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Abstract

The Josephus problem is a well–studied elimination problem consisting in deter-
mining the position of the survivor after repeated applications of a deterministic
rule removing one person at a time from a given group.

A natural probabilistic variant of this process is introduced in this paper. More
precisely, in this variant, the survivor is determined after performing a succession
of Bernouilli trials with parameter p designating each time the person to remove.
When the number of participants tends to infinity, the main result characterises
the limit distribution of the position of the survivor with an increasing degree of
precision as the parameter approaches the unbiaised case p “ 1{2. Then, the conver-
gence rate to the position of the survivor is obtained in the form of a Central-Limit
Theorem.

A number of other variants of the suggested probabilistic elimination process are
also considered. They each admit a specific limit behavior which, in most cases, is
stated in the form of an open problem.
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1 introduction
The Josephus problem originates from Flavius Josephus’ (c. AD 37 – c. 100) recollection
of the siege of Yodfat (AD 67) in his Wars of the Jews. He relates how he was left as the
only survivor among 40 besieged fellow soldiers in an eliminination process aiming at
not surrendering to the Romans :

« Since we all are resolved to die, let us rely on fate to decide the order in
which we must kill each other : the first of us that fortune will designate
shall fall under a stab from the next one, and thus fate will successively
mark the victims and the murderers, exempting us from attempting on our
lives with our own hands. For it would be unfair if, after the others had
killed themselves, there were someone who could change his feelings and
would want to survive4 ».

This story gave birth to an intriguing mathematical problem already studied by Euler
in the XVIIIth century and relying on the following interpretation of the elimination
process described by Flavius Josephus :

rule for the josephus elimination process. Assume that N ě 1 persons enu-
merated from 0 to N´ 1 stand in a circle. Starting from the first one, each person eliminates
his right neighbour and passes the knife onto the next person still alive on his right.

The problem is then to determine the position aN P J0,N´ 1K of the survivor, where
given reals x ď y, the shorthand notation Jx,yK is used for rx,ys X Z. Setting for
convenience bN “ aN ` 1 when N ě 1, it is well–known, see [5, § 1.3] and also the very
nice Numberphile episode [6], that

(a) the sequence pbNqNě1 satisfies the recurrence formula

bN “ 2btN{2u ´ p´1qN with b1 “ 1. (1)

This relation implies that the sequence is 2–regular in the language of [1].

1 Laboratoire d’analyse et de mathématiques appliquées (LAMA), Université Paris-Est Créteil, Créteil,
France, faustin.adiceam@u-pec.fr
2Department of Mathematics, The University of Manchester, United-Kingdom,
steven.robertson@manchester.ac.uk & victor.shirandami@manchester.ac.uk
3Departmento de Mathemática, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estad-
ual Paulista, São José do Rio Preto, São Paulo, Brasil, ioannis.tsokanos@unesp.br. The research was
supported by the FAPESP Grant 2023/06371-2.
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(b) the sequence pbNqNě1 admits the closed-form expression

bN “ 2l` 1 when N “ 2m ` l with 0 ď l ă 2m.

(c) the sequence pbNqNě1 can be expressed in binary base as

bN “ ck´1 ¨ ¨ ¨ c0ck
2 when N “ ckck´1 ¨ ¨ ¨ c0

2.

It does not seem, however, to have been noticed that the recurrence relation (1) yields
an elegant closed-form formula for the corresponding generating series, namely

8
ÿ

N“0

bNx
N

“ 1`
1

1´ x
¨

˜

3x´ 1

1´ x
´

8
ÿ

N“1

2Nx2
N

¸

.

As this will not be needed in what follows, the verification of this identity is left to the
reader.

Assume throughout that N ě 3 is an integer and that p P r0, 1s is a real parameter.
The present paper is concerned with a probabilistic variant of the above (deterministic)
Josephus problem. In order to state it, it is convenient to rescale the position of the
participants by requiring that they should all stand on a unit circle.

rule for the probabilistic elimination process. Let there beN participants enu-
merated from 0 to N´ 1, standing on a unit circle with a regular spacing between them and
labelled anticlokwise. The 0th participant holds first the knife : with probability p he eliminates
Participant 1 (standing on his right) and with probability 1´ p Participant N´ 1 (standing
on his left) before passing the knife onto the next participant still alive in the direction of the
stabbing (namely, 2 or N-2, respectively). The next participant holding the knife then stabs on
the same direction as in the previous step with probability p and, with probability 1´ p, in the
opposite direction.

See Figure 1 for an illustration. The case p “ 1 recovers the classical deterministic
process whereas, when 0 ă p ă 1, the above rule can be seen as an elimination process
where the survivor is determined by a succession of Bernouilli trials with parameter
p. To put it differently, the survivor is then determined after performing a succession
coin–tossings biaised according to the value of p.

The problem is now to determine the limit distribution of the survivor as the number
N of participants tends to infinity; in other words, the problem amounts to asking
what should be, in the limit, the position on the circle which maximises the chances
of survival. To this end, define gNpn,pq as the probability of survival of the person
labelled n P J0,N´ 1K in a round with N participants when the elimination process
follows Bernouilli trials with parameter p P p0, 1q. Let then

µ
ppq

N “

N´1
ÿ

n“0

gNpn,pq ¨ δ n
N

(2)
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Figure 1: Illustration of the probabilistic elimination rule over two rounds. The crossed circles
indicate the eliminated persons and the dots with grey interior the person who is to
make the next move.

be a measure on the torus R{Z, where, here and throughout, δx denotes the Dirac
mass concentrated at a given point x` Z P R{Z. The goal is thus to determine the
limit of this sequence of measures as N tends to infinity, provided it exists.

Theorem 1.1. Assume that p P p0, 1q. Then, the sequence of measures
´

µ
ppq

N

¯

Ně3
admits a

weak limit µppq supported in R{Z. This limit measure µppq can furthermore be described with
an increasing degree of precision as the parameter p approches the unbiaised case p “ 1{2 as
follows :

1. in the general case when p P p0, 1q, the limit measure µppq is a convex combination of
Dirac masses concentrated at the origin and at the point 1{2 pmod 1q; that is,

µppq
“ p1´ cppqq ¨ δ0 ` cppq ¨ δ1{2

for some constant cppq P r0, 1s.

2. in the case that p lies in the middle interval p1{3, 2{3q, the limit measure µppq is the Dirac
mass concentrated at the mid–point 1{2 pmod 1q; that is, it then holds that cppq “ 1.



introduction 5

3. in the unbiaised case where p “ 1{2, a rate of convergence to the Dirac mass δ1{2 can
be obtained in the form of a Central-Limit Theorem. Indeed, if pXNqNě1 is a sequence of
random variables drawn successively and independently, each according to the probability
measure (2), then the following convergence in law to the standard normal distribution
Np0, 1q is verified :

1

SL
¨

L
ÿ

N“1

ˆ

XN ´
1

2

˙

L−Ñ
LÑ8

Np0, 1q.

Here,

SL “

g

f

f

e

L
ÿ

N“3

VNpXNq,

where VNpXNq is the variance of the random variable XN. This quantity can be asymp-
totically estimated as

SL —
?

lnL.

The notation SL —
?

lnL means the existence of constants C ą c ą 0 such that for all
L ě 1 large enough, c ď SL{

?
lnL ď C. Also, the weak convergence to the measure

µppq is understood in the usual sense that for any continuous, real-valued function φ
defined over R{Z,

lim
NÑ8

˜

ż

R{Z

φ ¨ dµppq

N

¸

“

ż

R{Z

φ ¨ dµppq.

Recall also that the convergence in law of a sequence of random variables to a (random
variable with a given) distribution can be defined as follows : it is the weak conver-
gence of the probability measures defining the distributions of the random variables
to the measure determining the limit distribution.

Numerical simulations displayed in the appendix show that, in the notations of Theo-
rem 1.1, cppq “ 1 for any value of the parameter p P p0, 1q. In other words, the limit
position of the participants maximising their chances of survival is always when they
stand opposite to the starting position. This claim should be interpretated as follows :
for arbitrary ε P p0, 1{2q, as N tends to infinity, the probability that any player situated
outside the interval p1{2´ ε, 1{2` εq ` Z may survive vanishes. The difficulty in prov-
ing this claim in Case (1) of the theorem is outlined in the final Section 4.

