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Abstract— In this paper we develop a multiple model refer-
ence adaptive controller (MMRAC) with blending. The systems
under consideration are non-square, i.e., the number of inputs
is not equal to the number of states; multi-input, linear, time-
invariant with uncertain parameters that lie inside of a known,
compact, and convex set. Moreover, the full state of the plant is
available for feedback. A multiple model online identification
scheme for the plant’s state and input matrices is developed that
guarantees the estimated parameters converge to the underlying
plant model under the assumption of persistence of excitation.
Using an exact matching condition, the parameter estimates
are used in a control law such that the plant’s states asymp-
totically track the reference signal generated by a state-space
model reference. The control architecture is proven to provide
boundedness of all closed-loop signals and to asymptotically
drive the state tracking error to zero. Numerical simulations
illustrate the stability and efficacy of the proposed MMRAC
scheme.

I. INTRODUCTION

The use of multiple models to describe the dynamics of
uncertain systems has been studied [1]–[4], and shown to
improve the transient-time performance [5], the steady-state
tracking performance [4], [6], and robustness [7] when com-
pared to a single model approach. Multiple model control
techniques can be broadly divided into switching control,
which allows for the selection of a best model in different
dynamic situations [7], [8], and blending control, where the
information from different models is combined to get a
single description of the system [3], [9]–[11]. In this paper
we opt for a blending technique since it allows for better
closed-loop performance when compared to any single model
technique [12], and avoids possible undesirable transient-
time behavior that switching control may exhibit [13], [14].

Multiple model approaches with blending have various
promising applications in identification and control of time-
varying (TV) systems, including adaptive identification of
MIMO, linear, periodically TV systems (with known pe-
riod) [15] and improvement of the transients and adaptation
speed in adaptive control of uncertain, TV, MIMO sys-
tems [9]. The stability and robustness properties were studied
in [3]. Mixing adaptive techniques have also been used to
achieve faster tracking for a class of nonlinear discrete-time
systems [16]. For the case of experimental results, the use of
mixing control has allowed to decrease overshoots, settling
time, steady state error [17], [18], and designing fault tolerant
controllers [10]. Other applications include multiple model
estimation of power systems models [19], development of an
adaptive controller for partially-observed Boolean dynamical
systems [20], and distributed state estimation using a network
of local sensors [21].

Model reference control has been rigorously and me-
thodically studied for many years and proposes promising
applications with detailed design procedures. When we con-
sider systems with uncertainty, model reference adaptive
controllers (MRAC) are a versatile technique that achieves
robust and satisfactorily closed-loop performances [22], [23].
The combination of MRAC with multiple model approaches
to obtain a continuous input signal calculated using all the
identification errors from all the models is studied in [1],
[24]. Similar work is present in [25], where adaptive iden-
tification models are considered instead of fixed models.
In [9], a similar identification scheme is integrated with linear
quadratic optimal controllers to design a multiple MRAC
(MMRAC) scheme for tracking reference signals generated
by a linear reference model. The asymptotic tracking of
the MMRAC scheme for linear, time-invariant (LTI), MIMO
systems is proven and simulations are presented to evaluate
and validate the performance.

In this paper we consider non-square, multi-input, LTI sys-
tems with polytopic parameter uncertainty, whose unknown
plant models are in the interior of the convex hull of a finite
number of fixed models. Based on full state measurements,
we develop a parameter identification scheme that estimates a
weight vector which determines the convex combination that
yields the state-space representation of the uncertain system.

This paper extends our previous work [26] in several
significant ways. The systems under consideration do not
have to be square, i.e., the number of inputs can be less
or equal to the number of states. Moreover, unlike in [26],
in this article the number of fixed models that define the
polytopic uncertainty of the plant can be arbitrary. This
relaxation allows us to develop a procedure to obtain a
set of fixed corner systems to use in the identification
process. Furthermore, we provide sufficient conditions under
which the parameter estimates asymptotically converge to
the plant’s uncertain parameters. The simulations presented
here point to faster convergence of the parameter estimates
to their true values, making the state error of the proposed
MMRAC scheme also converge faster compared to a single
model MRAC approach.

