud) is the velocity
field, p is the pressure, ν is the kinematic viscosity, and f = (f1, . . . , fd) is the body force per
unit of volume. The velocity, pressure, and body force are functions of the spatial coordinate
x = (x1, . . . , xd) and time t. For the remainder of this work, we assume that Ω is a rectangular
domain with periodic boundaries, and that f is constant in time.

2.2. Spatial discretization

For the discretization scheme, we use a staggered Cartesian grid as proposed by Harlow and
Welch [28]. Staggered grids have excellent conservation properties [39, 53], and in particular their
exact discrete divergence-free constraint is important for this work. Details about the discretization
can be found in Appendix A.

We partition the domain Ω into N finite volumes. Let u(t) ∈ RdN and p(t) ∈ RN be vectors
containing the unknown velocity and pressure components in their canonical positions as shown in
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figure 2. They are not to be confused with their space-continuous counterparts u(x, t) and p(x, t),
which will no longer be referred to in what follows. The discrete and continuous versions of u and
p have the same physical dimensions.

Equations (1) and (2) are discretized as

Du = 0, (3)

du

dt
= F (u)−Gp, (4)

where D ∈ RN×dN is the divergence operator, G = −Ω−1
u DTΩp ∈ RdN×N is the gradient operator,

Ωu ∈ RdN×dN and Ωp ∈ RN×N are element-wise scaling operators containing the velocity and
pressure volume sizes, and F (u) ∈ RdN contains the convective, diffusive, and body force terms.

2.3. Pressure projection

The two vector equations (3) and (4) form an index-2 differential-algebraic equation system
[26, 27], consisting of a divergence-free constraint and an evolution equation. Given u, the pressure
can be obtained by solving the discrete Poisson equation 0 = DF (u)−DGp, which is obtained by
differentiating the divergence-free constraint in time. This can also be written

Lp = ΩpDF (u), (5)

where the Laplace matrix L = ΩpDG = −ΩpDΩ−1
u DTΩp is symmetric and negative semi-definite.

We denote by L† the solver to the scaled pressure Poisson equation (5). Since no boundary value
for the pressure is prescribed, L is rank-1 deficient and the pressure is only determined up to a
constant. We set this constant to zero by choosing

L† =
(
I 0

)(L e
eT 0

)−1 (
I
0

)
, (6)

where e = (1, . . . , 1) ∈ RN is a vector of ones and the additional degree of freedom enforces the
constraint of an average pressure of zero (i.e. eTL† = 0) [42]. In this case we still have LL† = I,
even though L†L ̸= I.

We now introduce the projection operator P , which plays an important role in the development
of our new closure model strategy in section 3: P = I −GL†ΩpD. It is used to make velocity fields
divergence-free [15], since DP = D − Ω−1

p LL†ΩpD = 0. It naturally follows that P is a projector,

since P 2 = P −GL†ΩpDP = P .
Having defined P , it is (at least formally) possible to eliminate the pressure from equations

(3)-(4) into a single “pressure-free” evolution equation for the velocity [59], given by

du

dt
= PF (u). (7)

This way, an initially divergence-free velocity field u stays divergence-free regardless of what forcing
term F is applied. We note that equation (7) alone does not enforce the divergence-free constraint,
as it also requires the initial conditions to be divergence-free.

L† and P are non-local operators that are not explicitly assembled, but their action on vector
fields is computed on demand using an appropriate linear solver. Formulation (7) is used as a
starting point for developing a new filtering technique in section 3.
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2.4. Time discretization

We use a standard fourth order accurate Runge-Kutta method (RK4) for the incompressible
Navier-Stokes equations [59]. While explicit methods may require smaller time steps (depending
on the problem-specific trade-off of stability versus accuracy), they are easier to differentiate with
automatic differentiation tools.

Given the solution un at a time tn, the next solution at a time tn+1 is given by

un+1 = un +∆tn

s∑
i=1

biki, (8)

where

ki = PF

un +∆tn

i−1∑
j=1

aijkj

 , (9)

∆tn = tn+1− tn, s is the number of stages, a ∈ Rs×s, and b ∈ Rs. In practice, each of the RK steps
(9) are performed by first computing a tentative (non-divergence-free) velocity field, subsequently
solving a pressure Poisson equation, and then correcting the velocity field to be divergence-free. As
the method is explicit, this is equivalent to (9) and does not introduce a splitting error [59]. For
RK4, we set s = 4, b1 = 1/6, b2 = 1/3, b3 = 1/3, b4 = 1/6, a21 = 1/2, a32 = 1/2, a43 = 1, and the
other coefficients aij = 0.

3. Discrete filtering and divergence-consistency

The DNS discretization presented in the previous section is in general too expensive to simulate
for problems of practical interest, and it is only used to generate reference data for a limited number
of test cases. In this section, we present discrete filtering from the fine DNS grid to a coarse grid
in order to alleviate the computational burden. This means we filter the discretized equations, in
contrast to many existing approaches, which filter the continuous Navier-Stokes equations, and then
apply a discretization. The advantages of “discretizing first” were already mentioned in section 1.
However, one disadvantage of “discretizing first” is that the filtered velocity field is in general not
divergence free. We present a new face-averaging filter that preserves the divergence-free constraint
for the filtered velocity.

3.1. Filtering from fine to coarse grids

We consider two computational grids: a fine grid of size N ∈ Nd and a coarse grid of size
N̄ ∈ Nd, with N̄α ≤ Nα for all α ∈ {1, . . . , d}. The operators D, F , G, P , etc., are defined on the
fine grid. On the coarse grid, similar operators are denoted D̄, F̄ , Ḡ, P̄ , etc.

Consider a flow problem. We assume that the flow is fully resolved on the fine grid, meaning
that the grid spacing is at least twice as small as the smallest significant spatial structure of the
flow. The resulting fully resolved solution u ∈ RdN is referred to as the DNS solution. In addition,
we assume that the flow is not fully resolved on the coarse grid, meaning that the coarse grid
spacing is larger than the smallest significant spatial structure of the flow. The aim is to solve for
the large scale features of u on the coarse grid. For this purpose, we construct a discrete spatial
filter Φ ∈ RdN̄×dN . The resulting filtered DNS velocity field is given by

ū = Φu ∈ RdN̄ , (10)
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and is a coarse-grid quantity. We stress that ū is by definition a consequence of the DNS. It is not
obtained by solving the Navier-Stokes equations on the coarse grid. That is instead the goal in the
next sections.

Since Φ is a coarse-graining filter, it does not generally commute with discrete differential
operators. In particular, the divergence-free constraint is preserved for continuous convolutional
filters, but this is not automatically the case for discrete filters. We consider this property in detail,
and investigate its impact on the resulting large scale equations.

3.2. Equation for large scales

When directly filtering the differential-algebraic system (3)-(4), multiple challenges arise. These
are detailed in Appendix C and summarized here:

• The filter Φ works on inputs defined in the velocity points, and is targeted at filtering the
momentum equation. It is not directly clear how to filter the divergence-free constraint
(which is defined in the pressure points), and whether a second filter needs to be defined for
the pressure points.

• The momentum equation includes a pressure term. While its gradient can be filtered with
Φ, it is not clear what a filtered pressure p̄ should be, or how it should appear in the filtered
momentum equation.

To circumvent these issues, we propose to differentiate the discrete divergence constraint first
(to remove the pressure), and then apply the filter to the pressure-free DNS equation (7). This
results in the sequence “discretize – differentiate constraint – filter”, as shown by solid green arrows
in figure 3. The advantage over the route defined by dashed green arrows, “discretize – filter”, is
that we do not need to consider the pressure or the divergence-free constraint, and a single filter
for the velocity field is sufficient. The “implied” filtered pressure will be discussed in section 4.1.
The resulting equation for the filtered DNS-velocity ū is dū

dt = ΦPF (u), which is rewritten as

dū

dt
= P̄ F̄ (ū) + c(u, ū), (11)

with the unclosed commutator error defined by

c(u, ū) = ΦPF (u)− P̄ F̄ (ū). (12)

A crucial point is that when filtering from a fine grid to a coarse grid, one generally does not
get a divergence-free filtered velocity field (D̄ū ̸= 0), as discrete filtering and discrete differentiation
do not generally commute.

3.3. New divergence-consistent discrete filter

Our novel approach is to design the filter and coarse grid such that the divergence-free constraint
is preserved. This is achieved by merging fine DNS volumes to form coarse LES volumes, such that
the faces of DNS and LES volumes overlap (as shown in figure 4). The extracted large scale
velocities ū = Φu are then obtained by averaging the DNS velocities that are found on the LES
volume faces. We denote this face-averaging discrete filter by ΦFA. This approach to filtering also
naturally generalizes to unstructured grids, as long as the coarse volume faces overlap with the fine
ones. An example is shown to the right in figure 4 for triangular volumes.
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DiscretizeNS

MDIF

MDCF

Differentiate constraint

FilterFilter-discretize

Discretize-
filter

Discretize-differentiate-filter

Figure 3: Alternative view of figure 1 to highlight the effect of differentiating the constraint. The red arrows
show the traditional route of filtering first and then discretizing. The solid green arrows show our proposed route
of discretizing first, then differentiating the constraint, then filtering, and finally reintroducing a pressure term (if
the filter is divergence-consistent). This is done to circumvent the pressure problems of the dashed green route
(discretizing first, then filtering).