It should be noted that the existence of a limit position maximising the chance of sur-
vival in the probabilistic case p P p0, 1q stands in sharp contrast with the deterministic
situation p “ 1. Indeed, it is then easy to deduce from any of the above points (a),
(b) or (c) that the quantity aN normalised by the factor of 1{N (so as to lie in the unit
interval) does not admit a limit as N tends to infinity. In the deterministic case p “ 0

however, it is not hard to see that the convergence to the Dirac mass δ1{2 still holds.
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organisation of the paper. In Section 2 is established a set of recursion relations
providing the probabilities of survival in a round with N participants as functions of
probabilities of survival in a round with N´ 1 participants. This crucially intervenes
in the proof of Theorem 1.1 which Section 3 is devoted to. The final Section 4 deals
with open problems related to other probabilistic variants of the Josephus problem.

2 recurrence formulae for the probabilities of
survival

To facilitate the expression of the probabilities of survival, the domain of the map
n P J0,N´ 1K ÞÑ gNpn,pq is extended to Z by evaluating its argument modulo
N ě 3. Thus, for instance, gNp´1,pq “ gNpN´ 1,pq. In what follows, it will always be
understood that the integer n is taken modulo N before applying the formulae.

Proposition 2.1 (Recursion relations for the probabilities of survival.). Let N ě 3 and
p P p0, 1q. Whenever N ě 4, the probability vector pgNpn,pqq0ďnďN´1 meets the recurrence
relation

gNpn,pq “

$

’

’

’

’

&

’

’

’

’

%

gN´1p´1,pq if n ” 0 pmod Nq

p1´ pq ¨ gN´1p´2,pq if n ” 1 pmod Nq

p ¨ gN´1p´2,pq if n ” ´1 pmod Nq

p ¨ gN´1pn´ 2,pq ` p1´ pq ¨ gN´1pN´n´ 2,pq otherwise.

with base case pg3p0,pq,g3p1,pq,g3p2,pqq “ p0, 1´ p,pq.

Proof. The base case N “ 3 is easily verified by hand. Assume therefore that N ě 4.
The recurrence relation is obtained from the analysis of the consequences of the first
step of the elimination process (carried out by the 0th Participant) on the disposition
of the remaining participants. To this end, consider the distinction of cases induced by
the statement :

‚ Probability of survival gNp0,pq of participant n ” 0 pmod Nq. After the first stab-
bing, with probability p, participant 1 is out and participant 2 holds the knife.
Consequently, the 0th person who initiated the process with N participants be-
comes participant ´1 pmod N´ 1q in a new round with N´ 1 participants : his
probability of survival is then gN´1p´1,pq. Similarly, with probability 1´ p, par-
ticipant ´1 pmod Nq is out and participant ´2 pmod Nq holds the knife. Since
the direction of stabbing is reversed compared with the previous situation, the 0th

person who initiated the process with N participants still becomes participant ´1

pmod N´ 1q in a new round with N´ 1 participants : his probability of survival
is thus again gN´1p´1,pq. Putting these two situations together, one obtains that

gNp0,pq “ p ¨ gN´1p´1,pq ` p1´ pq ¨ gN´1p´1,pq “ gN´1p´1,pq.
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‚ Probability of survival gNp1,pq of participant n ” 1 pmod Nq. After the first step
of the elimination process, with probability p, participant 1 is out : his survival
probability vanishes. With probability 1´ p, participant ´1 pmod Nq is out and,
since the direction of stabbing is reversed compared with the previous situation,
participant 1 now carries label ´2 pmod N ´ 1q in the new round with N ´ 1

participants. This yields that

gNp1,pq “ p ¨ 0` p1´ pq ¨ gN´1p´2,pq “ p1´ pq ¨ gN´1p´2,pq.

‚ Probability of survival gNp´1,pq of participant n ” ´1 pmod Nq. This case is mutatis
mutandis analogous to the previous one in such a way that

gNp´1,pq “ p ¨ gN´1p´2,pq ` p1´ pq ¨ 0 “ p ¨ gN´1p´2,pq.

‚ Probability of survival gNpn,pq of participant n ı 0, ˘1 pmod Nq. In this case, af-
ter the first elimination, with probability p, Participant n carries the label n´ 2

and his survival probability in the new round with N´ 1 participants becomes
gN´1pn´ 2,pq. Similarly, with probability 1´ p, taking into account the fact that
the direction of stabbing is reverse compared with the previous situation, Par-
ticipant n carries the label ´n ´ 1 ” N ´ n ´ 2 pmod N ´ 1q in a new round
with N´ 1 participants in such a way that his probability of survival becomes
gN´1pN´n´ 2,pq. Putting these two situations together, one obtains that

gNpn,pq “ p ¨ gN´1pn´ 2,pq ` p1´ pq ¨ gN´1pN´n´ 2,pq.

This completes the proof of the proposition.

3 skewness of the elimination process and rate
of convergence to the position of the survivor

Throughout this section, unless specified otherwise, the parameter p P p0, 1q and the
integer N ě 3 are fixed. The goal is to establish successively each the three points in
Theorem 1.1.

To this end, it is more convenient to work with the closed unit interval r0, 1s rather than
the torus R{Z. The set of continuous functions over the torus is then identified with
the set of continous functions over r0, 1s, denoted by C0pr0, 1sq, with periodic boundary
conditions. The properties of the following analytic operator then plays a pivotal rôle
in the proofs :

J
ppq

N : φ P C0 pr0, 1sq ÞÑ J
ppq

N rφs “

N´1
ÿ

n“0

φ
´n

N

¯

¨ gNpn,pq. (3)
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This linear operator is continuous as can be seen from the inequality
ˇ

ˇ

ˇ
J

ppq

N rφs

ˇ

ˇ

ˇ
ď }φ}8 , (4)

which will be used frequently. Here and throughout, }φ}8 denotes the sup–norm of a
given bounded map φ over its domain of definition.

In the case that Jppq

N is restricted to the set of functions φ P C0 pr0, 1sq meeting the peri-
odic boundary coundition φp0q “ φp1q, it can be seen as an operator defined over the
space of continuous function over R{Z. It then admits the alternative representation

J
ppq

N rφs “

ż

R{Z

φ ¨ dµppq

N .

3.1 Limiting Behavior of the Random Process when p P p0, 1q

The first point in Theorem 1.1 amounts to claiming that there exists a constant cppq P

r0, 1s such that for any φ P C0pr0, 1sq meeting the boundary conditions φp0q “ φp1q, it
holds that

lim
NÑ8

J
ppq

N rφs “ p1´ cppqq ¨φp0q ` cppq ¨φ

ˆ

1

2

˙

. (5)

This identity is obtained in this section as a consequence of a succession of lemmata,
each relying on the preceeding ones. The following quantity plays an important rôle in
the proof :

ηNppq “ max
´2ďnď2

gNpn,pq. (6)

Lemma 3.1 (Approximate recursion relation for the analytic operator under regula-
rity assumptions). Let N ě 4 be an integer and let φ be a twice continuously differentiable
function over r0, 1s. Then,

J
ppq

N rφs “

N´2
ÿ

n“0

gN´1pn,pq ¨

„

p ¨φ

ˆ

n

N´ 1

˙

` p1´ pq ¨φ

ˆ

1´
n

N´ 1

˙

`

ˆ

2

N
´

n

NpN´ 1q

˙

¨

ˆ

p ¨φ 1

ˆ

n

N´ 1

˙

´ p1´ pq ¨φ 1

ˆ

1´
n

N´ 1

˙˙ȷ

`Oφ

ˆ

1

N2

˙

`O

ˆ

ηNppq ¨ max
"

|φp0q| , |φp1q| ,
|φ 1p0q|

N
,

|φ 1p1q|

N

*˙

.

The subscript in the notation Oφp ¨ q means that the implicit constant in the big-O
notation depends on φ (whereas it is absolute otherwise).

Proof. Applying a Taylor expansion yields that

J
ppq

N rφs “ φp0q ¨ gNp0,pq `φ

ˆ

1

N

˙

¨ gNp1,pq `φ

ˆ

N´ 1

N

˙

¨ gNp´1,pq
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`

N´2
ÿ

n“2

φ
´n

N

¯

¨ gNpn,pq

“
(6)

N´2
ÿ

n“2

φ
´n

N

¯

¨ gNpn,pq `O

ˆ

ηNppq ¨ max
"

|φp0q| , |φp1q| ,
|φ 1p0q|

N
,

|φ 1p1q|

N

*˙

`Oφ

ˆ

1

N2

˙

.

