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Abstract

We study the Flying Sidekick Traveling Salesman Problem with Multiple Drops (FSTSP-MD), a multi-modal

last-mile delivery model where a single truck and a single drone cooperatively deliver customer packages.

In the FSTSP-MD, the drone can be launched from the truck to deliver multiple packages before it returns

to the truck for a new delivery operation. The FSTSP-MD aims to find the synchronized truck and drone

delivery routes that minimize the completion time of the delivery process. We develop a simple and effective

heuristic approach based on an order-first, split-second scheme. This heuristic combines standard local

search and diversification techniques with a novel shortest-path problem that finds FSTSP-MD solutions in

polynomial time. We show that our heuristic consistently outperforms state-of-the-art heuristics developed

for the FSTSP-MD and the FSTSP (i.e., the single-drop case) through extensive numerical experiments. We

also show that the FSTSP-MD substantially reduces completion times compared to a traditional truck-only

delivery system. Several managerial insights are described regarding the effects of drone capacity, drone

speed, drone flight endurance, and customer distribution.

Keywords: vehicle routing, drone logistics, shortest path, last-mile delivery, flying sidekick

1. Introduction

The global last-mile delivery market is expected to grow to over 200 billion U.S. dollars by 2027, marking

a significant increase from 108 billion U.S. dollars in 2020 (Statista, 2023). This growth is primarily driven

by the increased e-commerce demand (Samet, 2023). At the same time, customer expectations for fast

delivery are becoming increasingly demanding. For instance, Supply Chain Dive (2023) finds that nearly

half of online consumers abandon their shopping carts if delivery times are too long or unspecified.
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Meeting highly demanding consumer expectations for speedy delivery requires significant changes in

technology and processes (Supply Chain Dive, 2023). Consequently, leading logistics service providers (e.g.,

Amazon and UPS) are investing in new technologies, such as drones, to streamline and expedite their last-

mile delivery processes (Vasani, 2023; Chen, 2023). Cornell et al. (2023) find that drone deliveries have

increased by more than 80% between 2021 and 2022 (equivalent to about 875,000 deliveries worldwide),

with an estimated 500,000 commercial deliveries in the first half of 2023.

Cooperative delivery systems between conventional ground vehicles (such as classical trucks) and aerial

cargo drones have gained increasing attention recently (Moshref-Javadi & Winkenbach, 2021). The concept

involves using trucks as mobile stations for one or multiple drones (see, e.g., Etherington (2017)). The trucks

deliver packages independently and, whenever possible and cost-effective, load the drones with packages for

autonomous delivery to customers, and then meet the drones again after delivery and before the drone flight

endurance is exceeded (Roberti & Ruthmair, 2021).

In the academic literature, the combination of trucks and drones for last-mile logistics has been pre-

dominantly investigated under the assumption that drones can only make a single delivery per sortie

(Moshref-Javadi & Winkenbach, 2021; Dukkanci et al., 2023). However, with recent breakthroughs in drone

technology, this limitation is evolving. Drones can now make multiple deliveries in a single sortie, as long

as they adhere to battery and payload constraints (Poikonen & Golden, 2020). An example is the Wing-

copter 198 manufactured by Wingcopter (2023), which can make up to three separate deliveries to multiple

locations during a single sortie.

This paper studies the Flying Sidekick Traveling Salesman Problem with Multiple Drops (FSTSP-MD),

a last-mile delivery model where a single truck and drone cooperatively deliver customer packages. In this

model, which we describe in further detail in Section 2, the drone can be launched from the truck to deliver

multiple packages before it returns to the truck for a new delivery operation. The objective is to determine

the truck and drone delivery assignments and their corresponding routes that minimize the completion time

of the delivery process, defined as the time when the last vehicle returns to the depot.

We develop a simple and effective heuristic approach for the FSTSP-MD based on an order-first, split-

second scheme (Prins et al., 2014). This heuristic, which we refer to as the Multi-Drop Shortest Path

Problem–Based Heuristic (MD-SPP-H), combines standard local search and diversification techniques with

a novel shortest-path problem that finds FSTSP-MD solutions (for a given order of customers) in poly-

nomial time. Unlike state-of-the-art heuristics developed for the FSTSP-MD, MD-SPP-H allows users to

define the maximum number of drops the drone can perform in a single delivery operation (or sortie), a

practical constraint for existing commercial cargo drones such as the Wingcopter 198 (Alamalhodaei, 2021).

Notably, the MD-SPP-H provides the flexibility to be used for other combinations of vehicles, such as a truck

paired with a motorcycle or a cargo bike. For instances of up to 250 customers, we show that MD-SPP-H

consistently outperforms state-of-the-art heuristics developed for the Flying Sidekick Traveling Salesman
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Problem (FSTSP) (where the drone can only deliver a single package per sortie) and the FSTSP-MD. In-

vestigations on the effects of drone capacity, drone speed, drone flight endurance, and customer distribution

are also presented.

The remainder of the paper is structured as follows. We formally define the FSTSP-MD in Section 2.

In Section 3, we review the extant literature and present our main contributions. Section 4 describes the

MD-SPP-H. Section 5 presents extensive computational results to show the performance of MD-SPP-H

compared to state-of-the-art heuristics. In Section 6, we examine how the performance of cooperative truck-

and-drone delivery systems depends on input parameters and use cases. Section 7 discusses implications for

practice and policymakers. Finally, we report our conclusions and describe future work directions in Section

8.

2. Problem Definition

In the FSTSP-MD, a single truck and a single drone cooperatively deliver customer packages. It is

assumed that the truck has an unlimited capacity, and can readily accommodate the drone and all packages,

with no restriction on its travel distance. In contrast, the duration of a single drone flight is battery-

constrained. In practice, this means that the battery is limited but can be swapped in a negligible time

whenever the drone returns to the truck. This assumption is supported by several related studies, as noted

in Luo et al. (2021), Gonzalez-R et al. (2020), and Poikonen & Golden (2020). Further, in contrast to the

FSTSP, the drone can carry and deliver multiple packages in the same sortie. We assume each customer

has a unit demand (i.e., customers order one package) and can be served by either the truck or the drone.

Consequently, the maximum number of customer visits the drone can undertake in a single sortie is restricted

by the battery and the drone’s package capacity. The cooperative truck-and-drone delivery system starts

from and finishes at the depot. The vehicles may depart and return to the depot together (meaning the

truck carries the drone) or independently. The objective of the FSTSP-MD is to determine the truck and

drone delivery assignments and their corresponding routes that minimize the completion time of the delivery

process (i.e., the time when the last vehicle returns to the depot).

To orchestrate the operations between the truck and the drone, we set the following rules. The drone

can either be transported by the truck or dispatched to serve customers. In a drone delivery operation,

the drone retrieves packages from the truck, delivers them to the customers, and then returns to the truck.

Notably, both the launch and rendezvous points are confined to the depot or customer locations, and we

consider that these points must be different (i.e., the truck is not allowed to stop and wait for the drone at

the same location). We also consider that any previously visited customer location cannot be visited again,

even for launch or recovery processes. Regarding the rendezvous locations, if the truck arrives first, it has

to wait for the drone to be recovered; conversely, if the drone arrives first, it has to wait for the truck to
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recover it. The drone can only land atop the truck, so in the latter case, the drone wait time has to be

accounted for when determining feasible drone delivery operations.

Figure 1 shows an illustrative example of a feasible FSTSP-MD solution for an instance of eight customers.

The truck leaves the depot to serve Customer 2, and the drone is dispatched to Customer 1. The vehicles

meet at Customer 3 (the first to arrive must wait for the other). The drone is carried by the truck from

Customer 3 to Customer 4. Then, the drone is launched from the truck to serve Customers 5, 6, and 7 while

the truck travels to serve Customer 8. The vehicles meet again at Customer 8 and travel together to the

depot. Each drone operation must satisfy the maximum flight endurance and payload capacity constraints

of the drone.

Depot

2

1

3

4

5

6

7

8

Figure 1: Illustrative example of a feasible FSTSP-MD solution.

3. Literature Review

To the best of our knowledge, Murray & Chu (2015) were the first to propose the combination of trucks

and drones for last-mile logistics. The authors introduce the FSTSP, where a single truck is supported by a

single drone restricted to perform a single delivery in each sortie. Subsequently, Agatz et al. (2018) study the

Traveling Salesman Problem with Drone (TSP-D), an extension of the FSTSP where the truck is allowed to

wait at the launch location or revisit a customer location to retrieve the drone. Agatz et al. (2018) propose

two order-first, split-second heuristic approaches based on local search and dynamic programming.

Since the introduction of the FSTSP and the TSP-D, several extensions have been proposed in the litera-

ture. As highlighted in several recent surveys such as Macrina et al. (2020) and Moshref-Javadi & Winkenbach

(2021), the most prominent extensions consist of considering multiple trucks and drones (Wang & Sheu, 2019;

Kitjacharoenchai et al., 2019; Jiang et al., 2024; Yin et al., 2023), drone delivery stations (Chauhan et al.,

2019; Zhu et al., 2022), and drones capable of delivering multiple orders per sortie (Gonzalez-R et al., 2020;

Liu et al., 2021; Windras Mara et al., 2022). Other studies have also considered the use of drones to resup-
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ply trucks with newly available orders while en route (see, e.g., Dayarian et al. (2020), Pina-Pardo et al.

(2021), and Pina-Pardo et al. (2024)).

Based on our problem setting (see Section 2), the closely related works in the literature are Gonzalez-R et al.

(2020), Liu et al. (2021), and Windras Mara et al. (2022). The interested reader can refer to Leon-Blanco et al.

(2022), Luo et al. (2021), and Poikonen & Golden (2020) for works considering one truck and multiple multi-

drop drones, and to Gu et al. (2022), Luo et al. (2022), Yin et al. (2023), and Meng et al. (2024) for studies

considering multiple trucks and multiple multi-drop drones.