Figure 4: Four coarse volumes (blue) and their fine grid sub-grid volumes (red) in 2D. For each of the coarse volume
faces, the discrete filter ΦFA combines the DNS velocities u into one LES velocity ū using averaging. The interior
sub-grid velocities are not present in ū. The coarse grid pressure p̄ is defined in the coarse volume centers, but
is not obtained by filtering p. Instead, it is computed from ū. Left: Structured grid, used in this work. Right:
Unstructured grid.
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ū

Volume averaging

u ū

Face averaging

u

Figure 5: DNS velocity components u contributing to a single filtered DNS component ū for two filters. Both filters
have a filter width equal to the grid size. Both u(t) and ū(t) share the same dimension as the continuous velocity
u(x, t). Left: Volume-averaging filter ΦVA. Right: Face-averaging filter ΦFA.

The face-averaging filter ΦFA is different to more traditional volume-averaging filters such as the
volume-averaging top-hat filter [57] (that we denote ΦVA). The face-averaging filter can be thought
of as a top-hat filter acting on the dimensions orthogonal to the velocity components only, while
the volume-averaging filter is averaging over all dimensions. In this work, we define the two discrete
filters ΦFA and ΦVA with uniform weights and with filter width equal to the coarse grid spacing
∆̄. Since both filters are top-hat like, the filter width is defined as the diameter of the averaging
domain in the infinity norm. Note that due to the normalization, all discrete velocity components
ūα
J and uα

I share the same dimension as the continuous velocity uα(x, t) (not velocity times area or
velocity times volume).

The two discrete filter supports are compared in figure 5. One advantage of the face-averaging
filter is that it does not require modifications at non-periodic boundaries, while the volume-averaging
filter does (for example by using a volume of half the size and twice as large weights to avoid
averaging outside solid walls). But the main advantage lies in the preservation of the divergence-
free constraint, as we now show.

When ū is obtained through face-averaging, the difference of fluxes entering and leaving an LES
volume is equal to a telescoping sum of all sub-grid flux differences, which in turn is zero due to the
fine grid divergence-free constraint. The proof is shown in Appendix B. Note that this property no
longer holds if the weights are non-uniform or if the width is different from the coarse grid spacing.
Our novel face-averaging filter thus preserves by construction the divergence-free constraint for the
filtered DNS velocity:

For ΦFA : ∀u, Du = 0 =⇒ D̄ū = 0. (13)

This property is the primary motivation for our filter choice (it can also be thought of as a discrete
equivalent of the divergence theorem ∇ · u = 0 =⇒

∫
∂O u · ndΓ = 0 for all O). It can be used to

show that the face-averaging filter has the property

D̄ΦP = 0 (14)

since, for all u, if w = Pu, then Dw = 0 by definition of P , and thus D̄ΦPu = D̄Φw = D̄w̄ = 0 from
(13). In other words, divergence-free fine grid velocity fields stay divergence-free upon filtering. For
a general volume-averaging filter, we would not be able to guarantee that all the sub-grid fluxes
cancel out, and we would not get a divergence-free constraint for ū. This constraint is often enforced
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anyways, possibly introducing unforeseen errors, as pointed out by Sirignano et al. [65]. With the
face-averaging filter, we do not need to worry about such errors.

With our face-averaging filter choice, the momentum commutator error is divergence-free, since

D̄c = D̄

(
dū

dt
− P̄ F̄ (ū)

)
=

d(D̄ū)

dt
− (D̄P̄ )F̄ (ū) = 0 (15)

since D̄ū = 0 and D̄P̄ = 0 on the coarse grid just like DP = 0 on the fine grid. As a result, c = P̄ c,
and the right hand side of the large scale equation is divergence-free. This allows us to rewrite
equation (11) as

dū

dt
= P̄

(
F̄ (ū) + c(u, ū)

)
. (16)

The fact that the projection operator P̄ now also acts on the commutator error will play an impor-
tant role in learning a new LES closure model in section 4.

Since Du(0) = 0 and thus D̄ū(0) = 0 (for the face-averaging filter), we can rewrite the filtered
equation into an equivalent constrained form, similar to the unfiltered equations (3)-(4):

D̄ū = 0, (17)

dū

dt
= F̄ (ū) + c(u, ū)− Ḡp̄, (18)

where p̄ is the “implied” pressure defined in the coarse volume centers. It is obtained by solving
the pressure Poisson equation with the additional sub-grid forcing term c in the right hand side:

L̄p̄ = Ω̄pD̄
(
F̄ (ū) + c(u, ū)

)
. (19)

Note that the coarse pressure p̄ is not obtained defining a pressure filter, but arises from enforcing
the coarse grid divergence-free constraint. In other words, by filtering the pressure-free momentum
equation (7) with a divergence-consistent filter, we discover what the (implicitly defined) filtered
pressure is.

3.4. Other divergence-consistent filters

We comment here on other approaches for constructing divergence-consistent discrete filters.

3.4.1. Discrete differential filters

Continuous filters can be built using differential operators, for example Germano’s filter ū(x, t) =
(1− ∆̄2/24∇2)−1u [23, 12]. Differential filters can also be extended to the discrete case. Trias and
Verstappen propose using polynomials of the discrete diffusion operator (which we will denote D2)
as a filter [68]:

Φ = I +

m∑
i=1

γiD
i
2. (20)

where m is the polynomial degree and γi are filter coefficients. This ensures that the filter has useful
properties. However, divergence freeness is only respected approximately, the convective operator
may need to be modified to preserve skew-symmetry, and there is no coarsening (N̄ = N).
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3.4.2. Spectral cut-off filters

Spectral cut-off filters are divergence-consistent, but only so with respect to the spectral di-
vergence operator ûk 7→ 2πikTûk (which acts element-wise in spectral space). For pseudo-spectral
discretizations, spectral cut-off filters are therefore natural choices. On our staggered grid however,
a spectral cut-off filter would not automatically be such that D̄ū = 0.

3.4.3. Projected filters

By including the projection operator into the filter definition, any filter can be made divergence-
consistent [68]. For example, the volume averaging filter ΦVA can be replaced with Φ̃VA = P̄ΦVA,
which is a divergence-consistent filter. However, this makes the filter non-local. The projection step
is also more expensive, which could be a problem when the filter is used to generate many filtered
DNS training data samples for a neural closure model.

4. Learning a closure model for the large scale equation

In this section, we present our new closure model formulation: a discrete LES model based on
the divergence-consistent filter introduced in the previous section.

4.1. Discrete large eddy simulation

Our “discretize-differentiate-filter” framework has led to equation (11), which describes the
exact evolution of the large scale components ū for a general filter, but still contains the unclosed
term c(u, ū) from equation (12). Solving this equation would require access to the underlying DNS
solution u. We therefore replace c with a parameterized closure model m(ū, θ) ≈ c(u, ū), which
depends on ū only [54, 57, 8]. This produces a new approximate large scale velocity field v̄ ≈ ū. It
is defined as the solution to the discrete LES model

MDIF :
dv̄

dt
= P̄ F̄ (v̄) +m(v̄, θ) . (21)

Given the discretize-differentiate-filter framework, this constitutes a general LES model formulation,
which does not assume yet that the filter is divergence-consistent. We therefore give it the label
DIF (divergence-inconsistent formulation).

Since our face-averaging filter is divergence-consistent, we propose an alternative LES model,
by replacing c with m in equation (16) instead of in equation (11). The result is a new divergence-
consistent LES model:

dv̄

dt
= P̄

(
F̄ (v̄) +m(v̄, θ)

)
. (22)

This equation is in “pressure-free” form, which was obtained by differentiating the constraint. By
reversing the process, i.e. integrating the constraint in time, the model can now be written back
into a constrained form in which the pressure reappears:

MDCF :
D̄v̄ = 0,

dv̄

dt
= F̄ (v̄) +m(v̄, θ)− Ḡq̄.

(23)

This is our proposed divergence-consistent formulation that will be denoted by “DCF”. The deriva-
tion of (23) from (22) hinges on the fact that D̄v̄(0) = D̄ū(0) = 0. The pressure field q̄ ≈ p̄ is the
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filtered pressure field ensuring that the LES solution v̄ stays divergence-free. We stress that in our
approach no pressure filter needs to be defined explicitly. With a divergence-consistent formulation
the filtered pressure can be seen as a Lagrange multiplier.

We note that the system (23) seems to have the same form as the LES equations that are common
in literature, being obtained by the classic route “filter first, then discretize” (see red route in figure
3). One might argue that the divergence-consistent face-averaging filter is just a way to make sure
that the operations of differentiation and filtering commute. However, as we mentioned in section
1, there is an important difference: in contrast to the classic approach, in our approach we have
precisely defined what the filter is, and the training data (ū) is fully discretization-consistent with
our learning target (v̄). This is a key ingredient in obtaining model-data consistency and hence
stable closure models [18, 35].

4.2. Divergence-consistency and LES

We now compare in more detail the properties of the two models, the “divergence-inconsistent”
formulation MDIF and the “divergence-consistent” formulation MDCF, see table 1.

MDIF is valid for a general (non-divergence-consistent) filter and leads to a non-divergence free
v̄. In case a divergence-consistent filter is used, the model MDIF is still different from MDCF, unless
P̄m = m. This is because one can have an exact commutator error c with the property P̄ c = c
(meaning D̄c = 0) but still learn an approximate commutator error m such that P̄m ̸= m (meaning
D̄m ̸= 0).