From the recursion relations established in Proposition 2.1, this last sum can be ex-
panded as

N´2
ÿ

n“2

φ
´n

N

¯

¨ gNpn,pq “ p ¨

N´2
ÿ

n“2

φ
´n

N

¯

¨ gN´1 pn´ 2,pq

` p1´ pq ¨

N´2
ÿ

n“2

φ
´n

N

¯

¨ gN´1pN´n´ 2,pq

“ p ¨

N´4
ÿ

n“0

φ

ˆ

n` 2

N

˙

¨ gN´1 pn,pq

` p1´ pq ¨

N´4
ÿ

n“2

φ

ˆ

N´n´ 2

N

˙

¨ gN´1pn,pq

“
(6)

N´2
ÿ

n“0

ˆ

p ¨φ

ˆ

n` 2

N

˙

¨ gN´1 pn,pq

`p1´ pq ¨φ

ˆ

1´
n` 2

N

˙

¨ gN´1pn,pq

˙

`Oφ

ˆ

1

N2

˙

`O

ˆ

ηNppq ¨ max
"

|φp0q| , |φp1q| ,
|φ 1p0q|

N
,

|φ 1p1q|

N

*˙

.

From the decomposition

n` 2

N
“

n

N´ 1
`

ˆ

2

N
´

n

NpN´ 1q

˙

,

another application of a Taylor expansion yields the relations

φ

ˆ

n` 2

N

˙

“ φ

ˆ

n

N´ 1

˙

`

ˆ

2

N
´

n

NpN´ 1q

˙

¨φ 1

ˆ

n

N´ 1

˙

`Oφ

ˆ

1

N2

˙

and

φ

ˆ

1´
n` 2

N

˙

“ φ

ˆ

1´
n

N´ 1

˙

´

ˆ

2

N
´

n

NpN´ 1q

˙

¨φ 1

ˆ

1´
n

N´ 1

˙

`Oφ

ˆ

1

N2

˙

.
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Collecting together all the components of the calculation then gives

J
ppq

N rφs “

N´2
ÿ

n“0

gN´1pn,pq ¨

„

p ¨φ

ˆ

n

N´ 1
` p1´ pq ¨φ

ˆ

1´
n

N´ 1

˙˙

`

ˆ

2

N
´

n

NpN´ 1q

˙

¨

ˆ

p ¨φ 1

ˆ

n

N´ 1

˙

´ p1´ pq ¨φ 1

ˆ

1´
n

N´ 1

˙˙ȷ

`Oφ

ˆ

1

N2

˙

`O

ˆ

ηNppq ¨ max
"

|φp0q| , |φp1q| ,
|φ 1p0q|

N
,

|φ 1p1q|

N

*˙

,

which concludes the proof.

In what follows, a function φ : r0, 1s Ñ R is referred to as an odd function about 1{2 if
φpxq “ ´φp1´ xq for all x P r0, 1s. Similarly, it is even about 1{2 if φpxq “ φp1´ xq for
all x P r0, 1s.

Lemma 3.2 (Decay of the analytic operator under assumptions of periodicity, regularity
and oddness). Let N ě 4 be an integer and let φ be a twice continuously differentiable
function over r0, 1s. Assume that φ is odd about 1/2 and that it meets the boundary condition
φp0q “ φp1q. Then, there exists a constant Cpφ,pq ą 0 depending only on φ and p such that

J
ppq

N rφs ď
Cpφ,pq

N
¨

Proof. Under the assumptions of the statement (which imply in particular that φp0q “

φp1q “ 0), Lemma 3.1 guarantees the existence of a constant C 1pφ,pq ą 0 such that for
all integers N ą 3,

ˇ

ˇ

ˇ
J

ppq

N rφs

ˇ

ˇ

ˇ
ď |2p´ 1| ¨

ˇ

ˇ

ˇ
J

ppq

N´1rφs

ˇ

ˇ

ˇ
`
C 1pφ,pq

N
¨ (7)

By induction, this implies that for all k P J1,N´ 3K,

ˇ

ˇ

ˇ
J

ppq

N rφs

ˇ

ˇ

ˇ
ď |2p´ 1|k ¨

ˇ

ˇ

ˇ
J

ppq

N´krφs

ˇ

ˇ

ˇ
`C 1

pφ,pq ¨

k´1
ÿ

l“0

|2p´ 1|l

N´ l
¨

Since |2p ´ 1| ă 1, the series
ř

lě0 |2p´ 1|l converges in such a way that for all k P

J1,N´ 3K,
ˇ

ˇ

ˇ
J

ppq

N rφs

ˇ

ˇ

ˇ
ď |2p´ 1|k ¨ }φ}8 `

C 1pφ,pq

pN´ k` 1q ¨ p1´ |2p´ 1|q
¨

Optimising the choice of k yields to choose it as the unique integer in the real interval
pN{2´ 1,N{2s. Then,

ˇ

ˇ

ˇ
J

ppq

N rφs

ˇ

ˇ

ˇ
ď |2p´ 1|

N
2 ´1

¨ }φ}8 `
C 1pφ,pq

pN{2` 1q ¨ p1´ |2p´ 1|q
,

where the right–hand side decays as a Op1{Nq when N tends to infinity. This is readily
seen to imply the lemma and thus to conclude the proof.
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The case that the map φ is even about 1{2 requires more regularity assumptions to
analyse the limiting behavior of the real sequence

´

J
ppq

N rφs

¯

Ně3
. This is achieved in

three steps.

Lemma 3.3 (Telescopic asymptotic decomposition of the analytic operator under as-
sumptions of periodicity of the derivative, regularity and evenness). Let N ě 4 be an
integer and let φ be a three times continuously differentiable function over r0, 1s. Assume that
φ is even about 1/2 and that it meets the boundary condition φ 1p0q “ φ 1p1q “ 0. Then,

J
ppq

N rφs ´ J
ppq

N´1rφs “
1

N
¨ J

ppq

N´1

„

1

2
¨φ 1

´φ˚

ȷ

`Oφ,p

ˆ

1

N2

˙

, (8)

where the function φ˚ is defined as φ˚ : x ÞÑ x ¨φ 1pxq.

As before, the subscripts in the big O notation has the meaning that the implicit con-
stant depends at most on φ and p.

Proof. Equation (8) remains invariant upon translation φ by a constant : it may there-
fore be assumed without loss of generality that φp0q “ φp1q “ 0. Since the evenness of
φ about 1{2 implies that its derivative is odd about 1{2, Lemma 3.1 yields that

J
ppq

N rφs “ J
ppq

N´1rφs `
1

N
¨ J

ppq

N´1

“

2φ 1
´φ˚

‰

`Oφ

ˆ

1

N2

˙

`O

ˆ

ηNppq ¨ max
"

|φ 1p0q|

N
,

|φ 1p1q|

N

*˙

, (9)

where the last term vanishes by assumption. Furthermore, from Lemma 3.2,

1

N
¨ J

ppq

N´1

“

2φ 1
´φ˚

‰

“
1

N
¨ J

ppq

N´1

„

1

2
¨φ 1

´φ˚

ȷ

`
3

2N
¨ J

ppq

N´1

“

φ 1
‰

“
1

N
¨ J

ppq

N´1

„

1

2
¨φ 1

´φ˚

ȷ

`Oφ,p

ˆ

1

N2

˙

.

This is enough to complete the proof.

Corollary 3.4 (Convergence of the analytic operator under assumptions of periodici-
ty of the derivative, regularity, monotonicity and evenness). Keep the assumptions of
Lemma 3.3 and assume furthermore that φ is monotonic increasing on r0, 1{2s and monotonic
decreasing on r1{2, 1s. Then, the sequence

´

J
ppq

N rφs

¯

Ně3
converges.

