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HÖLDER CONTINUITY OF CORE ENTROPY FOR

NON-RECURRENT QUADRATIC POLYNOMIALS

MALTE HASSLER AND DIERK SCHLEICHER

Abstract. We prove that core entropy is Hölder continuous as a function of
external angles for a large class of quadratic polynomials that are non-recurrent
with respect to angle-doubling. The result follows from a symbolic analysis of
the Mandelbrot set and the dynamics of Hubbard trees in terms of kneading
sequences which has been established in previous work.

1. Introduction

Entropy (more precisely, topological entropy) is a quantitative measure of the
complexity of dynamical systems, essentially describing the exponential growth
rate of the number of “substantially different” finite orbits of length n. It is closely
related to concepts in physics and information theory, where it also measures the
exponential growth rate of the number of configurations (in particular, length of
words) depending on the size n.

Specifically in real and complex dynamics, topological entropy has been inves-
tigated for a variety of classes of dynamical systems. In complex dynamics, Lyu-
bich [Ly1, Ly2] proved that topological entropy for rational maps of degree d always
equals log d, so it only depends on the degree. In contrast, in real dynamics topo-
logical entropy is often considered for the restriction to a “dynamical interval”, an
invariant interval that contains the interesting dynamics. In this context, topologi-
cal entropy is not constant, and questions such as monotonicity and continuity with
respect to a parameter are of interest.

Thurston introduced the concept of core entropy for (postcritically finite) poly-
nomials as the topological entropy of the restriction to the Hubbard tree, an invari-
ant subset of the dynamical plane that, like the dynamical interval for real maps,
captures the interesting dynamics. He raised the issue whether core entropy can
be extended to polynomials beyond postcritically finite ones, and whether such an
extension could be continuous.

The first extension to general polynomials had been investigated under the name
of biaccessibility dimension in [BS3, MS] even before Thurston raised the question
and discovered the connection. Continuity of core entropy has been proved for
quadratic polynomials independently in [DS] and [Ti1], and for general polynomials
in [GT].

Specifically for quadratic polynomials, the following conjecture has been raised
quite a while ago:

Conjecture (Hölder continuity of core entropy). The continuous dependence of
core entropy on the polynomial is Hölder (with respect to an appropriate measure
on the space of polynomials), such that the Hölder exponent is equal (up to a scaling
constant) to core entropy itself; in particular, Hölder continuity fails when core
entropy is zero.

The conjecture is natural in the sense that as early as 1980 it was observed by
Guckenheimer [Gu] that in the context of real unimodal interval maps, entropy is
Hölder with respect to a parameter when the entropy is positive.

Several proofs of Hölder continuity of core entropy have been announced a num-
ber of years ago (in particular, by Bruin in 2012, and by Fels in 2016), but never
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substantiated. A partial result for real quadratic polynomials has been proven by
Tiozzo [Ti2].

In this paper we prove this conjecture for a large class of complex quadratic
polynomials, but not all; in particular, we assume non-recurrence of the polynomial.

We pursue a purely combinatorial approach. The combinatorics of our polyno-
mials is specified in terms of an external angle, or in terms of a kneading sequence.
The combinatorial notions are explained below; first we state our main result.

Main Theorem (Hölder continuity for angles). Let ϑ be an external angle that is
non-recurrent with respect to angle doubling. Then core entropy in terms of external
angles is Hölder continuous locally at ϑ with Hölder exponent (h(ϑ) − ε)/ log 2 for
every ε ∈ (0, h) if

(1) the associated polynomial is non-renormalizable and has finite Hubbard tree;
or

(2) the associated polynomial is renormalizable and its maximal base sequence
has positive core entropy.

Note that the phrasing of the theorem is based on the statement, discussed below,
that every quadratic polynomial with connected Julia set, postcritically finite or
not, has an associated Hubbard tree, which may be an infinite tree: this is the main
result of [HS1].

The condition on the polynomial in item (2) can be rephrased as saying that the
renormalizable polynomial is contained in a little Mandelbrot set for which the main
hyperbolic component is not contained in the “main molecule” of the Mandelbrot
set.

Most of our estimates are concerned with establishing Hölder continuity with
the conjectured exponent h(ϑ) (up to arbitrarily small ε). Since core entropy is
at most log 2, the Hölder exponent is at most 1. The conjecture also predicts that
this exponent is best possible; we show this in Theorem 6.2 for a dense subset of
kneading sequences.

It is well known that core entropy is in general not Hölder when the core entropy
vanishes; our restriction to positive core entropy is thus not a loss. We describe a
simple example in Corollary 7.7.

In Section 2 we present our combinatorial construction of abstract Hubbard trees
as established in [HS1]. In Section 3 we define a natural partial order for the space
of all kneading sequences (i.e. parameter space).

We define core entropy of a kneading sequence in Section 4 and show its basic
properties. In Section 5 we introduce special classes of kneading sequences, in
particular renormalizable ones. Hölder continuity of core entropy as a function of
kneading sequences is proven in Sections 6 and 7, depending on whether or not the
kneading sequence is renormalizable. Finally, we translate these results in terms of
external angles in Section 8.

We should emphasize that in our setting, core entropy is defined naturally in
terms of kneading sequences, and most of our work concerns this setting. Kneading
sequences have been a key tool for the study of real quadratic polynomials since
they have been introduced by Milnor and Thurston in 1979 [MT], and they have
a natural extension to complex quadratic polynomials (see for instance [HuS]). In
particular, every external angle (that describes a complex quadratic polynomial)
has an associated kneading sequence, but there are many kneading sequences that
are not coming from external angles or quadratic polynomials: so-called “not com-
plex admissible” kneading sequences; see [BS2]. Core entropy can still defined
for such kneading sequences (see Definition 4.1), and our main technical results
(Theorems 6.4 and 7.6) concern Hölder continuity of core entropy as a function of
kneading sequences (under certain conditions such as non-recurrence).
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2. Kneading sequences and Hubbard trees

The central object of our discussion are kneading sequences. Traditionally, these
are defined for unimodal real maps [MT]. There is a well known extension of
kneading sequences to complex postcritically finite quadratic polynomials: each of
these has a finite invariant Hubbard tree such that the unique critical point divides
the tree into two components. The kneading sequence is the infinite sequence over
the alphabet {0, 1} describing the symbolic dynamics of the critical orbit in the
Hubbard tree with respect to the unique critical point. In the special case that the
critical point is periodic, a ⋆ indicates the positions where the critical orbit returns
to the critical point.

Our approach is more abstract and more general and goes in the opposite direc-
tion: we start with an abstract kneading sequence and construct from it a dynamical
system and a Hubbard tree, and in particular extract core entropy. Of course, in
traditional cases where a Hubbard tree is defined, our tree coindices with the tra-
ditional tree (a Hubbard tree for a given kneading sequence is unique subject to
certain properties).

Definition 2.1 (Kneading sequence). A ⋆-periodic kneading sequence is an infinite
periodic sequence over the alphabet {0, 1, ⋆} where a ⋆ occurs exactly once within
the period, at the last position.

A kneading sequence is either a non-periodic infinite sequence over the alphabet
{0, 1}, or a ⋆-periodic kneading sequence.

The unique ⋆-periodic kneading sequence of period 1 is called the trivial kneading
sequence ⋆ = ⋆⋆⋆ . . . . Here and elsewhere, the overbar denotes a periodic repetition,
such as 101 = 1 01 01 01 . . .

By convention, every non-trivial kneading sequence starts with the symbol 1.

Remark. Kneading sequences occur naturally for the dynamics of angle doubling
on the circle; see for instance [BS1]. In this context, periodic kneading sequences
without ⋆ occur naturally, but for our purposes they are not relevant. On the
other hand, not all kneading sequences occur by angle doubling: those that do are
called “complex admissible”; they are classified in [BS2]. The more general knead-
ing sequences with respect to our definition are often called “abstract kneading
sequences”.

Definition 2.2 (Dynamical system associated to kneading sequence). Every knead-
ing sequence ν (⋆-periodic or not) has an associated dynamical system (Xν , σ) where
Xν is a collection of infinite sequences over the alphabet {0, 1, ⋆} and the dynamics
is given by σ, the (left) shift on sequences.

The collection Xν contains the sequence ν, called the critical value, and its σ-
preimage ⋆ν called the critical point. Moreover, it contains all postcritical points
νk := σk(ν) for k ≥ 0, as well as precritical points of the form w ⋆ ν, where w
is a finite word over {0, 1} (possibly empty). The number of iterations until a
precritical point is mapped to the critical value is called its depth, i.e |w| + 1.
Finally, Xν contains all sequences over {0, 1}, except those of the form wν: this
implies that the only preimage of ν is ⋆ν. We will refer to elements of the space
Xν as itineraries. We also call ν a precritical point; it has depth 0.

One can think of this space as a symbolic description of the Julia set.
We define an inverse distance between any two points in Xν in terms of the

difference function diff : Xν × Xν 7→ N ∪ ∞ where diff(a, b) is defined as the
position of the first difference in the sequences a, b, where an entry ⋆ counts as
“wild card symbol” that is not different from 0 or 1.

Note that the case diff(a, b) = ∞ can occur for distinct itineraries a, b iff the
kneading sequence ν is ⋆-periodic. This comes from the natural situation that the
Hubbard tree runs through Fatou components, but for our construction it causes
some technical problems; these are solved by introducing additional spaces called
Fatou intervals.
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Definition 2.3 (Fatou intervals). Let ν be a ⋆-periodic kneading sequence. For a
precritical point x (possibly equal to ν) and a sequence w′′ ∈ Xν ∩ A∞

d such that
diff(x,w′′) = ∞, we define the Fatou interval

[w′′, x]

as abstract interval homeomorphic to [0, 1] that is disjoint from Xν , except for the
endpoints.

We define the σ map on such an interval as a homeomorphism to the Fatou
interval [σ(w′′), σ(x)] (the image σ(x) is still a precritical point because ν is ⋆-
periodic). For a given kneading sequence ν we denote the space of all Fatou intervals
by Fν , with the convention Fν = ∅ if ν is non-periodic.

In [HS1] we construct the Hubbard tree for any non-trivial kneading sequence.
Formally, a tree is a topological space where any two distinct points a, b are con-
nected by a unique path [a, b]. A path is a subspace homeomorphic to [0, 1]. A point
disconnecting the tree into three or more components is called a branch point. A
point that does not disconnect the tree when removed is an endpoint. A tree is
finite if it has finitely many endpoints. Our Hubbard trees may well be infinite
trees.

Theorem 2.4 (The Hubbard Tree [HS1]). For any non-trivial kneading sequence ν,
there exists a unique topological space H(ν) ⊆ Xν ∪Fν with the following properties

(1) H(ν) is a tree that satisfies σ(H(ν)) = H(ν). It contains the critical point
and thus all postcritical points.

