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ABSTRACT

Observational data are often used to estimate real-world effectiveness and durability
of coronavirus disease 2019 (COVID-19) vaccines. A sequence of nested trials
can be emulated to draw inference from such data while minimizing selection bias,
immortal time bias, and confounding. Typically, when nested trial emulation (NTE)
is employed, effect estimates are pooled across trials to increase statistical efficiency.
However, such pooled estimates may lack a clear interpretation when the treatment
effect is heterogeneous across trials. In the context of COVID-19, vaccine effective-
ness quite plausibly will vary over calendar time due to newly emerging variants of
the virus. This manuscript considers a NTE inverse probability weighted estimator
of vaccine effectiveness that may vary over calendar time, time since vaccination,
or both. Statistical testing of the trial effect homogeneity assumption is considered.
Simulation studies are presented examining the finite-sample performance of these
methods under a variety of scenarios. The methods are used to estimate vaccine
effectiveness against COVID-19 outcomes using observational data on over 120,000
residents of Abruzzo, Italy during 2021.

Keywords Causal inference · COVID-19 · Nested trial emulation · Observational studies · Vaccine
effectiveness
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Assessing COVID-19 vaccine effectiveness via nested trial emulation

1 Introduction

As of March 3, 2024, over 774 million cases of coronavirus disease 2019 (COVID-19) have been
confirmed worldwide (World Health Organization, 2024). COVID-19 vaccines were developed with
unprecedented speed and remain critical to pandemic containment efforts. Randomized controlled
trials found high efficacy of Pfizer-BioNTech, Moderna, Oxford-AstraZeneca, and Janssen vaccines
against moderate-to-severe COVID-19 (Polack et al., 2021; Baden et al., 2021; Falsey et al., 2021;
Sadoff et al., 2021). In many parts of the world, COVID-19 vaccines were initially deployed in late
2020 and are now widely available.

To estimate effectiveness and durability of COVID-19 vaccines in a real-world setting, observational
data are needed. One important goal is to determine whether protection offered by COVID-19
vaccines wanes over time since vaccination, across calendar time (as new variants of the SARS-CoV-
2 virus emerge), or both (Lin et al., 2022). Ideally, this question could be addressed by conducting a
series of randomized trials, where each trial is initiated at a different calendar date, and estimating
the vaccine effect separately for each trial. However, since such an approach is generally not
feasible, vaccine effectiveness (VE) studies must rely on observational data.

Target trial emulation is one approach for drawing inference from observational data while avoiding
biases that can arise in observational analyses (Hernán and Robins, 2016; Hernán et al., 2016).
The first step in a target trial emulation analysis entails developing a protocol for a hypothetical
randomized trial designed to address a specific causal question. Important components of the target
trial protocol include eligibility criteria, the treatment regimens to be compared, and definition of
“time zero" (the date when follow up begins). Then, the observational database is prepared and
analyzed to emulate each component of the hypothetical (target) trial. When some individuals in the
observational database meet eligibility criteria at multiple time points, nested trial emulation (NTE;
Hernán, Robins, and Garcia Rodríguez, 2005) can be used to properly align time zero. That is, a
sequence of nested trials are emulated, with time zero of each trial corresponding to the calendar
time point at which eligibility can be determined. A key feature of NTE is that each individual in
the database is “enrolled” in all emulated trials for which they are eligible. NTE has recently been
applied to estimate COVID-19 VE from large observational databases (McConeghy et al., 2022;
Gazit et al., 2023).

Often when NTE is used, treatment effect estimates are pooled across the emulated trials to increase
statistical efficiency (e.g., Hernán et al., 2008; Danaei et al., 2013, 2018). Such pooled estimates
may lack a clear interpretation when the treatment effect is heterogeneous across trials. The
assumption of trial effect homogeneity (TEH) may be plausible in some contexts, e.g., if the goal is
to estimate the effect of statin initiation on prevention of coronary heart disease (Danaei et al., 2013).
However, COVID-19 VE may vary across trials due to calendar-time-specific factors like newly
emerging viral strains and pandemic control policies. The TEH assumption can be assessed using
a formal hypothesis test (Hernán et al., 2008; Keogh et al., 2023). Moreover, assessing potential
heterogeneity in VE over calendar time (i.e., across trials) may itself be of scientific interest. NTE
is particularly well suited for this task, as trial-specific VE estimates can be used to discern patterns
of waning vaccine protection across calendar time as well as time since vaccination.

This manuscript uses a NTE approach to estimate VE over both time scales and to test the TEH
assumption. Section 2 describes the problem setup and inference procedures. Methods are demon-
strated in Section 3 through simulation studies. In Section 4, methods are applied to estimate
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COVID-19 VE using a large database of Abruzzo, Italy residents (Acuti Martellucci et al., 2022).
Section 5 concludes with a discussion. The Supporting Information contains additional method-
ological details, additional simulation results, and the target trial protocol for the application.

2 Methods

2.1 Target estimand

Suppose the goal is to estimate VE against a COVID-19 outcome (e.g., SARS-CoV-2 infection,
COVID-19-related hospitalization or death), allowing for the possibility that VE varies over calendar
time, time since vaccination, or both. Ideally, a series of randomized controlled trials could be
conducted, each initiated from a different calendar date, and VE could be estimated separately
for each trial. For this ideal scenario, let j = 0, 1, ..., J denote trial number, ordered by calendar
date of initiation. At the start of each trial, eligibility would be assessed and participants would
be randomly assigned to receive an active vaccine regimen, denoted Z = 1, or a comparator
regimen, denoted Z = 0. Assume in this ideal setting that all participants fully adhere to their
assigned regimen. Individuals would be assessed for a COVID-19 event of interest at a series of
evenly-spaced follow-up visits. Assume weekly follow-up visits and let k index time in weeks since
the start of a given trial.

The VE estimand can be defined using potential outcomes. Let Y z
j (k) denote a binary potential

outcome for a COVID-19 event by time k of trial j under treatment regimen z. The target estimand
is

V Ej(k) = 1−
P{Y 1

j (k) = 1}
P{Y 0

j (k) = 1}
(1)

for j = 0, 1, ..., J and k varying over a specified range of follow-up times. The ratio P{Y 1
j (k) =

1}/P{Y 0
j (k) = 1} is a causal contrast comparing the counterfactual risk at time k of trial j under

regimens Z = 1 and Z = 0. Variation in V Ej(k) over j indicates the vaccine’s effect is changing
over calendar time, whereas variation in V Ej(k) over k conveys the vaccine effect changes with
time since vaccination. Alternatively, V Ej(k) could be defined as one minus the hazard ratio at
time k in trial j (Halloran, Longini, and Struchiner, 2010). Given issues that arise in the causal
interpretation of hazard ratios (Hernán, 2010; Aalen, Cook, and Røysland, 2015; Martinussen,
Vansteelandt, and Andersen, 2020), the developments in this manuscript focus on the risk ratio VE
estimand (1).

Since conducting a series of randomized trials is unlikely to be feasible, observational data can be
used to emulate the desired series of trials. This manuscript aims to draw inference about (1) from
observational data via NTE. Throughout the remainder of Section 2, methods are developed in the
context of the Abruzzo study analyzed in Section 4.

2.2 The Abruzzo study

The Abruzzo COVID-19 VE study (Acuti Martellucci et al., 2022) utilized individual data available
from the Italian National Health Service on medical and demographic characteristics and COVID-
19 vaccination status and outcomes. The study included all persons residing or domiciled in the
Abruzzo region of Italy on January 1, 2020 and without a positive SARS-CoV-2 swab prior to
January 2, 2021 (N = 1, 279, 694). Baseline characteristics (age, sex, risk factors/comorbidities)
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were known for all individuals. The database includes COVID-19 vaccination date and type (either
Pfizer-BioNTech, Moderna, Oxford-AstraZeneca, or Janssen) for each dose received between
January 2, 2021 and December 18, 2021 (up to three doses per individual). Calendar date for each
of the following was recorded between January 2, 2021 and February 18, 2022: first SARS-CoV-2
infection (positive reverse transcription polymerase chain reaction test from an accredited laboratory
in Abruzzo), first severe COVID-19 disease (requiring hospitalization), and death (with or without
positive SARS-CoV-2 swab).

2.3 Emulating target trials using observational data

2.3.1 Analytic cohort

Suppose there is interest in applying NTE to estimate COVID-19 VE during 2021 using the Abruzzo
study data. Consider a sequence of emulated trials initiated weekly from Feb 15, 2021 to May 3,
2021, with each trial ending on Dec 18, 2021. Let l = 0, 1, ..., τ index calendar time, measured
in weeks from February 15, where l = J corresponds to the week of May 3 and τ = 44 is the
administrative censoring time.