Proof. From Lemma 3.3, given any integers L ą M ą 3,

L
ÿ

N“M`1

1

N
¨ J

ppq

N´1

„

1

2
¨φ 1

´φ˚

ȷ

“ JLppqrφs ´ J
ppq

M rφs ` Oφ,p

ˆ

1

M

˙

, (10)
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which implies in particular that the series

ÿ

Ně4

1

N
¨ J

ppq

N´1

„

1

2
¨φ 1

´φ˚

ȷ

is bounded. Since by assumption,
ˆ

1

2
¨φ 1

´φ˚

˙

pxq “

ˆ

1

2
´ x

˙

¨φ 1
pxq ě 0

for any x P r0, 1s, its general term is positive. As a consequence, it converges, hence is
Cauchy. Fix then ε ą 0 and an integer Npεq such that for all L ą M ě Npεq,

0 ď

L
ÿ

N“M`1

1

N
¨ J

ppq

N´1

„

1

2
¨φ 1

´φ˚

ȷ

ă
ε

2
¨

In view of relation (10), even if it means increasing the value of Npεq to absorb the error
term, this implies that for all L ą M ě Npεq,

ˇ

ˇ

ˇ
J

ppq

L rφs ´ J
ppq

M rφs

ˇ

ˇ

ˇ
ă ε.

The sequence
´

J
ppq

N rφs

¯

Ně3
, being Cauchy, is thus convergent.

The same conclusion as in the previous corollary can be obtained without imposing
boundary periodic conditions on the derivative :

Corollary 3.5 (Convergence of the analytic operator under assumptions of regularity,
monotonicity and evenness). Let φ be a three times continuously differentiable function
which is even about 1{2. Assume that φ is monotonic increasing on r0, 1{2s and monotonic
decreasing on r1{2, 1s. Then, the sequence

´

J
ppq

N rφs

¯

Ně3
converges.

Proof. In view of the hypothesis of evenness, assume without loss of generality that
φp0q “ φp1q “ 0. By uniform continuity, there exists a function ϵ : η ą 0 ÞÑ ϵpηq ą 0

tending to zero at the origin such that for any x,y P r0, 1s, it holds that |φpxq ´φpyq| ă

ϵpηq whenever |x´ y| ă η.

Let then pζkqkě3 be any sequence of three times continuously differentible maps over
r0, 1s such that for all k ě 3,

‚ ζkp0q “ ζkp1q “ 0 and ζ 1
kp0q “ ζ 1

kp1q “ 0;

‚ ζk is monotonic increasing on r0, 1{2s and monotonic decreasing on r1{2, 1s ;

‚ ζk is even about 1{2 and ζkpxq “ 1 for any x P r1{k, 1´ 1{ks.
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From Corollary 3.4, the sequence
´

J
ppq

N rζkφs

¯

Ně3
is convergent, say to a real Lk, which

is bounded in absolute value by }φ}8 (since so is each term J
ppq

N rζkφs).

By the construction of the map ζk for any given k ě 3 and by the definition of the
operator Jppq

N (see (3)), it then follows that

ˇ

ˇ

ˇ
J

ppq

N rφs ´ J
ppq

N rζkφs

ˇ

ˇ

ˇ
ď }φ´ ζkφ}8 ă ϵ

ˆ

1

k

˙

,

thence the inequalities

Lk ´ ϵ

ˆ

1

k

˙

ď lim inf
NÑ8

J
ppq

N rφs ď lim sup
NÑ8

J
ppq

N rφs ď Lk ` ϵ

ˆ

1

k

˙

.

Considering a subsequence of the bounded sequence pLkqkě3 converging to some real
L, one then obtains that

L ď lim inf
NÑ8

J
ppq

N rφs ď lim sup
NÑ8

J
ppq

N rφs ď L,

which completes the proof.

The convergence of the analytic operator (3) evaluated at odd (Lemma 3.2) and even
(Corollary 3.5) functions about 1{2 under regularity and monoticity assumptions can
be generalised to the case of any continuous function by a density argument. This is
the content of the next statement.

Lemma 3.6 (Weak convergence of the probability measures.). The sequence of measures
´

µ
ppq

N

¯

Ně3
defined in (2) admits a weak limit µppq which is a probability measure over R{Z.

Proof. It suffices to prove that for any function φ P C0pr0, 1sq such that φp0q “ φp1q

(recall that φ is then identified with a continuous function on the torus R{Z), the
sequence

´

J
ppq

N rφs

¯

Ně3
converges. Indeed, under this assumption, the linear operator

Jppq : φ ÞÑ lim
NÑ8

J
ppq

N rφs

is well–defined over the space of continuous functions on R{Z, and it is furthermore
positive (in the usual sense that Jppqrφs ě 0 whenever φ ě 0). From the Riesz Rep-
resentation Theorem (in the form stated, e.g., in [7, Theorem 2.14, p.40]), there exists
a measure µppq with finite mass on the torus such that the operator Jppq admits the
representation

Jppq : φ ÞÑ

ż

R{Z

φ ¨ dµppq.

As the space R{Z is metrisable and compact, each probability measure µppq

N defined
over it is tight (in the sense of [2, p.8]). The limit measure µppq, as a weak limit of a
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sequence of tight probability measures, is then also a probability measure (see [4, The-
orem 4.4.3] for details).

To establish the lemma, it thus remains to prove that the sequence
´

J
ppq

N rφs

¯

Ně3
indeed

converges. To this end, define the auxiliary functions

φO : x ÞÑ
φpxq ´φp1´ xq

2
and φE : x ÞÑ

φpxq `φp1´ xq

2
¨

They respectively represent the odd and even parts of the function φ in the sense that
they are respectively odd and even about 1{2 and that φ decomposes as φ “ φO `φE.
From Lemma 3.3, it holds that

J
ppq

N rφs “ J
ppq

N rφOs ` J
ppq

N rφEs “ J
ppq

N rφEs `Oφ,p

ˆ

1

N

˙

in such a way that it suffices to prove the convergence of the sequence of even parts
´

J
ppq

N rφEs

¯

Ně3
.

To see this, given an integer k ě 0, consider the polynomial map

φk : x P r0, 1s ÞÑ

ˆ

1

2
´ x

˙k

. (11)

From the Weierstrass approximation theorem, given any ε ą 0, there exists a function
ψε lying in the real span of the family tφkukě0 such that

}φ´ψε}8 ă
ε

2
¨

By the definition of φE, this implies that

}φE ´ψε,E}
8

ă ε, (12)

where
ψε,E : x ÞÑ

ψεpxq `ψεp1´ xq

2

is the even part (about 1{2) of ψε and lies as such in the real span of the family of even
functions (about 1{2) tφ2kukě0. Corollary 3.5 is then easily seen to imply the existence
of the limit

Lpεq “ lim
NÑ8

J
ppq

N rψε,Es.

Since the set of limit values tLpεquεPp0,1q is clearly bounded, upon setting ε “ 1{k and
even if it means considering a subsequence, it may be assumed that the sequence
pLp1{kqqkě0 converges to a limit L ě 0. Then,

ˇ

ˇ

ˇ
J

ppq

N rφEs ´ L
ˇ

ˇ

ˇ
ď

ˇ

ˇ

ˇ
J

ppq

N rφEs ´ J
ppq

N rψ1{k,Es

ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ
J

ppq

N rψ1{k,Es ´ Lp1{kq

ˇ

ˇ

ˇ
` |Lp1{kq ´ L| .
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Since, from inequality (4), the operator Jppq

N has a norm bounded by 1, it follows
from (12) that the first term on the right-hand can be made arbitrarily small for k
is large enough. So can the other two terms by the definition of a limit. The right–
hand side thus becomes less than any arbitrarily fixed quantity provided that k large
enough : this shows that the sequence

´

J
ppq

N rφEs

¯

Ně3
converges to the real L.

In order to complete the proof of identity (5), and thus to establish the first point in
Theorem 1.1, it remains to determine the specific shape of the limit measure µppq, the
existence of which is guaranteed by the above Lemma 3.6.

Completion of the proof of identity (5). The goal is to show the existence of a real cppq P

r0, 1s such that µppq “ p1´ cppqq ¨ δ0 ` cppq ¨ δ1{2. To this end, fix a twice continuously
differentiable map ζ defined on r0, 1s, odd about 1{2 and meeting the boundary condi-
tions ζp0q “ ζp1q. Then, the antiderivative

φζ : x ÞÑ

ż x

1{2
ζ

is thrice continuously differentiable, even about 1{2 and with a derivative verifying the
boundary relations φ 1

ζp0q “ φ 1
ζp1q “ 0. Letting

ψζ : x ÞÑ

ˆ

1

2
´ x

˙

¨ ζpxq, (13)

Lemma 3.3 then yields that for all integers L ą M ě 3,

J
ppq

L rφζs ´ J
ppq

M rφζs “
ÿ

MăNăL

1

N
¨ J

ppq

N´1rψζs ` Oζ,p

ˆ

1

M

˙

¨

Since, from Lemma 3.6, the sequence
´

J
ppq

N rφζs
¯

Ně3
converges, hence is Cauchy, the

above identity is easily seen to imply that the sequence of partial sums of the series

ÿ

Ně3

1

N
¨ J

ppq

N´1rψζs

is also Cauchy, hence converges. Given that, from Lemma 3.6 once again, the sequence
´

J
ppq

N rψζs
¯

Ně3
is also convergent, one thus deduces that

lim
NÑ8

J
ppq

N rψζs “ 0.