(2) Each endpoint of the tree is a postcritical point, i.e. one of the points σk(ν)
for k ≥ 0. There are two possibilities:

• the tree has finitely many endpoints; if κ is this number of endpoints,
then the endpoints are exactly the points ν, σν, σ2ν, . . . , σκ−1ν, and
no others. In this case, the tree is compact.

• The tree has infinitely many endpoints, and these are exactly the points
σkν for k ≥ 0.

In particular, the critical value ν is always an endpoint.
(3) σ is injective on every connected subset that does not contain the critical

point ⋆ν.
(4) The path [⋆ν, ν] ⊆ H(ν) contains a fixed point α := 1.
(5) The branch points of H(ν) are periodic or preperiodic sequences in Xν ∩

{0, 1}∞.
(6) If a, b ∈ H(ν) ∩Xν and c ∈ [a, b] ∩Xν , then diff(a, c) ≥ diff(a, b).
(7) For each a ∈ H(ν) ∩ Xν and every component K of H(ν) \ {a}, either K

contains a Fatou interval with a on its boundary, or there exist precritical
points an ∈ K with diff(an, a) < ∞ and diff(an, a) → ∞ (this implies that
the an converge to a in the topology of H(ν)). In particular, precritical
points are dense in H(ν) if ν is non-periodic.

(8) The path [⋆ν, ν] ⊂ H(ν) is called the critical path. It generates the entire
tree in the sense that

H(ν) =

∞
⋃

k=0

σk([⋆ν, ν]) .

The construction of the Hubbard tree in [HS1] is in fact done in reverse order: we
first construct the critical path out of the kneading sequence, and then the Hubbard
tree as its forward orbit as in (8).

3. Parameter space

Denote by K the space of kneading sequences (⋆-periodic or non-periodic). In
this chapter, we provide structure to this space that allows us to compare different
kneading sequences with their dynamics. We define, for e ∈ {0, 1}, the projections
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πe : K 7→ {0, 1}∞ as the mapping that replaces every ⋆ by e. We then define the
difference Diff : K×K 7→ N ∪ {+∞} by

Diff(ν, ν′) = max
e∈{0,1}

diff(πe(ν), πe(ν
′)).

The topology on K is defined by the neighborhod basis

Nk(ν) = {ν′ ∈ K : Diff(ν, ν′) ≥ k}.

Note that this is slightly different from diff(·, ·) defined on Xν : for Diff every ⋆ must
be replaced consistently by either 0 or 1, while for diff the ⋆ symbol acts as a wild
card that does not differ from 0 or from 1; for example diff(1⋆, 10 11 11 10 . . .) > 8,
while Diff(1⋆, 10 11 11 10 . . .) = 4.

Just as for the difference between itineraries, one might ask when Diff(µ, ν) = ∞
for two distinct kneading sequences µ, ν. This leads to the concept of bifurcation.

Definition 3.1 (Bifurcating ⋆-periodic kneading sequences). We say that a ⋆-
periodic kneading sequence ν = ν1ν2 . . . νp−1⋆ of period p is a bifurcation from pe-
riod q if q strictly divides p and there is a symbol e ∈ {0, 1} such that ν1ν2 . . . νp−1e
has exact period q (but not period lower than q).

It follows directly that if a sequence ν is a bifurcation from a sequence ν′, then
Diff(ν, ν′) = ∞. The same is true if ν and ν′ are bifurcations from a common base
sequence.

The converse is also true: if Diff(ν, ν′) = ∞ for ν, ν′ ∈ K, then at least one of
these sequences must contain a ⋆, so it is ⋆-periodic, and then the other sequence
must be periodic and thus ⋆-periodic as well. If ν0 = πe(ν) = πe(ν

′), then the
period of ν0 must divide the periods of ν and ν′ (possibly be equal to one of them),
and so ν and ν′ arise from ν0 by replacing certain symbols e by ⋆.

We distinguish between standard bifurcations and non-standard bifurcations:
the former are realized by complex parameters while the latter are not. More
details on them are given in [HS1, Proposition 4.3].

Internal addresses are a good way to bring structure to parameter space; see
[Sch].

Definition 3.2 (Internal address/upper and lower periodic sequence). For every
sequence ν ∈ K∪{0, 1}∞ starting with 1 we define its internal address I(ν) = S0 →
S1 → . . . as a finite or infinite, strictly increasing sequence of positive integers. They
are recursively defined as follows.

• S0 = 1, ν0 := 1;
• if ν is periodic and its exact period coincides with the exact period of νn,
then I(ν) is finite and its last entry is this period;

• otherwise, let Sn+1 := diff(ν, νn). Let νn+1 be the unique Sn+1-periodic
sequence in {0, 1, }∞ that first differs from νn at position Sn+1.

For a ⋆-periodic sequence ν with period p, there is exactly one choice for e ∈
{0, 1} such that the internal address of πe(ν) is finite with last entry Sn = p. We
will call this sequence πe the upper sequence of ν and denote it by ν+. For the other
choice e′ 6= e, the sequence πe′ (ν) is called the lower sequence and denoted by ν−
(in this case, the internal address is either infinite, or it is finite with last entry Sn

strictly dividing p).

For example, the kneading sequence ν = 1 10 has infinite internal address 1 −
3 − 5 − 7 − . . .. The kneading sequence η = 1101⋆ has internal address 1 − 3 − 5;
with η+ = 11010. Its lower sequence η− = 11011 has the infinite address 1 − 3 −
6− 8− 11− 13− 16− . . ..

The sequence µ = 101⋆ has finite internal address 1−2−4 and µ+ = 1011, while
µ− = 10 and I(µ−) = 1− 2. Note that µ is a bifurcation from 1⋆ with period 2.

Next we define characteristic points in Hubbard trees. These are well known to
have great significance for periodic orbits, but our definition applies (and is useful)
also for non-periodic points.
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Definition 3.3 (Characteristic point). A point τ ∈ H(ν) is called a characteristic
point if a single component of H(ν) \ {τ} contains the critical point and all points
on the orbit of τ (except τ itself when τ is periodic), but not the critical value.

Consequently, a characteristic point τ lies on the critical path of ν, and moreover
the path from ν to any point in the orbit of τ contains τ . The critical value ν is
always characteristic.

Next, we define a binary relation between kneading sequences; we will show in
Theorem 3.6 that this is a partial order with dynamical significance.

Definition 3.4 (Order of kneading sequences). For kneading sequences ν and µ,
we say that µ ≺ ν if H(ν) \ {ν} contains a characteristic point with itinerary µ
(resp. with itinerary µ+ in case that µ is ⋆-periodic). We denote by Hµ̃(ν) the
subtree of H(ν) spanned by the orbit of µ (resp. µ+).

We use the usual notation µ � ν ⇐⇒ (µ ≺ ν or µ = ν) and ν ≻ µ ⇐⇒ µ ≺ ν.
It is shown in [HS1, Lemma 3.14] that every periodic point x ∈ H(ν) that is

not an endpoint has a unique characteristic point on its periodic orbit, and all
characteristic points are on [α, ν].

We say that a point y ∈ H(ν) lies behind x if it is contained in a different
component of H(ν) \ {x} than ⋆ν (that is, if x separates y from ⋆ν).

3.1. The Inclusion Theorem. We say that a finite word w over {0, 1} is a word
in the Hubbard tree H(ν) if the precritical point w ⋆ ν is contained in H(ν).

Theorem 3.5 (Inclusion of trees). Let ν and µ 6= ν be two kneading sequences
such that H(ν) contains a characteristic itinerary µ̃ ∈ {µ, µ+, µ−} (the latter two
cases apply if µ is ⋆-periodic). Let Hµ̃(ν) ⊂ H(ν) denote the subtree spanned by µ̃.
Then we have the following:

(1) σ(Hµ̃(ν)) = Hµ̃(ν) ∪ [µ̃, ν].
(2) All branch points τ of H(µ) appear in H(ν) with the same itinerary and

relative ordering. If τ is a periodic branch point that is not a preimage of
µ−, then its number of branches is the same in both trees.

(3) If µ̃ = µ+, then H(ν) also contains µ− as characteristic point.
(4) If w⋆µ is a precritical point on H(µ), then there is a precritical point w ⋆ν

on Hµ̃(ν).
(5) This identification respects appearance on the critical path, and the order

along this path.
(6) Conversely, if w ⋆ ν is a precritical point on the critical path of H(ν) with

the property that it is never mapped behind µ̃ before reaching the critical
value, then there is a precritical point w ⋆ µ ∈ H(µ).

(7) Every precritical point on the critical path of ν has the form

w0e0Xl0w1e1Xl1 . . . Xls−1
ws ⋆ ν or Xl0w1e1Xl1 . . .Xls−1

ws ⋆ ν

where s ≥ 0, li ≥ diff(µ̃, ν)−1, ei ∈ {0, 1}, the word wi is from the Hubbard
tree of µ and Xl stands for the first l entries of ν (or more precisely the
itinerary of the local arm at ν).

(8) Conversely, for l = diff(µ̃, ν)− 1 and every s ≥ 0, there exists an injective
map from (s+1)-tuples of precritical points wi⋆ν lying on σl([µ̃, ν])∩ [⋆ν, µ̃]
that stay inside Hµ̃(ν) before reaching the critical value to precritical points
on the critical path of ν. These have the form

w0e0Xlw1e1Xl . . . Xlws ⋆ ν

for certain values e0, ..., es−1 ∈ {0, 1}.

This theorem applies in particular when µ ≺ ν (see Definition 3.4).

Proof. If x ∈ Hµ̃(ν), then by definition there are two points µ′, µ′′ on the orbit
of µ̃ with x ∈ [µ′, µ′′]. If ⋆ν 6∈ [µ′, µ′′], then σ sends [µ′, µ′′] homeomorphically to
its image, which is thus contained in Hµ̃(ν). Otherwise, σ([µ′, µ′′]) = [σ(µ′), ν] ∪
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[σ(µ′′), ν] = [σ(µ′), µ̃] ∪ [σ(µ′′), µ̃] ∪ [µ̃, ν] because µ̃ is characteristic. This proves
(1).

Since µ is characteristic, we have µ̃ ∈ [α, ν] and the preimage 1µ̃ ∈ [⋆ν, α].
Now we prove (4) for all precritical points on the critical path of H(µ). In [HS1,

Definition 2.4], these precritical points are constructed recursively by constructing
the unique precritical point on [⋆µ, µ] that first hits ⋆µ, then proceeding recursively
for the two sub-intervals on the two sides of the precritical point just constructed.
We show that precritical points with the same prefix words can be constructed on
the critical path of H(ν).

The base of the induction is provided by the first precritical point on [⋆µ, µ], say
w0 ⋆ µ. It is found by iterating [⋆µ, µ] as long as this iteration is injective, that is
until the sequences ⋆µ and µ have a different initial symbol after the iterated shift.
Note that after the first iteration, the image of [⋆µ, µ] is [µ, σµ].