The problem formulation is presented in Section II, to-
gether with the assumptions. In Section III, we present a
selection process for the corner systems. In Section IV, we
present the identification scheme with its stability analysis.
We use these results in Section V to develop the MMRAC
scheme. A set of simulations are presented comparing the
MMRAC scheme to the single model case for uncertain sys-
tems tracking references in Section VI using MATLAB and
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Simulink based simulations. We finalize with the conclusions
in Section VII.

Notation: If S ⊂ Rn, then conv (S) denotes the closed
convex hull of S, the interior of S is written int(S). Let
∥ · ∥ denote the 2-norm of both vectors and matrices. The
kernel of a matrix A is denoted by KerA. Given two
matrices Q,R ∈ Rn×n, we write Q ⪰ R if Q − R
is positive semi-definite. For two signals f1 and f2 we
write f1 ≡ f2, if there exist α, β > 0 such that for
all t ≥ 0, ∥f1 (t)− f2 (t) ∥ ≤ βe−αt. Further, if ef =

f1 − f2 satisfies ėf (t) = −αef (t) then we write f1
α
=

f2. If x ∈ RN , then xi denotes the i-th component, and
x̄ = (x1, · · · , xN−1) ∈ RN−1. A signal Φ : [0,∞) → Rk

is persistently exciting (PE) if there exist αΦ1, αΦ2, TΦ > 0
such that for every t ≥ 0

αΦ1I ⪯
∫ t+TΦ

t

Φ(τ)Φ⊤(τ)dτ ⪯ αΦ2I. (1)

II. PROBLEM FORMULATION

Consider the MIMO, LTI system

ẋp (t) = Apxp (t) +Bpu (t) , xp (0) = xp0, t ≥ 0, (2)

where Ap ∈ Rn×n and Bp ∈ Rn×m are unknown constant
matrices, Bp is full column rank, xp (t) ∈ Rn, u (t) ∈ Rm

are the state of the system and the control input, respectively.
We assume that xp(t) is available for feedback and that the
number states n and inputs m are known.

Remark 1: The results of this article can be
applied to systems with structured uncertainties of
the form (Ap (η) , Bp (η)), where Ap (η) ∈ Rn×n and
Bp (η) ∈ Rn×m are unknown constant matrices dependent
on the uncertain parameter vector η ∈ S ⊂ Rq , belonging
to a compact set. △

This article aims to design a controller such that the
state xp of the plant (2) asymptotically tracks the signal xr

generated by the reference model

ẋr (t) = Arxr (t) +Brr (t) , xr (0) = xr0, t ≥ 0, (3)

where Ar ∈ Rn×n and Br ∈ Rn×m are known constant
matrices, Ar is Hurwitz, and r : [0,∞) → Rm is a
known, bounded, piecewise continuous reference signal. It
is assumed that the plant (2) and the reference model (3)
satisfy the exact matching conditions [23], as stated in the
following assumption.

Assumption 1: There exist matrices K∗ ∈ Rm×n and
L∗ ∈ Rm×m such that

Ap +BpK
∗ = Ar, (4)

BpL
∗ = Br. (5)

△
Assumption 1 is a necessary and sufficient condition to
guarantee the existence of a solution to the tracking problem
when the plant’s model (2) is known [23]. In addition, (5)
is equivalent to ImBr ⊆ ImBp, which means that, without
loss of generality, we can assume that ImBp = ImBr.

Our approach to solving the aforementioned control de-
sign problem involves online parameter identification of the
system matrices

[
Ap Bp

]
=: Θp by defining a compact,

convex, uncertainty polytope such that for every extreme
point of the polytope, also referred to as corner, there is
a fixed model

ẋi(t) = Aixi(t) +Biu(t),

with system matrices
[
Ai Bi

]
=: Θi, i ∈ {1, · · · , N}. We

define the set

S :=
{[
A1 B1

]
, · · · ,

[
AN BN

]}
(6)

consisting of every corner model.
Assumption 2: There exist a finite set S of known system

matrices
[
Ai Bi

]
∈ Rn×(n+m), such that

i)
[
Ap Bp

]
∈ int (conv (S)).

ii) Every convex combination of the Bi is full column rank.

△
The first item of Assumption 2 can be achieved from a sys-

tem identification process which we describe in Section III-
B. We require Assumption 2 (ii) to ensure that we do not
have redundant inputs, or we do not drop rank of the number
of inputs, losing control authority of the system. Given a set
S, there exist numerical methods to verify whether every
convex combinations of the Bi’s is full rank [27].