This section describes how specifications in the target trial protocol for the application in Section 4
are used to construct an analytic cohort from the Abruzzo data; the full protocol appears in Table
A.2. Individuals are “enrolled" into all trials for which they are eligible. Assume people enter the
analytic cohort on the first full week during which they meet eligibility criteria. Further assume
eligibility criteria are defined such that a person may be eligible for one or more consecutive trials,
but a person who is ineligible for the week-l trial will also be ineligible for all subsequent trials.
Define the analytic cohort as the set of all individuals in the Abruzzo study database who are alive
and free of the event on February 15, 2021 and meet eligibility criteria for at least one trial.

Assume a “study visit" (data collection time) occurs on the first day of each week during the
follow-up period. Time-dependent variables are measured in weeks and determined by changes
in a participant’s status between study visits. Let T denote calendar time of the event of interest,
measured in weeks from l = 0 (i.e., February 15, 2021). Similarly, let C denote calendar time of
censoring (due to loss to follow up, as defined in the target trial protocol). Let T ∗ = min(T,C)
and ∆ = I(T < C), where I(·) denotes the indicator function. For example, if an individual
experiences an event on or after the day of the week l − 1 visit and before the day of the week
l visit, then T ∗ = l and ∆ = 1. If an individual remains free of the event and censoring by the
administrative censoring time τ , then ∆ = 0 and C = τ + 1. Let S and S∗ denote the first and
last calendar time when eligibility criteria are met, respectively, such that S∗ ∈ {S, S + 1, ..., J}.
Let V = (V1, V2, V3) where Vq represents calendar time of the qth COVID-19 vaccine dose. By
convention, let Vq = ∞ if an individual is lost to follow up or experiences an event prior to receiving
a qth vaccine dose. LetX denote a vector of time-fixed covariates measured prior to calendar time
l = 0. Assume independent and identically distributed copies of O = (T ∗,∆, S, S∗,V ,X) are
observed for the n individuals in the analytic cohort.

2.3.2 The emulated trials

For each emulated trial j ∈ {0, 1, ..., J}, the follow-up period coincides with calendar times
j, j + 1, ..., τ . Recall that time in weeks since the start of a given trial is indexed by k. For trial j,
let Kj = τ − j denote the duration of follow up (in weeks) and note that time k occurs at calendar
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time j + k. Let W = {(j, k) ⊂ Z+
0 × Z+

0 : 0 ≤ j ≤ J, 0 ≤ k ≤ Kj} denote the set of all time
points in the NTE study period, where Z+

0 represents the non-negative integers.

Observed data are used to “assign" eligible individuals to a vaccine regimen in each trial, according
to specifications in the target trial protocol. Consider vaccine regimens Z = 0 “remain unvaccinated
through December 18, 2021" and Z = 1 “receive a first COVID-19 vaccine dose within one to seven
days of trial enrollment, receive a second dose within six weeks of the initial dose, and receive no
further COVID-19 vaccine doses through December 18, 2021." Assume prior uptake of the vaccine
is among the exclusion criteria. Therefore, individuals assigned to regimen Z = 0 in trial j may
be enrolled in trials j + 1, j + 2, ..., J , provided they continue to meet other eligibility criteria, but
those assigned to Z = 1 in trial j are ineligible for subsequent trials. Recall that V1 = l + 1 if an
individual receives a first vaccine dose during calendar week l. Thus, if a person with V1 = j + 1 is
eligible for trial j, they are enrolled in trial j with regimen assignment Z = 1 and excluded from all
subsequent trials. Let Zj = I(V1 ≤ j + 1) be an indicator for uptake of regimen Z = 1 by calendar
time j.

For example, consider a hypothetical individual with observed data O = (T ∗ = 4,∆ = 1, S =
0, S∗ = 2,X = x,V = (3,∞,∞)). Thus, (Z0, Z1, Z2) = (0, 0, 1), i.e., the individual is enrolled
in trial 0 with regimen assignment Z = 0, trial 1 with Z = 0, and trial 2 with Z = 1. After receiving
a first vaccine dose, the individual is ineligible for subsequent trials (i.e., trials 3, 4, ..., J). Figure 1
illustrates the hypothetical individual’s contribution to trials 0, 1, and 2.

Methods in this manuscript aim to estimate the observational analogue of a per-protocol effect, i.e.,
VE corresponding to perfect adherence to the active vaccine regimen. An individual’s trial j record is
censored if the individual (i) no longer follows their trial-j regimen assignment, (ii) is lost to follow-
up, or (iii) reaches the administrative censoring timeKj (on the trial time scale) without experiencing
(i), (ii), or an event. Let Rj(k) be a binary indicator for remaining uncensored at time k in trial
j. Specifically, if an individual is eligible for trial j, Rj(k)=1− max{I(Zj = 0, V1 ≤ j + k + 1),
I(Zj = 1, k ≥ 6, V2 − V1 > 6), I(Zj = 1, V3 ≤ j + k), I(T ∗ ≤ j + k,∆ = 0)} for all
k ∈ {0, 1, ..., Kj}; otherwiseRj(k) is undefined. For example, the hypothetical individual described
above receives a first COVID-19 vaccine during the interval March 1-7, 2021, so V1 = 3. Their
trial 1 record is artificially censored (Robins and Finkelstein, 2000) when they initiate the active
regimen, i.e., R1(k) = 1− I(Z1 = 0, V1 ≤ 2 + k) = 0 for all k ∈ {1, 2, ..., K1}.

Let Yj(k) be the indicator of an observed event by time k of trial j. Specifically, if an individual is
eligible for trial j, then Yj(k) = I(T ∗ ≤ j+k,∆ = 1) for all k ∈ {0, 1, ..., Kj}; otherwise Yj(k) is
undefined. An individual is at risk of having an observed event at time k of trial j if Rj(k − 1) = 1
and Yj(k − 1) = 0. In the running example, the hypothetical participant experienced a COVID-19
hospitalization just prior to the week l = T ∗∆ = 4 visit (see Figure 1). Their trial 2 record was at
risk (because R2(1) = 1 and Y2(1) = 0), so they contribute an event to the analysis at time k = 2
of trial j = 2, i.e., Y2(2) = I(T ∗ ≤ 4,∆ = 1) = 1. However, their trial 0 and 1 records (red lines
in Figure 1) were not at risk when the event occurred (because R0(3) = R1(2) = 0), so they do not
contribute events to the analysis for trials 0 and 1.

2.4 Potential outcomes and identifiability assumptions

Let T v1 denote potential (or counterfactual) calendar time of the event under the treatment strategy
“initiate vaccine regimen Z = 1 at calendar time v1− 1 and remain adherent to that strategy through
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Figure 1: Lexis diagram illustrating trial-specific data for a hypothetical individual with observed
data {T ∗ = 4,∆ = 1, S = 0, S∗ = 2,X = x,V = (3,∞,∞)}. Circles represent entry into
trial-specific cohorts, diagonal lines time spent at risk, triangles censoring, and the cross an event.
This individual is “enrolled” in trial 0 in treatment group Z0 = 0, trial 1 in group Z1 = 0, and trial
2 in group Z2 = 1. They are ineligible for subsequent trials. Trial-specific variables are derived
using calendar time (horizontal axis) and trial time (vertical axis). For example, the trial 0 record
is censored at trial time k = 2, such that R0(2) = 0, because the individual ceases to follow their
“assigned" trial 0 regimen at calendar time l = 2. Similarly, the trial 1 record is censored at trial time
k = 1, so that R1(1) = 0. The trial 2 record has an event at trial time k = 2, such that Y2(2) = 1,
since the individual experiences a COVID-19 hospitalization in the week prior to calendar time
l = 4.

December 18, 2021". Similarly, let T v1>τ denote potential calendar time of the event under the
treatment strategy “refrain from initiating Z = 1 through December 18, 2021". An individual
who enters the analytic cohort at calendar time s and continues to meet eligibility criteria through
calendar time s∗ is assumed to have the following set of s∗ − s+ 2 potential outcomes: {T v1=s+1,
T v1=s+2, ..., T v1=s∗ , T v1=s∗+1, T v1>τ}. Potential outcomes can be re-expressed in the emulated
trial notation. Recall that Y z

j (k) represents a binary potential outcome for an event by time k
of trial j under adherence to vaccine regimen Z = z for z ∈ {0, 1}. Assume the following for
all (j, k) ∈ W: Y 1

j (k) = I(T v1=j+1 ≤ j + k) if T v1=j+1 ≥ j, Y 1
j (k) is undefined otherwise,

Y 0
j (k) = I(T v1>τ ≤ j + k) if T v1>τ ≥ j, and Y 0

j (k) is undefined otherwise.