To the best of our knowledge, Gonzalez-R et al. (2020) developed the first Mixed-Integer Linear Pro-

gramming (MILP) formulation for the FSTSP-MD. In contrast to our problem definition (see Section 2),

the authors assume that the drone has an unlimited payload capacity, so the maximum number of deliveries

per sortie is only restricted by its battery. Since the MILP formulation is not able to solve any of the tested

instances to optimality, Gonzalez-R et al. (2020) also propose an Iterated Greedy Heuristic (IGH) approach,

using a simulated annealing scheme to escape local optima.

Subsequently, Liu et al. (2021) propose a route-based MILP formulation that considers an energy con-

sumption function for the drone battery based on the distance traveled and the weight of the packages

carried by the drone (i.e., the drone is not constrained by the actual number of separate packages it can

deliver per sortie, but by the total energy it consumes per sortie). Since the proposed MILP formulation

cannot solve instances of more than five customers, the authors also propose a heuristic approach combining

simulated annealing and tabu search. Liu et al. (2021) solved instances of up to 100 customers.

More recently, Windras Mara et al. (2022) propose a MILP formulation and an Adaptive Large Neigh-

borhood Search (ALNS) heuristic. Similar to Gonzalez-R et al. (2020), the maximum number of deliveries

per drone sortie is only limited by the drone flight endurance (i.e., the drone is uncapacitated). Their com-

putational results show that the MILP formulation can solve instances of up to eight customers. Further,

the authors show that their ALNS heuristic outperforms the IGH of Gonzalez-R et al. (2020).

Research gaps and contributions. Our literature review reveals that most works assume that drones can only

make a single delivery per sortie (Moshref-Javadi & Winkenbach, 2021), even though existing commercial

drones can make multiple deliveries during a single sortie (Alamalhodaei, 2021; Sakharkar, 2021). Further,

studies addressing the FSTSP-MD (Gonzalez-R et al., 2020; Liu et al., 2021; Windras Mara et al., 2022)

consider that drones are limited by endurance only, and have an unlimited payload capacity (in terms of

the number of separate packages the drone can deliver per sortie), which is inconsistent with current drone

technology. Finally, due to the inherent complexity of the FSTSP-MD, existing exact approaches fail to

address instances with more than a few customers, making them impractical for real-world last-mile logistics

applications (e.g., UPS visits roughly 120 customers per route; see Holland et al. (2017)). Consequently, we

make the following contributions to the extant literature.
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First, we develop MD-SPP-H, a simple and effective order-first, split-second heuristic for the FSTSP-MD.

MD-SPP-H combines standard local search techniques with a novel split algorithm that finds FSTSP-MD

solutions (for a given order of customers) in polynomial time. MD-SPP-H allows users to define the maximum

number of drops the drone can perform in a single sortie, in line with existing commercial cargo drones such

as the Wingcopter 198 (Alamalhodaei, 2021).

Second, through extensive computational experiments over well-established instances of up to 250 cus-

tomers, we show that MD-SPP-H consistently outperforms state-of-the-art heuristics developed for the

FSTSP-MD and the FSTSP (i.e., the single-drop scenario). Additionally, compared to the solutions ob-

tained by the exact approach of Vásquez et al. (2021) over small FSTSP instances with up to 20 customers,

MD-SPP-H solves most instances to optimality, and with a minor average optimality gap of 0.15%.

Lastly, we provide several managerial insights regarding the effects of drone capacity, drone speed, flight

endurance, and customer distribution. Notably, we show that combining a truck with a multi-drop drone

reduces the total time needed to serve all customers by up to 70% compared to the truck-only scenario.

We also observe diminishing marginal returns of increasing the number of maximum possible drops per

drone sortie, and the incremental benefits depend on the remaining drone operational characteristics and

the distribution of the service locations.

4. The Multi-Drop Shortest Path Problem–Based Heuristic

Because of the impracticality of using exact approaches to address realistically-sized instances (see, e.g.,

Windras Mara et al., 2022; Gonzalez-R et al., 2020), we develop a simple and effective heuristic approach

based on an order-first, split-second scheme (see Prins et al. (2014) for a comprehensive review on order-first,

split-second heuristics for routing problems). This heuristic, which we refer to as the Multi-Drop Shortest

Path Problem–Based Heuristic (MD-SPP-H), combines standard local search and diversification techniques

with a novel split procedure that finds feasible FSTSP-MD solutions in polynomial time.

In the following, we refer to a TSP tour as a sequence that visits all customers only once and starts and

ends at the depot with no intermediate visits to the depot. A feasible solution to the FSTSP-MD is referred

to as a FSTSP-MD solution. Finally, we refer to a benchmark solution as the best FSTSP-MD solution

found during the current improvement phase of MD-SPP-H.

In the remainder of this section, we begin by presenting a high-level description of the MD-SPP-H.

We then describe our split algorithm, referred to as the Multi-Drop Shortest Path Problem (MD-SPP) in

the following. Finally, we describe the generation of the initial solution and how MD-SPP-H explores the

solution space.

6



4.1. High-level Heuristic Description

A flowchart of MD-SPP-H is presented in Figure 2. We begin by generating an initial TSP tour and

its corresponding FSTSP-MD solution, which are designated as the TSP tour and benchmark solution for

the first iteration, respectively. In the improvement phase, a set of neighborhood operators is applied to

the current TSP tour to generate a composite neighborhood. Through each neighborhood operator, we

create a neighbor TSP tour and then solve the MD-SPP to generate a new FSTSP-MD solution. Next, we

update the benchmark solution if the new FSTSP-MD solution is better. After exploring the entire composite

neighborhood of the current TSP tour, we update the best-so-far (BSF) solution with the benchmark solution

if the latter is better. Further, if the benchmark solution was not updated during the improvement phase,

we apply perturbation to generate the TSP tour and benchmark solution for the next iteration. We repeat

this iterative process until certain termination criteria (e.g., a maximum number of consecutive iterations

without improvement or a certain time limit) are attained. MD-SPP-H ends by returning the BSF solution.

Generate initial TSP tour and

FSTSP-MD solution

Termination

criteria met?

Create a neighbor TSP tour
Solve the MD-SPP to find a

new FSTSP-MD solution 

Update benchmark solution if 

FSTSP-MD solution is better 

Neighbors to

explore?

Update BSF solution if benchmark

solution is better

Apply perturbation if benchmark

solution was not updated

Return BSF solution

NO

YES

YES

Improvement Phase NO

Set TSP tour and benchmark

solution for the next iteration

Figure 2: High-level description of the MD-SPP-H.

4.2. The Multi-Drop Shortest Path Problem (Split Algorithm)

The core component of MD-SPP-H is the MD-SPP, which maps a TSP tour into a feasible FSTSP-MD

solution in polynomial time. To thoroughly explain the MD-SPP, we start by motivating its conceptual-

7



ization. We then formally define the MD-SPP and analyze its computational complexity. Throughout this

section, we denote N ′ = N ∪ {0} as the set of nodes, where 0 is the depot and N = {1, ..., n} is the set of

customers.

The conceptualization of the MD-SPP was inspired by the work of Kundu et al. (2021), who developed

a split algorithm for the FSTSP (i.e., the single-drop scenario) that finds an optimal FSTSP solution for a

given TSP tour in O(n3) time. Generally speaking, this split algorithm works as follows: first, it generates

a weighted directed acyclic graph by enumerating all forward-moving arc times and then finds the shortest

path in the generated graph (see Appendix A for further details).

Extending the shortest path approach presented in Kundu et al. (2021) for the FSTSP-MD requires

enumerating all forward-moving arc times for multiple drops. For a given TSP tour, performing this com-

plete enumeration requires O(2n) time (see Proposition 2 of Appendix A), rendering it impractical to solve

realistically-sized FSTSP-MD instances. Therefore, to formulate a polynomial-time split algorithm that can

be efficiently nested in a local search scheme, we introduce an eligibility criterion to enumerate only a subset

of forward-moving arc times, albeit at the expense of “missing” some solutions that are examined when

performing a complete enumeration. However, as we will discuss later, it can be argued that efficient local

search and perturbation techniques can still visit those solutions that are intentionally omitted.

Our eligibility criterion can be interpreted as imposing an additional constraint on the problem of finding

an optimal FSTSP-MD solution for a given TSP route. Specifically, we enforce that the drone can only visit

customers immediately following each potential launch node (the rest of the possible drone operations are

considered ineligible). More formally, we introduce the concept of partition node, which is defined below.

Definition 1. (Partition node) Let σ = (0, 1, ..., n, n+1) be a TSP tour whose nodes have been re-indexed

based on their positions (where 0 and n+1 denote the depot). Given a subsequence σ′

ij = (i, i+1, ..., j−1, j)

of σ, node k ∈ N (with i ≤ k < j) is called a partition node if the drone can be launched at node i ∈ N ′,

perform the route (i + 1, i+ 2, ..., k − 1, k), and be recovered at node j ∈ N ′, while the truck performs the

route (i, k+1, ..., j− 1, j). When k = i, the drone is carried by the truck throughout the entire subsequence.

Illustrative example. Consider an instance of eight customers, as the one shown in Figure 1. Further,

consider the TSP tour σ = (0, 1, ..., 8, 0) and the subsequence σ′

48 = (4, 5, 6, 7, 8), where Node 4 is the launch

node and Node 8 is the recovery node. The enumeration of all potential truck and drone routes (between

Node 4 and Node 8) is listed in Table 1. Assuming a sufficiently large drone flight endurance and payload

capacity, our MD-SPP only examines those alternatives for which a partition node exists. However, note

that the omitted alternatives are examined for neighboring TSP tours of σ listed in the last column of Table

1 (these neighboring TSP tours can be readily generated by applying our local search operators over σ; see

Section 4.3).

Now, we formally define the MD-SPP in Problem 1. Using the illustrative example of Section 2, if

8



Table 1: Illustrative example of the effects of using partition nodes for a subsequence (4, 5, 6, 7, 8).

Drone route Truck route Partition node Examined?
If not, in which TSP
tour is it examined?