Every point of the polytope conv (S) can be expressed as
a convex combination of the corner models

[
Ai Bi

]
, which

implies that the following set is non-empty:

W :=

{
w ∈ [0, 1]N :

[
Ap Bp

]
=

N∑
i=1

wi

[
Ai Bi

]
,

N∑
i=1

wi = 1

}
.

(7)
Consequently, the problem of identifying the unknown sys-
tem matrix

[
Ap Bp

]
is equivalent to the problem of iden-

tifying a vector w ∈ W . A preliminary study of the problem
with N = n + 1, and m = n was studied in [26]. In this
paper unlike in [26], we study the problem for any number of
inputs m > 0, and an arbitrary number N of corner models.

III. CORNER MODEL SELECTION

Consider a set S that satisfies Assumption 2 and has N
elements. In this section we develop a constructive procedure
that, starting with S, produces a new set

S ′ =
{[
A′

1 B′
1

]
, · · · ,

[
A′

N ′ B′
N ′

]}
, (8)

that also satisfies Assumption 2, and such that for every
i ∈ {1, · · · , N} there exist matrices Ki ∈ Rm×n and
Li ∈ Rm×m such that,

A′
i +B′

iKi = Ar, (9)
B′

iLi = Br. (10)



A. Satisfying the Matching Conditions for the Corner Models

In the next proposition we show how to use the informa-
tion of Assumption 1 and a set S that satisfies Assumption 2
to obtain a new set S ′ such that for every element of S ′ there
exist matrices Ki ∈ Rm×n and Li ∈ Rm×m that satisfy (9)
and (10).

Proposition 1: Suppose that the plant (2) and reference
model (3) are such that Assumption 1 is satisfied. If there
exists a set S that satisfies Assumption 2, then there exists
a set S ′ that also satisfies Assumption 2, and furthermore

1) conv(S ′) ⊆ conv(S).
2) For each i ∈ {1, · · · , N}, there exist matrices Ki ∈

Rm×n and Li ∈ Rm×m such that (9) and (10) are
satisfied.
Proof: Let (Ap, Bp) and (Ar, Br) be the matrix pairs

that represent a plant, and a reference model, respectively.
Assume that they satisfy Assumption 1. Moreover, assume
that there exists a set S with N elements that satisfies As-
sumption 2. The first, and trivial case, is if for every i =
1, · · · , N , there exist matrices Ki ∈ Rm×n and Li ∈ Rm×m

such that every corner model [A′
i B′

i] := [Ai Bi] satisfies
(9) and (10). In that case, we can define S ′ = S, and we
have satisfied Assumptions 1 and 2.

For the case when there exists some j ∈ {1, · · · , N} such
that [A′

j B′
j ] := [Aj Bj ] ∈ S does not satisfy (9) or (10),

consider the closed convex hull of S, i.e., conv (S) . The set
conv (S) is a compact, convex polytope, and it is non-empty
since

[
Ap Bp

]
is an element of conv (S) by Assumption 2

(i). Next, take the set of matrices that satisfy Equations (4)
and (5):

T :=
{ [

Ax Bx

]
∈ Rn×(n+m) :

Ax +BxK = Ar, BxL = Br, L ∈ Rm×m,K ∈ Rm×n
}
.

The set T is a hyperplane, since it can be written as n(n+m)
linear equations (see Section 2.2.1 of [28]), therefore it is
a convex polytope. From Assumption 1, we see that if we
replace K and L by K∗ and L∗, respectively, the element[
Ap Bp

]
belongs to T , which means T is non-empty. The

intersection set
P := conv (S) ∩ T .

is also non-empty, since
[
Ap Bp

]
is an element of both

conv (S) and T . Moreover, the intersection of a compact,
convex polytope and a convex polytope is another compact,
convex polytope (see Section 2.3.1 of [28]), which in turn
implies that we can obtain N ′ corner models

[
A′

i B′
i

]
such

that

P = conv
({[

A′
1 B′

1

]
, · · · ,

[
A′

N ′ B′
N ′

]}︸ ︷︷ ︸
=:S′

)
.