The following conventions and assumptions are adopted for the remainder of the manuscript. Vectors
are bolded and are assumed to be row vectors except where noted otherwise. Let X1 ⊂ X and
X2 ⊂ X denote possibly overlapping covariate vectors, and let ej(X1)=P{Zj = 1 | Rj(0) =
1,X1} denote the trial-j propensity score. Noting that, when an individual is eligible for trial j, their
treatment regimen “assignment" is equal to Zj , let djk(Zj , X2)=P{Rj(k) = 1 | Rj(k − 1) = 1,
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Yj(k−1) = 0, Zj ,X2} denote the hazard of remaining uncensored at time k of trial j, conditional on
vaccine regimen assignment in trial j and covariates. Assume that all variables are measured without
error, and assume the following for all (j, k) ∈ W and z ∈ {0, 1}: Y z

j (k) ⊥⊥ Zj | {X1, Rj(0) = 1}
(conditional exchangeability); Y z

j (k
′) ⊥⊥ Rj(k) | {Zj = z,X2, Rj(k − 1) = 1, Yj(k − 1) = 0}

for all integers k′ such that k ≤ k′ ≤ Kj (ignorable censoring); if fX1,Rj(0)(x1, 1) > 0, then
0 < ej(X1) < 1 and if fX2,Zj ,Rj(k−1),Yj(k−1)(x2, z, 1, 0) > 0, then djk(Zj,X2) > 0, where in
general fA denotes the cumulative distribution function of random variable A (positivity); an
individual’s potential outcomes Y z

j (k) are unaffected by whether another individual follows regimen
z = 0 or z = 1 in trial j′ for all j′ ∈ {0, 1, ..., J} (no interference between individuals; Cox, 1958);
and if Rj(k) = 1, then Yj(k) = (1− Zj)Y

0
j (k) + ZjY

1
j (k) (causal consistency).

2.5 Inverse probability weighted VE estimator

Observe that (1) can be re-expressed as

V Ej(k) = 1−
1−

∏k
m=1{1− λ1j(m)}

1−
∏k

m=1{1− λ0j(m)}
, (2)

where λzj(k) = P{Y z
j (k) = 1 | Y z

j (k − 1) = 0} is the counterfactual (discrete time) hazard of the
outcome at time k of trial j under vaccine regimen z. Following Hernán and Robins (2020, Ch. 17),
Section 2.5.2 describes a plug-in VE estimator based on (2). Specifically, inverse probability
weighted estimators of the counterfactual hazards are proposed based on an assumed marginal
structural model (MSM) which allows the outcome hazard to depend on calendar time, time since
vaccination, or both. The following section compares several MSM specifications.

2.5.1 Modeling framework

Consider the MSM

logit{λzj(k)} = α0 + α1z +α2f1(k)z +α3f2(j + k) +α4f3(j + k)z, (3)

where f1(·), f2(·), and f3(·) are column vectors of user-specified functions. According to (3),
if α2 ̸= 0 and at least one of α3 or α4 is non-zero, then the counterfactual hazard under z = 1
will in general vary over both calendar time and time since vaccination. Since the hazard for the
outcome when unvaccinated should not depend on time since “enrollment" in a hypothetical trial,
the counterfactual hazard under z = 0 is assumed under model (3) to be a one-dimensional function
of calendar time j + k. Thus, the hazard under z = 0 at a fixed calendar time, say j + k = 3, is
the same regardless of trial number, i.e., λ00(3) = λ01(2) = λ02(1) = logit−1{α0 + α3f2(3)}. The
expression α0 +α3f2(j + k) can be interpreted as a calendar-time-varying intercept representing
the logit hazard when unvaccinated at calendar time j + k; α1 +α4f3(j + k) captures the change
to the logit hazard at calendar time j + k if vaccinated; and α2f1(k) represents the change to the
logit hazard k weeks after vaccination.

As an alternative to (3), one could consider more general MSMs. For example, the outcome hazard
could be modeled separately for each trial so that

logit{λzj(k)} = α0 + α1jz +α2jf1(k)z +α3f2(j + k), (4)

where α1j + α2jf1(k) represents the change to the hazard when vaccinated at time k of trial j.
Here, as in model (3), the hazard when unvaccinated is assumed to be a one-dimensional function
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of calendar time. Note that the modeling approach in (3) “borrows" information across trials to
estimate the hazard trajectory under vaccination over both time scales. However, (3) assumes that
the increment to the logit hazard when vaccinated can be decomposed into additive calendar time
and time since vaccination effects. Adopting model (4) would circumvent this assumption, although
the dimension of the nuisance parameters under (4) may become unwieldy when emulating more
than a few trials.

In some infectious disease settings (e.g., measles), MSMs that are more restrictive than (3) may be
appropriate. For example, the antigenic profile of measles virus is stable across calendar time. In
turn, measles vaccines that were developed decades ago offer protection against measles viruses in
circulation today (Tahara et al., 2016; Zemella et al., 2024). In such a setting, one might posit the
MSM

logit{λzj(k)} = α0 + α1z +α2f1(k)z +α3f2(j + k) (5)
which is a special case of (3) with α4 = 0. Under the stronger assumption that hazards under both
z = 0 and z = 1 do not depend on calendar time, but the hazard under z = 1 may depend on time
since vaccination, an even more restrictive version of (3) with α3 = α4 = 0 could be considered.

By contrast, the SARS-CoV-2 virus mutates rapidly, leading to emergence of new variants. Current
COVID-19 vaccines are designed to elicit an immune response to specific SARS-CoV-2 antigens
and, in turn, may not protect against COVID-19 disease given exposure to a SARS-CoV-2 variant
with a different antigenic structure. Therefore, the application in Section 4 utilizes models of the
form (3) that allow for changes in the hazard when vaccinated across calendar time and time since
vaccination.

2.5.2 Estimation procedures

The MSM parameters α can be estimated via weighted maximum likelihood (ML) as follows.
Using the analytic cohort data, obtain estimates of the trial-specific propensity scores ej(X1; ζ)
and hazards for remaining uncensored djk(Zj,X2;κ) by fitting parametric models as described in
Section A.2. Then construct the following weight for each observation:

Ŵj(k) =
1∏k

m=1 djm(Zj,X2; κ̂)

[
1− Zj

1− ej(X1; ζ̂)
+

Zj

ej(X1; ζ̂)

]
,

where κ̂ and ζ̂ are ML estimators. Heuristically, weighting individuals in trial j by Ŵj(k) creates
a trial-specific pseudo-population which is free of confounding by X1 (Robins, Hernán, and
Brumback, 2000) and selection bias arising from differential censoring (Robins and Finkelstein,
2000). Fit a logistic model

logit[P{Yj(k) = 1 | Zj = z,Rj(k) = 1, Yj(k − 1) = 0}] = α∗f(j, k, z) (6)

to the analytic cohort data via weighted ML with weights Ŵj(k) where α∗ is a vector of unknown
regression parameters and f(·) is a column vector containing functions of trial number, time on
trial, and active vaccine regimen uptake indicator. The form of f should be specified according
to the assumed MSM, e.g., (3). Let α̂∗ denote the weighted ML estimator of the parameters
in (6). Let ρj(k) = log{RRj(k)} where RRj(k) = 1 − V Ej(k) is the risk ratio at time k of
trial j, and let ρj = {ρj(1), ρj(2), . . . , ρj(Kj)} and ρ = (ρ0,ρ1, ...,ρJ). A plug-in estimator
for ρj(k) is given by ρ̂j(k) = log[1−

∏k
m=1{1− λ̂1j(m)}]− log[1−

∏k
m=1{1− λ̂0j(m)}], where

λ̂zj(k) = logit−1{α̂∗f(j, k, z)} for z ∈ {0, 1}. Let θ̂ = (ζ̂, κ̂, α̂∗, ρ̂)T .
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The estimator θ̂ is the solution to an unbiased estimating equation vector, as shown in Section
A.3. It follows that, under certain regularity conditions (Stefanski and Boos, 2002), θ̂ is consistent
for θ = (ζ,κ,α,ρ)T and asymptotically normal when models (A.1), (A.2) and the MSM for the
outcome hazard are all correctly specified. The empirical sandwich variance estimator, denoted
V̂n(θ̂), can be used to consistently estimate the asymptotic variance of θ̂ and to construct Wald-type
confidence intervals (CIs) for ρj(k). Upon transformation to the VE scale, a (1− γ)100% CI for
V Ej(k) is given by

1− exp

[
log{RRj(k)} ± ϕ1−γ/2

√
V̂n{ρ̂j(k)}/n

]
where ϕ1−γ/2 is the (1 − γ/2)th quantile of the standard normal distribution, and V̂n{ρ̂j(k)}
is the element in row a, column a of V̂n(θ̂) where a denotes the index for entry ρ̂j(k) in θ̂.
Weighted ML estimates can be calculated using standard software, and empirical sandwich variance
estimates can be obtained from the R package geex (Saul and Hudgens, 2020) or the Python library
delicatessen (Zivich et al., 2022).