Carried by the truck (4, 5, 6, 7, 8) 4

(4, 5, 8) (4, 6, 7, 8) 5

(4, 6, 8) (4, 5, 7, 8) – – (0, 1, 2, 3, 4, 6, 5, 7, 8, 0)

(4, 7, 8) (4, 5, 6, 8) – – (0, 1, 2, 3, 4, 7, 5, 6, 8, 0)

(4, 5, 6, 8) (4, 7, 8) 6

(4, 5, 7, 8) (4, 6, 8) – – (0, 1, 2, 3, 4, 5, 7, 6, 8, 0)

(4, 6, 7, 8) (4, 5, 8) – – (0, 1, 2, 3, 4, 6, 7, 5, 8, 0)

(4, 5, 6, 7, 8) (4, 8) 7

the underlying TSP tour is σ = (0, 1, ..., 8, 0), the collection of tuples defined in Problem 1 is given by

P = {((0, 1, 2, 3), 1), ((3, 4), 3), ((4, 5, 6, 7, 8), 7), ((8, 0), 8)}, which represents the feasible FSTSP-MD solution

shown in Figure 1.

Problem 1. (The Multi-Drop Shortest Path Problem) Let σ = (0, 1, ..., n, n + 1) be a TSP tour whose

nodes have been re-indexed based on their positions. The MD-SPP aims to find a collection of tuples P =

{(σ′

i0,i1
, k0), (σ

′

i1,i2
, k1), ..., (σ

′

ij ,ij+1
, kj), ..., (σ

′

iℓ,iℓ+1
, kℓ)} such that (i) kj is a partition node of subsequence

σ′

ij ,ij+1
, for all j ∈ {0, ..., ℓ}, (ii) the subsequences of P form the TSP tour, and (iii) the completion time is

minimized.

Based on the notation listed in Table 2, Algorithm 1 presents a O(n3)–time procedure to find the optimal

value of Problem 1 (i.e., the completion time at node n+1). Broadly speaking, for a given TSP tour σ (with

nodes re-indexed based on their positions), Algorithm 1 solves the MD-SPP by sequentially computing arc

times ci,j for each subsequence σ′

ij = (i, ..., j) through Equations (1) and Equation (2):

cki,j =















































j−1
∑

m=i

tm,m+1, if k = i,

max

{

k−1
∑

m=i

dm,m+1 + dk,j , ti,j

}

, if k > i, j = k + 1,

max

{

k−1
∑

m=i

dm,m+1 + dk,j , ti,k+1 +

j−1
∑

m=k+1

tm,m+1

}

, otherwise,

(1)

ci,j = min{cki,j : i ≤ k < j, k ≤ i+D, cki,j ≤ E}, (2)

where cki,j represents the arc time if node k, with i ≤ k < j, partitions subsequence σ′

ij .
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Table 2: Notation used in Algorithm 1.

Symbol Description

Ti Completion time at node i, with i ∈ {0, ..., n+ 1}.

ti,j Truck travel time from node i to j.

di,j Drone travel time from node i to j.

cki,j Coordinated time taken by the truck and drone to travel from node i to j, with partition node k.

D Maximum number of drops the drone can perform between launch and recovery.

E Maximum drone flight endurance (in time units).

ai, αD, αT Auxiliary variables to calculate arc times iteratively.

[i, j] Set of integers between i and j (both included), i.e., [i, j] = {i, ..., j}.

Algorithm 1: Algorithm to solve Problem 1.

Input : TSP tour σ = (0, 1, ..., n, n+ 1) with nodes re-indexed based on their positions.
Output: Completion time, i.e., Tn+1.

1 T0 ← 0 and Ti ←∞, ∀i ∈ [1, n+ 1]
2 for i ∈ [0, n] do

3 ai ← 0
4 if Ti + ti,i+1 < Ti+1 then

5 Ti+1 ← Ti + ti,i+1 ⊲ Relaxation step

6 for k ∈ [i+ 1,min{i+D,n}] do

7 ai ← ai + dk−1,k

8 for j ∈ [k + 1, n+ 1] do

9 αD ← ai + dk,j
10 if j = k + 1 then

11 αT ← ti,j

12 else

13 αT ← αT + tj−1,j

14 cki,j ← max{αT, αD}

15 if Ti + cki,j < Tj and cki,j ≤ E then

16 Tj ← Ti + cki,j ⊲ Relaxation step

Proposition 1. For a given TSP tour, Algorithm 1 solves Problem 1 in O(n3) time.

Proof. See proof in Appendix A.

4.3. Exploration of the TSP Solution Space

This section describes how MD-SPP-H explores the TSP solution space. We start by describing the

procedures for generating the initial solution and the neighborhoods. We then present the perturbation
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mechanisms that allow MD-SPP-H to escape local optima and explore unexplored regions of the solution

space.

Generation of the initial solution. To create the initial TSP tour, we use the Concorde solver of Applegate et al.

(2006) (using the QSopt callable library) to obtain an optimal TSP tour. The initial FSTSP-MD solution

is then generated by solving the MD-SPP. This FSTSP-MD solution is designated as the BSF solution and

the benchmark solution for the first iteration of MD-SPP-H.

Neighborhood generation. In the improvement phase, we use a composite neighborhood obtained by sequen-

tially applying simple local search operators over the current TSP tour. Specifically, similar to Agatz et al.

(2018), we first apply a one-point (1-p) operator (also known as relocate operator; see Savelsbergh (1992)),

where a customer is relocated to another position within the current TSP tour; then a two-point (2-p) op-

erator, where two customers are swapped; and finally, the 2-opt operator, where two arcs are removed and

replaced with two new ones. Note that the entire exploration of each of these neighborhoods requires O(n2)

time. While exploring these neighborhoods, the benchmark solution is updated whenever a new FSTSP-MD

solution with a better objective value is found.

After exploring the entire composite neighborhood of the current TSP tour, we update the BSF solution

with the benchmark solution if the latter is better. Further, we maintain the benchmark solution for the

next iteration if it was updated during the improvement phase (in this case, the TSP tour of the benchmark

solution is also set as the TSP tour for the next iteration). Otherwise, we set the benchmark solution and

the TSP tour for the next iteration according to the perturbation phase.

Perturbation phase. A critical component in designing an effective heuristic approach involves incorporating

diversification (or perturbation) mechanisms to guide the search into previously unexplored regions within

the solution space. As previously mentioned, we enter the perturbation phase if the benchmark solution is

not updated during the improvement phase.

First, we perform a small perturbation to the current TSP tour by randomly selecting two subsequences

from the tour, reversing their orders, and reintegrating them into their original positions (two sequential

2-opt moves). Then, whenever η iterations have been conducted without improvement, we perform another

diversification mechanism. Here, we first restart the search from the TSP tour of the BSF solution. We then

perform the aforementioned reversal of two subsequences followed by randomly relocating the customers

of the TSP tour with probability p (which could be considered as applying a mutation operator). After

modifying the current TSP tour, we solve the MD-SPP and the corresponding FSTSP-MD solution is set

as the benchmark solution for the next iteration.
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5. Heuristic Performance

This section presents extensive computational experiments to show the performance of MD-SPP-H.

MD-SPP-H was implemented in Java 8 on a scientific HPC cluster. The computational nodes have Intel

Xeon CPU E3-1284L v4 processors, each featuring four cores (1.19 GHz nominal, 3.8 GHz peak). The nodes

operated on an x86_64 architecture. Based on preliminary experiments, we set η = 10 and p = 0.1 in the

perturbation phase of MD-SPP-H (see Section 4.3). Further, as termination criteria, we stop MD-SPP-H

after 200 consecutive iterations without improvement or after a given time limit (described later), whichever

comes first. For the interested reader, we provide all problem instances used and detailed results in our

GitHub repository at link blinded for peer review.

We focus on realistically sized instances with 50 or more customers (see, e.g., Holland et al. (2017)). Due

to the inherent complexity of these instances, comparing MD-SPP-H with exact solution approaches is not

possible (see Section 3). Instead, we conduct a pairwise comparative analysis against other state-of-the-art

heuristics developed for the FSTSP-MD and the FSTSP (i.e., the single-drop scenario). Despite MD-SPP-H

being tailored for multiple drops per drone sortie, we also evaluate its performance on the FSTSP for a

comprehensive understanding.

For benchmark purposes, we consider the following solution approaches representative of the current

academic state-of-the-art: (i) the IGH of Gonzalez-R et al. (2020) for the FSTSP-MD; (ii) the ALNS of

Windras Mara et al. (2022) for the FSTSP-MD; (iii) the Exact Partitioning – All (three local searches)

(EP-All) heuristic of Agatz et al. (2018) for the FSTSP; and (iv) the Shortest Path Problem – All (three

local searches) (SPP-All) heuristic of Kundu et al. (2021) for the FSTSP.

To enable a fair and consistent comparison, we adhere to the maximum run times allowed and the number

of independent runs specified in each benchmark study. We compute two main metrics for our comparison

(detailed results for each instance can be found in our aforementioned GitHub repository). First, the relative

percentage difference between the best objective values found by each heuristic (∆best) is given by

∆best =
zbench
best − zMD-SPP-H

best

zbench
best

× 100,

where zbench
best and zMD-SPP-H

best are the best values reached by the benchmark and MD-SPP-H heuristics (across

all runs), respectively. Second, the relative percentage difference between the average objective values found

by each heuristic (∆avg) is given by

∆avg =
zbench
avg − zMD-SPP-H

avg

zbench
avg

× 100,

where zbench
avg and zMD-SPP-H

avg are the average values reached by the benchmark and MD-SPP-H heuristics

(across all runs), respectively.
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Note that EP-All and SPP-All are deterministic; therefore, these heuristics are executed only once.

However, we ran MD-SPP-H ten independent times to ensure the robustness of our results. We adjust our

aforementioned metrics accordingly and compare both our best and average results to the single solution

value reached by the respective method. Finally, in Appendix B, we also include an additional comparison

with the integer L-shaped method of Vásquez et al. (2021) over small FSTSP instances with up to 20

customers.

5.1. Comparison with state-of-the-art solution approaches for the FSTSP-MD

This section begins by comparing the performance of MD-SPP-H with the seminal IGH of Gonzalez-R et al.

(2020). We then extend our analysis to compare MD-SPP-H with the recent ALNS heuristic proposed by

Windras Mara et al. (2022).