Every convex combination of the matrices B′
i can be written

as a convex combination of the original Bi matrices, and
every convex combination of the Bi’s is full column rank,
which implies that every convex combination of the B′

i is
also full column rank. The vertices, edges and faces of P
are obtained by intersecting the previous vertices, edges and

faces from conv(S) with the set T . Since
[
Ap Bp

]
is not

on a vertex, edge or face of conv(S) it cannot be on a vertex,
edge or face of P and must be in the interior. Hence, the
set S ′ satisfies Assumption 2, and also every element of S ′

satisfies (9) and (10).

Remark 2: The results provided in Proposition 1 deal with
systems that do not have the same number of inputs as
states; the special case of n = m is solved trivially, i.e.
we have S = S ′. Since every convex combination of Bi is
full column rank, that means that Bi can be inverted for all
i ∈ {1, · · · , N}, and the gains can be obtained as

Ki = B−1
i (Ar −Ai)

Li = B−1
i Br.

△

B. Obtaining the sets S and S ′

The modeling uncertainty in (2) is taken to be parametric
uncertainty in the matrices in this state-space system model.
There is an implicit assumption here that the state-space
system model (2) is derived from physical laws rather than
from a state-space realization of an input-output system
model. If we consider the maximum range of values each
entry of Ap, and Bp can take we get that we can bound
aij ∈ [aij min, aij max] and bij ∈ [bij min, bij max]. When we
consider the minimums and maximums of every entry we
write the following matrices

Apmin ≤ Ap ≤ Apmax,

Bpmin ≤ Bp ≤ Bpmax,

where Apmin is a matrix where each entry aij takes its
minimum value, and Apmax is a matrix where each en-
try aij takes its maximum value, Bpmin, and Bpmax are
matrices that take the minimums and maximums of each
entry bij , respectively, and the inequality is considered entry-
wise. Let S be the set of all possible system matrices[
Ap Bp

]
each entry of which is either the correspond-

ing entry of [Apmin Bpmin] or the corresponding entry
of [Apmax Bpmax]. Note that, by construction, S satis-
fies Assumption 2 (i). The number of elements in S is
N = 2n(n+m). If the entries can be parameterized by an
uncertainty vector η ∈ Rq , then S can be defined in terms
of 2q elements (see Remark 1).

The naı̈ve corner model selection process described above
guarantees that

[
Ap Bp

]
∈ int (conv (S)). However, it is

not evident that Assumption 2 (ii) is satisfied. The results
from [27] can be used to verify this condition. If Assump-
tion 2 (ii) is satisfied, then the last step is to use constructive
procedure from the proof of Proposition 1 to obtain S ′.

C. Example

In this example we consider a system with two states and
one input. We assume that the plant only has uncertainty in
the Bp matrix. The unknown input matrix to the system is

Bp =

[
2
2

]
. The reference models input’s matrix is Br =



Fig. 1. Graphic illustration of the projection process to select corner
models.

[
10
10

]
. Note that by taking L∗ = 5 we can satisfy (5),

and Assumption 1 is satisfied. The polytopic uncertainty for
Bp is given by

Bpmin =

[
1
1

]
, Bpmax =

[
4
5

]
.

Using the selection procedure from Section III-B we can take
all possible combinations of the minimums and maximums
of every entry of Bpmin and Bpmax to get

B1 =

[
1
1

]
, B2 =

[
1
5

]
, B3 =

[
4
5

]
, B4 =

[
4
1

]
.

Since Ap is completely known, we need to redefine the sets
S and T as

S = {B1, · · · , B4} ,
T =

{
Bx ∈ R2×1 : BxL = Br, L ∈ R

}
.

It is easily verifiable that Bp ∈ int (conv (S)), and that any
convex combination of Bi is full column rank. Nevertheless,
if we consider B2, B3, or B4 we cannot satisfy (10). Using
the proof of Proposition 1 we solve for the set P graphically
(closed line segment going from B1 to B′

2), as shown
in Figure 1 to obtain

P = conv(S) ∩ T = conv

({[
1
1

]
,

[
4.5
4.5

]}
︸ ︷︷ ︸

S′

)
.

Note that
[
Ap Bp

]
∈ int (P). In addition, every convex

combination of B1 and B′
2 is full column rank, and we can

satisfy (10) with L1 = 10, and L2′ = 20/9.