If the MDCF model is used with a volume-averaging filter, inconsistencies appear. For example,
while the filtered DNS data is not divergence-free, the DCF model would enforce the LES solution
to be (incorrectly) divergence-free.

Model Filter D̄ū = 0 D̄v̄ = 0

MDIF VA False False
MDIF FA True True if D̄m = 0
MDCF VA False True
MDCF FA True True

Table 1: Divergence compatibility chart for LES models (rows) and filter properties (columns). The last row shows
our preferred combination.

So far, we have only discussed the two LES formulations in terms of their divergence properties,
leaving out other properties that could also be important. In section (5), we compare the four
combinations from table 1 for a turbulent flow test case, and discuss whether they are good choices
or not.

4.3. Choosing the objective function

To learn the model parameters θ, we exploit having access to exact filtered DNS data samples
ū and exact commutator errors c(u, ū) obtained through (explicitly) filtered DNS solutions. A
straightforward and commonly used approach [32, 45, 4] is then to minimize a loss function of
a-priori type, that only depends on the DNS-solution u. We use the commutator error loss

Lprior(B, θ) = 1

#B
∑
u∈B

∥m(ū, θ)− c(u, ū)∥2

∥c(u, ū)∥2
(24)
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where B is a batch of #B DNS snapshots. Note that (24) does not involve v̄, so the effect of
the closure model on the LES solution is not taken into account. We therefore call this a-priori
training [60]. This approach makes training fast, since only gradients of the neural network itself
are required for gradient descent.

Alternatively, one can minimize an a-posteriori loss function, that also depends on the LES
solution v̄. We use the trajectory loss

Lpost(u0, θ) =
1

nunroll

nunroll∑
i=1

∥v̄i − ūi∥2

∥ūi∥2
, (25)

where ūi = Φui is obtained by filtering the DNS solution, ui+1 = RK∆t(ui) is obtained using
one RK4 time step from section 2.4, u0 are random initial conditions, and the LES solution vi+1 =
RK∆t,M,m,θ(vi) is computed using the same time stepping scheme as ui+1 but with LES formulation
M, closure m, and parameters θ, starting from the exact initial conditions v̄0 = ū0.

The parameter nunroll determines how many time steps we unroll. If we choose nunroll = 1,
Lpost will be very similar to Lprior. If we choose a large nunroll, we predict long trajectories, and the
loss may be more sensitive to small changes in θ (“exploding” gradients). List et al. and Melchers
et al. argue that the number of unrolled time steps should depend on the characteristic time scale
(Lyapunov time scale) of the problem [41, 48]. For chaotic systems (including turbulent flows),
Lpost is expected to grow fast in time, and the number of unrolled time steps should be small. List
et al. found good results with nunroll ∈ [30, 60] for the incompressible Navier-Stokes equations in
2D [41]. For the chaotic Kuramoto-Sivashinsky equation in 1D, Melchers et al. found nunroll = 30
to give optimal long term results, with nunroll = 120 performing poorly [48].

The a-priori loss function is easy to evaluate and easy to differentiate with respect to θ, as it does
not involve solving the LES ODE given by the model M ∈ {MDIF,MDCF}. However, minimizing
Lprior does not take into account the effect of the prediction error on the LES solution error. The
a-posteriori loss does take into account this effect, but has a longer computational chain involving
the solution of the LES ODE [69, 44, 41, 40, 34]. This is illustrated in figure 6.

4.4. Choosing the model architecture

Traditionally, closure models are formulated in a continuous setting and they replace the un-
closed term ∇· (uu− ūū) by either structural or functional models [57]. In recent machine learning
approaches, discrete data are inherently used for training the closure model, and the loss function
can take into account both structural and functional elements [25]. In this work we use the common
approach of using a convolutional neural network for the closure model m [41] (see section 4.4.2),
and compare it to a traditional eddy-viscosity model (see section 4.4.1).

4.4.1. Eddy viscosity models

Eddy viscosity models are functional models that consist of adding an additional diffusive term

m(ū, θ) = ∇ · (2νtS̄) (26)

to the continuously filtered Navier-Stokes equations, where S̄ = 1
2

(
∇ū+∇ūT

)
is the large scale

strain rate tensor and νt is a turbulent viscosity (parameterized by θ). This term models transfer
of energy from large to unresolved scales. Note that ū(x, t) and m(ū(·, t), θ)(x) are here continuous
quantities that subsequently need to be discretized to ū(t) and m(ū(t), θ).
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Figure 6: Computational chain of loss functions. Solid lines are affected by changes in θ. Dotted lines are not
affected by θ, and can be precomputed before training. Left: A-priori loss function (24). The mean squared error L
is computed between the closure model m and the commutator error c. Right: A-posteriori loss function (25) (here
shown for five unrolled time steps). DNS initial conditions are sampled from the distribution U0, and filtered (Φ) to
produce LES initial conditions. After every time step, the LES solution is compared to the corresponding filtered
DNS solution using the mean squared error L. The parameters θ are used in each LES RK time step, but not in the
DNS time steps.

The Smagorinsky model [66, 38] predicts a local viscosity of the form

νt = θ2∆̄2
√
2 tr(S̄S̄), (27)

where ∆̄ is the filter width and θ ∈ [0, 1] is the only model parameter (the Smagorinsky coefficient).
In our experiments, this parameter is be fitted to filtered DNS data, similar to [61, 25]. The model
is discretized on the coarse grid, and ∆̄ is taken to be the LES grid size.

4.4.2. Convolutional neural networks (CNNs)

Convolutional neural networks (CNNs) are commonly used in closure models when dealing with
structured data [4, 61, 25, 41], and since we are dealing with a structured Cartesian grid, this will
be employed here as well. A convolutional node conv : (un)Nchan

n=1 7→ v in a CNN transforms Nchan

discrete input channel functions into one discrete output function in the following non-linear way:

vI = σ

b+
∑

J∈{−r,...,r}d

n∈{1,...,Nchan}

Kn
J u

n
I+J

 , (28)

where σ is a non-linear activation function, b ∈ R is a bias, K ∈ R(2r+1)d×Nchan is the kernel, and r
is the kernel radius.

In a convolutional node it is typically assumed that all the input channels are fields defined
in the same grid points. Our closure model, on the other hand, is defined on a staggered grid,
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with inputs and outputs in the velocity points, whose locations differ in the different Cartesian
directions, see figure 2. Our CNN closure model is therefore defined as follows:

mCNN = decollocate ◦

conv
...

conv

 ◦ · · · ◦

conv
...

conv

 ◦ collocate (29)

where the full vector of degrees of freedom ū contains d sub-vectors ūα used as input channels
to the CNN. The degrees of freedom in these sub-vectors belong to their own canonical velocity
points. We therefore introduce a so-called collocation function as an initialization layer to the CNN
in order to produce quantities that are all defined in the pressure points. The subsequent inner
layers map from pressure points to pressure points using kernels of odd diameters. Since the closure
term is required in the velocity points, a “decollocation” function is introduced in the last layer
to map back from pressure points to velocity points. Here, we use a linear interpolation for both
collocation and decollocation functions. It is also possible to use “divergence of a stress tensor”
as a decollocation function in order to mimic the structure of the continuous commutator error.
However, our commutator error also includes discretization effects, where this form may not be
relevant. It would also require more (de)collocation functions to produce the off-diagonal elements
of the tensors (which should be the volume corners in 2D and volume edges in 3D).

5. Numerical experiment: turbulence in a periodic box

We consider a unit square domain Ω = [0, 1]d with periodic boundaries. The DNS initial
conditions are sampled from a random velocity field defined through its prescribed energy spectrum
Êk. Similar to [49, 58, 46], we create an initial energy profile by multiplying a growing polynomial
with a decaying exponential as

Êk =
8π

3κ5
p

κ4e
−2π

(
κ
κp

)2

, (30)

where k ∈ Zd is the wavenumber, κ = ∥k∥, and κp is the peak wavenumber. The profile should grow
for κ < κp, and the decay should take over for κ > κp. For more details about the initialization
procedure, see Appendix D.2.

We perform all simulations in our open source package IncompressibleNavierStokes.jl, imple-
mented in the Julia programming language [11]. We use the KernelAbstractions.jl [16] framework
for implementing back-end agnostic differential operators, Lux.jl [51] for neural networks compo-
nents, Zygote.jl [30] for reverse mode automatic differentiation, and Makie.jl [17] for visualization.
All array operations for DNS, LES, and training are performed on a CUDA-compatible GPU, using
CUDA.jl [10, 9].

5.1. Filtered DNS (2D and 3D)

Before showing results of our new divergence-consistent LES models, we perform a-priori tests
to investigate some characteristics of the DNS and filtered DNS solutions. Note that “a-priori” here
is used in relation to the analysis of the results (namely before the LES model is employed), while
“a-priori” in section 4.3 was related to the training procedure.

We generate two DNS trajectories u(t) (one in 2D, one in 3D), starting from the initial conditions
defined above. The 2D simulation is performed with resolution N = (4096, 4096), and the 3D

15



simulation with N = (512, 512, 512). In 2D, we set κp = 20, Re = 104, and ∆t = 5 × 10−5. In
3D, we set κp = 5, Re = 2000, and ∆t = 10−4. Both simulations are run until tend = 0.1. All
array operations are performed on the GPU with double precision floating point numbers (to show
divergence freeness), which works fine for this study even though GPUs are not optimized for double
precision.