Comparison with the IGH of Gonzalez-R et al. (2020). To test their heuristic, Gonzalez-R et al. (2020) use

the popular problem instances originally introduced by Agatz et al. (2018). We select instances from the

dataset with 50 up to 250 customer locations. The spatial distribution of these locations follows three distinct

patterns: uniform, single-centered, and double-centered. The benchmark set contains 10 instances for each

node count and distribution pattern. Travel times for both the truck and drone are based on Euclidean

distances. Service time, as well as launch and recovery duration, are not considered. Lastly, all customers

can be either served by the truck or the drone (i.e., all customers are drone-eligible).

As described in Section 3, Gonzalez-R et al. (2020) assume the drone can perform as many drops as its

flight endurance allows (i.e., no constraints limit the total number of separate packages the drone can deliver

per sortie). In our MD-SPP-H, this assumption can be readily incorporated by removing the maximum

number of drone drops constraint in Algorithm 1 (or, equivalently, by setting D = n). The maximum

flight endurance is assumed proportional to the average drone travel time between the nodes, represented

as E = 2
n·(n+1)

∑

(i,j)∈A di,j (where A denotes the set of arcs between the nodes). To ensure a precise

comparison, we use the same maximum flight endurance values as Gonzalez-R et al. (2020).

Finally, Gonzalez-R et al. (2020) impose a maximum time limit of 600 seconds for IGH, which we also

use as a termination criterion for MD-SPP-H. Table B.4 in Appendix B summarizes the experiment setting.

We also refer the reader to our GitHub repository for details on the actual run times required by MD-SPP-H

and IGH.

Before presenting the comparison between both heuristics, it is worth mentioning that IGH assumes that

the truck-and-drone delivery system starts at the depot but ends at the last customer listed in Agatz et al.

(2018)’s instances. Consequentially, IGH does not consider the time for the vehicles to return to the depot

after serving the last customer listed. In contrast, MD-SPP-H aims to minimize the completion time of

the delivery process (i.e., the time when the last vehicle returns to the depot), consistent with most drone
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logistics studies (see, e.g., Chung et al. (2020)). Therefore, the comparison presented below considers that

MD-SPP-H finishes at the depot while IGH at the last customer listed in Agatz et al. (2018)’s instances.

However, it could be argued that the time to return to the depot may be negligible for instances with more

than 50 customers.

Figure 3 presents the results for instances with uniformly distributed locations, considering three different

drone speed ratios (i.e., the ratio of the drone speed to the truck speed). Results show that MD-SPP-H

outperforms IGH in terms of solution quality. Overall, MD-SPP-H improves the best solution values found

(∆best) by 25.3%, 12.5%, and 8.0% (average over all instances) for drone speed ratios of 1, 2, and 3,

respectively, while improving the average solution value (∆avg) by 27.4%, 12.5%, and 7.3%. The most

significant relative enhancements occur when the drone operates at slower speeds (i.e. when its speed is

the same as that of the truck). Based on the quality measures reported in Gonzalez-R et al. (2020), we

observe that IGH seems to lead to more consistent results as drone speed increases, regardless of customer

distribution. Lastly, we refer the reader to our GitHub repository for detailed results on single- and double-

center instances. Results show that MD-SPP-H outperforms IGH regardless of the customer distribution.

However, we observe that the percentage improvements for the non-uniform distributions are slightly smaller.

For a drone speed ratio of 1 and averaged over all instances, we observe values for ∆best of 17% and 21.3%

for single- and double-center distribution, respectively.

Comparison with the ALNS of Windras Mara et al. (2022). We now compare the performance between

MD-SPP-H and ALNS using one of the three datasets used by Windras Mara et al. (2022) made avail-

able to us. This dataset, initially introduced by Ha et al. (2018) for the single-drop scenario, comprises 60

benchmark instances with 50 and 100 customers. Instances named B1-B10, C1-C10, and D1-D10 contain

50 uniformly distributed customers across service areas spanning 100, 500, and 1,000 km2, respectively.

Additionally, instances labeled E1-B10, F1-C10, and G1-D10 consist of 100 uniformly distributed customers

across the same area dimensions. Readers can refer to Ha et al. (2018) for a more detailed description of

these instances. It is important to notice that, for all instances, 20% of the customers chosen randomly are

designated as ineligible for drone delivery (i.e., these customers must be served by the truck). We adjusted

MD-SPP-H to accommodate this additional constraint (by restricting that all customers between node i

and node k in Algorithm 1 must be drone-eligible). Further, truck distances are calculated based on the

Manhattan metric, while drone distances are determined using the Euclidean metric. Windras Mara et al.

(2022) set both the truck and the drone speed to 40 km/h. The drone flight endurance is set to 24 minutes,

and the time required for the truck to launch and retrieve the drone is 30 and 40 seconds, respectively.

During the launch and retrieval phases, the drone is assumed to be in a non-flight mode, eliminating the

need to factor this time into flight endurance consumption. Moreover, since Windras Mara et al. (2022)

assume that the drone load capacity is unlimited, we set D = n in Algorithm 1. Finally, to ensure a fair
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Figure 3: Relative percentage differences between MD-SPP-H and IGH (based on the solution published by
Gonzalez-R et al. (2020)), considering 50, 75, 100, 175, and 250 uniformly distributed customers.

comparison and align with the computation times reported by Windras Mara et al. (2022), we use maximum

run times of 60 and 90 seconds for instances with 50 and 100 customers, respectively. We further adopt the

same number of independent runs (i.e., 10 runs). For a summary of our experiment settings, please refer to

Table B.4 in Appendix B.

�
��

��
�

�
��

��
�

�
��

��
�

�
��

��
	

�
��

��



�
��

��
�

�
��

��
�

�
��

��



�
��

��
�

�
��

��
�

�
��

��
�

�
��

��
�

�
��

��
�

�
��

��
	

�
��

��



�
��

��
�

�
��

��
�

�
��

��



�
��

��
�

�
��

��
�

�
��

��
�

�
��

��
�

�
��

��
�

�
��

��
	

�
��

��



�
��

��
�

�
��

��
�

�
��

��



�
��

��
�

�
��

��
�

�����������

���

�

��

��

��

�
���

��
��

��
���

� Δavg Δbest

Figure 4: Relative percentage differences between MD-SPP-H and ALNS, considering 50 customers and the B, C, D
service area sizes of Ha et al. (2018).

Figure 4 and 5 report the results for instances with 50 and 100 customers, respectively. Overall,
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MD-SPP-H improves the best solution found by ALNS by ∆best = 3.5% for instances with 50 customers and

by ∆best = 8.0% for instances with 100 customers. The improvements are even more pronounced for the

average solution values, with average improvements of ∆avg = 10.3% and ∆avg = 15.7% for instances with

50 and 100 customers, respectively. This behavior is because MD-SPP-H produces more consistent results

than ALNS in terms of standard deviation values across the ten independent runs (see our aforementioned

GitHub repository for further details). For example, ALNS reports standard deviations of 13.3 and 22.0

(time units) for instances of 50 and 100 customers, respectively, while MD-SPP-H exhibits much lower stan-

dard deviations of 2.2 and 2.6 (time units). Finally, our results show a tendency for greater improvements

in instances with larger service areas, particularly in instances D and G (i.e., 1,000 km2).
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Figure 5: Relative percentage differences between MD-SPP-H and ALNS, considering 100 customers and the E, F,
G service area sizes of Ha et al. (2018).

5.2. Comparison with state-of-the-art solution approaches for the FSTSP

To further analyze the performance of MD-SPP-H, we perform an additional benchmark with three

solution approaches tailored for the FSTSP (i.e., the single-drop scenario): the established EP-All heuristic

of Agatz et al. (2018), the SPP-All heuristic of Kundu et al. (2021), and the integer L-shaped method of

Vásquez et al. (2021). All comparisons are based on the uniform instances of Agatz et al. (2018) (extended

by Vásquez et al. (2021) for problem sizes of n ∈ {11, ..., 20} customers). For the comparison with EP-All

and SPP-All, we use the results that are available on Kundu et al. (2020), while the best-known values

provided by Vásquez et al. (2021) are used to compare MD-SPP-H with their integer L-shaped method. In

all benchmarks, the drone’s speed is assumed to be double that of the truck, and the drone’s maximum flight

endurance is considered unlimited. We summarize the experiment setting in Table B.4 in Appendix B.

Comparison with EP-All and SPP-All. Our comparative analysis with the heuristics developed by Agatz et al.

(2018) and Kundu et al. (2021) is depicted in Figures 6 and 7, respectively. First, Figure 6 clearly demon-

strates that MD-SPP-H significantly improves solution quality compared to EP-All, with similar or reduced

run times. The reduction in runtime is noticeable for large instances with 175 and 250 customers. In terms

16



of solution quality, MD-SPP-H improves the best-found solution value by ∆best = 4.9% (average over the

50 instances). The percentage improvements are particularly high for instances with 75 and 100 customers.

The average solution value reached by MD-SPP-H improves the solution found by EP-All by ∆avg = 3.3%

(average over the 50 instances). Therefore, MD-SPP-H outperforms EP-All in terms of both solution quality

and computational efficiency.
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Figure 6: Benchmark of MD-SPP-H with solution published by Agatz et al. (2018): uniform distribution and at least
50 customers.

Second, we compare our results with the SPP-All heuristic of Kundu et al. (2021). The notable ad-

vancement in their study, compared to Agatz et al. (2018), is the significant reduction in computation time

while maintaining or slightly improving solution quality. For instance, SPP-All requires an average run time

of 43.4 seconds for instances with 250 customers. Regarding solution quality, Kundu et al. (2021) report

achieving an overall mean improvement of 0.77% over EP-All (in contrast, MD-SPP-H improves the overall

solution quality by ∆best = 4.9% and ∆avg = 3.3%).

Figure 7 shows that MD-SPP-H improves the best solution found for almost all instances. Specifically,

MD-SPP-H improves the best solution values found by ∆best = 4.3% (average over all instances with uniform

customer distribution), with a notable peak improvement of ∆best = 5.8% (average over the 10 instances)

for instances with 100 customers. Further, ∆best is negative in only two out of 50 instances (i.e., SPP-All

outperforms MD-SPP-H). Across all instances, the average solution value reached by MD-SPP-H improves

the best-known solution found by SPP-All by ∆avg = 2.7%, and we obtain slightly worse results for only

seven out of 50 instances.