IV. ONLINE PARAMETER IDENTIFICATION

Our multiple-model reference adaptive control (MMRAC)
design will utilize a blending-based multiple model param-
eter identification (MMPI) scheme that generates estimates[
Âp(t) B̂p(t)

]
of
[
Ap Bp

]
, as a weighted sum of the cor-

ner models. In this section, we provide the design, stability
and convergence analysis of this MMPI scheme.

A. Multiple-Model Parameter Identifier Design

Filtering both sides of (2) by the linear filter
1

s+ λ
, where

λ > 0 is a design parameter, we obtain the parametric model

z (t)
λ
= Θp

[
ϕ1 (t)
ϕ2 (t)

]
=: ΘpΦ(t), (11)

where ϕ1 (t) , z (t) ∈ Rn, ϕ2 (t) ∈ Rm are generated by the
filters[

ϕ̇1(t)

ϕ̇2(t)

]
= −λ

[
ϕ1(t)
ϕ2(t)

]
+

[
xp(t)
u(t)

]
,

[
ϕ1(0)
ϕ2(0)

]
=

[
0
0

]
,

z(t) = ϕ̇1(t) = −λϕ1(t) + xp(t). (12)

The relation (11) can be verified by taking time derivatives
of both sides and taking the difference, i.e., (12) implies for
ez(t) = z(t)−ΘpΦ(t) that

ėz(t) = ż(t)−ΘpΦ̇(t)

= −λϕ̇1(t) + ẋp −Θp

[
ϕ̇1(t)

ϕ̇2(t)

]
= −λϕ̇1(t) + Θp

[
xp(t)
u(t)

]
−Θp

(
−λ

[
ϕ1(t)
ϕ2(t)

]
+

[
xp(t)
u(t)

])
= −λ (−λϕ1(t) + xp(t)) + λΘpΦ(t)

= −λ (−λϕ1(t) + xp(t)−ΘpΦ(t))

= −λez(t), (13)

i.e., ez(t) is an exponentially decaying signal.
For each of the fixed models, define

zi (t) := Θi

[
ϕ1 (t)
ϕ2 (t)

]
= ΘiΦ(t), ∀i ∈ {1, · · · , N} . (14)

Then, the filtered state estimation error for each of the N
fixed models is defined as

εi (t) :=
z (t)− zi (t)

m2
s(t)

,∀i ∈ {1, · · · , N} , (15)

where m2
s(t) := 1 + α∥Φ(t)∥2, α > 0, is a normalization

signal which guarantees that
Φ(t)

ms(t)
is bounded. By (7), (11)–

(14), for any w = [w1, . . . , wN ]
⊤ ∈ W , we obtain

z (t) =

N∑
i=1

wizi (t) + ez(t). (16)

Using
∑N

i=1 wi = 1, (16) further implies

ez(t) =

N∑
i=1

wiz (t)−
N∑
i=1

wizi (t) =

N∑
i=1

wi (z (t)− zi (t))

=

N∑
i=1

wiεi (t)m
2
s(t).

(17)

Adding −εN (t)m2
s(t) to both sides of (17), we obtain

ez(t)− εN (t)m2
s(t) =

N−1∑
i=1

wi (εi (t)− εN (t))m2
s(t),



which implies, for any w = [w1, . . . , wN ]
⊤ ∈ W , that

ez(t)− εN (t) =

N−1∑
i=1

wi (εi (t)− εN (t)) . (18)

Defining the n× (N − 1) time-varying matrix

E (t) :=
[
ε1 (t)− εN (t) · · · εN−1 (t)− εN (t)

]
, (19)

we can rewrite (18) in matrix form as

E (t) w̄ = ez(t)− εN (t) (20)

for any
[
w̄⊤, wN

]⊤
= [w1, . . . , wN−1, wN ]

⊤ ∈ W . Equa-
tion (20) motivates using the following recursive adaptive law
[22] to generate estimate ŵ(t) = [ ˆ̄w⊤ (t) , ŵN (t)]⊤ ∈ RN ,
such that limt→∞

∑N
i=1 ŵi(t)

[
Ai Bi

]
=
[
Ap Bp

]
.