Set k := diff(⋆µ, µ). Then the length of w0 equals diff(⋆µ, µ) − 1, and the
interval [⋆µ, µ] maps forward k− 1 iterations, after which the critical point ⋆ν cuts
the image interval into the two sub-intervals [σk−2µ, ⋆µ] and [⋆µ, σk−1µ]. Their
immediate images after one further (injective) iteration are [σk−1µ, µ] and [σkµ, µ].

By analogy in H(ν) we iterate the interval [1µ̃, µ̃] as long as this iteration is
injective, that is until the sequences 1µ̃ and µ̃ have a different initial symbol after
the iterated shift. Again, after one iteration we have the interval [µ̃, σµ̃], and we
iterate until the first difference is found. This happens after the same number of
iterations as in H(µ): this is clear if µ is non-periodic, and otherwise this follows
from the fact that [µ−, µ] ⊂ H(µ) does not contain precritical points. The precritical
point found in H(ν) has itinerary w0 ⋆ ν, and the two sub-intervals are [σk−2µ̃, ⋆ν]
and [⋆ν, σk−1µ̃]. Their immediate images are [σk−1µ̃, ν] = [σk−1µ̃, µ̃] ∪ [µ̃, ν] and
[σkµ̃, ν∗] = [σkµ̃, µ̃] ∪ [µ̃, ν].

The precritical point w0 ⋆ ν does not map during iteration to the part of H(ν)
behind µ before it lands on the critical value ν because it is “sandwiched” between
two points on the orbit of µ: initially we have w0 ⋆ν ∈ [1µ̃, µ̃], and this sandwiching
relation is preserved as long as the interval [1µ̃, µ̃] maps forward injectively, that is
until it maps over ⋆ν and the point w0 ⋆ ν is found.

For the inductive step, consider precritical points w1 ⋆µ and w2 ⋆µ on the critical
path of µ that construct the child itinerary w3 ⋆µ between them and let |w2| be the
higher depth (in an edge case, the point w1 ⋆µ may be µ). By inductive hypothesis,
we assume that the precritical points w1 ⋆ µ and w2 ⋆ µ have analogues w1 ⋆ ν and
w2 ⋆ ν in [⋆ν, µ̃] ⊂ H(ν) such that w1 ⋆ ν and w2 ⋆ ν do not map behind µ̃ before
reaching ν. In H(µ) we iterate the interval [w1 ⋆µ,w2 ⋆µ] injectively |w2|+1 times
until we have [σtµ, µ] (where t is the difference between the depths). The argument
is the same as for the base case, where we had t = 1. In order to find w3 ⋆ µ, we
iterate [σtµ, µ] as long as it is injective. Setting k := diff(⋆µ, σt−1µ), the number
of injective iterations of [σtµ, µ] is k − 2. After the last injective iteration, we land
at the interval [σt+k−2µ, σk−2µ] ∋ ⋆µ.

The new sub-intervals are [σk−2µ, ⋆µ] and [⋆µ, σt+k−2µ], and their immediate
images after one further iteration are [σk−1µ, µ] and [σt+k−1µ, µ].

By analogy in H(ν), we iterate [w1⋆ν, w2⋆ν] as long as it is injective. First, after
|w1|+1 iterations, we land at [ν, σ|w1|+1w2⋆ν]. Since by assumption, σ|w1|+1w2⋆ν is
a precritical point not behind µ̃, the interval [ν, σ|w1|+1w2⋆ν] contains [µ̃, σ

|w1|+1w2⋆
ν]. Iterating only the latter interval further, we obtain [σtµ̃, ν], where t is the same
as for H(µ). Since µ̃ is characteristic, this interval contains [σtµ̃, µ̃].

Again this interval can be iterated the same number of times in H(ν) as in H(µ)
and we once again obtain the two subintervals [σk−2µ̃, ⋆µ̃] and [⋆µ̃, σt+k−2µ̃]. Thus,
the precritical point w3 ⋆ ν has to lie between w1 ⋆ ν and w2 ⋆ ν. Since w3 ⋆ ν is
sandwiched first by the two precritical points and then by orbit points of µ, it does
not land behind µ̃ either before reaching the critical point. This concludes the proof
of (4) and (5) along the critical path.
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To show (4) and (5) for a precritical point anywhere on H(µ), simply note
that any precritical point on the Hubbard tree is an image of a precritical point
on the critical path (see Theorem 2.4 (8)); this implies that the order-preserving
identification of precritical points on the critical path extends to the whole tree.

To show (2) we distinguish two cases. If a branch point τ ∈ H(µ) is not an
endpoint of a Fatou interval, each branch contains a sequence of precritical points
that converge to τ . Hence, by (4), the itinerary τ also exists in H(ν). If the branch
point is periodic, then each local arm is an image of the two local arms of τ lying
on the critical path by [HS1, Corollary 3.15]. Since precritical points of µ lie dense
on them, their dynamics and in particular the number of branches at τ has to stay
the same.

The other case is that τ is an endpoint of a Fatou interval. Then µ must be a
bifurcation and τ is an iterated preimage of µ−. Let q be the period of µ−. Then the
subtree of H(ν) spanned by the points {σkpµ̃}k≥0 must contain precritical points
that coincide with µ− except at positions that are multiples of q and these points
thus have to converge to τ . A similar reasoning applies for preimages of µ−. These
arguments also yield (3).

To show (6), note that the critical path of H(ν) equals [µ̃, ν] ∪ [1µ̃, µ̃] ∪ [⋆ν, 1µ̃].
Therefore, every precritical point w ⋆ ν on the critical path of ν either lies on
[µ̃, ν] ∪ [⋆ν, 1µ̃], or it lies on [w1 ⋆ ν, w2 ⋆ ν] for some pair of precritical points as
discussed in the induction step above. The only way how they can be omitted
in the inductive step above is if they are mapped to [µ̃, ν] once we iterated to
[ν, σ|w1|+1w2 ⋆ ν] or once we iterated to [σtµ̃, ν].

So if w ⋆ ν is such an omitted precritical point, then w has to coincide with w1

or w2 one step before they are mapped to the new sub-intervals. When w1 ⋆ ν or
w2 ⋆ ν, respectively, would hit the critical point, there is a choice on which side
of it w ⋆ ν lands, and this choice is displayed by ei. After landing in [µ̃, ν], the
next diff(µ̃, ν)− 1 entries are determined because this is how long [µ̃, ν] is mapped
injectively. After that, the iterates of w ⋆ ν stay outside of Hµ̃(ν) and lie on the
same side of the critical point as the corresponding iterate of ν, or they land inside
of Hµ̃(ν) and the argument can be repeated. This shows (7).

We also see that for each precritical point w0 ⋆ µ on the critical path of µ, there
exists an interval of itineraries starting with w0 on the critical path of ν that is
homeomorphically mapped onto [ν, µ̃] under σ|w0|+1. After l further iterations, this
interval is mapped to [σlν, σlµ̃] ∋ ⋆ν. This interval then contains precritical points
on the critical path that also exist in H(ν) and the argument can be repeated for
w1. This yields that every representation in (8) is assumed by a precritical point
of ν, the map is injective because the positions of the words Xl indicate each time
the point enters [µ̃, ν]. �

Theorem 3.6 (Order among kneading sequences). The relation ≺ is a strict partial
order among kneading sequences.

Proof. Clearly, ν ≺ ν does not hold because itineraries are unique in a Hubbard
tree and ν+ does not occur on the critical path of ⋆-periodic kneading sequences
by construction. Thus, it suffices to prove transitivity of the relation. Let ν1, ν2, ν3
be three arbitrary kneading sequences satisfying ν1 ≺ ν2 and ν2 ≺ ν3. We wish to
conclude that ν1 ≺ ν3.

First suppose that ν2 is not a standard bifurcation of ν1. Then ν1+ is a limit point
of precritical points on the critical path of ν2. By Theorem 3.5, every precritical
point of ν2 can be found on the critical path of ν3, hence, ν1+ lies on the critical
path of ν3.

Now let ν2 be a standard bifurcation of period p with base sequence ν1 which
has period q. If p/q > 2, then ν1 is a branch point and thus also appears in H(ν3)
by Theorem 3.5 (2). If p = 2q, then [ν+2, σ

qν+2] is mapped onto itself under σq

with reverted orientation. Thus, ν1 appears as fixed point.
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Since none of the precritical points also found in H(ν2) map behind ν2 (resp.
ν2+) in H(ν3), the sequence ν1+ does not map behind ν2+ either. Thus since ν1+
is characteristic in H(ν2), it therefore has to be characteristic in H(ν3), too. Hence,
ν1 ≺ ν3. �

3.2. Extended Hubbard trees. We say two kneading distinct sequences ν and µ
are comparable if ν ≺ µ or µ ≺ ν. In that case, the inclusion theorem tells us that
the Hubbard tree of the smaller sequence is in some sense included inside the tree
of the larger sequence, so one cne could interpret the partial order “≺” on kneading
sequences as subset relation “⊂” on Hubbard trees.

However, if the sequences are not comparable, we can extend each tree so as
to contain a point whose itinerary is the other kneading sequence. To do this, let
ν be a kneading sequence and µ ∈ Xν ∩ {0, 1}∞ \ {ν+} be an itinerary. Just as
for the critical path [⋆ν, ν] (see [HS1, Section 2.3]), we can construct the interval
[µ, ν] recursively: first by determining the first precritical point w ⋆ ν between the
itineraries µ and ν, and by repeating the step between neighboring itineraries if their
symbolic difference is finite, otherwise by adding a Fatou interval. After taking the
closure, one obtains a linearly ordered set [µ, ν] of itineraries (and possibly Fatou
intervals) homeomorphic to the unit interval [0, 1].

Definition 3.7 (Extended Hubbard tree). Let ν be a kneading sequence and µ ∈
Xν ∩{0, 1}∞ \{ν+}. We define the Hubbard tree of ν extended to µ as the following
set in Xν ∪ Fν :

H(ν)[µ] := H(ν) ∪
∞
⋃

n≥0

σn([µ, ν]) .

Proposition 3.8. The set H(ν)[µ] is σ-invariant. If µ ∈ H(ν), then H(ν)[µ] =
H(ν). If µ is (pre)periodic, then H(ν)[µ] is a tree.

Proof. The set is invariant by construction. Since the construction of the interval
[µ, ν] is recursive, if two points of [µ, ν] appear in H(ν), so do all points between it.
So if µ lies already in the tree, nothing new is created. Each of the sets σn([ν, µ])
contain at most one interval not already in H(ν), which goes from a postcritical
point to an orbit point of µ. And each interval added adds at most one branch to
the tree. Since µ has a finite orbit, H(ν)[µ] is a tree. �

The statement should also hold for µ that are neither periodic nor preperiodic,
but the result stated suffices for our purposes.

3.3. The Branch Theorem. We will need a technical lemma from [BS1] which
makes use of the symbolic notion of ρ-functions: For every infinite sequence ν =
1ν2.... ∈ {0, 1}∞ define ρν(n) := inf{k > n : νk 6= νk−n} and orbρ(k) :=
{k, ρ(k), ρ2(k), ...}.