Regarding run times, MD-SPP-H requires an average of 5 seconds for instances with 50 customers, while

an average of 71 seconds for instances with 100 customers. For instances with 250 customers, the average run
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Figure 7: Benchmark of MD-SPP-H with solution published by Kundu et al. (2021): uniform distribution and at
least 50 customers.

time of MD-SPP-H is around 23 minutes. While these run times significantly exceed those achieved by the

SPP-All heuristic of Kundu et al. (2021) (as depicted in Figure 7), they remain reasonable when considering

the FSTSP-MD’s inherent complexity. The reader can refer to Figure B.11 in Appendix B for additional

information on the relative percentage difference (over time) between the best-so-far solution and the best

overall solution found by MD-SPP-H. For example, for instances with 250 customers, the solutions found

by MD-SPP-H after 10 minutes are within 4% of the best overall solutions. For real-world applications,

this implies that last-mile logistics managers could execute MD-SPP-H for just a couple of minutes and get

high-quality solutions.

Comparison with the integer L-shaped method of Vásquez et al. (2021). Finally, we compare MD-SPP-H

with the integer L-shaped method developed by Vásquez et al. (2021). (Recall that a meaningful comparison

for the FSTSP-MD is not possible as existing exact approaches can only address instances of up to eight

customers; see Section 3.) This exact method finds optimal solutions for FSTSP instances with up to

20 customers. Table B.5 in Appendix B reports the comparison using the best-known values provided by

Vásquez et al. (2021). Overall, MD-SPP-H solves to optimality 73 out of the 88 instances that the integer

L-shaped method solves to optimality. Further, the average run time of MD-SPP-H is less than half a

second. Finally, for instances with more than 17 customers, MD-SPP-H improves the best solutions found

by the integer L-shaped method by 1.4%.

In summary, although designed for the multi-drop scenario, MD-SPP-H marks a substantial step forward

in improving solution quality for the FSTSP while maintaining practical run times.
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6. Impact of Individual Parameters and Their Interaction on Time Savings and Delivery

System Performance

In Section 5, we showed the superior performance of MD-SPP-H compared to state-of-the-art solution

approaches for both the FSTSP-MD and the FSTSP. In this section, we leverage our proposed solution

approach to improve our understanding of collaborative truck-and-drone delivery systems for last-mile lo-

gistics. We aim to advance the understanding of the benefits and drawbacks of cooperative truck-and-drone

delivery systems. Throughout this section, we use the parameter values of η = 10 and p = 0.1 (used in the

perturbation phase of MD-SPP-H) and the computational setting described in Section 5.

6.1. Design of Numerical Experiments

For the analyses presented in this section, we rely on the well-established FSTSP instances from Agatz et al.

(2018). We replicate the conditions in their study by adhering to the following assumptions. For all scenar-

ios, both the truck and the drone travel the Euclidean distance between the nodes, and the truck travels at

a unit speed. Customer service times and drone launching and recovery times are negligible (see also, e.g.,

Gonzalez-R et al., 2020).

Baseline Scenario. We establish a baseline scenario following the one chosen by Agatz et al. (2018) for the

single-drop case. We select instances with 100 uniformly distributed customers within the service area. The

drone travels at twice the speed of the truck, and we consider an unlimited drone flight endurance. In line

with current multi-drop drones, such as the A2Z Drone Delivery (Sakharkar, 2021), we set the baseline

maximum number of drone drops to D = 2.

Scenarios of Analysis. Building on this baseline, we analyze the effects of varying the following input

parameters: the maximum number of drone drops, the drone speed ratio (compared to the truck speed),

the drone’s maximum flight endurance, and the number and geographical distribution of the customers. In

total, our experiment design gives rise to 9,000 scenarios, i.e., unique parameter combinations. For each

scenario, we include ten instances (i.e., we solve a total of 90,000 instances). A summary of our experiment

design is presented in Table 3. In the following, we explain our parameter choices.

1) Number of drone drops. We systematically vary the number of drone drops within D ∈ {1, 2, 4, 6, 10}

to capture potential practical limitations of drone payload capacity, whether due to weight or equipment

constraints. Note that we also include the case of a single-drop drone to facilitate a direct comparison of

our findings with previous studies.
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2) Drone speed ratio. Starting with a baseline drone speed ratio (i.e., the ratio of the drone speed to the

truck speed) of 2, we decrease and increase the ratio to 1 and 3, respectively. These drone speed ratios are

used in several prior studies (see, e.g., Gonzalez-R et al., 2020; Roberti & Ruthmair, 2021; Schermer et al.,

2019b).

3) Drone flight endurance. Through preliminary experiment runs, we identified 100 time units as an ef-

fectively unlimited drone flight endurance level (when all remaining parameters take their baseline values).

Starting with 100 time units as the upper limit, we decrease the drone flight endurance in steps of 25 time

units, exploring values down to 25 time units. These values are chosen to cover a wide range of restriction

levels. A comparison between actual flight duration and maximum flight endurance across all scenarios

with uniform customer distribution, as shown in Figure 10, reveals that our chosen range extends from

unrestricted to notably restricted drone flight endurance.

4) Number and 5) distribution of the customers. As provided in the full dataset by Agatz et al. (2018),

the number of customers within the service area varies between 50 and 250 customers. Further, in addi-

tion to the uniform customer distribution, we also consider instances with single-center and double-center

customer distributions. Note that instances with uniform customer distributions are limited to a service

area of 100× 100 distance square units, resembling highly dense urban settings. In contrast, instances with

single-center and double-center customer distributions cover approximately 300×300 and 500×300 distance

square units, respectively. These configurations may resemble less dense service areas where customers are

concentrated around one or two central locations.

Table 3: Summary of parameter choices for numerical experiments on problem instances from Agatz et al. (2018)

Type Parameter Value

General

Total number of instances 150

Customer distribution Uniform∗, single-center, double-center

Number of customers {50, 75, 100∗, 175, 250}

Vehicle

Drone eligibility 100%

Truck distance Euclidean [unit]

Drone distance Euclidean [unit]

Truck speed 1

Drone speed ratio {1, 2∗, 3}

Flight endurance {25, 50, 75, 100∗}

Number of drops {1, 2∗, 4, 6, 10}

Launch/retrieval time 0/0

CPU
Run-time limit 10 min (for n ≤ 100), 30 min (for n ≥ 175)

Runs 5

Note. * denotes values used in the baseline scenario.
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For each scenario, we evaluate the performance of the cooperative truck-and-drone system compared to

the truck-only system. By default, we calculate the percentage of completion time savings as

∆ =
zTSP − zMD-SPP-H

zTSP
× 100,

where zTSP is the completion time of the truck-only delivery system obtained by the Concorde solver

(Applegate et al., 2006) and zMD-SPP-H is the completion time of the truck-and-drone delivery system ob-

tained by MD-SPP-H. If not indicated otherwise, we report the average time saving over the ten instances

for each scenario.

6.2. Direct Effects

For our baseline parameter setting (see Section 6.1), the truck-and-drone system yields average com-

pletion time savings of 41.6% compared to the truck-only system (see Figure 8(a) for two drops). In the

following, we first discuss the direct effects of the three drone operational parameters on the delivery sys-

tem’s performance. Second, we investigate how each of the service area’s characteristics, i.e., the number

and distribution of customers, affect the time savings.
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Figure 8: Percentage of time savings for ten problem instances, obtained by varying a single parameter from our
baseline scenario.

Altering the number of drone drops. Figure 8(a) confirms that the truck-and-drone delivery system can

significantly reduce the total duration of the delivery process compared to the truck-only system. The
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percentage of time savings increases as the drone makes more drops, starting from 33% savings for a single-

drop drone up to 56% for a drone capable of up to ten drops. However, our results show that this relationship

is not linear, but is characterized by rapidly diminishing marginal returns as the number of drops increases.

Altering the drone speed ratio. Not surprisingly, the relative speed of the drone compared to the truck

emerges as a critical factor influencing the achievable time savings over the truck-only scenario. For the

baseline drone speed ratio of 2, Figure 8(b) shows attainable completion time savings of 41.6%. This value

decreases to savings of 24.1% for a speed ratio of 1, and increases to 49.6% for a speed ratio of 3. Again,

we observe diminishing marginal returns as the speed ratio increases. This is likely due to the need for

coordination between truck and drone movements. In other words, if we only increase the drone’s speed

while keeping the other system parameters fixed, the drone will have to wait for the truck more frequently

and for longer periods, limiting the potential for system-level completion time savings. Note that this finding

is consistent with conclusions that Agatz et al. (2018) obtained for the single-drop case.

Altering the drone flight endurance. Intuitively, a sufficiently high drone flight endurance allows the system

to reap the full potential of time savings offered by combining trucks and drones for last-mile logistics.

Conversely, the potential time savings are diminished if the drone’s ability to move independently is limited

due to limited flight endurance. For instance, Figure 8(c) shows a reduction in time savings by 1.5% as

the flight endurance level drops to 25 time units. For endurance levels of 50 and higher, this parameter

does not impact the time savings, i.e., the savings plateau. This implies that, while meeting a certain flight

endurance threshold is essential to leveraging the full efficiency gains, further improvement beyond this

saturation point yields no additional benefits. While this effect is almost negligible in our baseline scenario,

it is more pronounced for other parameter combinations. We refer to our discussion in Section 6.3.

Non-uniform customer distributions. Figure 8(d) shows that the truck-and-drone delivery system achieves

substantial savings over different customer distributions. The average time savings increase from 41.6%

(reached over uniform instances) to 47.7% and 45.1% for single- and double-center instances, respectively.

This implies that drones are more advantageous when serving distribution areas where customers are con-

centrated around a few central locations, with only a small number of customers located in outlying regions.

As Agatz et al. (2018) highlights for single-drop drones, a plausible explanation is that the drone supports

the truck by serving customers furthest from the center of the cluster(s) efficiently.