˙̄̂w (t) = −ΓE⊤ (t)E (t) ˆ̄w (t)− ΓE⊤ (t) εN (t) ,

ŵN (t) = 1−
N−1∑
i=1

ŵi (t) ,
(21)

where the tuning parameter Γ ∈ R(N−1)×(N−1) is a symmet-
ric positive definite matrix. Let w∗ be some element in W ,
and based on (21), the estimation error ˜̄w (t) := ˆ̄w (t)− w̄∗

satisfies
˙̄̃w (t) = ˙̄̂w (t)− ˙̄w∗ = ˙̄̂w (t)

= −ΓE⊤ (t)E (t) ˆ̄w (t)− ΓE⊤ (t) εN (t) . (22)

Pre-multiplying (20) by ΓE⊤(t) and moving all the terms to
the left hand side, we obtain

ΓE⊤(t)E (t) w̄ + ΓE⊤(t)εN (t)− ΓE⊤(t)ez(t) = 0 (23)

Adding (23) to (22), we further obtain
˙̄̃w (t) = −ΓE⊤ (t)E (t) ˜̄w (t)− ΓE⊤(t)ez(t). (24)

B. Stability and Convergence of the Identification Process

In this subsection, we establish the stability and conver-
gence properties of the estimation scheme (21) utilizing the
following lemma.

Lemma 1 (See [22], Barbalat’s Lemma): For a function
f : [0,∞) → R, if f, ḟ ∈ L∞ and f ∈ Lp, for some
p ∈ [1,∞), then lim

t→∞
f (t) = 0.

The main stability and convergence properties are estab-
lished in the following theorems and lemmas below.

Theorem 1: Consider the system (2) with definitions (15),
and (19). Let Assumption 2 hold, w∗ =

[
w̄∗⊤, w∗

N

]⊤ ∈
W be an arbitrary vector within the set defined in (7), and
˜̄w(t) := ˆ̄w(t)− w̄∗. For any initial condition ˆ̄w(0) ∈ RN−1,
the estimation scheme (21) guarantees that:

(i) ˆ̄w, ˜̄w, ˙̄̃w and E are bounded signals.
(ii) E ˜̄w and ˙̄̃w are square integrable.

(iii) limt→∞ E(t) ˜̄w(t) = 0.
(iv) ˆ̄w(t) asymptotically converges to a constant vector ¯̄w ∈

RN−1.
Proof: Consider the Lyapunov-like function

V1( ˜̄w(t), ez(t)) =
1

2
˜̄w⊤(t)Γ−1 ˜̄w(t) +

1

2λ
e⊤z (t)ez(t). (25)

Taking the time derivative of (25) along (24), we have

dV1(t)

dt
= ˜̄w⊤(t)Γ−1 ˙̄̃w(t) +

1

λ
e⊤z (t)ėz(t)

= − ˜̄w⊤(t)Γ−1ΓE⊤(t)E(t) ˜̄w(t)

− ˜̄w⊤(t)Γ−1ΓE⊤(t)ez(t) +
1

λ
e⊤z ėz

= − ˜̄w⊤(t)E⊤(t)E(t) ˜̄w(t)− ˜̄w⊤(t)E⊤(t)ez(t) +
1

λ
e⊤z ėz

= −1

2
∥E ˜̄w∥2 + 1

2
∥ez(t)∥2 −

1

2
∥E(t) ˜̄w(t) + ez(t)∥2.

(26)

Since ez(t) is an exponentially decaying signal, Equa-
tion (26) implies that V̇1 is bounded and there exists a time
instant t1 > 0 such that, for all t ≥ t1, V̇1(t) ≤ 0. Hence.
V1, ˜̄w, and ˆ̄w are bounded. Because of normalization (15), εi
terms are bounded and hence E is bounded, which together
with (24) also implies that ˙̄̃w is bounded, finishing the proof
of (i).

Since V1(t) is always positive, bounded, and decaying, the
integral of (26) for t = 0 to ∞ is finite, and hence E ˜̄w and
E ˜̄w+ ez(t) are square integrable. Since E is bounded, this,
together with (24), further implies that ˙̄̃w is square integrable,
completing the proof of (ii).

Items (i) and (ii) together with Barbalat’s Lemma imply
(iii). Items (i) and (ii) further imply that limt→∞ ˜̄w(t) and,
hence, limt→∞ ˆ̄w(t) exist and are finite, proving (iv).

Theorem 1 implies that ∥E(t) ˜̄w(t)∥ asymptotically con-
verges to zero, but this does not mean that ˜̄w(t) converges
to the set W . We can now state, and prove, the main result
of the identification process.