2.6 Testing the TEH assumption

Formal hypothesis testing can be used to detect heterogeneity in VE across trials. Define the TEH
assumption as H0 : V E0(k) = V E1(k) = · · · = V EJ(k) for all k ∈ {1, 2, ..., KJ}. Departures
from H0, i.e., differences in VE across trials, are anticipated to be monotonic. For example, VE
may decrease over calendar time as new SARS-CoV-2 variants emerge. Therefore, the test statistic
proposed below is intended to detect monotonic departures from H0.

Let AUCj =
∑KJ

k=1 V Ej(k) denote area under the VE curve for the first KJ weeks of trial j.
Recalling that all trials have at least KJ weeks of follow-up, AUCj is a scalar summary measure
that is comparable across trials. Consider simple linear regression of AUCj on j, and let

(β0, β) = argmin
(b0,b)

J∑
j=0

{AUCj − (b0 + bj)}2. (7)

Let (β̂0, β̂) denote the estimator of (β0, β) obtained by solving (7) with AUCj replaced by ÂUCj =∑KJ

k=1 V̂ Ej(k). Large values of |β̂| provide evidence against H0 for a two-sided test. For testing
H0 against the one-sided alternative of decreasing VE across (temporally ordered) trials, large (in
absolute value) negative values of β̂ provide evidence against the null. The generalized Wald test
statistic Uβ = β̂/ŜE(β̂) may be used to test H0, where ŜE(β̂) is computed based on the empirical
sandwich variance estimator. Under H0, Uβ follows an approximately standard normal distribution
in large samples (see Section A.4 for additional details).

3 Simulation Studies

3.1 Simulation Design

Simulation studies were conducted to examine the finite sample performance of the VE estimator
and TEH test discussed in Section 2. An observational cohort was simulated with τ = 20 time
points of follow up and n = 50, 000 individuals. Motivated by the Abruzzo data, baseline covariates
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were simulated as follows. Age was generated according to X1 ∼ FN(0, 7) + 80, where FN(µ, σ)
is the folded normal distribution with mean µ and standard deviation σ. Sex (X2) and comorbidity
status (X3) were generated from Bern[logit−1{−0.42− 0.047(X1− X̃1)}] and Bern[logit−1{0.44+
0.009(X1 − X̃1) + 0.37X2}], respectively, where Bern(π) is the Bernoulli distribution with mean
π, and X̃1 = 86.2 is the population mean of X1. Active vaccine regimen uptake indicators were
generated such that Z0 ∼ Bern(πZ) and Zj ∼ I(Zj−1 = 1)+I(Zj−1 = 0)Bern(πZ) for j = 1, ..., τ ,
where πZ = logit−1{−2.64+ 0.25j − 0.022j2 − 0.052(X1 − X̃1) + 0.03X2 − 0.048X3}. Potential
outcomes were generated according to Y z

j (0) = 0 for j = 0, ..., τ and P{Y z
j (k) = 1 | Y z

j (k− 1) =

0,X} = logit−1{ιzj(k) −0.013(X1 − X̃1) −0.26X2 +0.425X3)} for (j, k) ∈ {(j, k) ⊂ Z+
0 × Z+ :

0 ≤ j ≤ τ − 1, 1 ≤ k ≤ Kj}, where X = (X1, X2, X3) and Z+ = {1, 2, 3, ...}. The “balancing
intercept” ιzj(k) (Robertson, Steingrimsson, and Dahabreh, 2022) was set, for each (j, k), to
approximately yield prespecified values for λzj(k). The cohort was free of loss to follow up.

Three scenarios were considered. In scenario 1, VE was homogeneous across trials and decreased
over time since vaccination. The true MSM was λzj(k) = logit−1(−4− 2.5z + 0.02kz + 0.005k2z).
In scenario 2, the true hazard varied over calendar time. The hazard when vaccinated depended
on calendar time but not time since vaccination: λzj(k) = logit−1{−4− 0.01(j + k)− 0.003(j +
k)2 − 2.5z+0.02(j + k)z+0.006(j + k)2z}. In Scenario 3, the hazard when vaccinated depended
on both time scales: λzj(k) = logit−1{−4− 0.01(j + k)− 0.003(j + k)2 − 2.5z + 0.02(j + k)z +
0.006(j + k)2z + 0.02kz + 0.005k2z}.

For each scenario, 3, 000 replications were conducted, and thirteen trials were emulated from each
simulated dataset. For each trial, individuals were excluded if and only if, prior to enrollment, they (i)
initiated active vaccine regimen or (ii) experienced an event. Each simulated data set was analyzed
using two different MSM specifications. For the first analysis, the hazard was modeled according to
(5) with f1(t) = f2(t) = t+ t2, i.e., it was assumed that the hazard when vaccinated did not depend
on calendar time but could depend on time since vaccination. For the second analysis, the hazard
model was specified according to (3) with f1(t) = f2(t) = f3(t) = t+ t2, i.e., it was assumed that
the hazard when vaccinated depended on both calendar time and time since vaccination. Covariate
effects on propensity scores and the hazard of remaining uncensored were assumed constant across
trials, and inverse probability weights were estimated using correctly specified logistic models. For
each analysis, V̂ E5(k) for select k and V̂ Ej(5) for select j were calculated along with estimated
standard errors and corresponding 95% CIs. Additionally, a one-sided generalized Wald test of the
TEH assumption H0 was conducted for the model (3) analysis. Point estimates were obtained using
glm in R and standard error estimates were calculated using the Python library delicatessen
(Zivich et al., 2022). Finally, additional simulation studies were conducted under the same data
generating process described above. For the analysis, the outcome hazard model was specified
according to (3) and time functions in all models were specified using restricted cubic splines (see
Appendix B for additional details).

3.2 Simulation results

Table 1 presents simulation study results by scenario and analysis model. When VE was homoge-
neous across trials (Scenario 1), bias was low and CI coverage was near the nominal level for both
modeling approaches, as expected. In scenarios 2 and 3, true VE differed across trials and the model
(3) analysis continued to exhibit low bias and near-nominal CI coverage overall. On the other hand,
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the model (5) analysis produced biased estimates with below-nominal CI coverage in scenarios 2
and 3, as expected due to model misspecification. Results suggest that an incorrect choice of time
scale for modeling vaccine effects can have substantial impact on the resulting inference.

Table 1: Simulation study results by scenario across 3, 000 replications, τ = 20 time points of
follow-up, and n = 50, 000.

Model (5) Model (3)
True 95% CI 95% CI
value ESE ASE coverage ESE ASE coverage

Scn. Estimand (%) Bias ×102 ×102 (%) Bias ×102 ×102 (%)
1 V E0(5) 90.3 0.0 5.7 5.8 96 0.0 10.7 10.8 95

V E3(5) 90.3 0.0 5.7 5.8 96 0.0 5.9 6.0 96
V E6(5) 90.3 0.0 5.7 5.8 95 0.0 7.0 7.0 95
V E9(5) 90.3 0.0 5.7 5.8 95 0.0 9.3 9.3 95
V E12(5) 90.3 0.0 5.7 5.8 96 0.0 11.1 11.1 95
V E5(1) 91.4 0.0 8.3 8.5 96 0.0 8.5 8.7 96
V E5(4) 90.7 0.0 6.2 6.4 95 0.0 6.7 6.8 95
V E5(8) 88.9 0.0 4.4 4.4 95 0.0 5.1 5.1 95
V E5(12) 85.8 0.0 3.5 3.5 95 0.0 4.0 3.9 95
V E5(15) 81.9 0.0 3.2 3.1 94 0.0 3.5 3.4 94