For the filter, we consider the face-averaging filter ΦFA and the volume-averaging filter ΦVA. For
the 2D setup, we use N̄ = (n̄, n̄) with n̄ ∈ {64, 128, 256}. For the 3D setup, we use N̄ = (n̄, n̄, n̄)
with n̄ ∈ {32, 64, 128}.

5.1.1. Energy spectra

Figure 7 shows the kinetic energy spectra at the final time for the 2D and 3D simulations. The
initial velocity field is smooth (containing only low wavenumbers), while the final DNS fields also
contain higher wavenumbers. The theoretical slopes of the inertial regions of k−3 in 2D and k−5/3

in 3D [54] are also shown (see section Appendix D.1). The inertial region is clearly visible in 2D,
but less so in 3D since the DNS-resolution is smaller. The effect of diffusion is visible for κ > 128 in
the 2D plot and for κ > 32 in the 3D plot, with an attenuation of the kinetic energy. The filtered
DNS spectra are also shown. A grid of size (n, . . . , n) can only fully resolve wavenumbers in the
range 0 ≤ κ ≤ n/2 − 1, which is visible in the sudden stops of the filtered spectra at (n̄/2 − 1)/a
(where a is the dyadic width). The face-averaging filter and the volume-averaging filter have very
similar energy profiles. Note that the filtered energy is slightly dampened even before the filter
cut-off wavelengths. Since both ΦFA and ΦVA are top-hat like, their transfer functions do not
perform sharp cut-offs in spectral space, but affect all wavenumbers [54, 8]. The face-averaging
filter is damping slightly less than the volume-averaging filter. This is because it averages over one
less dimension than the volume-averaging filter, leaving the dimension normal to the face intact.
This is more visible in the 3D plot, where the filter cut-off region is more magnified. Still, the
coarse-graining of the discrete filters creates a spectral cut-off effect that hides the damping of
the top-hat transfer functions. This is because the filter width is very close to the coarse-graining
spectral cut-off filter width.

5.1.2. Filtered fields

Figure 8 shows the discrete curl ∇ × φ of various 2D fields φ ∈ {u(0), u, ū, PF (u), P̄ F̄ (ū), c}
for the face-averaging filter with N̄ = 1282. We plot the curl since φ is a vector field. Each pixel
corresponds to a pressure volume, in which the curl is interpolated for visualization. The filtered
field ū in the top-right corner is clearly unable to represent all the sub-grid fluctuations seen in the
DNS field u, but the large eddies of u are still recognizable in ū. We stress again that the aim of
our neural closure models is to reproduce ū, without having knowledge of the DNS field u. This
will be shown in section 5.2.

Note in particular that the coarse grid right hand side P̄ F̄ (ū) contains small oscillations which
make the discrete curl look grainy. These are due to the under-resolved central-difference discretiza-
tion on the coarse grid, and are subsequently also present in the discrete commutator error c. The
closure model m thus has to predict the oscillations in c in order to correct for those in P̄ F̄ (ū), using
information from the smooth field ū only. If c was defined by filtering first and then discretizing, as
is commonly done in LES, these oscillations would not be part of c and other means of stabilization
would be needed to correct for the oscillations in P̄ F̄ (ū), such as explicit LES [43, 20, 7] (where
the filter is applied to the non-linear convective term in the LES right hand side). This problem
has also been addressed in literature; for example, Geurts et al. [24] and Beck and Kurz [6] argue
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Figure 7: Kinetic energy spectra of DNS and filtered DNS at final time. The spectrum Êκ is obtained by adding
the components Êk contained in the dyadic bins [κ/a, κa] with a = 1.6. The filters are both applied for 3 different
filter sizes n̄, visible in the three sudden stops at the cut-off wavenumbers n̄/2. Left: 2D simulation, with theoretical
scaling k−3. Right: 3D simulation, with theoretical scaling k−5/3.

that all commutator errors should be modeled, and Stoffer et al. [67] show that instabilities in the
high wavenumbers can occur if the discretization is not included in the commutator error.

Figure 9 shows the vortex cores of the 3D simulation at initial and final time. The vortex cores
are visualized as isocontours of λ2-criterion [31]. It is defined as negative regions of λ2(S

2 + T 2),
where λ2 denotes the second largest eigenvalue in absolute value of the 3 × 3-tensor, and S =
1
2 (∇u +∇uT) and T = 1

2 (∇u −∇uT) are the symmetric and anti-symmetric parts of the velocity
gradient tensor. With the prescribed initial low wavenumber energy spectrum, only large DNS
vortex structures are present at the initial time. They are clearly visible in the left plot. As
energy gets transferred to higher wavenumbers, smaller turbulent vortex structures are formed
(middle plot). The same DNS field still contains larger vortex structures, which become visible
after filtering (right plot).

5.1.3. Divergence, commutator errors, and kinetic energy

Table 2 shows the magnitude of various quantities derived from the two DNS trajectories. All
quantities q(u(t)) are averaged over time with a frequency of s = 20 time steps as follows:

⟨q⟩s =
1

nt/s+ 1

nt/s∑
i=0

q(u(tsi)). (31)

The considered quantities q(u) are: Normalized divergence ∥D̄ū∥
∥ū∥ , magnitude of non-divergence-free

part of filtered velocity field ∥ū−P̄ ū∥
∥ū∥ , magnitude of non-divergence-free part of commutator error

∥c−P̄ c∥
∥c∥ , magnitude of commutator error in the total filtered right hand side ∥c∥

∥P̄ F̄+c̄∥ , and resolved

kinetic energy
∥ū∥2

Ω̄

∥u∥2
Ω
. The norms are defined as ∥u∥ =

√∑d
α=1 ∥uα∥2 for vector fields such as u and

∥uα∥ =
√∑

I |uα
I |2 for scalar fields such as uα. Additionally, the norm ∥ · ∥Ω is weighted by the

volume sizes.
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Figure 8: A-priori results: Discrete curl −δ2φ1 + δ1φ2 of various 2D fields φ ∈ {u(0), u, ū, PF (u), P̄ F̄ (ū), c(u, ū)}.
The filter is face-averaging, N̄ = 1282.

Figure 9: Vortex cores visualized as 10 isocontours of negative regions of λ2(S2 +T 2), where λ2 denotes the second
largest eigenvalue, and S = 1

2
(∇u + ∇uT) and T = 1

2
(∇u − ∇uT) are the symmetric and anti-symmetric parts of

the velocity gradient. Left: DNS, initial time. Middle: DNS, final time. Right: Filtered DNS (face-averaging,
N̄ = 1283), final time.
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N Filter N̄ ∥D̄ū∥
∥ū∥

∥ū−P̄ ū∥
∥ū∥

∥c−P̄ c∥
∥c∥

∥c∥
∥P̄ F̄+c∥

∥ū∥2
Ω̄

∥u∥2
Ω

40962

FA 642 2.2× 10−14 2.1× 10−16 1.0× 10−13 0.58 0.91
FA 1282 3.2× 10−14 1.7× 10−16 1.7× 10−13 0.30 0.98
FA 2562 5.0× 10−14 1.5× 10−16 3.9× 10−13 0.13 0.99
VA 642 2.0 0.017 0.090 0.57 0.88
VA 1282 1.1 0.0055 0.078 0.30 0.97
VA 2562 0.54 0.0017 0.086 0.13 0.99

5123

FA 323 2.0× 10−14 2.6× 10−16 1.9× 10−14 0.54 0.86
FA 643 2.0× 10−14 1.4× 10−16 4.4× 10−14 0.36 0.95
FA 1283 2.1× 10−14 7.9× 10−17 1.3× 10−13 0.20 0.99
VA 323 1.4 0.020 0.11 0.52 0.83
VA 643 1.2 0.0093 0.14 0.35 0.94
VA 1283 0.88 0.0039 0.23 0.20 0.98

Table 2: Magnitude of various quantities derived from two DNS trajectories u(t) (one in 2D, one in 3D). All quantities
are averaged over time.

It is clear that both ū and c are divergence-free for the face-averaging filter, in both 2D and 3D.
For the volume-averaging filter on the other hand, ū and c̄ are not divergence-free. At N̄ = 642,
the orthogonal projected part ū − P̄ ū comprises about 1.7% of ū. This is more visible for the
commutator error, for which the orthogonal part is 9% of the total commutator error. When the
grid is refined to N̄ = 2562 however, the non-divergence-free parts of ū and c shrink to 0.17% and
8.6% since the flow is more resolved. For N̄ = 323, the non-divergence free parts of ū and c are
2.3% and 11% respectively. While the one of ū shrinks to 0.39% for N̄ = 1283, the one of c increases
to 23% since c itself becomes smaller. Note that the volume-averaging filter width was chosen to
be equal to the grid spacing, but these divergence errors would be larger if we increased the filter
width.

For both 2D and 3D, and both filters types, the commutator error becomes smaller when the
grid is refined, which is expected since more scales are resolved. The commutator error magnitude
does not seem to depend much on whether we use face-averaging or volume-averaging, since they
both have the same characteristic filter width. For N̄ = 642 and N̄ = 323, more than half of the
total right hand side is due to the commutator error, even though 91% and 86% of the kinetic
energy is resolved by ū. For these resolutions, it is very important to have a good closure model.
For N̄ = 2562, the filtered DNS right hand side is much closer to the corresponding coarse unfiltered
DNS right hand side, with c comprising 13% of the total right hand side P̄ F̄ + c. A closure model
is still clearly needed, even though 99% of the energy being resolved by ū. Bae et al. [2] also found
the discretization part of the commutator errors to be quite significant, in particular near walls
(which we do not consider in this study).