Theorem 2: Consider the system (2) with definitions (15),
and (19), and the estimation scheme (21). Let Assumption 2
hold, w∗ =

[
w̄∗⊤, w∗

N

]⊤ ∈ W be an arbitrary vector
within the set defined in (7), ˜̄w(t) := ˆ̄w(t) − w̄∗, and Φ
be bounded and satisfy the PE condition (1). Then, for any
initial condition ˆ̄w(0) ∈ RN−1, the estimated system matrix∑N

i=1 ŵi(t)Θi asymptotically converges to Θp.
Proof: Let Q(t) :=

∑N−1
i=1 (w̃i(t)(ΘN − Θi)) ∈

Rn×(n+m). It is easily verifiable that if Q(t) = 0, then∑N
i=1 ŵi(t)Θi = Θp, and ŵ(t) ∈ W . Theorem 1 (iv) implies

that Q(t) asymptotically converges to a constant matrix
Q̄ ∈ Rn×(n+m). Hence, to establish that

∑N
i=1 ŵi(t)Θi

asymptotically converges to Θp, we will show that Q̄ = 0.
Expressing Theorem 1 (iii) in summation form, we get

lim
t→∞

E(t) ˜̄w(t) = lim
t→∞

Q(t)
Φ(t)

1 + α∥Φ(t)∥2

= lim
t→∞

Q̄
Φ(t)

1 + α∥Φ(t)∥2
= 0. (27)

Since Φ is assumed to be bounded, (27) implies that

lim
t→∞

Q̄Φ(t) = 0.

and hence

lim
t→∞

Q̄Φ(t)Φ⊤(t)Q̄⊤ = 0. (28)



Since Φ satisfies the PE condition (1), Equation (28) implies
that Q̄ = 0, completing the proof.

The recursive adaptive law (21) guarantees that∑N
i=1 ŵi (t) = 1, but not that ŵ (t) ∈ [0, 1]N . Since

the set [0, 1]N is convex, the projection of ŵ (t) into [0, 1]
N

is well-defined.
Define the compact set

Π :=

{
ˆ̄w ∈ [0, 1]

N−1
:

N−1∑
i=1

ˆ̄wi ≤ 1

}
, (29)

and let PrΠ, ˆ̄w : RN−1 → Π ⊂ RN−1 denote the parameter
projection operator [22]. Choose ŵ(0) ∈ int(Π), then the
recursive adaptive algorithm (21) with parameter projection
is as follows:

˙̄̂w (t) = PrΠ, ˆ̄w

(
−Γ
(
E⊤ (t)E (t) ˆ̄w (t) + E⊤ (t) εN (t)

))
,

ŵN (t) = 1−
N−1∑
i=1

ŵi (t) . (30)

The parameter projection operator enforces that Π is a
positively invariant subset for the dynamics (30).

Corollary 1: The gradient adaptive law with parameter
projection (30) has all the properties established in Theo-
rem 1 for the gradient adaptive law (21). Furthermore, we
get the following properties:

(i) If ŵ (0) ∈ Π, then ŵ (t) ∈ Π, ∀t ≥ 0.
(ii) If ŵ (0) ∈ intΠ, then ŵ(t) asymptotically converges to

the set W .

Proof: The proof follows applying Theorem 3.10.1 of
[22] to (21) combined with Theorems 1 and 2.

V. MULTIPLE MODEL REFERENCE ADAPTIVE CONTROL

In this section we combine the system identification
scheme of Section IV with a MMRAC controller to achieve
asymptotic tracking of the reference system (3).

A. Multiple Model Reference Adaptive Control Design

We use the recursive adaptive algorithm with parameter
projection (30) to design a MMRAC scheme to achieve the
adaptive state tracking control task stated in Section II. We
utilize Theorem 1 (iii) to construct the proposed MMRAC
scheme.

If w ∈ W , then multiplying both sides of (10) by wi and
summing over i yields

N∑
i=1

wiBiLi =

N∑
i=1

wiBr = Br,

which implies, together with (5) from Assumption 1, that

BpL
∗ =

N∑
i=1

wiBiLi. (31)

Applying the same steps on (9) we get

Ar =

N∑
i=1

wiAr =

N∑
i=1

wi

(
Ai +BiKi

)
= Ap +

N∑
i=1

wiBiKi.