Lemma 3.9 (Combinatorics of ρ-orbits). Let ν = 1ν2.... ∈ {0, 1}∞ and set ρ = ρν .
If m ∈ orbρ(1) and s < m < ρ(s), then m ∈ orbρ(ρ(m− s)− (m− s)).

Proof. See [BKS, Lemma 4.3(1)]. �

As explained in [BKS], one can interpret the ρ-function in the following way:
The depth of the first precritical point between ν1...νs−1 ⋆ ν and ν equals ρ(s).
Consequently, ρ(m− s)− (m− s) is the depth of the first precritical point between
νm−s and ν. And orbρ(1) simply is the internal address of ν. We can thus restate
the lemma as:

Lemma 3.10 (Combinatorics of ρ-orbits, restated). Let m be an element of the
internal address of a non-periodic kneading sequence ν. Moreover, let ζ ∈ H(ν) be
a precritical point of depth s < m such that [ζ, ν] is mapped injectively under σm.
Then ρm ∈ [νm−s, ν], where ρm is the precritical point of depth m that coincides
with ν for more than m entries. For ⋆-periodic kneading sequences, the statement
still holds if m is an element of the internal address of ν−.
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Lemma 3.11 (Monotonicity of internal address). Let ν be a kneading sequence
whose internal address starts with S1 − S2 − . . .− Sn − Sn+1 for some n ≥ 1. Let
µ be the ⋆-periodic sequence with internal address S1 − S2 − . . .− Sn. Then µ ≺ ν.

Moreover, if ν is ⋆-periodic and the internal address of its lower sequence ν−
starts with S′

1 −S′
2 − . . .−S′

m, then µ′ ≺ ν where µ′ is the ⋆-periodic sequence with
internal address S′

1 − S′
2 − . . .− S′

m.

Proof. Let us first assume that ν is non-periodic. By the construction of the internal
address, the critical path of ν contains precritical points ρ1 = ⋆ν ≺ ρ2 ≺ . . . ≺ ρn ≺
ρn+1 ≺ ν such that ρj has depth Sj and ρj+1 is the precritical point of lowest depth
between ρj and ν.

Set p = Sn. Let µ be the p-periodic sequence that coincides with ν for at least
p entries. Assume that µ does not lie on the critical path. Extend the Hubbard
tree of ν to µ. By definition of the internal address, we have ρn+1 ∈ [µ, ν]. Let
τ ∈ [ρn, ρn+1] be the branching point where µ branches off. The interval [µ, ρn] is
injectively mapped by σp to [µ, ν], so the point σpτ lies on this interval. It does not
lie on [τ, µ] though, because this would violate expansivity of the interval [τ, σpτ ]
which must contain a precritical point. Hence, σpτ ∈ [τ, ν].

The interval [ρn, ν] can be mapped injectively under σp. If ρn lies between ν and
σpν, then this mapping is expanding and there must be a fixed point on [ρn, ν].
Since this point coincides with ν for at least Sn entries, it has to be µ.

Otherwise, σpν branches off at σpτ and σ2pτ ∈ [σpτ, σpν]. Let Y denote this
branch at σpν. While the interval [σpν, σ2pτ ] is injective under σp, all further σp-
iterates of τ lie in Y . Since there must lie a precritical point on [σpν, σ2pτ ], there
must exist a precritical point ζ ∈ Y of depth s < p. Moreover, we can choose ζ
as close as possible to ν such that [ζ, ν] is injective under σp. Hence, the subtree
spanned by the tree points ζ, ν and τ will be homeomorphically mapped by σp to
the subtree spanned by the points σp−sν, σpν, σpτ . We conclude that σp−sν ∈ Y
and by Lemma 3.10 this implies ρn ∈ [σp−s, ν], but this is impossible because ρn
already lies on [⋆ν, τ ].

Hence, we can conclude that µ lies on the critical path. By [HS1, Lemma 3.14],
an iterate of µ is characteristic. Since the orbit point of µ closest to ν is µ itself,
we conclude µ ≺ ν.

For the periodic case we have precritical points ρ′1 = ⋆ν ≺ ρ′2 ≺ . . . ≺ ρ′n ≺
ν− ≺ ν such that ρ′j has depth S′

j and ρ′j+1 is the precritical point of lowest depth
between ρj and ν−. The rest follows as before, as everything behind ν− consists of
Fatou intervals. This shows the second part of the lemma. Finally note that the
internal addresses of ν− and ν coincide as long as the entries are smaller than the
period, so the first part of the lemma also holds for ⋆-periodic ν. �

Theorem 3.12 (The Weak Branch Theorem). Let ν and ν′ be two kneading se-
quences such that k := Diff(ν, ν′) < ∞. Then there exists a ⋆-periodic kneading
sequence µ such that

(1) µ � ν and µ � ν′

(2) Diff(µ, ν) ≥ k and Diff(µ, ν′) ≥ k.

Remark. We call the theorem the weak branch theorem, because the µ found may
not be maximal. One can show that for each non-comparable ν and ν′ there exists
a ⋆-periodic or preperiodic kneading sequence µ that satisfies (1) and (2) hold but
no sequence µ′ ≻ µ satisfies (1). This has been shown for ⋆-periodic kneading
sequences in [BS1, Theorem 8.16].

Proof. Let χ and χ′ be the lower or upper sequences of ν and ν′, respectively, such
that k = Diff(ν, ν′) = diff(χ, χ′) (with the convention that χ = ν if ν is non-periodic
and same for ν′). Since k < ∞, the internal addresses of χ and χ′ must differ at
some point. Without loss of generality, we may choose n such that the first n entries
S1 − . . .− Sn of the internal addresses of χ and χ′ are the same but Sn is the last
entry in the internal address of χ or S′

n+1 < Sn+1, where Sn+1 and S′
n+1 are the
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(n+ 1)-th entries of the internal address of ν and ν′, respectively. By definition of
the internal address, we then have k = diff(χ, χ′) = S′

n+1.
Now let µ+ be the periodic sequence with internal address S1 − . . . − Sn and

set µ to be the corresponding kneading sequence. By Lemma 3.11, the sequence µ
satisfies (1). Moreover, µ = ν or Diff(µ, ν) ≥ diff(µ+, χ) = Sn+1 > k. And we also
have Diff(µ, ν′) ≥ diff(µ+, χ

′) = S′
n+1 = k. This shows (2). �

For the sake of readability, we will no longer point out the difference between a
⋆-periodic kneading sequence µ in parameter space and its representation as upper
sequence µ+ in the dynamics of a Hubbard tree for the rest of the paper when there
is no confusion.

4. Core entropy

Definition 4.1 (Core entropy). For a kneading sequence ν, let Nν(n) denote the
number of precritical points of depth n on the critical path [⋆ν, ν], and let log+(x) :=
max(log x, 0) for x ≥ 0. We define core entropy of ν as follows:

h(ν) := lim sup
n→∞

1

n
log+(Nν(n)) .

We understand log as the natural logarithm; other choices of logarithm would
change the value by a fixed constant.

If ν is ⋆-periodic or preperiodic so that H(ν) is a finite tree, then this definition
coincides with all other definitions of core entropy such as via the eigenvalue of the
(finite) transition matrix [DS, Lemma 2.3].

Lemma 4.2 (Basic properties of core entropy). Core entropy of a kneading se-
quence ν has the following properties:

(1) 0 ≤ h(ν) ≤ log 2.
(2) Nν(n) ≤ 2n−2 for n ≥ 2.
(3) If µ ≺ ν, then h(µ) ≤ h(ν) and even Nµ(n) ≤ Nν(n) for all n.

Proof. Recall that every interval in H(ν) that does not contain the critical point is
mapped injectively. If n1 is the lowest depth of precritical points on the interior of
the critical path, then n1 ≥ 2 and the precritical point of depth n1 must be unique.
It divides the critical path into two subintervals. Each will be iterated injectively
at least n1 +1 times, so in each of the subintervals there exists a unique precritical
point of next higher depth (which may be different on the two subintervals).

In each subdivision step, the number of subintervals doubles, while the depth
increases by one or more. Therefore, N(n) ≤ 2n−2, and this implies the upper
bound on h(ν).

The final claim follows directly from Theorem 3.5 (4): every precritical point
w⋆µ on the critical path of H(µ) has an analogue w⋆ν on the critical path of H(ν)
of equal depth, so for each depth the critical path in H(ν) has at least as many
precritical points as the critical path in H(µ). In other words, Nµ(n) ≤ Nν(n) for
all n, and this implies the claim on entropy. �

Remark. The log 2 bound also simply follows from the fact that there are at most
2n−1 precritical points of depth n that can be formed with the alphabet {0, 1}.
However, the proof presented here has the advantage that it generalizes to higher
degrees; a systematic discussion can be found in [HS2].

The upper bound is sharp and assumed by a unique kneading sequence, as fol-
lows.

Proposition 4.3 (Entropy log 2). 10 is the unique kneading sequence with core
entropy log 2. More precisely, if ν 6= 10 and s is the position of the second 1 in a
kneading sequence ν, then h(ν) ≤ log 2− 2−s/s.
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Proof. One can check that for ν = 10 all possible 2n−2 precritical points of depth
n will be constructed on the critical path, hence its core entropy is log 2. (It is well
known that this kneading sequence is realized by the real quadratic polynomial
x 7→ x2 − 2 on [−2, 2] or equivalently by x 7→ 2x2 − 1 on [0, 1].)

However if ν 6= 10, let s ≥ 2 be the position of its second entry equal to 1 and
define the word w = 10 . . .0 of length s. Then all 2s−1 + 1 precritical points of
depths at most s occur on the critical path of ν, but the precritical point w ⋆ ν
of depth s + 1 does not. Moreover, we claim that the sequence w never occurs
anywhere in the itinerary of any precritical point on the critical path before the
⋆ symbol. This is because precritical points are created by comparing ν with an
iterate of ν, but the former always starts with 1 but does not start with the word
w.

This claim implies that if we divide a word of length n of a precritical point on
the critical path into ⌈n/s⌉ subwords of length at most s, then there are at most
2s − 1 possibilities to choose each subword. Thus,

N(n+ 1) ≤ (2s − 1)n/s+1

and

h(ν) ≤ lim
n→∞

1

n
log
(

(2h − 1)n/s+1
)

= log(2s − 1)/s < log 2− 2−s/s .

�

4.1. Core entropy on the Hubbard tree. We have defined core entropy only
using precritical points on the critical path. A different possibility would be to
define NH(n) as the number of precritical points on the entire Hubbard tree H(ν).
This leads to the alternate definition

hH(ν) := lim sup
n→∞

1

n
log+(NH(n)).