In summary, the DNS and filtered DNS results confirm the theoretical analysis in section 3.3.
The volume-averaging filter lacks divergence-consistency of the solution and the closure term. The
magnitude of the closure term is similar for both filters. The benefits of divergence-consistency will
be demonstrated in the a-posteriori analysis in the subsequent section.
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Figure 10: A-priori errors 1
nu

∑
u

∥m−c∥
∥c∥ for the testing dataset. Left: Face-averaging filter. Right: Volume-

averaging filter.

5.2. LES (2D)

Next, we turn to the results for the key challenge set out in this paper: testing our neural
closure models in an LES setting, with divergence-consistent filters, aiming to approximate the
trajectory ū(t) given ū(0). We now only consider the 2D problem to reduce the computational
time, since the same network is trained repeatedly in multiple configurations. The DNS resolution
is set to N = (4096, 4096). The Reynolds number is Re = 104. The initial peak wavenumber
is κp = 20. We use single precision floating point numbers for all computations, including DNS
trajectory generation, to reduce memory usage and increase speed. Details about the datasets are
found in Appendix D.3.

For the closure model m, we consider three options:

1. No closure model, m0 = 0. This is the baseline model.

2. Smagorinsky closure model, mS.

3. Convolutional neural closure model, mCNN. The architecture is shown in Appendix D.4.

See Appendix D.5 for details about the training.

5.2.1. A-priori errors

Figure 10 shows the average relative a-priori errors 1
nu

∑
u

∥m−c∥
∥c∥ for the testing dataset and the

three CNN parameters θprior, θpostDIF , and θpostDCF. For the no-closure model m0, the a-priori error is
always ∥0− c∥/∥c∥ = 1. For both FA and VA and for all grid sizes, the a-priori trained parameters
θprior perform the best. This is expected, since the a-priori loss function used to obtain θprior is
similar to the a-priori error.

5.2.2. A-posteriori errors

The relative a-posteriori error 1
nt

∑nt

i=1 ∥v̄i − ūi∥/∥ūi∥ is computed for the trajectory in the
testing dataset. A CNN parameter set θ is only used for testing on the same coarse grid and same
filter type that it was trained for. Figure 11 shows the average error over time.
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Figure 11: A-posteriori errors 1
nt

∑nt
i=1 ∥v̄i − ūi∥/∥ūi∥ for the testing dataset. The CNN is trained separately

for each resolution and each filter type with Lprior (green squares) and Lprior-then-Lpost (yellow diamonds). Solid
lines: Face-averaging (ΦFA). Dashed lines: Volume-averaging (ΦVA). Left: General model MDIF. Right:
Divergence-consistent model MDCF.

For MDCF (right), the no-closure and the Smagorinsky closure have similar errors, with mS

performing slightly better for low LES-resolutions. The CNN is clearly outperforming the other
two closures. The errors for the face-average and volume-average filters are indistinguishable, except
for θprior at n̄ = 256. The accuracy of the CNN increases when using the parameters obtained from
a-posteriori training. Note that this training is done starting from the best performing a-priori
trained parameters.

For MDIF (left), the no-closure and the Smagorinsky closure have similar profiles as for MDCF.
For the no-closure, the two LES formulations are actually identical. For FA at n̄ = 256, and at
all resolutions for VA, mCNN(·, θprior) is showing signs of instability and is performing worse than
m0. The a-posteriori training does however seem to have corrected for these errors. The closure
mCNN(·, θpostDIF ) is performing better than m0 and mS. In addition, FA produces visibly lower errors
than VA for both training procedures.

5.2.3. Stability

To further investigate the stability, we compute the evolution of the total kinetic energy as a
function of time. This is shown in figure 12. In terms of total energy, the no-closure solution
is dissipating more energy than the reference solution. The Smagorinsky closure is even more
dissipative, which is well known for the standard Smagorinsky model. For MDCF, the CNN has
a similar profile as the reference. For MDIF, the high CNN errors from figure 11 are confirmed
by the rapid growth of the total kinetic energy. Similar growth in energy of unconstrained neural
closure models after a period of seemingly good overlap with the reference energy has been observed
by Beck and Kurz [4, 35], although in a different configuration. Training with Lpost improves the
stability, and the energy stays close to the reference for a longer period. This was not sufficient to
stabilize MDIF, however, and the energy eventually starts increasing.

The growth in kinetic energy and resulting lack of stability for the divergence-inconsistent model
can be explained by the energy-conservation properties of our spatial discretization. The convective

21



t
0.00 0.05 0.10

E
(t

)

1.2

1.3

1.4

1.5

1.6

1.7

1.8
Kinetic energy: DIF, FA

Reference

No closure

Smagorinsky

CNN (prior)

CNN (post)

t
0.00 0.05 0.10

E
(t

)

1.1

1.2

1.3

1.4

1.5

Kinetic energy: DCF, FA

Reference

No closure

Smagorinsky

CNN (prior)

CNN (post)

t
0.00 0.05 0.10

E
(t

)

1.2

1.4

1.6

1.8

2.0

Kinetic energy: DIF, VA

Reference

No closure

Smagorinsky

CNN (prior)

CNN (post)

t
0.00 0.05 0.10

E
(t

)

1.1

1.2

1.3

1.4

1.5
Kinetic energy: DCF, VA

Reference

No closure

Smagorinsky

CNN (prior)

CNN (post)

Figure 12: Total kinetic energy evolution for n̄ = 128. Left: Unprojected closure model MDIF. Right: Constrained
model MDCF. Top: Face-averaging filter. Bottom: Volume-averaging filter.

terms are discretized with a second order central scheme (in so-called divergence form), which can
be shown to be equivalent to a skew-symmetric, energy-conserving form provided that the velocity
field is divergence-free [71]. If the velocity field is not divergence-free, there is no guarantee that
the convective terms are energy-conserving, which can lead to growth in kinetic energy and loss of
stability.

5.2.4. Energy spectra

The energy spectra at the final time are shown in figure 13. The no-closure model spectrum is
generally close to the reference spectrum, but contains too much energy in the high wavenumbers.
This is likely due to the oscillations discussed in the previous sections. The Smagorinsky closure is
correcting for this (as intended), but is also dissipating too much energy overall. For MDCF, the
a-posteriori trained CNN spectrum is visually very close to the reference spectrum. For MDIF, all
the closure models produce too much energy in the high wave numbers. This is also the case for
the Smagorinsky model, although it is even more so for the CNN. Training with Lpost seems to
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Figure 13: Energy spectra at final time for n̄ = 128. Left: General model MDIF. Right: Divergence-consistent
model MDCF. Top: Face-averaging filter. Bottom: Volume-averaging filter.

improve this somewhat.

5.2.5. LES solution fields

The curl of the LES solutions (LES vorticity) at the final time is shown in figure 14. The
reference solution ū has a smooth vorticity field for all resolutions, since the low-pass filtering
operation removes high wavenumber components. The no-closure model solution, on the other
hand, shows sharp oscillations. Only the initial conditions are smooth, since v̄(0) = ū(0). As
the solution evolves in time, the central difference scheme used in the right hand side P̄ F̄ is too
coarse for the given Reynolds numbers, and produces well known oscillations [62]. For the highest
resolution n̄ = 256, these oscillations go away, and v̄ starts visually resembling ū.

Adding an MDCF constrained CNN closure term trained using Lpost
DCF seems to correct for the

oscillations of the no-closure model, and we recover the smooth fields with recognizable features
from the reference solution (compare ū and v̄ inside the red square). We are effectively doing large
eddy simulation, as large eddies are visually found in the right positions after simulation. However,
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Figure 14: Vorticity of filtered DNS solution ū (right) and LES solutions v̄ computed using no closure (first column),
MDIF (second column), and MDCF (third column) at final time for testing trajectory for n̄ = 64 (top), n̄ = 128
(middle), and n̄ = 256 (bottom).
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Figure 15: Divergence evolution for n̄ = 128. Top: Face-averaging filter. Bottom: Volume-averaging filter. Left:
Unprojected LES model MDIF. Right: Constrained LES model MDCF.

if we remove the projection and use the MDIF CNN closure model, the solution becomes unstable,
even after accounting for this by training with Lpost

DIF . This confirms the observations from figure
11.

We stress again that the CNN closure model is accounting for the total commutator error
resulting from the discrete filtering procedure. This commutator error includes the coarse grid
discretization error, and also the oscillations produced by the central difference scheme.

5.2.6. Divergence

Figure 15 shows the evolution of the average divergence
√

1
N̄

∑
I(D̄v̄)2I for the two LES models

MDIF and MDCF.
For the face-averaging filter, the filtered DNS divergence (reference) is of the order of 10−5 due

to the single precision arithmetic. For MDIF, all closure models produce a divergence increasing in
time. This is likely due to the instability observed in the previous figures. For MDCF, all closure
models produce divergences at the same order of magnitude as the reference, since the solution is
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ū Filter n̄ Lprior Lpost
DIF Lpost

DCF

1501.1

FA 64 125.0 1281.9 1281.7
FA 128 283.7 1256.8 1256.3
FA 256 1026.0 1774.3 1760.6
VA 64 95.3 1281.2 1281.9
VA 128 282.2 1255.2 1256.9
VA 256 1026.2 1774.4 1760.3

Table 3: Computational time (in seconds) for DNS and filtering of training, validation, and testing data (ū), a-priori
training for 10000 iterations (Lprior), and a-posteriori training for 2000 iterations (Lpost).

projected at every time step.
For the volume-averaging filter, the filtered DNS divergence (reference) is of the order of 1,

since ΦVA does not preserve the divergence constraint. For MDIF, all closure models produce an
increasing divergence, just like for ΦFA. For MDCF, all closure models produce divergence free
solutions, even though the reference solution is actually not divergence-free.