To conclude the proof, fix η P p0, 1{2q and consider a thrice continuously differen-
tiable map θη on r0, 1s which is even about 1{2, constant equal to 1 on rη, 1{2´ ηs Y

r1{2` η, 1´ ηs and which meets the conditions θηp0q “ θηp1q “ θηp1{2q “ 0. It is ele-
mentary to see that such a map θη can be represented as a map ψζ defined in (13) for
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some twice continuously differentiable map ζ, odd about 1{2, such that ζp0q “ ζp1q “ 0.
One then obtains that

µppq

ˆ„ˆ

η,
1

2
´ η

˙

` Z

ȷ

Y

„ˆ

1

2
` η, 1´ η

˙

` Z

ȷ˙

ď

ż

R{Z

θη ¨ dµppq

“ lim
NÑ8

˜

ż

R{Z

θη ¨ dµppq

N

¸

“ lim
NÑ8

J
ppq

N rθηs “ 0.

Since η ą 0 is arbitrary, this shows that any interval I Ă R{Z whose µppq–measure
does not vanish contains either of the points 0 pmod 1q or 1{2 pmod 1q. It is an
easy exercise to deduce from there that the probability measure µppq is a convex
combination of the Dirac masses concentrated at these two points.

This concludes the proof of identity (5) and of the first point in Theorem 1.1.

3.2 Existence of the Limit Position in the Middle Range p P p1{3, 2{3q

Throughout this section, the probability parameter p is assumed to lie in the open inter-
val p1{3, 2{3q. Under this assumption, the weak convergence of the sequence of prob-
ability measures

´

µ
ppq

N

¯

Ně3
to the convex combination of Dirac masses at the points 0

pmod 1q and 1{2 pmod 1q can be made more precise : the weak limit is solely concen-
trated at the point 1{2 pmod 1q. This is the content of Point 2 in Theorem 1.1 which is
established hereafter. The key new ingredient allowing one to gather more information
on the limit measure is the following result implying that an exponential decay of the
probability of survival occurs near the starting position.

Proposition 3.7 (Exponential bounds for the probabilities of survival). Assume that p P

p1{3, 2{3q. Then, there exist constants K,β ą 0 and γ ą 1, all depending only on p, such that
for all integers N ě 3 and n P Z,

gNpn,pq ď K ¨
βxnyN

γN
¨

Here, xnyN “ dist pn,NZq.

Proof. The claimed result is established by an induction making it possible to provide
effective values for the various parameters.

First, choose K ą 0 large enough so that the conclusion of the proposition holds for the
finitely many probabilities gNpn,pq determined by the finitely many values of N ď 7

and n pmod Nq. Let then N ě 8 be such that this conclusion holds for all integers
L P J3,N´ 1K and n pmod Lq. Consider the following distinction of cases relying on
the recursion relations for the probabilities of survival stated in Proposition 2.1 :
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‚ when n ” 0 pmod Nq,

gNp0,pq “ p ¨ gN´1p´1,pq

ď p ¨K ¨
β

γN´1
“ K ¨

1

γN
¨ ppγβq ď K ¨

1

γN
,

where the last inequality is valid for any choice of β,γ ą 1 such that pγβ ď 1;

‚ when n ” 1 pmod Nq,

gNp1,pq “ p1´ pq ¨ gN´1p´2,pq

ď p1´ pq ¨K ¨
β2

γN´1
“ K ¨

β

γN
¨ pp1´ pqγβq ď K ¨

1

γN
,

where the last inequality is valid for any choice of β,γ ą 1 such that p1´ pqγβ ď

1;

‚ when n ” ´1 pmod Nq,

gNp1,pq “ p ¨ gN´1p´2,pq

ď p ¨K ¨
β2

γN´1
“ K ¨

β

γN
¨ ppγβq ď K ¨

1

γN
,

where the last inequality is valid for any choice of β,γ ą 1 such that pγβ ď 1;

‚ when n P J2, pN´ 3q{2K pmod Nq (then, xn´ 2yN´1 “ n ´ 2 and
xN´n´ 2yN´1 “ n` 1),

gNpn,pq “ p ¨ gN´1pn´ 2,pq ` p1´ pq ¨ gN´1pN´n´ 2,pq

ď p ¨K ¨
βn´2

γN´1
` p1´ pq ¨K ¨

βn`1

γN´1
“ K ¨

βn

γN
¨

ˆ

p ¨
γ

β2
` p1´ pq ¨ γβ

˙

ď K ¨
βxnyN

γN
,

where the last inequality is valid for any choice of β,γ ą 1 such that γ ¨ pp{β2 `

p1´ pqβq ď 1, which can be realised under the assumption that p ą 1{3;

‚ when n P JpN` 3q{2,N´ 2K pmod Nq (then, xn´ 2yN´1 “ N ´ n ` 1 and
xN´n´ 2yN´1 “ N´n´ 2),

gNpn,pq “ p ¨ gN´1pn´ 2,pq ` p1´ pq ¨ gN´1pN´n´ 2,pq

ď p ¨K ¨
βN´n`1

γN´1
` p1´ pq ¨K ¨

βN´n´2

γN´1

“ K ¨
βN´n

γN
¨

ˆ

pγβ` p1´ pq ¨
γ

β2

˙

ď K ¨
βxnyN

γN
,

where the last inequality is valid for any choice of β,γ ą 1 such that γ ¨ ppβ`

p1´ pq{β2q ď 1, which can be realised under the assumption that p ă 2{3;
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‚ when n P JpN´ 3q{2, pN` 3q{2K pmod Nq (then, xn´ 2yN´1 “ n ´ 2 and
xN´n´ 2yN´1 “ N´n´ 2),

gNpn,pq “ p ¨ gN´1pn´ 2,pq ` p1´ pq ¨ gN´1pN´n´ 2,pq

ď p ¨K ¨
βn´2

γN´1
` p1´ pq ¨K ¨

βN´n´2

γN´1

“

$

&

%

K ¨
βn

γN
¨

´

p γ
β2

` p1´ pq ¨βN´2n γ
β2

¯

if pN´ 3q{2 ď n ď N{2;

K ¨
βN´n

γN
¨

´

p ¨β2n´N γ
β2

` p1´ pq
γ
β2

¯

if N{2 ď n ď pN` 3q{2;

ď

$

&

%

K ¨
βn

γN
¨

´

p γ
β2

` p1´ pq ¨βγ
¯

if pN´ 3q{2 ď n ď N{2;

K ¨
βN´n

γN
¨

´

p ¨βγ` p1´ pq
γ
β2

¯

if N{2 ď n ď pN` 3q{2;

ď K ¨
βxnyN

γN
,

where the last inequality is valid for any choice of β,γ ą 1 such that γ ¨

max
␣

pβ` p1´ pq{β2,p{β2 ` p1´ pqβ
(

ď 1, which can be realised under the as-
sumption that 1{3 ă p ă 2{3.

This completes the proof of the proposition.

The following two results are derived from the above statement. They should be seen
as variants of Lemmata 3.2 and 3.3 proved in the previous section in this sense : they
enable one to retrieve the respective conclusions of those lemmata upon replacing the
boundary condition assumptions they include with the assumption that the parameter
p lies in the middle interval p1{3, 2{3q.

Lemma 3.8 (Decay of the analytic operator under assumptions of regularity, oddness
and localisation of the parameter p). Let N ě 4 be an integer and let φ be a twice continu-
ously differentiable function over r0, 1s. Let furthermore p be a parameter lying in the interval
p1{3, 2{3q. Assume that the function φ is odd about 1/2. Then, the conclusion of Lemma 3.2
still holds.

Proof. The exponential decay of the sequence pηNppqqNě3 defined from (6), which is
ensured by Proposition 3.7, implies that the inequality (7) still holds. The proof of
Lemma 3.2 from that point on is therefore still valid.