We obviously have 0 ≤ h(ν) ≤ hH(ν) ≤ log 2. If the Hubbard tree is finite,
then h = hH , see Lemma 5.2. However, if the tree is infinite, it can happen that
h < hH . As explained in [HS1, Example 7], a kneading sequence where every finite
word w over {0, 1} occurs somewhere in the sequence has the property that w ⋆ ν
is a precritical point on the Hubbard tree, so hH(ν) = log 2. On the other hand,
h(ν) < log 2 by Proposition 4.3. There are infinitely many kneading sequences with
hH(ν) = log 2, while h(ν) may be arbitrarily small positive. This and other possible
definitions of core entropy are discussed in [HS2].

5. Estimates on precritical points

Definition 5.1 (Special classes of kneading sequences). We define the following
classes of kneading sequences.

• A sequence ν is called recurrent if it is not periodic but diff(ν, σnν) is
unbounded. Otherwise, ν is called non-recurrent.

• Let κ(ν) ∈ N ∪ {+∞} be the number of endpoints of the Hubbard tree
H(ν). We say that ν is tree-finite if κ(ν) < ∞, and tree-infinite otherwise.

• we say that ν is uniformly expanding with parameter λ ∈ N if, whenever ρ
and ρ′ are two precritical points on the critical path with equal depth n,
then the image of [ρ, ρ′] after n+ λ iterations contains the critical path.

In our definition, we consider periodic sequences as non-recurrent, while prepe-
riodic sequences are clearly non-recurrent.

Lemma 5.2 (Finite trees). If ν is tree-finite, then H(ν) =

κ(ν)−1
⋃

k=0

σk[⋆ν, ν] and

hH(ν) = h(ν).
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Proof. The finite union contains the paths [ν, σν], [σ(ν), σ2(ν)], . . . , σκ−1(ν), σκ(ν)]
connecting all endpoints with each other. Hence, they cover the entire Hubbard
tree. Moreover, we conclude that every precritical point on the Hubbard tree of
depth n is the image of a precritical point on the critical path of depth at most
n+ κ− 1. Hence,

(5.1) NH(n) ≤
κ−1
∑

i=0

N(n+ i).

By definition of core entropy, we have for all ε > 0 and sufficiently large n the
bound N(n) ≤ e(h(ν)+ε)n. The inequality above then yields hH(ν) ≤ h(ν) + ε and
hence hH(ν) = h(ν). �

Lemma 5.3 (Monotonicity of κ). If µ ≺ ν, then κ(µ) ≤ κ(ν).

Proof. Since all branch points of H(µ) are also branch points with at least as many
branches in H(ν) by Theorem 3.5 (2), the Hubbard tree of µ cannot have more
endpoints than H(ν). �

Remark. It turns out that if κ(ν) = ∞, then ν is maximal in the sense that there
is no ν′ ≻ ν: whenever ν′ ≻ ν and both are non-periodic, then it is easy to see that
there exists a ⋆-periodic µ with ν′ ≻ µ ≻ ν; then κ(ν) ≤ κ(µ) < ∞.

In the following lemma, and elsewhere when there is no danger of confusion, we
write for simplicity h = h(ν), κ = κ(ν), and λ = λ(ν).

Lemma 5.4 (Bound for uniformly expanding sequences). If ν is uniformly ex-
panding with parameter λ, then N(n) ≤ eh(n+λ) for all n. Moreover, NH(n) ≤
κeh(n+λ+κ).

The last claim is of course meaningless if κ = ∞.
In the proof, we need the following concept: a closed interval I ⊂ H(ν) is an

n-horseshoe for σk if I contains n closed sub-intervals such that σk maps each
of them onto a set that contains I. It is well known that this implies that the
topological entropy of σ, hence the core entropy of ν, is then at least (log n)/k [LM,
Theorem A].

Proof. By definition, the interior of the critical path containsN(n) precritical points
of depth exactly n. These N(n) precritical points divide the critical path into
exactly N(n) + 1 different intervals. By definition of uniform expansivity, each of
these is sent by σn+λ to an image that contains the critical path. This means that
the critical path itself is an N(n) + 1-horseshoe for σn+λ, which implies

h = h(ν) ≥
log(N(n) + 1)

n+ λ
and thus N(n) < eh(n+λ) .

Using (5.1) in Lemma 5.2, we then have

NH(n) ≤
κ−1
∑

i=0

N(n+ i) ≤
κ−1
∑

i=0

eh(n+λ+i) ≤ κeh(n+λ+κ) .

�

We need to introduce one more relevant kind of kneading sequences.

Definition 5.5 (Renormalizable kneading sequence). A kneading sequence ν is
called p-renormalizable (with period p ≥ 2) if the subtree K ⊂ H(ν) spanned by
the points σkp(ν) for k ≥ 0 has the following properties:

(1) it contains more than one point, but not all of H(ν);
(2) it is invariant under σp in the sense that σp(K) ⊂ K;
(3) there is no q < p such that K is invariant under σq;
(4) finally, if ν is ⋆-periodic, then its period is greater than p.

In this case, we callK the little Hubbard tree of ν (with respect to p-renormalization).
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By definition, the subtree K is uniquely determined in terms of ν and p whenever
it exists (because its endpoints are). We will see later that ⋆ν ∈ σp−1(K), so we
can change the invariance in (2) to σp(K) = K.

Note that K cannot contain ⋆ν and thus not the entire critical path: if it did,
it would contain all sequences σkp(⋆ν) for k ≥ 0 by σp-invariance, so σ(K) would
contain all sequences σkp(ν), thus σ(K) ⊇ K; this implies by induction σp(K) ⊇
σ(K) ⊇ K ⊇ σp(K), hence σ(K) = K. But if K contains the critical path and is
σ-invariant, it must contain the entire Hubbard tree by construction, and this is
excluded for renormalization.

Lemma 5.6 (Renormalizable subtree). Let ν be a kneading sequence and suppose
that H(ν) contains a proper connected subtree K0 that contains the critical value
and at least one other point, and that satisfies σp(K0) ⊂ K0 for some p ≥ 2. Then
ν is q-renormalizable for some q dividing p, except possibly if ν is ⋆-periodic with
period p.

Proof. We may assume that for t ∈ {1, . . . , p − 1}, the intersection K0 ∩ σt(K0)
is empty or consists of a single point (otherwise iterate this intersection until it
contains the critical value and replace K0 with it; such an iterate exists because
the intersection consists of more than one point and thus contains either a Fatou
interval or a precritical point). This intersection point, if it exists, cannot be the
critical value because the latter is an endpoint of H(ν).

By σp-invariance, K0 contains all points σkp(ν) for k ≥ 0. Every interval of
the form [σkpν, σ(k+1)pν] ⊂ K0 is mapped injectively at least p − 1 times because
otherwise an iterate σt(K0) with t < p would contain the critical value. In other
words,

σp([σkpν, σ(k+1)pν]) ∈
{[

σ(k+1)pν, σ(k+2)pν
]

,
[

ν, σ(k+1)pν
]

∪
[

ν, σ(k+2)pν
]}

.

Let K be the subtree spanned by the points σkpν for k ≥ 0. Then we conclude that
σp(K) ⊂ K. It clearly satisfies properties [[1]] and [[2]], and it satisfies [[3]] when
we let q be the least iterate such that σq(K) ⊂ K; clearly q divides p. Finally, if ν
is ⋆-periodic with some period p′, then we have p′ ≥ p ≥ q because K0 is disjoint
from its p− 1 iterates (except possibly for a single point that is not ν). Since the
case that ν has period p is excluded by hypothesis, we must have p > q, so item [[4]]
is also satisfied and thus ν is q-renormalizable in the sense of Definition 5.5. �

Lemma 5.7 (Intersection of little Hubbard tree). Let ν be p-renormalizable and
let K be its little Hubbard tree. For t ∈ {1, . . . , p− 1}, the intersection K ∩ σt(K)
is empty or consists of a single point.

Proof. If the statement does not hold, then K∩σt(K) contains an interval (possibly
a Fatou interval) and thus a precritical point. Hence, there exists s ≥ 1 such that
σs(K ∩ σt(K)) contains the critical value. Set

(5.2) K1 := σs(K ∩ σt(K)) ⊂ σs(K) ∩ σt+s(K) .

Since K1 is also p-invariant, we have K ⊂ K1. Let r ∈ {s, s+ t} be an integer that
is not a multiple of p (this is possible because t is not divisible by p). Iterating
then yields K ⊂ K1 ⊂ σr(K) ⊂ σrp(K) ⊂ K: the first inclusion was just stated,
the second is in (5.2), the third follows from K ⊂ σr(K) by iteration, and the last
follows from σp(K) ⊂ K. Together, this implies K = σr(K) in contradiction to the
fact that ν is p-renormalizable and r is not a multiple of p. �

Non-recurrence and tree-finiteness are independent properties: both finite and
infinite trees can be recurrent or not (see [HS1, Section 4.2] for examples). The
same does not hold for λ-finiteness as the following two lemmas point out (where
we treat the non-periodic and periodic case separately).
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Lemma 5.8 (Non-periodic uniformly expanding sequences). Every kneading se-
quence that is non-recurrent non-periodic and non-renormalizable is uniformaly ex-
panding.

Proof. Since ν is non-recurrent and precritical points are dense, and since ν is an
endpoint of H(ν), there exists a precritical point q 6= ν such that q ∈ [ν, νi] for
every i > 0; choose q so that it has minimal depth, say k. We claim that there is a
a number λ such that σλ([ν, q]) ⊃ [⋆ν, ν].

The map σk sends [ν, q] homeomorphically to [νk, ν] ⊃ [q, ν]. Thus the sets
Kn = σkn([ν, q]) are monotonically increasing. If ⋆ν ∈ Kn for some n, then the
claim is proved.

The other case to consider is that ⋆ν 6∈ Kn for all n. Let K be the closure of
⋃

n≥0 Kn. This set is invariant under σ
k by construction, it contains ν but not only

ν. This implies that either ⋆ν 6∈ K, or ⋆ν is an endpoint of K. But ⋆ν is never an
endpoint of H(ν) when ν contains an entry 0, which is always the case when ν is
non-periodic. By Lemma 5.6 it follows that ν is renormalizable with some period
k′ dividing k.

Now we show that ν is uniformly expanding with parameter λ. Let [ρ, ρ′] ⊂ H(ν)
be an interval that is bounded by two precritical points of equal depth n. There
must be a precritical point of depth less than n on [ρ, ρ′]. Thus there is a postcritical
point νt 6= ν such that σn([ρ, ρ′]) ⊃ [ν, νt] ⊃ [ν, q], hence σn+λ([ρ, ρ′]) ⊃ σλ([ν, q]) ⊃
[⋆ν, ν]. This proves the lemma. �

Lemma 5.9 (Periodic uniformly expanding sequences). Every ⋆-periodic kneading
sequence ν is uniformly expanding unless it is q-renormalizable such that q is a
proper divisor of the period of ν. Stronger yet, there is a λ′ ∈ N such that for every
νk the image of [ν, νk] after λ′ iterations contains the entire Hubbard tree.