2 V E0(5) 90.2 -6.0 5.4 5.5 0 0.0 10.8 10.8 95
V E3(5) 87.9 -3.5 5.4 5.5 1 0.0 5.9 6.0 95
V E6(5) 83.3 1.2 5.5 5.5 75 0.1 6.3 6.3 95
V E9(5) 74.3 10.2 5.5 5.6 0 0.1 8.0 8.1 95
V E12(5) 56.1 28.5 5.5 5.6 0 0.2 9.5 9.6 96
V E5(1) 88.4 -0.2 8.2 8.3 95 0.0 8.1 8.2 96
V E5(4) 86.1 -0.7 6.0 6.1 88 0.1 6.2 6.3 95
V E5(8) 81.6 -0.5 4.3 4.3 91 0.1 4.8 4.8 95
V E5(12) 74.1 1.7 3.8 3.7 55 0.1 4.0 3.9 94
V E5(15) 65.2 6.1 3.6 3.5 0 0.1 3.6 3.5 94

3 V E0(5) 89.0 -7.4 5.0 5.1 0 0.0 9.7 9.7 95
V E3(5) 86.3 -4.6 5.0 5.1 0 0.1 5.5 5.5 94
V E6(5) 81.1 0.6 5.0 5.1 90 0.1 5.7 5.7 95
V E9(5) 70.9 10.8 5.1 5.1 0 0.1 7.2 7.2 95
V E12(5) 50.2 31.4 5.1 5.1 0 0.3 8.4 8.5 95
V E5(1) 88.1 -0.5 7.3 7.4 92 0.1 7.2 7.3 95
V E5(4) 84.8 -1.3 5.5 5.6 69 0.1 5.7 5.7 95
V E5(8) 76.3 -1.6 3.9 3.8 59 0.1 4.3 4.2 95
V E5(12) 56.4 1.7 3.2 3.1 74 0.2 3.3 3.2 94
V E5(15) 21.5 13.4 3.1 3.0 0 0.4 2.9 2.9 94

Abbreviations: Scn., Scenario; ASE, average estimated standard error; ESE, empirical
standard error; CI, confidence interval
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The null hypothesis H0 was true by design in scenario 1. One-sided generalized Wald tests of H0

were rejected at the 0.05 significance level in 4.6% of scenario 1 replications. The null hypothesis
was false in scenarios 2 and 3, and was rejected in 100% of the replications. Results were similar
when time functions in analytic models were specified using restricted cubic splines (see Appendix
B and Table A.1).

4 Application to the Abruzzo, Italy data

The NTE methods described above were applied to analyze the Abruzzo study data. The aim
of the application was to assess effectiveness of a full course of vaccine, compared to remaining
unvaccinated, against the composite outcome severe COVID-19 or COVID-19-related death among
Abruzzo residents aged 80 years or older (n = 120, 778). The target trial protocol was introduced
in Section 2; the full protocol is available in Table A.2.

4.1 Analysis

Full course of vaccine was defined as one dose of Janssen vaccine or two doses of Pfizer-BioNTech,
Moderna, or Oxford-AstraZeneca vaccine, with the second dose obtained before the end of the
recommended time window (Centers for Disease Control and Prevention, 2021; World Health
Organization, 2022). The first emulated trial was initiated February 15, 2021. A new trial was
initiated every seven days thereafter through May 3, 2021, for a total of twelve emulated trials.
December 18, 2021 was chosen as the administrative censoring date because the observed vaccine
regimen could not be determined from the data after this date. There were 1,079 individuals (< 1%)
with missing values for date of first vaccine dose. These individuals were excluded from the analysis
because their trial-specific eligibility could not be determined.

Data were pooled across trials to fit logistic models for the propensity score, hazard of remaining
uncensored, and hazard of the outcome. It was assumed that a common vector of measured
covariates X∗ = X1 = X2 was sufficient to achieve conditional exchangeability and adjust for
selection bias arising from differential censoring, where X∗ consisted of baseline age, sex, and
comorbidity status (defined as one or more of hypertension, diabetes, cardiovascular disease, chronic
obstructive pulmonary disease, kidney disease, and cancer). The propensity score model included
trial number and linear terms for each variable in X∗. The model for the hazard of remaining
uncensored included calendar time and linear terms for vaccine regimen and each variable inX∗.
Administrative censoring was assumed to be noninformative; a time-varying binary indicator for
nonadherence or non-COVID-19-related death was the outcome in the censoring model. The model
for the hazard of the outcome was specified according to (3). Trial number in the propensity score
model, calendar time in the model for remaining uncensored, and all time functions in the model
for the outcome hazard were transformed using restricted cubic splines with four knots at the 5th,
35th, 65th, and 95th percentiles (Harrell, 2015). A one-sided generalized Wald test of the TEH
assumption H0 for the first KJ = 32 weeks of follow up was conducted.

4.2 Analysis results

Seventy-one percent of the analytic cohort (86,196 individuals) received a first COVID-19 vaccine
dose by May 9, 2021. Of these, 84,182 (98%) completed a full course of vaccine. Among completers,
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(a) (b)

Figure 2: Estimated VE against severe COVID-19 or COVID-19-related death among Abruzzo
residents aged 80 years or older between February 15, 2021 and December 18, 2021. The opaque
surfaces depict the VE point estimates and the transparent surfaces the corresponding 95% Wald
CIs. Panels (a) and (b) display the same surface from two vantage points.

75,145 individuals (89%) received two doses of Pfizer, 8,116 (10%) received two doses of Moderna,
849 (1%) received two doses of AstraZeneca, 55 (< 1%) received one dose of Janssen, and 17
(< 1%) received mixed vaccine brands across their two doses.

Panels (a) and (b) of Figure 2 display the estimated VE surface from two perspectives. Correspond-
ing VE point estimates and 95% CIs for select trials and times since vaccination are displayed
in Table 3. For all trials, the estimated VE curve tended to peak around weeks 15-20 after first
vaccination. These results are consistent with the hypothesized biological mechanism of protection
of COVID-19 vaccines, as vaccine induced antibodies from a two-dose regimen tend to increase 6-8
weeks after the second dose and then slowly decline thereafter (Ebinger et al., 2022). For fixed time
since vaccination, the VE estimates tended to decrease with trial, suggesting possible waning of
VE over calendar time. A generalized Wald test for linear departure from H0 yielded a one-sided
P -value of 0.097, providing some evidence that VE may be heterogeneous across trials.

Figures 2a-2b reveal greater uncertainty in VE estimates in later trials and at later times since
vaccination. This could be due to several factors. Excepting those who age into the analytic cohort
(and therefore participate in later but not earlier trials), each successive trial cohort is nested in the
previous one. Thus, cohort size tended to diminish over calendar time. Within each trial, the number
of observations at risk decreased over time on trial due to accumulation of events and censoring.
Lower vaccine uptake in later trials led to generally smaller estimated propensity scores and, in turn,
to more extreme inverse probability weights (Cole and Hernán, 2008).
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Table 3: Estimated VE against severe COVID-19 or COVID-19-related death among Abruzzo
residents aged 80 years or older (n = 120, 778) between February 15, 2021 and December 18, 2021.
Results are presented for selected emulated trials and weeks since first dose. The starting date of
each trial was as follows: trial j = 0, February 15, 2021; trial j = 3, March 8, 2021; trial j = 6,
March 29, 2021; and trial j = 9, April 19, 2021.

Weeks since V̂ E0(k) V̂ E3(k) V̂ E6(k) V̂ E9(k)
first dose (k) % (95% CI)
1 86 (73, 93) 79 (68, 87) 69 (40, 84) 56 (-27, 85)
7 87 (76, 93) 81 (72, 88) 73 (50, 86) 64 (7, 86)
14 87 (76, 93) 82 (72, 88) 76 (56, 86) 70 (26, 87)
21 86 (75, 93) 81 (71, 88) 76 (58, 86) 70 (32, 87)
28 85 (74, 92) 80 (70, 86) 72 (55, 82) 60 (23, 80)
34 84 (73, 91) 77 (67, 84) 63 (45, 75) 32 (-10, 58)

5 Discussion

Nested trial emulation has become increasingly popular in practice for drawing inference about
treatment effects from observational data. Motivated by the need to assess the effects of COVID-19
vaccination outside of randomized trials, this paper develops NTE-based methods which allow
treatment (vaccine) effects to vary on two different time scales, namely time since treatment
initiation and calendar time. While motivated by vaccine studies, the methods could be applied in
any setting where treatment effects may plausibly vary across both time scales.