Altering the number of customers. As we vary the number of customers between 50 and 250, the relative

time savings vary between 39.2% and 42.8% (see Figure 8(e)). However, our results do not reveal a clear

and unambiguous relationship between the number of customers and the obtainable time savings (similar

results were obtained for the single- and double-center customer distributions). For our baseline scenario,

relative time savings remain relatively stable despite significant changes in the number of customers. This
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implies that customer density plays a minor role in the benefits achieved by the truck-and-drone system

(an observation that, of course, highly relies on the chosen baseline parameters). Therefore, we conduct an

additional investigation in Section 6.3 to examine this effect in more detail.

6.3. Parameter Interactions

Having examined how every single parameter impacts the dynamics of the delivery system and the

resulting relative time savings, we further investigate how these effects interact. We split this section

into two parts. We first discuss the delivery system’s inherent dynamics, i.e., how the three operational

drone parameters interact to impact the savings. We then discuss how the operational environment of

the collaborative delivery system impacts its inherent dynamics (and consequentially the time savings in a

specific use case). To this end, we discuss the dominant patterns emerging from our full factorial experiment

data. The results for uniform customer distributions are summarized in Figure 9. Results for single-

and double-center customer distributions are presented in Figures C.20 and C.23 in Online Appendix C,

respectively.
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Figure 9: Average percentage time savings over ten problem instances from a truck-and-drone system compared to
the truck-only alternative for varying parameter settings and uniform customer distribution.

23



6.3.1. System-Inherent Dynamics

In the following, we explore how different levels of one drone operational parameter affect the impact

of changes in another parameter on time savings. We stick to the baseline operational environment of 100

uniformly distributed customers.

Interaction of key drivers of time savings: drone drops and speed ratio. Figure 9 shows that the drone speed

ratio significantly moderates the benefits of increasing the number of possible drone drops. For a drone

speed ratio of 3 (2, 1), and a baseline endurance of 100 time units, the achievable time savings increase

from around 39.8% (33.0%, 18.1%) for a single-drop drone to around 65.0% (56.0%, 36.6%) for a ten-drop

drone. This corresponds to an absolute effect of 25.2 (23.0, 18.5) percentage points and a relative increase

by approximately 63.3% (69.7%, 102.2%). In other words, the higher the drone speed ratio, the larger the

absolute gain but the smaller the relative gain from enabling the drone to make more drops per sortie.

This is an intuitive result since a faster drone has a larger time-saving potential to begin with, even in the

single-drop case, than a drone that travels at the same speed as the truck.

Flight endurance as a prerequisite for multiple drops. A sufficient flight endurance limit is a prerequisite

to realizing the efficiency gains of a collaborative delivery system with a multi-drop drone. The benefits of

increasing the number of possible drone drops are diminished if the drone’s flight endurance becomes too

restrictive. We observe a truncation effect for low flight endurance levels: while we still see measurable

benefits from moving from a low number of drops per drone sortie to a slightly higher number, the savings

plateau, and no further improvements are obtained beyond a certain number of drops per sortie (see Figure

9 for an endurance level of 25 time units and speed ratio of 2). This effect is more pronounced and sets in at

higher levels of flight endurance as the drone speed ratio decreases (see Figure 9 for an endurance level of 50

comparing speed ratios 1 and 2). This is expected because a very restrictive flight endurance keeps the drone

from exploiting the ability to make many drops per sortie unless these drops are closely co-located. Further,

our analysis reveals a somewhat surprising and valuable insight: the sum of all drone flying times is inversely

related to the number of drops that a drone can make per flight (cf., Figure C.19 in Online Appendix C).

Although the maximum duration of a single drone flight increases with a higher number of drops, we note

that the aggregate duration of all drone flights combined decreases as the maximum number of possible drops

increases. Allowing the drone to serve multiple customers in one sortie reduces the number of back-and-forth

trips performed by the drone between the truck and the customers it serves. As a result, the collaborative

system completes its deliveries faster, and the drone uses less total battery power.

Compensating effect of drone speed and flight endurance level. Assuming independence of drone speed and

flight endurance, the two parameters can compensate for each other if one is overly restrictive. Specifically,

a higher drone speed can compensate for a very restrictive flight endurance limit (see Figure 10 for an
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Figure 10: Comparison of average observed maximum drone flight duration over ten instances and imposed drone
flight endurance limit for instances with uniform customer distribution.

endurance level of 50 time units and increasing speed ratios). Conversely, boosting flight endurance levels

can mitigate the drawbacks of a slower drone (see Figure 10 for a speed ratio of 1 and increasing endurance

levels). However, drone flight endurance only indirectly affects time savings; see our discussion on the

saturation point in Section 6.2.

6.3.2. Impact of the Operational Environment

The operational environment (i.e., customer density and distribution) significantly affects the distances

that the truck and the drone need to travel. For instance, the lower the customer density, the greater the

distance between customers, requiring longer drone flight distances. Similarly, transitioning from a uniform

to a non-uniform customer distribution increases drone flight distances, as the drone is typically used to

predominantly serve remote customers (see Section 6.2). While the potential savings in these scenarios

might be particularly high, they can challenge the drone’s flight endurance.

Serving areas with low customer density. For most parameter combinations depicted in Figure 9, the time

savings from the truck-and-drone system are independent of the number of customers and, therefore, the
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customer density. Only for low endurance levels and speed ratios, the achievable time savings quickly

diminish as the number of customers decreases, up to the point where virtually no time savings can be

obtained (see the top left panel of Figure 9). This suggests that the benefits of adding a multi-drop drone

are largely independent of the average distance between customers in the service area as long as the drone’s

flight endurance is sufficient and the drone is comparably fast. However, without these requirements, the

drone is not able to effectively contribute to reducing delivery completion times in service areas with a low

customer density.

Serving areas with non-uniform customer distribution. We first consider scenarios in which the drone is

effectively not restricted in flight endurance. In these cases, our results reveal that the impact of increasing

the number of drone drops on time savings is consistent across varying customer distributions, that is, we

identify the same general pattern of marginal diminishing returns (i.e., similar incremental time savings as

the number of drone drops increases). However, the absolute level of time savings is higher in non-uniform

compared to uniform customer distribution (cf., Figure 9 and Figures C.20, and C.23 in Online Appendix C

for a flight endurance level of 100 time units and a speed ratio of 3). Interestingly, moving from unrestricted

drone movements to more restrictive levels of flight endurance and lower speed ratios, we find that a non-

uniform customer distribution might act as a catalyst for the performance effects of changes to these drone

operational parameters. As non-uniform distributions demand longer distances per drone flight, the same

level of drone flight endurance and speed have a stronger limiting effect in non-uniform than in uniform

scenarios, which in turn impacts the potential time savings in these settings.

7. Implications for Practice

The findings from our study of the impact of different parameters on time savings and system performance

lead to several implications and recommendations for practitioners and policymakers. First, our work shows

that the application of collaborative truck-and-drone delivery systems can significantly reduce total delivery

times. Second, our results show that the achievable relative truck distance savings closely mirror the relative

time savings, i.e., both metrics take on similar values. As a result, trucks would travel fewer miles and spend

less time on the road, reducing emissions and congestion. While the potential savings are considerable, their

extent is primarily determined by the characteristics of the service area and available drone technology,

underscoring the need for case-dependent evaluations.

Specifically, our analysis indicates that the attainable time savings strongly depend on the speed ratio

between the truck and the drone and the maximum number of drops. For both parameters, we observe

diminishing marginal returns. We find that single-drop drones or drones capable of making a few drops –

which are already available on the market (Sakharkar, 2021; Wingcopter, 2023) – that travel at a moderate

speed (e.g., twice the speed of a traditional delivery truck) can lead to significant time savings. For a uniform
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customer distribution and sufficient flight endurance levels, the time savings from adding a drone that travels

at twice the speed of the truck range between 33.1% for a single-drop drone and 48.7% for a drone capable

of up to four drops. However, considering the increased technological and operational complexity and costs

associated with systems designed for numerous drops (i.e., five or more), a thorough economic assessment

based on the specific use case is warranted before adopting and deploying such systems.

Considering the trade-off between investing in increasing either drone speed or the number of possible

drops, we find that both input parameters alter the dynamics of the truck-and-drone delivery system in

distinct ways, and the incremental improvements will depend on the remaining operational parameters of

the drone and the characteristics of the service area. For instance, we find for our baseline scenario that

increasing the number of drone drops from two to four yields the same efficiency gains as increasing the

drone-to-truck speed ratio from 2:1 to 3:1 (cf. Figure 8(a) and (b)). Therefore, when adopting drone delivery

operations, balancing the investment in drone speed against the practical benefits of multiple drops is crucial,

focusing on the most cost-effective combination for the specific use case.

Finally, our study can help last-mile delivery companies decide for which operational environments

(characterized by the density and spatial distribution of customers) they should consider investing in a

truck-and-drone delivery system, and policymakers decide for which environments they should provide the

policy framework. We find that the operational environment can act as a stress test for the collaborative

system, highlighting the importance of carefully assessing the suitability of the drone’s flight endurance

and speed to reach optimal performance for different use cases. For example, we show that potential time

savings can be particularly high when serving non-uniformly distributed customers or service areas with low

demand density, but enhanced drone capabilities (speed and endurance) are needed to reap the full benefits

of the collaborative system.

8. Conclusion

In this paper, we investigate the benefits of combining conventional ground delivery vehicles and aerial

cargo drones for last-mile logistics. This approach leverages the numerous advantages of using drones,

including their low per-vehicle capital expenditure costs, reduced carbon footprint, and travel directness

and speed. Specifically, we explore the value of supporting ground delivery vehicles with drones capable of

making multiple package deliveries per sortie.

We study the Flying Sidekick Traveling Salesman Problem with Multiple Drops (FSTSP-MD), a multi-

modal last-mile delivery model where a single truck is supported by a single multi-drop drone during the

delivery process. In this model, the drone can be launched from the truck en route to make autonomous

package deliveries to multiple customers before returning to the truck. The FSTSP-MD aims to determine

the synchronized truck and drone delivery routes that minimize the completion time of the delivery process.
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We propose the Multi-Drop Shortest Path Problem–Based Heuristic (MD-SPP-H) to solve realistically-

sized FSTSP-MD instances. MD-SPP-H is a simple and highly effective order-first, split-second heuristic

that combines standard local search and diversification techniques with a novel shortest-path problem that

finds FSTSP-MD solutions (for a given order of customers) in polynomial time.