Proof. The proof is similar to the one before. Let p be the period of ν. If for all
postcritical points νk with k ∈ {1, .., p− 1}, there exists ik such that σik([ν, νk]) =
H(ν), then we can take λ(ν) = maxk ik: if [ρ, ρ′] is an interval bounded by two
precritical points of equal depth n, then σn([ρ, ρ′]) ⊃ [ν, νk] for some k > 0, and

σn+λ([ρ, ρ′]) ⊃ σλ−ik(σik ([ν, νk])) ⊃ σλ−ik (H(ν)) = H(ν) .

The other case is that there exists k ∈ {1, .., p− 1} such that no iterate of [ν, νk]
ever covers the Hubbard tree. Since σp([ν, νk]) ⊃ [ν, νk], the sets Kt := σtp([ν, νk])
are increasing and bounded by postcritical points, of which there are only finitely
many, so there is a KT such that KT+1 = KT , hence σp(KT ) = KT .

If any two of the p − 1 sets KT , σ(KT ), . . . , σ
p−1KT intersect in more than a

point, we look instead at the iterated images of the intersection, as argued in
previous proofs. Thus, we find a set K0 that is bounded by postcritical points and
contains ν and at least another point, and so that σp(K0) = K0) and K0 intersects
any of its p− 1 iterates in at most one point.

Our next claim is that two of the setsK0, σ(K0), . . . , σ
p−1(K0) are identical. This

follows from the tree structure of H(ν) and the fact that each of these p − 1 sets
contains at least two postsingular points, while the pairwise intersection contains
at most one point.

Therefore there is an s ∈ {1, . . . , p− 1} such that σs(K0) = K0 = σp(K0). This
implies that σq(K0) = K0 for q := gcd(s, p) < s. By Lemma 5.6, we conclude that
ν is q′-renormalizable, where q′ divides q and therefore p. �

The previous two lemmas thus provide an upper bound on N(n) by Lemma 5.4.
The next lemma shows the existence of a lower bound.

Lemma 5.10 (Lower bound for periodic sequences). Let ν be a non-renormalizable,
⋆-periodic kneading sequence. Then there exists c > 0 such that N(n) ≥ ceh(ν)n for
all n.
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Proof. Divide the Hubbard tree of ν into M edges e1, ..., eM formed by the critical
point, postcritical points and branching points. The dynamics of the tree can then
be described by a transition matrix A. As we mentioned previously, the core entropy
ν equals the logarithm of the leading eigenvalue λ1 of A. Let λ2, ..., λM denote
the other eigenvalues, counted with multiplicity. Since ν is non-renormalizable,
Lemma 5.9 tells us that that there exists t ∈ N such that the σt image of every of
the M edges equals the entire Hubbard tree. In other words, At is a positive matrix,
so A is primitive. The Perron–Frobenius theorem then tells us that |λi| < λ1

for i = 2, ...,M . By bringing A into Jordan-normal-form we see that for every
j, k ∈ 1, ...,M there exists constants c1, ..., cM with c1 > 0 such that for every n

(5.3) (An)kj ≥ c1λ
n
1 + c2n

Mλn
2 + ...cMnMλn

M .

Let ek be the edge on the critical path with endpoint ⋆ν. Then (An)kk counts the
number of precritical points of depth n+1 on ek, which is less than N(n+1), thus
proving the claim. �

6. Hölder continuity — the non-renormalizable case

Our first lemma on Hölder continuity has no prerequisite on ν.

Lemma 6.1 (Hölder continuity from above). Suppose that a kneading sequence ν
with entropy h = h(ν) > 0 has a constant C > 0 so that for all n we have the bound
NH(n) ≤ Cehn. Then for all ν′ ≻ ν the entropy difference satisfies

0 ≤ h(ν′)− h(ν) ≤ 2Ce−hk

where k := diff(ν, ν′).

Proof. We count the precritical points of generation n on the critical path of H(ν′).
Consider one such point and let w be its itinerary; this is a finite word of length n.
Then by Theorem 3.5 (7)

(6.1) w = w0e0Xl0w1e1Xl1 . . .Xls−1
ws

where s ≥ 0, li ≥ k − 1, ei ∈ {0, 1}, Xl stands for the first l entries of ν and wi

is a word from the Hubbard tree of µ where we allow w0e0 to be empty. Based on
this representation, we are going to give an upper bound on the number of possible
words of fixed length n.

There are less than
(

n
s

)

choices for the positions of the words Xl0 , ..., Xls−1
in the

word w. For each choice, the lengths |wi| of the words w0, ..., ws and the positions of
the ei are determined. For the s entries e0, . . . , es−1, we have 2

s choices. Moreover
we have the bounds NH(|wi|) ≤ Ceh|wi| and

∑s
i=0 |wi| ≤ n− ks.

These observations allow us to give an upper bound for Nν′(n):

Nν′(n) ≤
n
∑

s=0

(

n

s

)

2s
s
∏

i=0

NH(|wi|) ≤
n
∑

s=0

(

n

s

)

2sCs+1eh(n−ks)

= Cehn
n
∑

s=0

(

n

s

)

(

2Ce−hk
)s

= Cehn
(

1 + 2Ce−hk
)n

.

This yields

1

n
logNν′(n) ≤ h+ log(1 + 2Ce−hk) + logC/n ≤ h+ 2Ce−hk + logC/n

and the claim follows by taking the lim sup. �

The converse statement Theorem 3.5 (8) yields lower bounds on the number of
precritical points instead that show that the Hölder exponent is optimal:

Theorem 6.2 (Optimal exponent for Hölder continuity). Let ν be a ⋆-periodic,
non-renormalizable kneading sequence with positive core entropy. Then core entropy
is not locally Hölder continuous with any exponent greater than h(ν).
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We should point out that requiring positive entropy is obsolete by Lemma 7.4.

Proof. By Lemma 3.11, there exists infinitely many sequences ν′ ≻ ν. For each
of them, set k := Diff(ν′, ν) = diff(ν′, ν+). Divide H(ν) into edges formed by the
critical value, postcritical points and all branching points and let I be the edge
on the critical value with endpoint ⋆ν. Note that for every precritical point on I
there exists an analogue in σk−1([ν, ν′])∩ [⋆ν′, ν] which does not leave Hν(ν

′) before
reaching the critical point by Theorem 3.5 (6). By Theorem 3.5 (8), for every choice
of s ≥ 0 we have an injective map from (s+1)-tuples of precritical points wi ⋆µ ∈ e
to precritical points on the critical path of ν′, which have the form

w0e0Xlw1e1Xl . . . Xlws ⋆ ν.

for some suitable e0, ..., es−1 ∈ {0, 1} and l = k − 1. We now want to count those
precritical points. For a word of length n of the above form we claim that there are
at least

(

n
s

)

/2 ways to choose the positions of the s subwords Xl when n is large:

There are
(

n
s

)

ways to choose s positions in a word of lenght n, however they need
to be at least s + 1 positions apart from each other. As s is fixed and n grows,
this scenario becomes likely, showing the claim. Let N I(n) count the number of
precritical points of depth n on I. By Lemma 5.10, or more precisely inequality
(5.3), we obtain c > 0 such that N I(n) ≥ ceh(ν)n for all n. A calculation like in the
previous lemma yields:

Nν′(n) ≥
1

2

n
∑

s=0

(

n

s

) s
∏

i=0

NI(|wi|) ≥
1

2

n
∑

s=0

(

n

s

)

cs+1eh(ν)(n−ks)

=
c

2
eh(ν)n

n
∑

s=0

(

n

s

)

(

ce−h(ν)k
)s

=
c

2
eh(ν)n

(

1 + ce−h(ν)k
)n

.

In terms of entropy, this then implies h(ν′) ≥ h(ν)+ce−h(ν)k and thus core entropy
is not Hölder continuous for any exponent greater than h(ν). �

Lemma 6.3 (Characteristic branch point). Let ν be a non-recurrent kneading se-
quence that is not a bifurcation. Then there exists a characteristic periodic sequence
q that separates ν from its entire forward orbit, and there exists a natural number
r so that the following condition is satisfied: for every (pre)periodic characteristic
sequence µ on [q, ν] there exists a characteristic (pre)periodic sequence µ′ with the
following properties:

(1) q � µ′ � µ;
(2) q separates µ′ from its entire forward orbit;
(3) diff(µ′, ν) ≥ diff(µ, ν) − r − 1.

Proof. On the critical path [⋆ν, ν] of H(ν), let b be the branch point closest to ν;
if there is no such branch point, let b = ⋆ν. Non-recurrence implies that ν has a
neighborhood without branch points (there are only finitely many precritical points
of given depth, so branches that branch off from the critical path very close to ν
must have endpoints that are postcritical and close to ν). Therefore, [b, ν] is a
non-trivial interval on the critical path without branch points on its interior.

Let q0 := sup{νi ∩ [⋆ν, ν]} and q1 = max{q0, b}. Since ν is non-recurrent, we
have q1 6= ν. Let r := diff(q1, ν) and let ρ be the unique precritical point of depth
r on [q1, ν]. Finally, let q be a characteristic periodic point on [ρ, ν] of minimal
period, but at least period r. Then ρ and q have at least r common entries. Since
ν is not a bifurcation, there are infinitely many precritical points close to ν, so ρ
and q exist.

Now we show that this choice of q and r makes it possible to choose for every µ
a sequence µ′ with the required properties.

If the orbit of µ never jumps behind q, simply choose µ′ = µ and all properties
are satisfied. Otherwise, choose m > 0 minimal such that σmµ ∈ [q, ν]. The order
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ν µ σmµ q ρ νm
s s s s s s

Figure 1. Relative position of points of Lemma 6.3 (the order
increases to the left). The points ζ and µ′ lie between µ and q, but
possibly at either side of σmµ.

on H(ν) between the points ν, µ, σmµ, q, ρ, and νm is as indicated in Figure 1
because ρ is constructed so that it separates ν from all orbit points of ν, while
σmµ ∈ [ν, q] by construction, and µ ∈ [ν, σmµ] because µ is characteristic.

Since ρ ∈ [σmµ, νm], hence diff(σmµ, νm) ≤ r, we have

(6.2) diff(ν, µ) ≤ m+ r.

We will distinguish three cases. In all of these our point µ′ will be a preperiodic
preimage of q. The three conditions (1)–(3) that µ′ should satisfy all have geo-
metric interpretations: the first describes an interval where µ′ should be located,
the third requires that µ′ should be sufficiently close to µ, and the seond implies
that µ′ cannot be too close to µ because otherwise its m-th iterate would violate
condition (2).

Case 1: the map σm is injective on [µ, q]. In this case, we have a homeomorphism
σm : [µ, q] → [σmµ, σmq] ∋ q, so there is a unique preimage µ′ := (σm)−1(q) on
[µ, q]. It satisfies condition (1) by construction, and it satisfies condition (2) because
the first m− 1 iterates are obvioulsy before q, and from then on the claim follows
because q is characteristic. Condition (3) follows from (6.2) and diff(µ, µ′) ≥ m.