The application evaluated effectiveness of a full course of COVID-19 vaccine versus remaining
unvaccinated among elder residents of the Abruzzo region of Italy. It is difficult to directly compare
these results with those of Acuti Martellucci et al. (2022) because the designs differ in several key
aspects. Acuti Martellucci et al. estimated the effectiveness of a full course of COVID-19 vaccine
versus remaining unvaccinated among individuals 60 years of age or older during the period January
31, 2021 through February 8, 2022. They estimated VE against COVID-19-related death to be
94% (95% CI:93% to 95%) and against severe COVID-19 to be 86% (95% CI:84% to 88%). For
comparison, in the present analysis the estimated VE against the composite outcome at week 44
of trial 0 (i.e., February 15, 2021 through December 18, 2021) was 80% (95% CI:67% to 87%).
However, direct comparison of these estimates is not straightforward because of differences in
study period, target population, and outcome. The analyses also targeted different estimands. Acuti
Martellucci et al. defined VE as one minus the adjusted odds ratio, while in this manuscript VE
equals one minus the marginal risk ratio. Although the odds ratio approximates the risk ratio when
the outcome is rare (Cornfield, 1951), the adjusted odds ratio does not in general equal the marginal
odds ratio due to noncollapsibility (Daniel, Zhang, and Farewell, 2021).

The analysis presented in Section 4 draws new insights from the Abruzzo study database. Particu-
larly, the analysis characterizes VE trends across calendar time and time since vaccination. These
results suggest that for the vaccine regimen considered (i) VE peaked approximately 15-20 weeks
after the first dose, and (ii) VE waned over the calendar time of the study. The combination of
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(i) and (ii) can result in meaningful differences in the protective effect of the vaccine, e.g., VE
14 weeks after the first dose in the earliest emulated trial was estimated to be 87%, whereas VE
34 weeks after the first dose in the later trials was estimated to be less than 40%. Understanding
changes in VE from time of first dose is important for informing when booster doses should be
recommended. Characterizing changes in VE over calendar time can guide decisions by policy
makers and vaccine manufactures regarding the need for updated vaccine formulations.

There are several possible avenues for future work to build on the methods described here. Future
methodological research could focus on NTE under relaxed assumptions. For example, machine
learning approaches could be incorporated to relax the need for correctly specified parametric
models (Westreich, Lessler, and Funk, 2010). In many infectious disease settings, an individual’s
outcome may be affected by other individuals’ vaccination status, i.e., there may be interference
(Hudgens and Halloran, 2008). In the presence of interference, unvaccinated individuals may benefit
from indirect protection due to the level of vaccine coverage in the population. In turn, analyses that
fail to account for interference may yield biased VE estimates. Future research could develop NTE
methods that accommodate interference.

Additional future work could tailor the methods in Section 2 to a variety of COVID-19 VE ap-
plications. First, the methods could be easily adapted to evaluate other vaccine regimens such as
booster doses. Second, observational databases may lack sufficient information to ensure conditional
exchangeability because certain confounders are hard to measure, like social distancing practices
and individual attitudes about vaccines (Schnitzer, 2022). Future work may develop sensitivity
analyses for unmeasured confounding (Robins, Rotnitzky, and Scharfstein, 2000) customized for
the NTE framework. Third, the present application relied on the treatment variation irrelevance
assumption (Cole and Frangakis, 2009; VanderWeele, 2009), which states that potential outcomes
remain unchanged under different versions of treatment. Specifically, the active vaccine regimen
was defined such that individuals could choose a vaccine brand from among those available and
receive a second dose any time within a specified time window. In turn, results reflect VE in a
counterfactual setting where the distribution of vaccine brands is equal to the observed distribu-
tion among elder Abruzzo residents in 2021. Future research could explore VE under different
counterfactual distributions (VanderWeele and Hernán, 2013), e.g., to compare VE across vaccine
types.
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Appendix A Methodological Details

A.1 Identifiability

The target estimand V Ej(k) is identifiable from the observable random variables under the assump-
tions stated in the main text. To see this, first note that V Ej(k) is a function of the mean potential
outcomes E{Y 1

j (k) | Rj(0) = 1} and E{Y 0
j (k) | Rj(0) = 1} (where the event Rj(0) = 1 is

conditioned on because potential outcomes Y z
j (k) are only defined when Rj(0) = 1 for z ∈ {0, 1}).

Therefore, it suffices to show that E{Y z
j (k) | Rj(0) = 1} is identifiable for z ∈ {0, 1}. The

identification derivation is a special case of Robins’s g-formula (Robins, 1986). In particular,
letting F (x | Rj(0) = 1) denote the conditional distribution of X given Rj(0) = 1, observe that
1− E{Y z

j (k) | Rj(0) = 1}

=P{Y z
j (k) = 0 | Rj(0) = 1}] (A.1)

=

∫
x

P{Y z
j (k) = 0 |X = x, Rj(0) = 1}dF (x | Rj(0) = 1) (A.2)

=

∫
x

P{Y z
j (k) = 0 |X = x, Zj = z, Rj(0) = 1}dF (x | Rj(0) = 1) (A.3)

=

∫
x

P{Y z
j (k) = 0 |X = x, Zj = z, Yj(0) = 0, Rj(0) = 1}dF (x | Rj(0) = 1) (A.4)

=

∫
x

P{Y z
j (k) = 0 |X = x, Zj = z, Yj(0) = 0, Rj(1) = 1}dF (x | Rj(0) = 1) (A.5)

=
1∑

y=0

∫
x

P{Y z
j (k) = 0 |X = x, Zj = z, Yj(1) = y, Yj(0) = 0, Rj(1) = 1}× (A.6)

dF (x | Rj(0) = 1)P{Yj(1) = y |X = x, Zj = z, Yj(0) = 0, Rj(1) = 1}

=
1∑

y=0

∫
x

P{Y z
j (k) = 0 |X = x, Zj = z, Y z

j (1) = y, Yj(0) = 0, Rj(1) = 1}× (A.7)

dF (x | Rj(0) = 1)P{Yj(1) = y |X = x, Zj = z, Yj(0) = 0, Rj(1) = 1}

=

∫
x

P{Y z
j (k) = 0 |X = x, Zj = z, Yj(1) = 0, Rj(1) = 1}× (A.8)

dF (x | Rj(0) = 1)P{Yj(1) = 0 |X = x, Zj = z, Yj(0) = 0, Rj(1) = 1}

=

∫
x

P{Y z
j (k) = 0 |X = x, Zj = z, Yj(1) = 0, Rj(2) = 1} (A.9)

dF (x | Rj(0) = 1)P{Yj(1) = 0 |X = x, Zj = z, Yj(0) = 0, Rj(1) = 1}

=

∫
x

P{Y z
j (k) = 0 |X = x, Zj = z, Yj(2) = 0, Rj(2) = 1}× (A.10)

dF (x | Rj(0) = 1)
2∏

m=1

P{Yj(m) = 0 |X = x, Zj = z, Yj(m− 1) = 0, Rj(m) = 1}

= . . . (A.11)
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=

∫
x

P{Y z
j (k) = 0 |X = x, Zj = z, Yj(k − 1) = 0, Rj(k) = 1}× (A.12)

dF (x | Rj(0) = 1)
k−1∏
m=1

P{Yj(m) = 0 |X = x, Zj = z, Yj(m− 1) = 0, Rj(m) = 1}

=

∫
x

P{Yj(k) = 0 |X = x, Zj = z, Yj(k − 1) = 0, Rj(k) = 1}× (A.13)

dF (x | Rj(0) = 1)
k−1∏
m=1

P{Yj(m) = 0 |X = x, Zj = z, Yj(m− 1) = 0, Rj(m) = 1},

where (A.2) follows from the law of total probability; (A.3) from conditional exchangeability;
(A.4) because Rj(0) = 1 (i.e., eligibility for trial j) implies Yj(0) = 0; and (A.5) by positivity and
ignorable censoring. If k = 1, Y z

j (k) in (A.5) can be replaced by Yj(k) by causal consistency, and
the proof is done. Similarly, proof in the k = 2 case follows from line (A.10) and causal consistency.
The full proof is obtained by repeatedly applying reasoning in lines (A.5) through (A.8) and then
invoking causal consistency to arrive at an expression that depends only on observed data. Line
(A.6) follows by the law of total probability; (A.7) from causal consistency; and (A.8) because
P{Y z

j (k) = 0 | Y z
j (0) = 1, ·} = 0 for any k ≥ 1 and by causal consistency. Lines (A.9) through

(A.11) illustrate how repeatedly applying the reasoning in lines (A.5) through (A.8), will yield the
expression in (A.12). Line (A.13) follows from causal consistency. The final expression depends
only on observed data.