Using well-established instances with between 50 and 250 customers, we show that MD-SPP-H outper-

forms state-of-the-art heuristics developed for the FSTSP-MD and the FSTSP. Further, compared to the

exact solution approach developed by Vásquez et al. (2021) for the FSTSP, we show that MD-SPP-H solves

most instances (with up to 20 customers) to optimality in less than half a second, with only a minor average

optimality gap of 0.15%. Several managerial insights and policy implications are also presented regarding

using drones to boost the efficiency of traditional, ground-based delivery vehicles.

There are several potential avenues for future research. For instance, MD-SPP-H could be extended

to allow the truck to launch and recover the drone at locations other than customer nodes (see, e.g.,

Schermer et al. (2019a)). Further, the FSTSP-MD assumes a constant drone flight speed and a drone

battery consumption independent of carrying weight. Thus, future research could enrich our MD-SPP

formulation to account for more realistic drone parameters (see, e.g., Jeong et al. (2019) and Raj & Murray

(2020)). Finally, a natural extension is to consider multiple trucks equipped with multiple drones.
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Appendix A. Proof of Propositions

Complexity of split algorithms. To find an optimal FSTSP solution for a given TSP tour, the split algorithm

of Kundu et al. (2021) solves the shortest path problem in a weighted directed acyclic graph. Specifically,

given the TSP tour σ = (0, 1, ..., n, n+ 1) (whose nodes have been re-indexed based on their positions), the

authors build the graph G = (N ,A), where N = {0, 1, ..., n, n + 1} and A = {(i, j) : i ∈ N\{n + 1}, j ∈

{i+1, ..., n+1}}. Each arc (i, j) ∈ A is called a forward-moving arc. To solve the shortest path problem, the

authors enumerate all forward-moving arc times associated with each (i, j) ∈ A. Notably, each (i, j) ∈ A has

associated a maximum of j − i forward-moving arc times, defined by the maximum number of single-drop

drone operations between nodes i and j (including the one where the drone is carried by the truck). As

Kundu et al. (2021) prove, the complete enumeration of all forward-moving arc times can be done in O(n3)

time for the FSTSP. The interested reader can refer to Kundu et al. (2021) for further details.

For the FSTSP-MD, Proposition 2 states that, without the introduction of partition nodes, solving the

shortest path problem by enumerating all forward-moving arc times requires O(2n) time.

Proposition 2. For a given TSP tour, solving the shortest path problem by enumerating all forward-moving

arcs requires O(2n) time.

Proof. Consider the TSP tour σ = (0, 1, ..., n, n+1), whose nodes have been re-indexed based on their posi-

tions. Assume that the maximum drone flight endurance constraint is removed. Now consider a subsequence

σ′

ij = (i, i+1, ..., j−1, j) of the TSP tour σ, where i is the launch node and j is the recovery node. The total

number of operations where the drone performs exactly m deliveries is given by
(

j−i−1
m

)

. Therefore, when

we relax the constraint for the maximum number of drone drops, the maximum number of possible drone

operations (including the one where the drone is carried by the truck throughout the entire subsequence)

is given by
∑j−i−1

m=0

(

j−i−1
m

)

= 2j−i−1 (representing the total number of forward-moving arc times between

nodes i and j).

Now, since the TSP tour σ has n+2 nodes, there is a maximum of
∑n

i=0

∑n+1
j=i+1 2

j−i−1 = 2n+2− n− 3

possible forward-moving arc times (i.e., coordinated truck-and-drone routes) for the given TSP tour σ.

Therefore, a split algorithm without the introduction of partition nodes requires O(2n) time.

Proof of Proposition 1. Let us introduce Definition 2 and Lemmas 1 and 2 before proving Proposition 1.

Definition 2. (Optimal partition node) Let σ = (0, 1, ..., n, n+ 1) be a TSP tour whose nodes have been

re-indexed based on their positions. Given a subsequence σ′

ij = (i, i + 1, ..., j − 1, j) of σ, we refer to node

k∗ ∈ N as an optimal partition node if k∗ ∈ argmink{c
k
i,j : i ≤ k < j, k ≤ i + D, cki,j ≤ E}. Therefore,

ci,j = ck
∗

i,j .
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Lemma 1. (Upper bound) Assume that Algorithm 1 is applied to the TSP solution σ = (0, 1, ..., n, n+ 1).

At any time of the run, for each j ∈ {0, ..., n+ 1}, we always have Tj ≥ δ(0, j), where δ(0, j) represents the

total time of the true shortest path from node 0 to node j. If we ever find Tj = δ(0, j), the value of Tj never

changes in subsequent iterations.

Proof. We proceed by induction on the number of relaxation steps r.

Base case. In the initialization step (i.e., when r = 0), we have that T0 = 0 and Tj = ∞, for all

j ∈ {1, ..., n+ 1} (see Step 1 in Algorithm 1). Now, since δ(0, 0) = 0, we have that T0 = δ(0, 0). Further, if

node j ∈ {1, ..., n+1} is reachable from node 0, then δ(0, j) will have a certain value; therefore, Tj ≥ δ(0, j).

Induction step. Given j ∈ {1, ..., n + 1}, assume that Tj ≥ δ(0, j) after r − 1 relaxation steps. Let us

now consider the rth relaxation step on the arc (i, j), where 0 ≤ i < j. In this relaxation step, Tj is updated

to Tj = Ti + ci,j , where ci,j represents the coordinated truck-and-drone time over the subsequence (i, ..., j)

with the optimal partition. Since we already assume that the Lemma holds for the r − 1 relaxation step,

we have that Ti ≥ δ(0, i). Therefore, Tj = Ti + ci,j ≥ δ(0, i) + ci,j . Further, since any shortest path satisfies

triangular inequality, we have that δ(0, i) + ci,j ≥ δ(0, j). Consequently, Tj ≥ δ(0, i) + ci,j ≥ δ(0, j).

Note that, when we reach Tj = δ(0, j), we cannot reduce the value any further, as we just showed

Tj ≥ δ(0, j). Consequently, in subsequent relaxations, the value of Tj remains unchanged.

Lemma 2. (Sequential relaxations) Assume that Algorithm 1 was solved for the TSP solution σ =

(0, 1, ..., n, n+1). Given a node r ∈ {1, ..., n+1}, let Pr = {(σ′

i0,i1
, k0), ..., (σ

′

im−1,im
, km−1)} be the collection

of m tuples representing the shortest path from node 0 to node r (where node im = r). The sequential

relaxation steps of the subsequences of Pr produce Tim = δ(0, im), that is, Tr = δ(0, r).

Proof. We proceed by induction on the mth tuple of Pr, showing that after the sequential relaxations of the

m subsequences σ′

i0,i1
, ..., σ′

im−1,im
, we have that Tim = δ(0, im).

Base case. If m = 1, then Pr = (σ′

i0,i1
, k0), with σ′

i0,i1
= (0, ..., r). We know that Tim ≥ δ(0, im) from

Lemma 1. We also know that, by definition, node k0 is an optimal partition node for subsequence σ′

i0,i1
.

Since we have only one tuple representing the shortest path, then Tim = δ(0, im) after the relaxation step.

Induction step. Assume that the first m − 1 subsequences σ′

i0,i1
, ..., σ′

im−2,im−1
have been relaxed se-

quentially based on the given order. From Lemma 1, we have that Tim−1
= δ(0, im−1) at the end of the

m−1 relaxations. The subsequence σ′

im−1,im
is only relaxed after the relaxation of the previous subsequence

σ′

im−2,im−1
. The definition of optimal partition node ensures that the relaxation of the subsequence σ′

im−1,im

is optimal, and by Lemma 1, at the time of this call, we have that Tim ≥ δ(0, im).

Since Pr is the shortest path containing the subsequence σ′

im−1,im
, we also have that δ(0, im) = δ(0, im−1)

+ δ(im−1, im). Therefore, Tim = δ(0, im−1) + δ(im−1, im) = δ(0, im). The value of Tim will remain un-

changed in subsequent relaxation steps due to Lemma 1.
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We now prove Proposition 1, i.e., Algorithm 1 solves Problem 1 in O(n3) time for a given TSP tour.

Proof. Let σ = (0, 1, ..., n, n+1) be a TSP tour whose nodes have been re-indexed based on their positions.

For each subsequence σ′

ij = (i, i+1, ..., j− 1, j) of σ, we have a maximum of j− i potential drone operations

defined by the number of possible partition nodes (including the operation where the drone is carried

by the truck throughout the entire subsequence). Thus, the maximum number of drone operations is
∑n

i=0

∑n+1
j=i+1 j − i = (n+1)(n+2)(n+3)

6 . Consequentially, Algorithm 1 has a O(n3) complexity.

Now, since the TSP tour σ = (0, 1, ..., n, n + 1) is topologically sorted, we process it in order of their

subsequences. By Lemma 2, the collection of tuples P obtained by Algorithm 1 represents the shortest path

for σ, and Lemma 1 ensures that Tn+1 = δ(0, n+ 1).

Corollary 1. For a given TSP tour σ, the shortest path has at most n+ 1 tuples, i.e., |P | ≤ n+ 1. When

|P | = n+1, the collection of tuples corresponds to the TSP tour itself (i.e., the truck makes all the deliveries,

with the drone being idle).

Appendix B. Supplementary Results of Section 5

Table B.4 summarizes the experiment setting used to compare MD-SPP-H with the benchmark solution

approaches developed for the FSTSP-MD and FSTSP.

Table B.4: Summary of experiment setting used to compare MD-SPP-H benchmark solutions approaches.