5.2.7. Computational cost

The computational time for generating filtered DNS data and training the neural networks is
shown in table 3. Only one DNS is necessary for all filter combinations. The two models MDIF

and MDCF bot produce similar timings, as exactly the same number of operations are performed
(but in a different order). The similar times for Lpost at n̄ = 64 and n̄ = 128 are likely due to
the fact that the same number of time steps are unrolled for all LES resolutions, resulting in an
equal number of GPU kernel calls. Since 642 and 1282 are both relatively small, the kernels for the
differential operators (convection, Poisson solves, etc.) do not show any improvement for the lower
resolution. This does not seem to be the case for the Lprior training however, where most of the
kernel calls are to the highly optimized convolutional operators in CUDNN [14].

The benefit of a-posteriori training is clear in situations where the a-priori trained model is
unstable (in our case: MDIF), but for a-priori trained models that are stable and accurate (such
as MDCF), one could ask whether the additional cost of a-posteriori training is worth it. We think
the additional accuracy is useful, since the learned weights can be reused without having to retrain
the model, as long as the same configuration is used (grid size, Reynolds number etc.).

6. Conclusion

The use of neural networks for LES closure models is a promising approach. Neural networks
are discrete by nature, and thus require consistent discrete training data. To achieve model-data
consistency, we propose the paradigm “discretize, differentiate constraint, filter, and close” (in that
particular order). This ensures full model-data consistency and circumvents pressure problems.
We do not need to define a pressure filter, only a velocity filter is needed. Our framework allows
for training the neural closure model using a-priori loss functions, where the model is trained to
predict the target commutator error directly, or using a-posteriori loss functions, where the model
is trained to approximate the target filtered DNS-solution trajectory.

To ensure that the filtered DNS velocity stays divergence-free, we introduced a novel divergence-
consistent discrete filter using face-averaging. This allows for using a divergence-constrained LES
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model similar to those commonly used in LES, but with the important difference that the training
data obtained through discrete DNS is fully consistent with the LES environment. This resulted
in our new divergence-consistent LES model, which was found to be stable with both a-priori and
a-posteriori training. A-posteriori training is more expensive than a-priori training, but still has
the advantage of increased accuracy.

Our divergence-consistent filter stands out from commonly used (volume-averaging) discrete
filters, for which the filtered DNS solution is generally not divergence-free. We showed that the
resulting LES model can produce instabilities. A-posteriori trained models were found to improve
the stability over a-priori trained models, but this was not sufficient to fully stabilize the model in
our experiment. With our face-averaging filter, such instability issues did not occur.

Another important property of our approach is that the (coarse grid) discretization error is
included in the training data and learned by the neural network. Turbulence simulations with DNS
and LES rely on non-dissipative discretization methods, such as the second order central difference
discretization we used in this work, but they produce oscillations and instabilities on coarse grids.
This could limit their use in LES, where using coarse grids is one of the main goals. Various
smoothing methods, such as explicit LES or (overly) diffusive closure models are commonly used to
address this issue. We let the closure model learn to account for the oscillations. The fact that the
coarse grid discretization effects (and thus the oscillations) are included in the training data allows
the neural network to recognize and correct for these oscillations, even when training with a-priori
loss functions.

We realize that the choice of a divergence-consistent face-averaging filter imposes some con-
straints on the filter choice. The weights have to be uniform (top-hat filter like) to ensure that
all the sub-filter velocities cancel out, and the extension to other filters like Gaussians is an open
problem. In addition, we took the filter width to be equal to the grid spacing. The face-average
filter naturally extends to unstructured grids, as shown in figure 2. However, this requires that the
DNS grid perfectly overlaps with the faces of the LES grid. This can be achieved by designing the
DNS and LES grids at the same time. Lastly, our proposed filter is only divergence-consistent with
respect to the second-order central difference divergence operator on a staggered grid. We intend to
explore the use of filters that are divergence-consistent with respect to higher-order discretization
methods (such as the discontinuous Galerkin element method) and non-staggered grids.

Future work will include the use of non-uniform grids with solid walls boundary conditions. This
modification will require a change in the neural network architecture, but not in the face-averaging
filtering procedure itself. The CNN architecture assumes that the grid is uniform, but weighting
the kernel stencil with non-uniform volume sizes could be a way to design a discretization-informed
neural network. We intend to exploit the fact that discrete DNS boundary conditions naturally
extend to the LES model for the face-average filter. We also intend to incorporate other constraints
into the LES model, such as conservation of quantities of interest, in particular kinetic energy
conservation, as studied in [70].

Software and reproducibility statement

The Julia scripts and source code used to generate all the results are available at
https://github.com/agdestein/IncompressibleNavierStokes.jl.
It is released under the MIT license. Most simulations were run on an Nvidia RTX 4090 GPU. The
3D simulation from section 5.1 was run on an Nvidia A100 GPU (with 40 gigabytes of memory),
as the double precision floating point numbers required additional memory.
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To produce the results of this article, pseudo-random numbers were used for

• data generation (DNS initial conditions for training, validation, and testing data);

• neural network parameter initialization;

• batch selection during stochastic gradient descent.

The scripts include the seeding numbers used to initialize the pseudo-random number generators.
Given a seeded pseudo-random generator, the code is deterministic and the results are reproducible.
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Appendix A. Finite volume discretization

In this work, the integral form of the Navier-Stokes equations is considered, which is used as
starting point to develop a spatial discretization:

1

|O|

∫
∂O

u · n dΓ = 0, (A.1)

d

dt

1

|O|

∫
O
udΩ =

1

|O|

∫
∂O

(
−uuT − pI + ν∇u

)
· ndΓ +

1

|O|

∫
O
fdΩ, (A.2)

where O ⊂ Ω is an arbitrary control volume with boundary ∂O, normal n, surface element dΓ, and
volume size |O|. We have divided by the control volume sizes in the integral form, so that system
(A.1)-(A.2) has the same dimensions as the system (1)-(2).
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Appendix A.1. Staggered grid configuration

In this section we describe a finite volume discretization of equations (A.1)-(A.2). Before doing
so, we introduce our notation, which is such that the mathematical description of the discretization
closely matches the software implementation.

The d spatial dimensions are indexed by α ∈ {1, . . . , d}. The α-th unit vector is denoted
2hα = (2hαβ)

d
β=1, where the (half) Kronecker symbol hαβ is 1/2 if α = β and 0 otherwise. The

Cartesian index I = (I1, . . . , Id) is used to avoid repeating terms and equations d times, where Iα
is a scalar index (typically one of i, j, and k in common notation). This notation is dimension-
agnostic, since we can write uI instead of uij in 2D or uijk in 3D. In our Julia implementation of
the solver we use the same Cartesian notation (u[I] instead of u[i, j] or u[i, j, k]).

For the discretization scheme, we use a staggered Cartesian grid as proposed by Harlow and
Welch [28]. Staggered grids have excellent conservation properties [39, 53], and in particular
their exact divergence-freeness is important for this work. Consider a rectangular domain Ω =∏d

α=1[aα, bα], where aα < bα are the domain boundaries and
∏

is a Cartesian product. Let

Ω =
⋃

I∈I ΩI be a partitioning of Ω, where I =
∏d

α=1{
1
2 , 2 − 1

2 , . . . , Nα − 1
2} are volume center

indices, N = (N1, . . . , Nd) ∈ Nd are the number of volumes in each dimension, ΩI =
∏d

α=1 ∆
α
Iα

is a finite volume, Γα
I = ΩI−hα

∩ ΩI+hα
=

∏
β ̸=α ∆β

Iβ
is a volume face, ∆α

i =
[
xα
i− 1

2

, xα
i+ 1

2

]
is

a volume edge, xα
0 , . . . , x

α
Nα

are volume boundary coordinates, and xα
i = 1

2

(
xα
i− 1

2

+ xα
i+ 1

2

)
for

i ∈ {1/2, . . . , Nα − 1/2} are volume center coordinates. We also define the operator δα which maps
a discrete scalar field φ = (φI)I to

(δαφ)I =
φI+hα − φI−hα

|∆α
Iα
|

. (A.3)

It can be interpreted as a discrete equivalent of the continuous operator ∂
∂xα . All the above defini-

tions are extended to be valid in volume centers I ∈ I, volume faces I ∈ I + hα, or volume corners
I ∈ I +

∑d
α=1 hα. The discretization is illustrated in figure A.16.

Appendix A.2. Equations for unknowns

We now define the unknown degrees of freedom. The average pressure in ΩI , I ∈ I is approxi-
mated by the quantity pI(t). The average α-velocity on the face Γα

I , I ∈ I+hα is approximated by
the quantity uα

I (t). Note how the pressure p and the d velocity fields uα are each defined in their
own canonical positions xI and xI+hα for I ∈ I. This is illustrated for a given volume I in figure
A.16. In the following, we derive equations for these unknowns.