A.2 Inverse probability weight estimation

Estimates of ej(X1) can be obtained by fitting a pooled logistic regression model of the form

logit{ej(X1; ζ)} = ζg(j,X1) (A.14)

via maximum likelihood, where ζ is a vector of unknown regression parameters and g(j,X1) is a
column vector of functions of trial number and covariates. Similarly, estimates of djk(Zj,X2) can
be obtained by fitting the pooled logistic regression model

logit{djk(Zj,X2;κ)} = κh(j, k, Zj,X2) (A.15)

via maximum likelihood where κ is a vector of unknown regression parameters and h(j, k, Zj,X2)
is a column vector containing functions of trial number, time on trial, vaccine regimen assignment in
trial j, and covariates. The form of the right sides of (A.14) and (A.15) are specified by the analyst.
If the effect of covariates on the propensity score and hazard of remaining uncensored are assumed
to vary across trials, models can be specified to include trial-specific regression coefficients.

A.3 Asymptotic distribution of ρ̂

Letting i index the set of n individuals in the analytic cohort, θ̂ is the solution to
∑n

i=1ψ(Oi;θ) = 0
where

ψ(O;θ) =


ψζ(O; ζ)
ψκ(O;κ)

ψα(O; ζ,κ,α)
ψρ(α; ζ,κ)

 ,
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ψζ(O; ζ) =
S∗∑
j=S

Rj(0)
{
Zj − ej(X1; ζ)

}
g(j,X1),

ψκ(O;κ) =
S∗∑
j=S

Kj∑
k=1

Rj(k − 1){1− Yj(k − 1)}
{
Rj(k)− djk(Zj,X2;κ)

}
h(j, k, Zj,X2),

ψα(O;α) =
S∗∑
j=S

Kj∑
k=1

Rj(k){1− Yj(k − 1)}Wj(k)
{
Yj(k)− λ

Zj

j (k;α)
}
f(j, k, Zj),

ψρ(α; ζ,κ) =


ρT
0 − ν0(α)
ρT
1 − ν1(α)

...
ρT
J − νJ(α)

 ,

νj(α) = {νj(1,α), νj(2,α), ..., νj(Kj,α)}T ,

νj(k,α) = log
[
1−

k∏
m=1

{1− λ1j(m)}
]
− log

[
1−

k∏
m=1

{1− λ0j(m)}
]
, and

λzj(k) = logit−1{αf(j, k, z)}.

To see that the vector estimating equation ψ(O;θ) is unbiased, consider the following. Let ej =
ej(X1; ζ), djk = djk(Zj,X2;κ), and f = f(j, k, Zj). The score functions for correctly specified
generalized linear models are unbiased (McCullagh and Nelder, 1989), i.e., E{ψζ(O;ζ)}=0 and
E{ψκ(O;κ)}=0. When models (A.14), (A.15), and the MSM for the hazard of the outcome are all
correctly specified, E{ψα(O; ζ,κ,α)} equals

E

[ S∗∑
j=S

Kj∑
k=1

Rj(k){1− Yj(k − 1)}Wj(k){Yj(k)− λ
Zj

j (k)}f
]

=
1∑

r=0

1∑
y=0

S∗∑
j=S

Kj∑
k=1

E
[
Rj(k){1− Yj(k − 1)}Wj(k){Yj(k)− λ

Zj

j (k)} | Rj(k) = r, Yj(k − 1) = y
]

× P{Rj(k) = r, Yj(k − 1) = y}f (A.16)

=
S∗∑
j=S

Kj∑
k=1

E
[
Rj(k){1− Yj(k − 1)}Wj(k){Yj(k)− λ

Zj

j (k)} | Rj(k) = 1, Yj(k − 1) = 0
]

× P{Rj(k) = 1, Yj(k − 1) = 0}f (A.17)

=
S∗∑
j=S

Kj∑
k=1

ajkE

[(
Zj

ej
+

1− Zj

1− ej

)
{Yj(k)− λ

Zj

j (k)} | Rj(k) = 1, Yj(k − 1) = 0

]
f

=
S∗∑
j=S

Kj∑
k=1

ajkE

[{
ZjY

1
j (k)

ej
+

(1− Zj)Y
0
j (k)

1− ej
−
(
Zj

ej
+

1− Zj

1− ej

)
λ
Zj

j (k)

}
(A.18)

| {ZjY
1
j (k − 1) + (1− Zj)Y

0
j (k − 1)} = 0, Rj(k) = 1

}]
f

21



Assessing COVID-19 vaccine effectiveness via nested trial emulation

=
S∗∑
j=S

Kj∑
k=1

ajkEX1

(
E
{
Y 1
j (k) | Y 1

j (k − 1) = 0, Rj(k) = 1,X1

}{E(Zj | Rj(0) = 1,X1)

ej

}
+ E{Y 0

j (k) | Y 0
j (k − 1) = 0, Rj(k) = 1,X1}

{
1− E(Zj | Rj(0) = 1,X1)

1− ej

}
(A.19)

−
[
E{Zj | Rj(0) = 1,X1}

ej
λ
Zj

j (k) +
1− E{Zj | Rj(0) = 1,X1}

1− ej
λ
Zj

j (k)

])
f

=
S∗∑
j=S

Kj∑
k=1

ajk

(
EX1,Zj

[
E{Y 1

j (k) | Y 1
j (k − 1) = 0, Rj(k) = 1,X1, Zj = z} − λ1j(k)

]
(A.20)

+
[
E{Y 0

j (k) | Y 0
j (k − 1) = 0, Rj(k) = 1,X1, Zj = z} − λ0j(k)

])
f

=
S∗∑
j=S

Kj∑
k=1

ajk

([
E{Y 1

j (k) | Y 1
j (k − 1) = 0} − λ1j(k)

]
(A.21)

+
[
E{Y 0

j (k) | Y 0
j (k − 1) = 0} − λ0j(k)

])
f

=0

where ajk is a constant that depends on (j, k). Line (A.16) follows from linearity of expectation and
the law of total probability; (A.17) follows because given Rj(k) = 0 or Yj(k− 1) = 1 the summand
is zero. Noting that Rj(k) = 1 implies Rj(k − 1) = 1, line (A.18) holds by causal consistency;
(A.19) holds by iterated expectation and conditional exchangeability; (A.20) by iterated expectation;
and (A.21) by ignorable censoring and by undoing iterated expectation. Unbiasedness ofψρ follows
from the definitions of V Ej(k) and ρ in (2) and Section 2.5.2 of the main text, respectively, and the
assumption that all models are correctly specified.

Since the estimating equation vector is unbiased, it follows that, under certain regularity conditions,
√
n(θ̂ − θ0)

d−→ N{0, V (θ0)} as n → ∞, where θ0 is the true parameter value, V (θ0) =
A(θ0)−1B(θ0){A(θ0)−1}T , A(θ0) = E{−ψ̇(O;θ0)}, B(θ0) = E[ψ(O;θ0){ψ(O;θ0)}T ], and
ψ̇(O;θ) = ∂ψ(O;θ)/∂θ (Stefanski and Boos, 2002).

A.4 Asymptotic distribution of β̂

Estimating equations for θ̂† = (ζ̂, κ̂, α̂∗, β̂) are given by

ψ(O;θ†) =


ψζ(O; ζ)
ψκ(O;κ)

ψα(O; ζ,κ,α)
ψβ(α; ζ,κ)

 ,

where

ψβ(α; ζ,κ) = β −
∑J

j=0(j − j̄)(AUCj − AUCj)∑J
j=0(j − j̄)2

,

where the overbar denotes an average (taken across j); AUCj =
∑KJ

k=1 V Ej(k); V Ej(k) is a
function of {λ0j(k), λ1j(k)} given by (2) in the main text; and {λ0j(k), λ1j(k)} depend on (α; ζ,κ)
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through the specified MSM for the hazard of the outcome. The arguments in Section A.3 can also
be applied here to show E{ψζ(O; ζ)}=0, E{ψκ(O;κ)}=0, and E{ψα(O;ζ,κ,α)}=0 under H0,
provided that the corresponding models are correctly specified. To see that E{ψβ(α)} = 0, note
that under H0, β = 0 and AUCj = AUCj for all j ∈ {0, 1, ..., J}. Since θ̂† is the solution to
an unbiased estimating equation, under certain regularity conditions (Stefanski and Boos, 2002),
√
n(θ̂† − θ†0)

d−→ N{0, V (θ†0)} as n → ∞, where θ†0 is the true parameter value under H0. The
empirical sandwich estimator V̂n(θ̂†) can be used to consistently estimate V (θ†0).