Case 2: the maximal number of injective iterations on [µ, q] is k ≤ m− 2. Then
σk : [µ, q] → [σkµ, σkq] ∋ ⋆ν and there is a unique precritical point ζ ∈ [µ, q] of
depth k + 1, so σ(k+1) : [µ, ζ] → [σk+1µ, ν] is a homeomorphism. Since k + 1 < m,
we have q ∈ [σk+1µ, ν]. There is a unique µ′ ∈ [µ, ζ] with σ(k+1)(µ′) = q, and this
choice satisfies again conditions (1) and (2) for the same reasons as in case 1. In
this case our choice of µ′ is not closest possible to µ, so if diff(µ, µ′) ≥ m− 1 does
not hold, simply repeat the argument for ζ in place of q (note that we have not
used periodicity of q in the proof).

Case 3: the maximal number of injective iterations on [µ, q] is k = m−1. In this
case we again have σk : [µ, q] → [σkµ, σkq] ∋ ⋆ and there is a unique precritical point
ζ ∈ [µ, q] of depth k + 1 = m. Now we consider the homeomorphism σm : [ζ, q] →
[ν, σmq] ∋ q and the unique point µ′ ∈ [ζ, q] with σm(µ′) = q. It again satisfies
conditions (1) and (2) by construction, and condition (3) follows from diff(µ, µ′) =
m− 1. �

Theorem 6.4 (Hölder continuity, non-renormalizable case). Let ν be non-recurrent,
non-renormalizable, and tree-finite, and such that h = h(ν) > 0. Then for every
ε > 0 there is a neighborhood U of ν such that all ν′ ∈ U satisfy

|h(ν)− h(ν′)| ≤ e−(h−ε)k

where k = Diff(ν, ν′).

Remark. We may drop locality and say that the statement holds for all ν′, at
the expense of introducing a multiplicative constant Cν = ehK log 2 where K =
maxν′ 6∈U Diff(ν, ν′).

Proof. Using non-recurrence, choose q ≺ ν and r according to Lemma 6.3. Choose
a periodic, characteristic, non-renormalizable sequence q′ ∈ (q, ν) (remember that
periodic, characteristic sequences exist arbitrarily close to ν by Lemma 3.11; since
ν is non-renormalizable, there are sufficiently nearby sequences that are not renor-
malizable either). Let L := Diff(q′, ν).
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We want to show that ν is uniformly expanding with a parameter that is dy-
namically controlled by q and q′. By Lemma 5.9, the kneading sequence q′ is
uniformly expanding in the stronger sense that there is a parameter Q0 > 0 such
that σQ0 ([q′, σk(q′)]) = H(q′) for every k with σk(q′) 6= q′. Since the interval
[q′, q] ⊂ H(q′) contains a precritical point of q′, we then find Q1 ≥ Q0 such that
σQ1([q′, q]) = H(q′).

Then by Theorem 3.5, the interval [q, q′] can be refound in H(ν) such that
σQ1([q, q′]) ⊃ Hq′(ν) ∋ ⋆ν. Thus after Q := Q1 + 1 iterations it covers the critical
path [⋆ν, ν].

By the choice of q, we have [ν, νi] ⊃ [q′, q] for any iterate νi of ν distinct of ν.
Hence, the Q-th iterate of [ν, νi] must contain the entire critical path. So indeed,
ν is uniformly expanding with parameter Q.

Suppose that ε < h(ν). Let U be a neighborhood of ν such that all ν′ ∈ U
have |h(ν′) − h(ν)| < ε; by continuity of entropy [DS, Ti1], there is indeed such
a neighborhood. Restrict U if necessary so that all ν′ ∈ U satisfy Diff(ν′, ν) >
2(L+ r).

Now consider a particular ν′ ∈ U and set k := Diff(ν, ν′). Let µ be the periodic
point from Theorem 3.12 which satisfies µ � ν and µ � ν′. That theorem yields

Diff(ν, µ) ≥ Diff(ν, ν′) = k > 2(L+ r) > L = Diff(q′, ν) .

Since ν, µ, q′, and q are linearly ordered, this implies µ ≻ q′ ≻ q. Lemma 6.3
provides a sequence µ′ with q ≺ µ′ ≺ µ such that q separates µ′ from its forward
orbit and such that

Diff(µ′, ν) ≥ Diff(µ, ν)− (r + 1) ≥ k − (r + 1) ≥ 2L+ r − 1 > L ,

and this implies µ′ ≻ q′.
Similar as for ν, the sequence µ′ is uniformly expanding with parameter Q be-

cause of Theorem 3.5 and the fact [µ′, (µ′)i] ⊃ [q′, q], where (µ′)i denotes any iterate
of µ′ distinct from µ′.

Since µ′ ≺ ν, we have κ(µ′) ≤ κ(ν) < ∞ (Lemma 5.3). Therefore, Lemma 5.4
implies that in the dynamics of H(µ′), we have

NH(n) ≤ Ceh(µ
′)n with C = κ(µ′)eh(µ

′)(Q+κ(µ′)) ≤ κ(ν)eh(Q+κ(ν)) .

We can thus apply Lemma 6.1 to ν ≻ µ′ and obtain

0 ≤ h(ν)− h(µ′) ≤ 2Ce−h(µ′) Diff(ν,µ′) ≤ 2Ce−h(µ′)(k−(r+1)) .

The analogous bound holds for the entropy difference between ν′ ≻ µ′, using
Diff(µ′, ν′) ≥ min{Diff(µ′, ν),Diff(ν, ν′} ≥ min{k− (r+1), k} = k− r− 1. We thus
have

|h(ν)− h(ν′)| ≤ 2Ce−h(µ′)(k−(r+1)) = 2Ceh(µ
′)(r+1)e−h(µ′)k .

By construction, we have h(ν) ≥ h(µ′) ≥ h(ν)− ε, so with

Cν = 2Ceh(µ
′)(r+1) ≤ 2κ(ν)eh(Q+κ(ν))eh(r+1) = 2κ(ν)eh(Q+κ(ν)+(r+1))

we have

(6.3) |h(ν) − h(ν′)| ≤ Cνe
−(h−ε)k .

To get rid of the constant Cν in (6.3), one adjusts ε and shrinks the neighborhood
U by enlarging k such that Cνe

−εk < 1; this gives

|h(ν)− h(ν′)| ≤ Cνe
−(h−2ε+ε)k = Cνe

−εke−(h−2ε)k < e−(h−2ε)k .

�
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7. Hölder continuity — the renormalizable case

We start this section with a characterization of renormalizable kneading se-
quences.

Lemma 7.1 (Renormalizable kneading sequence). A kneading sequence ν is p-
renormalizable with p minimal if and only if there exists a characteristic periodic
sequence µ∗ ∈ {0, 1}N of period p such that diff(σkp(ν), µ∗) ≥ p for all k ≥ 0,
σp(ν) 6= ν, and p is minimal with that property.

The condition diff(σkp(ν), µ∗) ≥ p for all k ≥ 0 means that the sequence ν differs
from the periodic sequence ν∗ only at positions that are multiples of p.

We thus have a ⋆-periodic kneading sequence µ such that µ∗ = µ+ or µ∗ = µ−.
The proof will imply that the latter case can only apply if ν is not complex-realized.

Clearly, µ is uniquely determined by ν and p (if it exists). We call µ the base
sequence of the renormalization and µ∗ its dynamical sequence. If the base sequence
is itself renormalizable, then p was not chosen to be minimal. We call µ the maximal
base sequence if p is chosen to be minimal and therefore µ is itself not renormalizable.

Proof. Suppose ν is p-renormalizable with pminimal and letK be its little Hubbard
tree. Since K contains more than one point, it clearly holds that σp(ν) 6= ν.
Moreover, σp(K) ⊂ K implies that the itinerary of ν is periodic of period p, except
that the entries at positions that are multiples of p may be arbitrary. Let µ thus be
the unique ⋆-periodic sequence of period p satisfying Diff(ν, µ) ≥ 2p. If the internal
address of µ is contained in the internal address of ν, then Lemma 3.11 implies
µ ≺ ν and µ∗ = µ+ satisfies diff(σkp(ν), µ∗) ≥ p. Otherwise, the first p entries of ν
coincide with µ−. Then the internal address of a non-standard bifurcation η of µ
must be contained in the internal address of ν. By Lemma 3.11, we thus have η � ν
and therefore the sequence µ∗ = µ− is characteristic in H(ν). It clearly satisfies
diff(σkp(ν), µ∗) ≥ p.

Conversely, suppose H(ν) contains a p-periodic sequence µ ≺ ν such that
diff(σkp(ν), µ) ≥ p for all k ≥ 0, σp(ν) 6= ν, and p is minimal with that property.
Let K be the connected hull of the points νkp for k ≥ 0. By assumption, K
contains more than one point and, ν and νkp coincide for at least p− 1 entries. So
σp maps the interval [ν, νkp] onto [νp, ν2p] or onto [ν, νp] ∪ [ν, ν2p] ⊂ K. So indeed
we have that σp(K) = K and therefore ν is p′-renormalizable by Lemma 5.6 for p′

dividing p. Finally, one can see that the minimality assumptions in the lemma are
equivalent. In particular, p′ = p. �

Definition 7.2 (Little Mandelbrot set). The little Mandelbrot set LM(ν) of a
renormalizable kneading sequence ν of positive core entropy is the set of all renor-
malizable kneading sequences with the same maximal base sequence as ν.

The definition is such that ν′ ∈ LM(ν) implies LM(ν′) = LM(ν).

Lemma 7.3 (Little Mandelbrot set connected). Let ν be a renormalizable kneading
sequence with maximal base sequence µ and dynamical sequence µ∗. A kneading
sequence η 6= µ lies in LM(ν) if η is a characteristic point on [µ̃, ν] ⊂ H(ν).

Proof. By Lemma 7.1, all entries of ν that are not at a position that is a multiple of
the period of µ, coincide with µ∗. Recursively, one can see that the same property
holds for all precritical points on [µ∗, ν]. The density properties of precritical points
imply that this property holds for all itineraries on this interval, in particular for
η. Hence, η has µ as maximal base sequence of renormalization by Lemma 7.1. �

Parts of the following two results are a mild extensions and improvements of [DS,
Lemma 6.20], showing that entropy is constant in little Mandelbrot sets of positive
entropy. Note that here, unlike in [DS], we include kneading sequences that are not
complex admissible, so our “little Mandelbrot sets” are not subsets of the standard
Mandelbrot set (not even in a combinatorial sense).
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Lemma 7.4 (Entropy, lower bound for periodic sequence). If ν is periodic with
some period p, then h(ν) ≥ log 2/(p− 1) and N(n) ≥ 2[n/(p−1)], unless ν is renor-
malizable and its maximal base sequence has internal address 1 → b for some b ≥ 2;
in the latter case, we have h(ν) = 0.