Using the pressure control volume O = ΩI with I ∈ I in the integral constraint (A.1) and
approximating the face integrals with the mid-point quadrature rule

∫
ΓI

udΓ ≈ |ΓI |uI results in
the discrete divergence-free constraint

d∑
α=1

(δαu
α)I = 0. (A.4)

Note how dividing by the volume size results in a discrete equation resembling the continuous one
(since |ΩI | = |Γα

I ||∆α
Iα
|).

Similarly, choosing an α-velocity control volume O = ΩI with I ∈ I + hα in equation (A.2),
approximating the volume- and face integrals using the mid-point quadrature rule, and replacing

29



∆1
I1

∆2
J2

ΩJ

Ω

I2

J1

I2 +
1
2

I2 − 1
2

J1 +
1
2J1 − 1

2 x1

x2

pI

ΩI

u1
I+h1

u2
I+h2

Figure A.16: Finite volume discretization on a staggered grid. Note that the grid can be non-uniform, as long as
each volume in a given column has the same width and each volume in a given row has the same height. Here, I
and J are two arbitrary Cartesian indices, with I ∈ I in a volume center and J ∈ I + h1 + h2 in a volume corner for
illustrative purposes.

remaining spatial derivatives in the diffusive term with a finite difference approximation gives the
discrete momentum equations

d

dt
uα
I = −

d∑
β=1

(δβ(u
αuβ))I + ν

d∑
β=1

(δβδβu
α)I + fα(xI)− (δαp)I . (A.5)

where we made the assumption that f is constant in time for simplicity. The outer discrete derivative
in (δβδβu

α)I is required at the position I, which means that the inner derivative is evaluated as
(δβu

α)I+hβ
and (δβu

α)I−hβ
, thus requiring uα

I−2hβ
, uα

I , and uα
I+2hβ

, which are all in their canonical

positions. The two velocity components in the convective term uαuβ are required at the positions
I − hβ and I + hβ , which are outside the canonical positions. Their value at the required position
is obtained using averaging with weights 1/2 for the α-component and with linear interpolation for
the β-component. This preserves the skew-symmetry of the convection operator, such that energy
is conserved (in the convective term) [71].

Appendix B. Divergence-free filter

In this appendix we give the proof that the face-averaging filter is divergence-free. The proof is
a natural consequence of the continuous divergence-theorem.

Appendix B.1. Simple example

Consider a uniform 2D-grid with 3× 3 fine volumes in each coarse volume. The divergence-free
constraint for a volume Ωi,j of the fine grid reads:

(Du)i,j = (δ1u
1)i,j + (δ2u

2)i,j = 0, (B.1)
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where

(δ1u
1)i,j =

u1
i+ 1

2 ,j
− u1

i− 1
2 ,j

∆1
and (δ2u

2)i,j =
u2
i,j+ 1

2

− u2
i,j− 1

2

∆2
. (B.2)

Let (a, b) and (i, j) be coarse-grid and fine-grid indices such that Ωi,j is in the center of Ω̄a,b. The
four face-averaged velocities at the boundary of Ω̄a,b are

ū1
a+ 1

2 ,b
= 1

3u
1
i+ 3

2 ,j−1 +
1
3u

1
i+ 3

2 ,j
+ 1

3u
1
i+ 3

2 ,j+1

ū1
a− 1

2 ,b
= 1

3u
1
i− 3

2 ,j−1 +
1
3u

1
i− 3

2 ,j
+ 1

3u
1
i− 3

2 ,j+1

ū2
a,b+ 1

2
= 1

3u
2
i−1,j+ 3

2
+ 1

3u
2
i,j+ 3

2
+ 1

3u
2
i+1,j+ 3

2

ū2
a,b− 1

2
= 1

3u
2
i−1,j− 3

2
+ 1

3u
2
i,j− 3

2
+ 1

3u
2
i+1,j− 3

2
.

(B.3)

The coarse-grid divergence reads

(D̄ū)a,b = (δ̄1ū
1)a,b + (δ̄2ū

2)a,b. (B.4)

For the first term, we get

(δ̄1ū
1)a,b =

ū1
a+ 1

2 ,b
− ū1

a− 1
2 ,b

∆̄1

= 1
3

u1
i+ 3

2 ,j−1
− u1

i− 3
2 ,j−1

3∆1
+ 1

3

u1
i+ 3

2 ,j
− u1

i− 3
2 ,j

3∆1
+ 1

3

u1
i+ 3

2 ,j+1
− u1

i− 3
2 ,j+1

3∆1

=
1

9∆1

(
u1
i+ 3

2 ,j−1 − (u1
i+ 1

2 ,j−1 − u1
i+ 1

2 ,j−1)− (u1
i− 1

2 ,j−1 − u1
i− 1

2 ,j−1)− u1
i− 3

2 ,j−1

)
+

1

9∆1

(
u1
i+ 3

2 ,j
− (u1

i+ 1
2 ,j

− u1
i+ 1

2 ,j
)− (u1

i− 1
2 ,j

− u1
i− 1

2 ,j
)− u1

i− 3
2 ,j

)
+

1

9∆1

(
u1
i+ 3

2 ,j+1 − (u1
i+ 1

2 ,j+1 − u1
i+ 1

2 ,j+1)− (u1
i− 1

2 ,j+1 − u1
i− 1

2 ,j+1)− u1
i− 3

2 ,j+1

)
=

1

9

(
(δ1u

1)i+1,j−1 + (δ1u
1)i,j−1 + (δ1u

1)i−1,j−1

+ (δ1u
1)i+1,j + (δ1u

1)i,j + (δ1u
1)i−1,j

+ (δ1u
1)i+1,j+1 + (δ1u

1)i,j+1 + (δ1u
1)i−1,j+1

)
.

(B.5)

With a similar derivation for δ̄2ū
2, we get the following expression for the coarse grid divergence:

(D̄ū)a,b =
1

9

(
(Du)i−1,j−1 + (Du)i,j−1 + (Du)i+1,j−1

+ (Du)i−1,j + (Du)i,j + (Du)i+1,j

+ (Du)i−1,j+1 + (Du)i,j+1 + (Du)i+1,j+1

)
= 0.

(B.6)

The filtered velocity field is indeed divergence-free.
It is also interesting to point out that D̄ū can be seen as a volume average of Du, i.e. D̄ū = ΨDu,

or D̄Φ = ΨD, for a certain pressure filter Ψ built with uniform 3 × 3-stencils of weights 1/9. In
other words: the face-averaging velocity filter goes hand in hand with a volume-averaging pressure
filter.
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Appendix B.2. Proof for the general case

A similar proof can be shown for a general non-uniform grid in 2D or 3D. Consider a coarse grid
index J . The fine grid volumes ΩI contained inside Ω̄J are indexed by I ∈ KJ = {I | ΩI ⊂ Ω̄J}.
The face-averaging filter is defined by

ūα
J =

∑
I∈Fα

J

ραJ,Iu
α
I , (B.7)

where Fα
J = {I | Γα

I ∈ Γ̄α
J} contains the face-indices and ραJ,I are weights to be determined. We

assume that ραJ,I is independent of Iα and Jα. The fine grid divergence is given by

(Du)I =

d∑
α=1

(δαu
α)I =

d∑
α=1

uα
I+hα

− uα
I−hα

|∆α
Iα
|

= 0. (B.8)

The coarse grid divergence is given by

(D̄ū)J =

d∑
α=1

(δ̄αū
α)J

=

d∑
α=1

ūα
J+hα

− ūα
J−hα

|∆̄α
Jα
|

=

d∑
α=1

1

|∆̄α
Jα
|

 ∑
I∈Fα

J+hα

ραJ,Iu
α
I −

∑
I∈Fα

J−hα

ραJ,Iu
α
I

 by definition of ūα
J

=

d∑
α=1

1

|∆̄α
Jα
|
∑
I∈KJ

(
ραJ,I+hα

uα
J,I+hα

− ραJ,I−hα
uα
J,I−hα

)
telescoping sum over Iα

=

d∑
α=1

1

|∆̄α
Jα
|
∑
I∈KJ

ραJ,I
(
uα
I+hα

− uα
I−hα

)
since ραJ,I is independent of Iα

=
∑
I∈KJ

|ΩI |
|Ω̄J |

d∑
α=1

|Γ̄α
J |

|Γα
I |
ραJ,I

uα
I+hα

− uα
I−hα

|∆α
Iα
|

rewrite terms with |ΩI | = |Γα
I ||∆α

I | ∀α

=
∑
I∈KJ

|ΩI |
|Ω̄J |

(Du)I if we choose ραJ,I = |Γα
I |/|Γ̄α

J |

= 0.

(B.9)

The chosen ραJ,I is indeed independent of Iα and Jα. We also get the property
∑

I∈Fα
J
ραJ,I = 1, so

constant fine grid velocities are preserved upon filtering. In other words, choosing ūα
J as a weighted

average of the DNS-velocities passing through the coarse volume face Γ̄α
J gives a divergence-free

ū. Note that the divergence constraint only holds for the face-size weights chosen above. Using
arbitrary weights such as Gaussian weights would not work.