Lemma 3.9 (Telescopic asymptotic of the analytic operator under assumptions of regu-
larity, evenness and localisation of the parameter p). Let N ě 4 be an integer and let φ be
a three times continuously differentiable function over r0, 1s. Let furthermore p be a parameter
lying in the interval p1{3, 2{3q. Assume that φ is even about 1/2. Then, the conclusion of
Lemma 3.3 still holds.

Proof. The exponential decay of the sequence pηNppqqNě3 ensured by Proposition 3.7
implies that the last error term in equation (9) may be absorbed in the preceeding error
term Oφ,p

`

N´2
˘

. This reduces the proof to that of Lemma 3.3.
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Completion of the proof of Point 2 in Theorem 1.1. The goal is to show that the weak limit
of the sequence

´

µ
ppq

N

¯

Ně3
coincides with the Dirac mass δ1{2 concentrated at the point

1{2` Z P R{Z under the assumption that p P p1{3, 2{3q. To this end, let φ be a thrice
continuously differentiable function even about 1{2 on r0, 1s. Assume that φ is mono-
tonic increasing on r0, 1{2s and monotonic decreasing on r1{2, 1s. From Lemma 3.9,
given any integers L ą M ě 3,

J
ppq

L rφs ´ J
ppq

M rφs “
ÿ

MăNďL

1

N
¨ J

ppq

N´1

„

1

2
¨φ 1

´φ˚

ȷ

`Oφ,p

ˆ

1

M

˙

. (14)

This implies that the partial sums of the series

ÿ

Ně3

1

N
¨ J

ppq

N´1

„

1

2
¨φ 1

´φ˚

ȷ

are bounded. Since the conditions placed onto φ imply that the general term of this
series is a nonnegative sequence, it converges, hence is Cauchy. From relation (14), this
claim also holds for the sequence

´

J
ppq

N rφs

¯

Ně3
, which is therefore also convergent.

In the particular case that φ “ ´φ2k for some integer k ě 1 (where the polynomial
map φ2k is defined in (11)), it holds that 12

`

´φ 1
2k

˘

´ p´φ2kq
˚

“ 2k ¨φ2k in such a way
that one obtains the respective convergence of the series and of the sequence

ÿ

Ně3

1

N
¨ J

ppq

N´1rφ2ks and
´

J
ppq

N rφ2ks

¯

Ně3
.

As a conquence, for any k ě 1,

lim
NÑ8

J
ppq

N rφ2ks “ 0. (15)

Consider now the general case where φ P C0pr0, 1sq meets the boundary condition
φp0q “ φp1q. As in the proof of Lemma 3.6, decompose it into odd and even parts
about 1{2, viz. φ “ φO `φE. Then, the odd part φO is such that φOp0q “ φOp1q “ 0.
From Lemma 3.8, this implies that limNÑ8 J

ppq

N rφOs “ 0. As for the even part, as in
the proof of Lemma 3.6, it can be uniformly approximated in the real span of the
polynomial maps tφ2kukě0. The constant term in such an approximation to φE in the
real span of tφ2kukě0 approximates φEp1{2q “ φp1{2q. In view of the limit relation (15)
valid for all k ě 1, one thus quickly retrieves that

lim
NÑ8

J
ppq

N rφs “ φ

ˆ

1

2

˙

,

which concludes the proof.
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3.3 A Central–Limit Theorem in the Unbiaised Case p “ 1{2

Assume throughout this section that p “ 1{2. For the sake of simplicity of notations,
set then

µN “ µ
p1{2q
N , ηN “ ηN

ˆ

1

2

˙

, JN “ J
p1{2q
N and gNpnq “ gN

ˆ

n,
1

2

˙

.

In this setup, the probability for the participant in position n to survive in a round
with N participants is the same as the probability for the participant in position ´n

pmod Nq to survive in a round with N participants when the directions of elimina-
tion, which are chosen equiprobably, are switched. As a consequence, the symmetry
property

gNpnq “ gNp´nq (16)

is met and the recurrence relations stated in Proposition 2.1 simplify to

gNpnq “

$

’

&

’

%

gN´1p´1q if n ” 0 pmod Nq

gN´1p´2q{2 if n ” ˘1 pmod Nq

pgN´1pn´ 2,pq ` gN´1pn` 1,pqq {2 if n ı ˘1, 0 pmod Nq.

(17)

The goal in this section is to establish, in three steps, the Central-Limit Theorem stated
in Point 3 of Theorem 1.1.

3.3.1 Decay Rate of the Probabilities of Survival.

The key result allowing one to obtain the convergence rate to the Dirac mass δ1{2 in the
form of a Central-Limit Theorem is the following one, which shows that participants
away from the mid-position in the circle have a probability of survival decreasing
exponentially fast. This statement refines that of Proposition 2.1 (which was concerned
with the case where 1{3 ă p ă 2{3) and heavily relies on various symmetries met by
the elimination process in the unbiaised case p “ 1{2.

Proposition 3.10 (Exponential decay of the probability of survival away from the mid–
point position in the unbiaised case). There exist a constant K ą 0 such that given any
sufficiently small ε P p0, 1q and any real α P p1, 1` εs, it holds that for all integers N ě 1 and
n P J0,N´ 1K,

gNpnq ď K ¨α2p1`εqn´N. (18)

Proof. Fix first ε P p0, 1s. Elementary calculations then show that the inequality in the
variable α ě 0

max
!

α2`4p1`εq, α1´4p1`εq `α1`2p1`εq
)

ď 2 (19)

is met as soon as

α ď αpεq, where αpεq “ min
!

21{10, 1` 42`ε ¨ ε ¨ p1` εq2
)

,
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and in particular for any
1 ă α ď 1` ε

provided that ε is small enough.

This observation enables one to develop a proof of the statement analogous to that of
Proposition 2.1. To see this, fix any constant K ě 1 such that the upper bound in (18) is
verified for the finitely many values of the probabilities corresponding to the integers
N ď 4 for the two limit values α “ 1 and α “ 2, already when ε “ 0. Fix then
ε ą 0 small enough so that for any α P p1, 1` εs, inequality (19) is satisfied. Given
an integer N ě 5 for which the bound (18) holds for all probabilities up to the range
N´ 1, consider the following distinction of cases relying on the recursion relations (17).
In view of the symmetry property (16), they imply inequality (18) for all admissible
values of the integer n pmod Nq :

‚ when n ” 0 pmod Nq,

gNp0q “ gN´1p´1q “
1

2
¨ gN´2p´2q “

(16)

1

2
¨ gN´2p2q

ď K ¨
1

2
¨α2p1`εq¨2´pN´2q

“ K ¨α´N
¨

ˆ

1

2
¨α2`4p1`εq

˙

ď
(19)

K ¨α´N.

‚ when n ” 1 pmod Nq,

gNp1q “
1

2
¨ gN´1p´2q “

(16)

1

2
¨ gN´1p2q

ď K ¨
1

2
¨α2p1`εq¨2´pN´1q

“ K ¨α2p1`εq´N
¨

ˆ

1

2
¨α1`2p1`εq

˙

ď
(19)

K ¨α´N.

‚ when n P J2,N{2K pmod Nq,

gNpnq “
1

2
¨ gN´1pn´ 2q `

1

2
¨ gN´1pn` 1q

ď K ¨
1

2
¨α2p1`εq¨pn´2q´pN´1q

`K ¨
1

2
¨α2p1`εq¨pn`1q´pN´1q

“ K ¨α2p1`εqn´N
¨

ˆ

1

2
¨α1´4p1`εq `

1

2
¨α1`2p1`εq

˙

ď
(19)

K ¨α2p1`εqn´N.

This completes the proof of the proposition.
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3.3.2 Some Moment Estimates.

The Central-Limit Theorem relies on various moment estimates for the polynomial
maps already introduced in the proof of Lemma 3.6, namely, given an integer k ě 1,

φk : x P r0, 1s ÞÑ

ˆ

1

2
´ x

˙k

.

Lemma 3.11 (Moment Estimates). Let k ě 1. Then, there exists a real constant θk ą 0 such
that

JNr|φk|s ď θk ¨

ˆ

lnN
N

˙k{2

.

Proof. Given ε P p0, 1q and N ě 1, define

EεpNq “ J0,NK z

sˆ
1

2
´ ε

˙

¨N,
ˆ

1

2
` ε

˙

¨N

{
and νεpNq “

ÿ

nPEεpNq

gNpnq.