Type Parameter
FSTSP-MD

FSTSP
IGH ALNS

General

Total number of instances 150 60 150

Customer distribution Uniform, single-and double-center Uniform (B-G) Uniform, single- and double-center

Number of customers {50, 75, 100, 175, 250} {50, 100} {10, 11, ..., 20, 50, 75, 100, 175, 250}

Vehicles

Drone eligibility 100% 80% 100%

Truck distance Euclidean [unit] Manhattan [km] Euclidean [unit]

Drone distance Euclidean [unit] Euclidean [km] Euclidean [unit]

Truck speed 1 40 km/h 1

Drone speed ratio {1, 2, 3} 40 km/h 2

Flight endurance E = 2
n·(n+1)

∑

(i,j)∈A di,j 24 min ∞

Number of drops ∞ ∞ 1

Launch/retrieval time 0/0 30s/40s 0/0

CPU
Run-time limit 600s 60s (n = 50), 90s (n = 100) –

Runs 10 10 10 (for MD-SPP-H)

MD-SPP-H convergence results. Given a FSTSP-MD instance, we compute the following metric to under-

stand the convergence of MD-SPP-H over time:

Difference (%) =
zMD-SPP-H
t − zMD-SPP-H

best

zMD-SPP-H
best

× 100,
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where zMD-SPP-H
best is the value of the best solution found by MD-SPP-H and zMD-SPP-H

t is the value of the

best-so-far solution at time step t. Figure B.11 reports the percentage difference between the best solution

found so far and the best overall solution found by MD-SPP-H (each line denotes one instance and the

values are those achieved in the best of the ten runs). For instances with 100 customers, results show that

the solutions found by MD-SPP-H after one minute are within 2% of the best overall solutions. Further, for

250-customer instances, the solutions found after 10 minutes are within 4% of the best overall solutions.
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Figure B.11: Average percentage difference over time for instances with n = 100 and n = 250 customers (tracking
solutions after 30 seconds)

Comparison with the integer L-shaped method of Vásquez et al. (2021). Table B.5 shows the comparison

with the integer L-shaped method of Vásquez et al. (2021). The authors provided us with their result data

using a maximum run time of one hour. For the integer L-shaped method, Column “# Optimal” reports the

number of instances solved to optimality. For the MD-SPP-H, we report the results achieved by MD-SPP-H

for the best of the ten runs. Column “# Optimal” reports the number of instances where MD-SPP-H finds

the same optimal value as the integer L-shaped method; and Column “# Worse” (resp., # Better) details the

number of solutions where MD-SPP-H achieves a worse (resp., better) solution than the integer L-shaped

method. Further, considering those instances where the integer L-shaped method does not prove optimality,

Column “# Equal” shows the number of solutions for which the integer L-shaped method and MD-SPP-H

find the same value. Column “Opt. gap (%)” is the average optimality gap reached by MD-SPP-H over

all instances solved to optimality by the integer L-shaped method; Column “Diff (%)” shows the average
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percentage difference between the best-known value achieved by the integer L-shaped method (i.e., the upper

bound given by the solver) and the value of MD-SPP-H over those instances not solved to optimality by

the integer L-shaped method (a negative value indicates that MD-SPP-H outperforms the integer L-shaped

method); and Column “Run time (s)” details the average run time (over 10 instances) needed by MD-SPP-H.

For instances with up to 17 customers, for which the integer L-shaped method finds the optimal solution

for all instances, Table B.5 shows that the MD-SPP-H reaches the optimal solution for most of the instances

in a very short run time of less than 0.2 seconds. The optimality gap over those instances is below or equal

to 0.4%. For instances with 18 and up to 20 customers, MD-SPP-H performs worse only for 3 out of 30

instances. For most instances, MD-SPP-H reaches the same solution value as the integer L-shaped method

or even improves the solution. On average, MD-SPP-H improves the solution quality by 1.4% for instances

that are not solved to optimality by the integer L-shaped method; see Column Diff (%).

Table B.5: Comparison between MD-SPP-H and the integer L-shaped method of Vásquez et al. (2021).

Customers Instances
L-shaped MD-SPP-H

# Optimal # Optimal # Worse # Better # Equal Opt. gap (%) Diff (%) Run time (s)

10 10 10 8 2 0 0 0.10 - 0.04

11 10 10 7 3 0 0 0.40 - 0.05

12 10 10 7 3 0 0 0.23 - 0.06

13 10 10 9 1 0 0 0.33 - 0.09

14 10 10 9 1 0 0 0.05 - 0.10

15 10 10 8 2 0 0 0.18 - 0.12

16 10 10 9 1 0 0 0.12 - 0.15

17 10 10 10 0 0 0 0.00 - 0.18

18 10 6 4 2 2 2 0.25 -1.61 0.28

19 10 1 1 1 6 2 0.00 -1.08 0.37

20 10 1 1 0 8 1 0.00 -1.51 0.43

All 110 88 73 16 16 5 0.15 -1.40 0.17
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Online Appendix A. Comparison with solution approaches for the FSTSP-MD

Run times of MD-SPP and IGH. Figure A.12 shows the actual run times needed by MD-SPP-H and IGH.

Overall, results show that both MD-SPP-H and IGH require less than 600 seconds for instances up to

75 customers. This is because Gonzalez-R et al. (2020) also consider as termination criterion a maximum

number of 50 consecutive iterations without improvement. Although there is a slight increase in reported run

times for scenarios with smaller speed ratios, we consistently report nearly identical run times for instances

with higher speed ratios.
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Figure A.12: Average run times of MD-SPP-H and IGH (based on results published by Gonzalez-R et al. (2020)),
considering 50, 75, 100, 175 and 250 uniformly distributed customers.

Comparison with IGH over single- and double-center instances. Figures A.13 and A.14 report the relative

percentage differences achieved by MD-SPP-H over the IGH heuristic of Gonzalez-R et al. (2020), consider-

ing the single- and double-center customer distributions and at least 50 customers. We observe similar, yet

slightly reduced improvements for the two non-uniform distributions compared to the uniform distribution.
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Figure A.13: Percentage difference between MD-SPP and IGH (based on solutions published by Gonzalez-R et al.
(2020)), considering 50, 75, 100, 175 and 250 with a single-center customer distribution.
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Figure A.14: Percentage difference between MD-SPP and IGH (based on solutions published by Gonzalez-R et al.
(2020)), considering 50, 75, 100, 175 and 250 with a double-center customer distribution.



Online Appendix B. Comparison with solution approaches for the FSTSP

Comparison with EP-All over single- and double-center instances. Figures B.15 and B.16 report the relative

percentage differences achieved by MD-SPP-H over the EP-All heuristic of Agatz et al. (2018), considering

the single- and double-center customer distributions and at least 50 customers. Averaged over all 50 instances

with single-center customer distribution, MD-SPP-H improves the best-found solution value by ∆best = 3.9%.

The average solution value reached by MD-SPP-H improves the solution found by EP-All by ∆avg= 2.2%

(average over the 50 instances). In the double-center cases, we report average improvements of the best-

found solution value and average solution value reached by MD-SPP-H of ∆best = 3.6% and ∆avg= 2.1%,

respectively. These improvements are modestly lower than those noted for uniform customer distributions.
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Figure B.15: Benchmark of MD-SPP-H with solution published by Agatz et al. (2018): single-center distribution
and at least 50 customers.
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Figure B.16: Benchmark of MD-SPP-H with solution published by Agatz et al. (2018): double-center distribution
and at least 50 customers.

Comparison with SPP-All over single- and double-center instances. Figures B.17 and B.18 report the relative

percentage differences achieved by MD-SPP-H over the SPP-All heuristic of Kundu et al. (2021), considering

the single- and double-center customer distributions and at least 50 customers. On average, over the 50

instances with single-center customer distribution, we report improvements of ∆best = 2.7% and ∆avg= 0.9%

for the best-found and average solution value, respectively. The corresponding values for the double-center

instances are ∆best = 3.1% and ∆avg= 1.5%.
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Figure B.17: Benchmark of MD-SPP-H with solution published by Kundu et al. (2021): single-center distribution
and at least 50 customers.
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Figure B.18: Benchmark of MD-SPP-H with solution published by Kundu et al. (2021): double-center distribution
and at least 50 customers.



Online Appendix C. Impact of Individual Parameters and Their Interaction on Time Savings

and Delivery System Performance

In the following, we present the supplementary results of the full factorial experiment we conducted to

gain managerial insights into the collaborative truck-and-drone delivery system. The results are sorted based

on the customer distribution: uniform, single- and double-center. If not included in the main manuscript,

we present plots summarizing the observed percentage time savings, the maximum drone flight duration of a

single flight, and the total drone flight duration. We average the results over ten instances for each scenario.
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Figure C.19: Comparison of average observed total drone flight duration (i.e., sum over all drone flights) over ten
instances and truck-only delivery system completion time for instances with uniform customer distribution
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Figure C.20: Average percentage time savings over ten problem instances from a truck-and-drone system compared
to the truck-only alternative for varying parameter settings and single-center customer distribution.
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Figure C.21: Comparison of average observed maximum drone flight duration over ten instances and imposed drone
flight endurance limit for instances with single-center customer distribution
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Figure C.22: Comparison of average observed total drone flight duration (i.e., sum over all drone flights) over ten
instances and truck-only delivery system completion time for instances with single-center customer distribution
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Figure C.23: Average percentage time savings over ten problem instances from a truck-and-drone system compared
to the truck-only alternative for varying parameter settings and double-center customer distribution.
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Figure C.24: Comparison of average observed maximum drone flight duration over ten instances and imposed drone
flight endurance limit for instances with double-center customer distribution


	Introduction
	Problem Definition
	Literature Review
	The Multi-Drop Shortest Path Problem–Based Heuristic
	High-level Heuristic Description
	The Multi-Drop Shortest Path Problem (Split Algorithm)
	Exploration of the TSP Solution Space

	Heuristic Performance
	Comparison with state-of-the-art solution approaches for the FSTSP-MD
	Comparison with state-of-the-art solution approaches for the FSTSP

	Impact of Individual Parameters and Their Interaction on Time Savings and Delivery System Performance
	Design of Numerical Experiments
	Direct Effects
	Parameter Interactions
	System-Inherent Dynamics
	Impact of the Operational Environment


	Implications for Practice
	Conclusion
	Proof of Propositions
	Supplementary Results of Section 5
	Comparison with solution approaches for the FSTSP-MD
	Comparison with solution approaches for the FSTSP
	Impact of Individual Parameters and Their Interaction on Time Savings and Delivery System Performance