We also observe that for the general case, just like for the simple case in Appendix B.1, we can
write D̄Φ = ΨD for a certain pressure filter Ψ. It is defined by

(Ψp)J =
∑
I∈KJ

|ΩI |
|Ω̄J |

pI (B.10)
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for all fields p defined in the pressure points. If we consider the 3× 3 compression from Appendix
B.1, with J = (a, b), we effectively get Ka,b = {i− 1, i, i+1}× {j − 1, j, j +1} and |ΩI |/|Ω̄J | = 1/9
for all I ∈ KJ .

Appendix C. Discretize-then-filter (without differentiating the constraint)

In this appendix we show a problem that arises when discretely filtering the differential-algebraic
system (3)-(4), instead of filtering the “pressure-free” equation (7). Since the discrete DNS system
(3)-(4) includes a divergence term and pressure term, we need to define a pressure-filter Ψ (in
addition to the velocity filter Φ), such that p̄ = Ψp. This results in the following set of equations:

ΨDu = 0, (C.1)

dū

dt
= ΦF (u)− ΦGp. (C.2)

These can be rewritten as follows:

D̄ū = cD(u, ū), (C.3)

dū

dt
= F̄ (ū) + c̃(u, ū)− Ḡp̄+ cP (p, p̄). (C.4)

Here cD(u, ū) := (D̄Φ − ΨD)u represents the commutator error between the discrete divergence
operator and filtering, c̃(u, ū) := (ΦF (u) − F̄ (ū)) represents the commutator error arising from
filtering F (u) (note that it is different from the one used in equation (12)), and the commutator error
for the pressure cP (p, p̄) = (ḠΨ−ΦG)p. In case of a face-averaging filter, one has cD = 0, which is
the constraint that needs to be enforced by the filtered pressure, when moving to the LES equations.
However, in the above formulation an additional commutator error for the pressure appears, which is
unwanted and it is unclear how it should be modelled. In the discretize-differentiate-filter approach,
this issue with the pressure is circumvented.

Appendix D. Experiment details

Appendix D.1. Energy spectra

For our discretization, we define the energy at a wavenumber k as Êk = 1
2∥ûk∥2, where ûα =

DFT(uα) is the discrete Fourier transform of u. Since k ∈ Zd, it is not immediately clear how to
compute a discrete equivalent of the scalar energy spectrum as a function of ∥k∥. We proceed as
follows. The energy at a scalar level κ > 0 is defined as the sum over all energy components of the
dyadic bin Kκ = {k | κ/a ≤ ∥k∥ ≤ κa} as

Êκ =
∑
k∈Kκ

Êk. (D.1)

The parameter a > 1 determines the width of the interval. Lumley argues to use the golden ratio
a = (1 +

√
5)/2 ≈ 1.6 [22]. Note that there is no averaging factor in front of the sum (D.1), even

though the number of wavenumbers in the set increases with κ.
For homogeneous decaying isotropic turbulence, the spectrum should behave as follows. In the

inertial region, for large Reynolds numbers, the theoretical decay of Ê should be Êκ = O(κ−3) in 2D
and O(κ−5/3) in 3D [54]. For the lowest wavenumbers, we should have Êκ = O(κ4) or Êκ = O(κ2).
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It is also common to use a linear bin such as Kκ = {k |κ − 1
2 ≤ ∥k∥ < κ + 1

2} [49, 58, 46].
However, this leads to a different power law scaling in the inertial range than the well known κ−3

and κ−5/3.

Appendix D.2. Initial conditions

To generate initial conditions in a periodic box, we consider a prescribed energy spectrum Êk.
We want to create an initial velocity field u with the following properties:

• The Fourier transform of u, noted û, should be such that 1
2∥ûk∥2 = Êk for all k.

• u should be divergence-free with respect to our discretization: Du = 0.

• u should be parameterized by controllable random numbers, such that a wide variety of initial
conditions can be generated.

These properties are achieved by sampling a velocity field in spectral space, projecting (mak-
ing it divergence-free), transforming to physical space, and projecting again. In detail, let ak =√

2Êke
2πiτk , where τk =

∑d
α=1 ξ

α
k is phase shift, ξαk ∼ U [0, 1] is a random uniform number if

kβ ≥ 0 for all β. If kβ < 0 for any β, we add the symmetry constraint ξαk = sign(kα)ξ
α
|k| where

|k| = (|kβ |)dβ=1. Then ∥ûk∥ = |ak|, and ak has a random phase shift. We then multiply the
scalar ak with a random unit vector ek projected onto the divergence-free spectral grid as fol-

lows: ûα
k = akP̂ke

α
k/∥P̂ke

α
k∥, where P̂k = I − kkT

kTk
∈ Cd×d is a projector for each k ensuring that

2πikTûk = 0 for all k (which is the equivalent of ∇·u = 0 in spectral space) [54]. The normalization
with respect to ∥P̂ke

α
k∥ ensures that no energy is lost in the projection step. In 2D, we choose a

random vector on the unit circle ek = (cos(θk), sin(θk)) with θk ∼ U [0, 2π]. In 3D, we choose a
random vector on the unit sphere ek = (sin(θk) cos(ϕk), sin(θk) sin(ϕk), cos(θk)) with θk ∼ U [0, π]
and ϕk ∼ U [0, 2π]. Finally, we obtain the velocity field u by taking the inverse discrete Fourier
transform, and also projecting it again since divergence-freeness on the “spectral grid” and on the
staggered grid are slightly different. This gives the random initial field

u = P DFT−1(û). (D.2)

Note that the second projection may result in a slight loss of energy, but since u is already
divergence-free on the spectral grid, the loss should be non-significant.

Appendix D.3. Data generation

We create three filtered datasets. Their parameters are shown in table D.4. For every random
initial flow field u(0), we let the DNS run for a burn-in time tburn = 0.05 to initialize the flow
beyond the artificial initial spectrum (30). We then start saving ū and c every time step until tend.

Appendix D.4. CNN architecture

The CNN architecture is shown in table D.5. We use periodic padding. For the last convolutional
layer, we use no activation and no bias, in order not to limit the expressiveness of m. For the inner
layers, we use bias and the tanh activation function.

The choice of channel sizes is chosen solely to have sufficient expressive capacity in the closure
model. The kernel radius on the other hand, is chosen to be small (r = 2, diameter 5) to ensure
that the closure model uses local information. In addition, the resulting small stencils that are
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Dataset Trajectories {n̄} Time steps Trajectory length

Train 5 {64, 128, 256} 1000 0.5
Valid 1 {64, 128, 256} 500 0.5
Test 1 {64, 128, 256} 400 0.1

Table D.4: Parameters for the LES study. The LES resolution is N̄ = (n̄, n̄).

Layer Radius Channels Activation Bias Parameters

Interpolateu→p

Conv 2 2 → 24 tanh Yes 1224
Conv 2 24 → 24 tanh Yes 14424
Conv 2 24 → 24 tanh Yes 14424
Conv 2 24 → 24 tanh Yes 14424
Conv 2 24 → 2 x 7→ x No 1200
Interpolatep→u

45696

Table D.5: CNN architecture, with ϵ = 1/100. The total radius is 8, which means that the component m(ū, θ)I
depends on the components ūI+J for J ∈ [−8, 8]2. In comparison, the diffusion operator has a radius of 1.

learned can be possibly be interpreted as discrete differential operators of finite difference type,
separated by simple non-linearities. In this way, the CNN can be thought of as a generalized Taylor
series expansion of the commutator error in terms of the filtered velocity field, similar to certain
continuous filter expansions [57]. We do not investigate this further in this study, but it could be
a direction for future research.

The same CNN architecture m is used for all grids and filters. We choose a simple architecture
since the goal of the study is not to get the most accurate closure model, but rather to compare
different filters, LES formulations, and loss functions for the same closure architecture. For the
LES formulation, we only consider the two models MDIF and MDCF.

Appendix D.5. Training

Both the Smagorinsky model and the CNN are parameterized and require training. Since the
Smagorinsky parameter is a scalar, we perform a grid search to find the optimal parameter for each of
the filter types and projection orders. The relative a-posteriori error for the training set is evaluated
and averaged over the three training grids. We choose the value of θ ∈ {0, 1/100, 2/100, . . . , 50/100}
that gives the lowest training error. The resulting Smagorinsky constants are θFADCF = 0.14, θVADCF =
0.14, θFADIF = 0.11, θVADIF = 0.11.

For the CNN, the initial model parameters θ0 are sampled from a uniform distribution. They are
improved by minimizing the stochastic loss function using the ADAM optimizer [33]. The gradients
are obtained using reverse mode automatic differentiation.

We start by training using the a-priori loss function (24). We learn one set of parameters θprior

for each of the training grids and filter types. Each time, the model is trained for 104 iterations
using the Adam optimizer [33] with learning rate 10−3 (and default weight decay and momentum
parameters). At each iteration the loss is evaluated at a batch of 50 (ū, c) snapshot pairs. Every
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20 iterations the a-priori error is evaluated on the validation dataset. The parameters giving the
lowest validation error are retained after training.

Since the a-priori loss Lprior does not take into account the effect of the LES model we use, we
continue training the CNN using the a-posteriori loss function Lpost

M . This time, the LES model
M ∈ {MDIF,MDCF} is part of the loss function definition. We use nunroll = 20, and train for 1000
iterations. The best parameters from the a-priori training (θprior) are used as initial parameters for
the a-posteriori training. The Adam optimizer is reinitialized without the history terms from the
a-priori training session. The parameters θpostM giving the lowest a-posteriori error on the validation
dataset during training are retained after training.
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