Then,

JNr|φk|s “

¨

˚

˚

˝

ÿ

nREεpNq
0ďnďN´1

`
ÿ

nPEεpNq
0ďnďN´1

˛

‹

‹

‚

ˇ

ˇ

ˇ

ˇ

1

2
´
n

N

ˇ

ˇ

ˇ

ˇ

k

¨ gNpnq

ď εk ¨ p1´ νεpNqq ` νεpNq. (20)

Furthemore, from Proposition 3.10, there exists a constant K ą 0 such that, provided
that ε ą 0 is chosen small enough,

νεpNq “
(16)

2 ¨

¨

˝

ÿ

0ďnďp1{2´εqN

gNpnq

˛

‚

ď 2 ¨K ¨

¨

˝

ÿ

0ďnďp1{2´εqN

p1` εq2p1`εqn´N

˛

‚

ď 8 ¨K ¨
p1` εq2p1`εqp1{2´εqN

pp1` εq2 ´ 1q ¨ p1` εqN

ď 8 ¨K ¨
1

ε ¨ p1` εqεN

ď 8 ¨K ¨
1

ε ¨ exp pε2N{2q
,

where the last inequality follows from an easily verified convexity inequality. The last
quantity is minimised when

ε “ εk “

c

pk` 1q ¨
lnN
N

, (21)
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in which case one infers the existence of a real θk ą 0 such that

νεkpNq ď θk ¨
1

Nk{2 ¨
?

lnN
¨ (22)

The right–hand side of inequality (20) specialised to the cases when relations (21)
and (22) hold then yields the sought conclusion upon adjusting the value of the real
θk.

Lemma 3.11 can be further refined when restricting to the first and the second mo-
ments :

Lemma 3.12 (Refined first and second moment estimates). The sum of the second moments
satisfies the estimate

L
ÿ

N“3

JNrφ2s — lnL

for all L large enough. As for the first moments, they decay exponentially in the sense that there
exists a parameter A ą 1 and a constant θ ą 0 such that for all N ě 3,

|JNrφ1s| ď
θ

AN
¨

The proof of Lemma 3.12 relies on an auxiliary statement analogous to Lemma 3.1.
As the argument to establish the former auxiliary statement is very similar to one
developed for the latter (upon calling, in this case, on the recursion relations (17)), it is
left to the reader.

Lemma 3.13 (Telescopic decomposition of the analytic operator in the unbiaised case).
Let φ be a three-times continuously differentiable function and let N ě 4 be an integer. Then,

JNrφs ´ JN´1rφs “
1

N
¨ JN´1

„

1

2
φ 1

´φ˚

ȷ

`
CN
N2

`Oφ

¨

˝max

$

&

%

ηN,

›

›

›
φ

3
›

›

›

8

N3

,

.

-

˛

‚,

where the ˚ operator is here again defined by φ˚ : x ÞÑ x ¨φ 1pxq and where

CN “
1

2
¨

N´2
ÿ

n“0

˜

1

2
¨

ˆ

2´
n

N´ 1

˙2

`
1

2
¨

ˆ

1`
n

N´ 1

˙2
¸

¨φ2

ˆ

n

N´ 1

˙

¨ gN´1pnq.

Proof of Lemma 3.12. Applying Lemma 3.13 to the polynomial map φ2, one obtains that

JNrφ2s “ JN´1rφ2s ´
2

N
JN´1rφ2s `

CN
N2

`O pηNq , (23)

where, taking into account the definition of the quantity CN and the fact that φ2
2 is the

constant function equal to 2,

CN “ JNrσs with σpxq “
p2´ xq2

2
`

p1` xq2

2
¨
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From Point 2 in Theorem 1.1, one thus infers that

lim
NÑ8

CN “ σ

ˆ

1

2

˙

“
9

4
¨ (24)

Also, by partial summation, given integers M ě N ě 4,

M
ÿ

N“3

JNrφ2s “ pM` 1q ¨ JMrφ2s ´ 3 ¨ J3rφ2s ´

M
ÿ

n“4

N ¨ pJNrφ2s ´ JN´1rφ2sq

“
(23)

pM` 1q ¨ JMrφ2s ´ 3 ¨ J3rφ2s ` 2 ¨

˜

M
ÿ

N“4

JN´1rφ2s

¸

´

M
ÿ

N“4

ˆ

CN
N

`O pN ¨ ηNq

˙

. (25)

Since Proposition 3.10 guarantees the existence of constants K ą 0 and A ą 1 such that
ηN ď K ¨A´N for all N ě 1, one deduces from the norm inequality (4) that

M´1
ÿ

N“3

JNrφ2s ` pM´ 2q ¨ JMrφ2s “

M
ÿ

N“4

CN
N

`Op1q —
(24)

lnM, (26)

where the last relation holds for all M ě 4 large enough. Upon summing up this
identity, it implies with the help of an elementary manipulation of equation (25) that
for all L ě 4 large enough,

pL´ 2q ¨

L
ÿ

M“3

JMrφ2s “

L
ÿ

M“3

˜

M´1
ÿ

N“3

JNrφ2s ` pM´ 2q ¨ JMrφ2s

¸

“

L
ÿ

M“3

˜

M
ÿ

N“4

CN
N

`Op1q

¸

— L ¨ lnL.

This is easily seen to imply the estimate for the second moment in the statement of the
lemma.

As for the first moment, let ι : x ÞÑ x denote the identity function. Elementary mani-
pulations of the recursion formulae (17) show that the quantity

N ¨ JNrιs “

N´1
ÿ

n“0

n ¨ gNpnq

meets the identity

N ¨ JNrιs “ pN´ 1q ¨ JN´1rιs `
1

2
`
N´ 1

2
¨ gN´1p0q ´

N

2
¨ gN´1p´1q.
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This implies that

N ¨ JNrφ1s “ pN´ 1q ¨ JN´1rφ1s `
1

2
¨N ¨ gN´1p´1q ´

1

2
¨ pN´ 1q ¨ gN´1p0q.

Taking into account the boundary conditions

g2p0q “ g1p0q “ g1p´1q “ 1 and g2p´1q “ 0

and also the identity J3rφ1s “ 0, one infers by induction that for all N ě 4,

N ¨ JNrφ1s “
1

2
`
1

2
¨

˜

N´1
ÿ

M“1

pM` 1q ¨ gMp´1q

¸

´
1

2
¨

˜

N´1
ÿ

M“1

M ¨ gMp0q

¸

“
(17)

N ¨ gNp0q

2
¨

From Proposition 3.10, there exist constants θ ą 0 and A ą 1 such that gNp0q ď θ ¨A´N

for all N ě 1. This suffices to conclude the proof.

3.3.3 Verifying the Lyapunov Condition.

In order to complete the proof of the Central-Limit Theorem, given a sequence of
random variables pXNqNě3 on the unit circle identified with the interval r0, 1q, each
drawn according to the probability measure µN, let

ENpXNq “

N´1
ÿ

n“0

n

N
¨ gNpnq, VNpXNq “

N´1
ÿ

n“0

´n

N
´ ENpXNq

¯2
¨ gNpnq

and

WNpXNq “

N´1
ÿ

n“0

ˇ

ˇ

ˇ

n

N
´ ENpXNq

ˇ

ˇ

ˇ

3
¨ gNpnq.

When L ě 3 is an integer, set furthermore

SL “

g

f

f

e

L
ÿ

N“3

VNpXNq.

A classical version of the Central-Limit Theorem applicable to the case where ran-
dom variables behave independently without being necessarily identically distributed
is due to Lyapunov [3, p.362]. In the present case, it asserts that if the XN’s are drawn
independently from each other, then the convergence in law

1

SL
¨

L
ÿ

N“1

pXN ´ ENpXNqq
L−Ñ

LÑ8
Np0, 1q (27)
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holds provided that the Lyapunov condition

lim
NÑ8

˜

1

S2`κL

¨

L
ÿ

N“3

EN

”

|XN ´ ENpXNq|
2`κ

ı

¸

“ 0 (28)

is met for some κ ą 0. The goal in this section is to show that this condition is indeed
verified and then to derive Point 3 in Theorem 1.1 from (27).

Proof of Point 3 in Theorem 1.1. Note first that

1

SL
¨

L
ÿ

N“1

ˆ

XN ´
1

2

˙

“
1

SL
¨

L
ÿ

N“1

pXN ´ ENpXNqq `
1

SL
¨

L
ÿ

N“1

ˆ

ENpXNq ´
1

2

˙

“
1

SL
¨

L
ÿ

N“1

pXN ´ ENpXNqq ´
1

SL
¨

L
ÿ

N“1

JNrφ1s.