Remark. A kneading sequence with internal address 1 → b is of the form 11 . . .1⋆.
Due to the lack of the 0 symbol, the number of precritical points only grows linearly
in the depth; this is the reason why core entropy is zero.

Proof. First suppose that the point −α is contained in the Hubbard tree T := T (ν),
so there is a postcritical point νj with −α ∈ [α, νj ]. Since ν has period p, we clearly
have j ≤ p− 2.

Then σ sends [α,−α] two-to-one to [α, ν], and σj sends [α, ν] to its image that
must contain [α, νj ], homeomorphic or not. Thus σj+1 has a complete 2-horseshoe
on [α,−α], which implies h(σj+1) ≥ log 2 and thus h(σ) ≥ log 2/(j+1) ≥ log 2/(p−
1). We even obtain N(n) ≥ 2[n/j] > 2[n/(p−1)].

Now suppose −α 6∈ H(ν). Let b denote the number of edges branching off at α
and let K0 be the connected component of H(ν) \ α containing the critical point.
When iterating K0, we can only land in one component branching off at α because
otherwise we would have found a preimage of α different from α. Hence, the iterates
of K0 cycle along the branches and σb(K0) ⊆ K0. Thus, ν is renormalizable. Since
all itineraries in the connected components at α excluding K0 start with 1, the
associated base sequence is the b-periodic sequence 11 . . .1⋆. �

Lemma 7.5 (Entropy on little Mandelbrot set). Entropy of all kneading sequences
within the same little Mandelbrot set is constant and coincides with the core entropy
of the maximal base sequence µ provided µ itself has positive entropy.

For all ν in the little Mandelbrot set, we have the upper bound:

NH
ν (n) ≤ Cµe

h(µ)n

where the constant Cµ only depends on µ.

Proof. Let ν be p-renormalizable with base sequence µ so that µ is maximal. We
call a precritical point ρ ∈ H(ν) renormalizable if there exists t ∈ {0, ..., p − 1}
such that the sequences of ρ and νt coincide except at positions kp− t for k ∈ N.
Denoting the number of renormalizable precritical points of depth n on H(ν) by
NH

r (n), we thus have NH
r (n) ≤ p2n/p.

The sequence µ is non-renormalizable and periodic hence non-recurrent, so µ is
uniformly expanding by Lemma 5.9. Thus, the upper bound NH

µ (n) ≤ Ceh(µ)n

follows from Lemma 5.4. By Lemma 7.4 and the remark below, we have h(µ) ≥
log 2/(p− 1) under the given assumption that the maximal base sequence has pos-
itive entropy.

Now let ρ be any precritical point on H(ν). If ρ never leaves the subtree spanned
by the orbit of the dynamical sequence µ∗, it corresponds to a precritical point of
H(µ) by Theorem 3.5. On the other hand, Lemma 7.3 implies that all precritical
points outside this subtree are renormalizable. Similar as in the proof of The-
orem 3.5 (7), we thus have that every precritical point on H(ν) is of the form
wµewr ⋆ ν, where wµ is a word of a precritical point of H(µ), the symbol e ∈ {0, 1},
and wr ⋆ ν is renormalizable. Organizing the count by the number k = |wr| + 1
such that the precritical point becomes renormalizable after n − k iterations, we
can compute:

NH
ν (n) ≤

n
∑

k=0

2NH
µ (n− k)NH

r (k) ≤
n
∑

k=0

2Ceh(µ)(n−k)pe(log 2/p)k

<

(

2Cp

∞
∑

k=0

e−(h(µ)−log 2/p)k

)

eh(µ)n =: Cµe
h(µ)n.
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The geometric series converges, so we obtain the desired upper bound. This implies
h(ν) ≤ h(µ), while monotonicity of entropy (as consequence of Theorem 3.5) yields
h(µ) ≤ h(ν), so we have equality. �

Theorem 7.6 (Hölder continuity, renormalizable case). Let ν be renormalizable so
that its maximal base sequence µ is non-renormalizable and has positive entropy.
Then there is a neighborhood U of ν such that all ν′ ∈ U satisfy

|h(ν)− h(ν′)| ≤ Cµe
−h(ν)k

where k = Diff(ν, ν′), and Cµ > 0 is a constant that depends only on µ.

Note that for this statement there is no ε in the exponent, and that ν is allowed
to be recurrent and tree-infinite. Moreover, just as in the remark after Theorem
6.4, the locality can be dropped by enlarging the constant. Unlike in that theorem,
we cannot get rid of this constant.

Proof. Let µ be the maximal base sequence of renormalization and p its period. Let
U be the neighborhood consisting of all kneading sequences ν′ with Diff(ν, ν′) > 2p.
Now consider ν′ ∈ U and let τ be the branch point of ν and ν′ (where we employ
the convention τ = ν if ν ≺ ν′ and τ = ν′ if ν′ ≺ ν). By Lemma 7.3 and
Diff(τ, ν) ≥ Diff(µ, ν), we have τ ∈ LM(ν).

By Lemma 7.5 we have h(τ) = h(µ) = h(ν) and NH
τ (n) ≤ Cµe

h(µ)n = Cµe
h(τ)n,

so we can apply Lemma 6.1 and obtain

0 ≤ h(ν′)− h(τ) ≤ 2Cµe
−h(τ)Diff(τ,ν′) .

The claim follows because h(τ) = h(ν) and k = Diff(ν, ν′) ≤ Diff(τ, ν′). �

We conclude this section by discussing kneading sequences with entropy zero:
here the conjecture is that one does not have Hölder continuity (for any positive
exponent). We confirm this conjecture for the Feigenbaum sequence; there is a
similar argument in greater generality.

Corollary 7.7 (No Hölder continuity at zero entropy). There exists a kneading
sequence ν with h(ν) = 0 such that core entropy is not locally Hölder continuous at
ν for any exponent.

Proof. Consider ν to be the so-called Feigenbaum point with internal address 1 −
2−4−8−16− . . .. Note that all the approximating periodic sequences with internal
addresses 1− 2, 1− 2− 4, 1− 2− 4− 8, . . . are bifurcations of ⋆. As such, precritical
points only grow linearly and they have entropy zero. By continuity of entropy,
ν has zero entropy, too. Next, we want to look at the sequence νn with internal
addresses 1− 2− . . .− 2n − 2n +1. They are not renormalizable, so by Lemma 7.4,
h(νn) > log 2/2n. Since Diff(νn, ν) ≥ 2n + 1, we obtain:

|h(νn)− h(ν)| >
log 2

2n
> log 2

1

Diff(νn, ν)
.

Hence, core entropy is not Hölder continuous at ν. �

8. External angles and kneading sequences

The conjecture about Hölder continuity of core entropy is often formulated in
terms of external angles. Douady and Hubbard showed that the Mandelbrot set
M is compact, connected and full (i.e. C \M is connected), and there is a unique
conformal isomorphism Φ : C \ M 7→ C \ D with limc→∞ Φ(c)/c → 1. Under
the assumption that the Mandelbrot set is locally connected, Φ−1 extends to the
boundaries as a continuous surjection. Hence, every point c ∈ ∂M can be described
by one (or several) external angles ϑ ∈ R/Z = S1 such that Φ−1(e2πiϑ) = c. For
every c there may be finitely many choices for ϑ, but this does not change the
dynamics described below.



HÖLDER CONTINUITY 23

Every external angle ϑ ∈ S1 has an associated kneading sequence defined as
follows: we divide the unit circle S1 at the points ϑ/2 and (ϑ+1)/2 (the preimages
of ϑ under angle doubling). Let A1 be the open arc of S1 containing ϑ and let A0

be the other arc. The kneading sequence ν(ϑ) = ν1ν2 . . . is defined as follows: for
k ≥ 1 and i ∈ {0, 1}, if 2k−1ϑ ∈ Ai, then νk = i. If 2k−1ϑ ∈ {ϑ/2, (ϑ+ 1)/2}, then
νk = ⋆; this implies that ν(ϑ) is ⋆-periodic with period k.

Lemma 8.1 (Hölder continuity in terms of external angles). Suppose an external
angle ϑ is such that core entropy is Hölder continuous with exponent h > 0 for all
kneading sequences in a neighborhood of ν(ϑ). Suppose also that ϑ is non-recurrent
with respect to angle doubling. Then core entropy as a function of angles is Hölder
continuous at ϑ with exponent (h− ε)/ log 2 for every ε > 0.

Proof. By hypothesis ν = ν(ϑ) has an index N > 0 so that if k := diff(ν, µ) > N ,
then |h(ν)− h(µ)| < e−hk.

Consider an angle ϕ such that 2−n−1 ≤ |ϕ − ϑ| < 2−n for n > N and set
µ := ν(ϕ). Let k := diff(µ, ν). Then there is a periodic angle ϑ∗ between ϑ and ϕ
of period k, and |ϑ− ϑ∗| < 2−n. It follows

|2kϑ− ϑ| ≤ |2k(ϑ− ϑ∗)|+ |2kϑ∗ − ϑ∗|+ |ϑ∗ − ϑ| ≤ (2k + 1)|ϑ∗ − ϑ|

< (2k + 1)2−n = 2k−n + 2−n .

Now fix ε > 0. If there are angles ϕ arbitrarily close to ϑ with associated numbers
n = n(ϕ) and k = k(ϕ) as above such that k(ϕ) ≤ (1 − ε/h)n(ϕ), then we have
k(ϕ)− n(ϕ) ≤ −(ε/h)n(ϕ) and thus

|2k(ϕ)ϑ− ϑ| ≤ 2−(ε/h)n(ϕ) + 2−n(ϕ) ;

since ϕ close to ϑ means n(ϕ) is large, this implies that ϑ is recurrent.
By hypothesis, ϑ is not recurrent, so there must be a neighborhood of ϑ in which

all angles ϕ 6= ϑ satisfy k(ϕ) ≥ (1− ε/h)n(ϕ). In this neighborhood, we have

|h(ϕ)− h(ϑ)| < e−hk ≤ e−h(1−ε/h)n = e−(h−ε)n =

2−((h−ε)/ log 2)n = 2(h−ε)/ log 2(2−n−1)(h−ε)/ log 2 < 2 · |ϕ− ϑ|(h−ε)/ log 2 .

�

Proof of Main Theorem. Note that non-recurrent angles have non-recurrent knead-
ing sequences. If the kneading sequence ν(ϑ) (or equivalently the associated poly-
nomial if it exists) is non-renormalizable and has a finite Hubbard tree, then by
Theorem 6.4 core entropy as a function of kneading sequences is locally Hölder con-
tinuous with exponent h(ν)−ε/2. By Lemma 8.1, we obtain local Hölder continuity
with exponent (h(ϑ)− ε)/ log 2.

If ν is renormalizable and its maximal base sequence has positive entropy, then
Theorem 7.6 yields Hölder continuity for kneading sequences with exponent h(ν)
and Lemma 8.1 implies local Hölder continuity for angles with exponent (h(ϑ) −
ε)/ log 2. �
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