Appendix B Additional Simulation Results

Additional simulations were conducted to evaluate performance of the methods whenever models
were specified to include flexible functions of time variables. Simulations were carried out under the
same data generating process and scenarios described in the main text. For analyzing the simulated
data, the following variables were transformed using restricted cubic spline bases with four knots at
the 5th, 35th, 65th, and 95th percentiles (Harrell, 2015): trial number in the propensity score model;
calendar time in the model for the hazard of remaining uncensored; both calendar time and time on
trial in the model for the hazard of the outcome.

Results are presented in Table A.1. Bias was low and CI coverage was near the nominal level in
all scenarios. For each replication and each scenario, a generalized Wald test was conducted for
the TEH assumption H0. The null hypothesis H0 was true by design in scenario 1. One-sided
generalized Wald tests of H0 were rejected at the 0.05 significance level in 4.6% of scenario 1
replications. The null hypothesis was false by design in scenarios 2 and 3 and was rejected in 100%
of the replications. Results suggest that, under these simulation conditions, methods performed well
when model specification included flexible functions of time.
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Appendix Tables

Table A.1: Additional simulation study results by scenario across 3, 000 replications, τ = 20 time
points of follow-up, and n = 50, 000. All time functions in the analytical models were specified
using restricted cubic splines.

True 95% CI
value ESE ASE coverage

Scenario Estimand (%) Bias ×102 ×102 (%)
1 V E0(5) 90.3 0.0 12.3 12.5 96

V E3(5) 90.3 -0.1 6.2 6.4 95
V E6(5) 90.3 -0.1 7.7 7.9 95
V E9(5) 90.3 -0.1 9.7 9.8 95
V E12(5) 90.3 -0.0 11.9 12.0 95
V E5(1) 91.4 0.1 13.2 13.1 95
V E5(4) 90.7 -0.1 8.1 8.2 95
V E5(8) 88.9 0.0 5.3 5.4 95
V E5(12) 85.8 0.2 3.9 3.9 94
V E5(15) 81.9 -0.1 3.5 3.5 94

2 V E0(5) 90.2 0.1 12.3 12.5 95
V E3(5) 87.9 -0.1 6.2 6.3 96
V E6(5) 83.3 0.1 7.0 7.1 96
V E9(5) 74.3 0.2 8.5 8.6 95
V E12(5) 56.1 -0.1 10.4 10.5 95
V E5(1) 88.4 -0.2 11.7 11.8 95
V E5(4) 86.1 -0.0 7.4 7.6 96
V E5(8) 81.6 0.1 5.1 5.1 95
V E5(12) 74.1 0.1 4.0 3.9 95
V E5(15) 65.2 0.1 3.6 3.5 94

3 V E0(5) 89.0 0.1 11.6 11.7 95
V E3(5) 86.3 -0.4 5.8 5.8 93
V E6(5) 81.1 -0.4 6.5 6.5 94
V E9(5) 70.9 -0.0 7.7 7.9 95
V E12(5) 50.2 -0.3 9.2 9.3 95
V E5(1) 88.1 0.0 11.3 11.4 96
V E5(4) 84.8 -0.4 6.9 7.0 94
V E5(8) 76.3 0.1 4.5 4.6 95
V E5(12) 56.4 0.7 3.3 3.3 92
V E5(15) 21.5 -0.1 2.9 2.9 95

Abbreviations: ASE, average estimated standard error; ESE,
empirical standard error; CI, confidence interval
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Table A.2: Specification and emulation of a sequence of nested trials to assess effectiveness of a full
course of COVID-19 vaccine between February 15, 2021 and Dec. 18, 2021.

Target trial specification Target trial emulation

Inclusion
criteria

Resident of or domiciled in Abruzzo re-
gion of Italy on Jan. 1, 2020

Same

Aged 80 years or older at time of enroll-
ment

Alive according to NHS data and over 80
years of age at time of enrollment

Exclusion
criteria

Positive SARS-CoV-2 swab prior to en-
rollment

Positive SARS-CoV-2 swab documented
in NHS data prior to enrollment

Severe COVID-19 disease (as diagnosed
by a specialist physician and requiring
hospitalization) prior to enrollment

Severe COVID-19 disease (as diagnosed
by a specialist physician and requiring
hospitalization) documented in NHS data
prior to enrollment

Received any dose of any COVID-19
vaccine prior to enrollment

Any dose of any COVID-19 vaccine doc-
umented in NHS data prior to enrollment

Vaccine
regi-
mens

Active regimen “receive first COVID-
19 vaccine dose within seven days of
enrollment, receive second dose by end
of the recommended time window (42
days from first dose for Pfizer-BioNTech
and Moderna (Centers for Disease Con-
trol and Prevention, 2021); 84 days from
first dose for AstraZeneca (World Health
Organization, 2022); a single dose of
Janssen is counted as two doses), and
receive no further COVID-19 vaccine
doses” versus comparator “remain un-
vaccinated through Dec. 18, 2021”.

Same

Abbreviation: NHS, National Health Service

(Table continued on next page)
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Target trial specification Target trial emulation
Treatment
assign-
ment

Each week during the enrollment pe-
riod (Feb. 15, 2021 to May 9, 2021), a
pragmatic randomized trial will be ini-
tiated. On the first day of each trial, el-
igible individuals will be enrolled and
assigned at random (with equal proba-
bility) to active regimen or comparator.
Those assigned to active regimen may
choose the vaccine brand they receive
(from among those available to them, for
each dose). They will be instructed to
receive a first dose of their chosen vac-
cine within seven days and then follow
the corresponding dosing schedule (as
described above).

On Feb. 15, 2021, all eligible individu-
als will be “enrolled" in a hypothetical
trial. Those who receive a first COVID-
19 vaccine dose during the first week of
the trial will be classified as receiving ac-
tive regimen; all others will be classified
as receiving comparator. A series of iden-
tical hypothetical trials will be initiated
on the first day of each subsequent week
through May. 9, 2021. Individuals may
appear in multiple trials, provided they
meet eligibility criteria.

Outcome Severe COVID-19 disease (as diagnosed
by a specialist physician and requiring
hospitalization) or COVID-19-related
death

Severe COVID-19 disease (as diagnosed
by a specialist physician and requiring
hospitalization) or death with a SARS-
CoV-2 positive swab documented in NHS
data

Follow
up

Eligibility will be assessed and treatment
will be randomly assigned on the first
day of each trial. Participants are fol-
lowed until the first of the following:
1. Experience of an event
2. Discontinuation of assigned vaccine
regimen
3. Death without a SARS-CoV-2 posi-
tive swab
4. December 18, 2021

Same, except:
1. Discontinuation is defined in terms of
the regimen an individual was observed
to initiate at the start of an emulated trial.
2. At-risk status will be evaluated at a se-
ries of weekly hypothetical “study visits".

Abbreviation: NHS, National Health Service

(Table continued on next page)
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Target trial specification Target trial emulation
Non-
compli-
ance

Participants who discontinue their as-
signed treatment strategy will be cen-
sored. Participants’ observations will be
censored on the day of the first occur-
rence of any of the following:
1. Receipt of first dose of any COVID-
19 vaccine (for participants assigned to
comparator)
2. Failure to complete a second dose by
the end of the recommended time win-
dow (for participants assigned to active
regimen who elected to receive Pfizer,
Moderna, or AstraZeneca vaccine for
their first dose)
3. Receipt of a booster dose of COVID-
19 vaccine (a third dose For those who
received 2 doses of Pfizer, Moderna, As-
traZeneca or a combination of these vac-
cines or a second dose for those who
received Janssen vaccine)

Same, except censoring will be handled
separately per person-trial, noncompli-
ance is defined in terms of the regimen an
individual was observed to initiate at the
start of an emulated trial, and censoring
status will be updated at weekly hypothet-
ical study visits.

Causal
contrast

Per-protocol effect Observational analog of the per-protocol
effect

Analysis
plan

Analyses will be analogous to those de-
scribed in the main text. Since exchange-
ability of treatment groups is expected
due to randomization, there will be no
adjustment for measured confounders.
Inverse probability weighting will be
used to adjust for selection bias arising
due to differential censoring (nonadher-
ence and loss to follow up; administra-
tive censoring is assumed to be nonin-
formative). Estimates and 95% CIs for
the VE surface across calendar time and
time since vaccination will be calculated
and reported for each trial.

Analyses will be conducted according to
methods described in the main text. In-
verse probability weighting will be used
to adjust for confounding and differential
censoring due to nonadherence and loss
to follow up. All time variables will be
coarsened to weeks. Specific analytical
decisions are detailed in Section 4 of the
main text. Estimates and 95% CIs for VE
across calendar time and time since vac-
cination will be calculated and reported
for each trial. A test of the TEH assump-
tion, as defined in the main text, will be
conducted.
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