From this decomposition and from the classical Slutsky Theorem, the convergence in
the statement of Point 3 in Theorem 1.1 follows upon establishing these two points :

(a) the limit relation

lim
LÑ8

1

SL
¨

˜

L
ÿ

N“1

JNrφ1s

¸

“ 0

holds;

(b) the Lyapunov condition (28) is verified when κ “ 1 (so that the convergence in
law (27) is valid).

To this end, note first that Lemma 3.12 implies that the series
ÿ

Ně3

JNrφ1s

is absolutely convergent. This also holds for the series
ÿ

Ně3

EN

”

|XN ´ ENpXNq|
3
ı

“
ÿ

Ně3

WNpXNq.

Indeed, this claim immediately follows from Lemma 3.11 upon noticing that

WNpXNq ď

N´1
ÿ

n“0

ˆ
ˇ

ˇ

ˇ

ˇ

n

N
´
1

2

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

1

2
´ ENpXNq

ˇ

ˇ

ˇ

ˇ

˙3

¨ gNpnq

“

N´1
ÿ

n“0

ˆ
ˇ

ˇ

ˇ

ˇ

n

N
´
1

2

ˇ

ˇ

ˇ

ˇ

` |JNrφ1s|

˙3

¨ gNpnq

ď JNr|φ3|s ` 3 ¨ pJNr|φ2|sq
2

¨ JNr|φ1|s ` 4 ¨ pJNr|φ1|sq
3 .
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To show that both Points (a) and (b) hold, it thus suffices that the sequence pSLqLě1

should tend to infinity. This can be established in the quantitative way required by the
statement of Theorem 1.1. To see this, note that when L ě 3 is an integer,

S2L “

L
ÿ

N“3

VNpXNq “

L
ÿ

N“3

JNrφ2s ` 3 ¨

˜

L
ÿ

N“3

JNrφ1s
2

¸

.

In this decomposition, from Lemma 3.12,

L
ÿ

N“3

JNrφ2s — lnL and sup
Lě3

˜

L
ÿ

N“3

JNrφ1s
2

¸

ă 8.

This concludes the proof of Point 3 in Theorem 1.1.

4 variations on the theme of randomisation in the
josephus problem

The main problem left open by Theorem 1.1 is to determine the value of the constant
cppq when p P p0, 1{3s Y r2{3, 1q. Numerical simulations displayed in the appendix
indicate that cppq “ 1; in other words, this is saying that the sequence of measures
´

µ
ppq

N

¯

Ně3
converges to the Dirac mass δ1{2 regardless of the value of the parameter

p P p0, 1q. Note that when p R p1{3, 2{3q, the proof of Proposition 3.7, which plays a
crucial rôle in establishing the second point in Theorem 1.1, is not valid anymore. The
difficulty to determine the limit in this range can be gauged from the Central-Limit
Theorem stated in Theorem 1.1 : even in the unbiaised case p “ 1{2, the convergence
towards the Dirac mass δ1{2 is extremely slow (it is only of the order of the square root
of a logarithm).

The following variant of the probabilistic elimination process provides more insight
into the subtelty involved in the determination of the existence of a limit measure.

alternative rule for the probabilistic elimination process. Let there be N
participants enumerated from 0 to N´ 1, standing on a unit circle with a regular spacing be-
tween them and labelled anticlokwise. The 0th participant holds first the knife : with probability
p, he eliminates Participant 1 (standing on his right) and passes the knife onto the person to
the right of the victim (namely, 2). Similarly, with probability 1´ p, he eliminates Participant
N´ 1 (standing on his left) and passes the knife onto the person to the left of the victim (namely,
N-2). The next participant holding the knife then stabs the person still alive on his right-hand
side with probability p and the person still alive on his left–hand side with probability 1´ p.

See Figure 2 and compare with the first probabilistic elimination rule stated in the in-
troduction : the difference is that at each step, the outcome of the probabilistic choice is
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not about changing the direction of the stabbing anymore but about choosing which of
the persons standing on the left or on the right of the knife holder must be eliminated.

Figure 2: Illustration of the probabilistic process with the alternative elimination rule over two
rounds. The crossed circles indicate the eliminated persons and the dots with grey
interior the person who is to make the next move.

Denoting by fNpn,pq the probability that the nth participant should be the survivor in
a process involving N participants and evaluating the first argument n modulo N, the
recursion relation satisfied by the probability vector pfNpn,pqq0ďnďN´1 can be shown
to read

fNpn,pq “

$

’

’

’

’

&

’

’

’

’

%

p ¨ fN´1p´1,pq ` p1´ pq ¨ fNp1,pq if n ” 0 pmod Nq

p1´ pq ¨ fN´1p2,pq if n ” 1 pmod Nq

p ¨ fN´1p´2,pq if n ” ´1 pmod Nq

p ¨ fN´1pn´ 2,pq ` p1´ pq ¨ fN´1pn` 1,pq otherwise .

The arguments developed in the previous sections enable one to show that the result-
ing sequence of probability measures

´

µ
ppq

N

¯

Ně3
converges in this case to the Dirac
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mass δp3p´1q when 1{3 ă p ă 2{3. Because the alternative rule of elimination under
consideration coincides with the original one presented in the introduction in the unbi-
aised case p “ 1{2, one also obtain a Central-Limit Theorem in this situation. However,
one does not obtain any conclusive statement about the limiting behavior of the se-
quence in the range p P p0, 1{3s Y r2{3, 1q. In fact, numerical simulations displayed in
the appendix suggest that, in this range, the sequence does not admit any weak limit
anymore (in contrast with the first point in Theorem 1.1).

This second version of the elimination process can be seen as a particular case of an
even more general probabilistic process involving two parameters p,q P r0, 1s :

general rule for the probabilistic elimination process. Let there be N par-
ticipants enumerated from 0 to N´ 1, standing on a unit circle with a regular spacing between
them and labelled anticlokwise. Starting from the 0th participant, each one eliminates the par-
ticipant on his right with probability p and the participant on his left with probability 1´ p;
the knife is then passed onto the person on the right of the knife-holder with probability q and
onto the person onto the left of the knife-holder with probability 1´ q.

See Figure 3. Determining the limit behaviour of the corresponding sequence of mea-
sures as a function of the two parameters p,q is an open problem. Some numerical
simulation are provided in the appendix.

Figure 3: Illustration of the probabilistic process with the general elimination rule over two
rounds.
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appendix : numerical simulations
The three sets of graphs below represent numerical simulations in each of the three
variants of the probabilistic Josephus problem considered so far, namely the first vari-
ant (referred to as R1) following the rule stated in the introduction, the second one (R2)
with the alternative rule introduced in the final section and the third one (R3) with the
general rule depending on two parameters p and q. The graphs have all been produced
with simulations comprising N “ 2000 participants. They show the probability each of
the 2000 players has of being the survivor. In particular, when the elimination process
is deterministic (that is, when the parameters p and q take the extremal values 0 or 1),
the survivor is uniquely determined by the number of participants. The graphs thus
display in such cases a Dirac mass concentrated at a given point.

‚ Numerical simulations for the probabilistic rule of elimination R1 with N “

2000 persons. The parameter p takes successively the values 0, 0.2, 0.4, 0.6, 0.8
and 1. All the non-deterministic cases (i.e. when p ‰ 0, 1) show the convergence
of the process to the Dirac mass δ1{2.

‚ Numerical simulations for the alternative probabilistic rule of elimination R2
with N “ 2000 persons. The parameter p takes successively the values 0, 0.1,
0.2, 0.3, 0.4 and 0.5 (restricting the parameter p to the interval r0, 1{2s is with-
out loss of generality : the elimination process is indeed left unchanged upon
swapping p with 1´ p and, correspondingly, the right and left moves). In the
non-deterministic cases (i.e. when p ‰ 0, 1), the graphs indicate a convergence
of the process to the Dirac mass δ3p´1 in the middle range p P p1{3, 2{3q and a
divergence outside this range.

‚ Numerical simulations for the general probabilistic rule of elimination R3 de-
pending on two parameters pp,qq with N “ 2000 players. The limit behavior of
the process displays here a more subtle dependency on the parameters p and q
which is left to conjecture.
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