(32)

Comparing (32) to (4) we get that

BpK
∗ =

N∑
i=1

wiBiKi. (33)

Equations (31) and (33) motive us to generate estimates of
the gains K∗ and L∗ using the estimates ŵ (t), keeping in
mind the rank supposition in Assumption 2, as

K̂ (t) = B̂†
p(t)

N∑
i=1

ŵi (t)BiKi, (34)

L̂ (t) = B̂†
p(t)

N∑
i=1

ŵi (t)BiLi, (35)

where B̂†
p(t) is the Moore-Penrose inverse of

B̂p(t) =

N∑
i=1

ŵi (t)Bi. (36)

Equations (31) and (33) to (35), together with Corollary 1
further imply the following:

Corollary 2: Consider the system (2) with definitions
(15), (19), and the reference model (3). If Φ(t) satisfies
the PE condition with constants αΦ1, αΦ2, and TΦ, then
the estimates K̂ (t) and L̂ (t) defined in (34), and (35)
are bounded, and asymptotically converge to K∗ and L∗,
respectively.

Proof: Since Π is compact, we get that B̂p(t) belongs
to a compact set, which means the Moore-Penrose inverse of
B̂p(t) exists, and it is bounded. Furthermore, from Assump-
tion 2, we have that B̂p(t) is full column rank, which means
that we can write

B̂†
p(t) =

(
B̂⊤

p (t)B̂p(t)
)−1

B̂⊤
p (t). (37)

Combining (37) with Equations (34) and (35) we get that
K̂ (t), and L̂ (t) are bounded. The proof to show asymptotic
convergence is the same as the proof for Theorem 1 (iii).
The control law we will consider to achieve asymptotic
tracking of the reference model is

u (t) := K̂ (t)xp (t) + L̂ (t) r (t) . (38)

B. Stability Analysis of the Entire System

The main result of the paper is now presented.
Theorem 3: Consider the plant (2) and the reference

model (3). If Φ(t) satisfies the PE condition (1), and As-
sumptions 1 and 2 hold, then the MMRAC scheme (12),
(14), (15), (30) and (34) to (38) guarantees that for any

(i) initial conditions of the plant (2),
(ii) initial conditions of the reference model (3), and



(iii) piecewise continuous and bounded reference signal
r : [0,∞) → Rm in (3),

all closed-loop signals are bounded and xp (t) asymptotically
converges to xr (t).

Proof: Let xp(0) = xp0 and xr(0) = xr0 be arbi-
trary initial plant and reference model states, and r(t) be
any known, bounded, piecewise continuous reference signal.
Substituting (38) into (2) we get

ẋp (t) = Apxp (t) +Bpu (t)

= Apxp (t) +BpK̂ (t)xp (t) +BpL̂ (t) r (t) .

Adding and subtracting BpK
∗xp (t) and BpL

∗r (t), defining
K̃ (t) := K̂ (t) − K∗, L̃ (t) := L̂ (t) − L∗, and using
Assumption 1 we get

ẋp (t) = Arxp (t) +Brr (t) +BpK̃ (t)xp (t) +BpL̃ (t) r (t) .

For the tracking error e (t) := xp (t)− xr (t), this implies

ė (t) = Are (t) +BpK̃ (t)xp (t) +BpL̃ (t) r (t)

=
(
Ar +BpK̃(t)

)
e(t) +BpK̃(t)xr(t) +BpL̃(t)r(t). (39)

Let Q ∈ Rn×n be a fixed, symmetric, and positive
definite matrix. Then we can define P ∈ Rn×n to be
the unique positive definite and symmetric solution of
PAr +A⊤

r P +Q = 0. Consider the positive definite func-
tion

V (e (t)) = e⊤ (t)Pe (t) . (40)

Taking the derivative of (40) along solutions of (39) we get

V̇ (e (t))

= 2e⊤ (t)P ė (t)

= 2e⊤ (t)PAre (t) + 2e⊤ (t)PBpK̃ (t)xp (t)

+ 2e⊤ (t)PBpL̃ (t) r (t) . (41)

The first term satisfies

2e⊤ (t)PAre (t) = e⊤ (t)PAre (t) + e⊤ (t)PAre (t)

= e⊤ (t)
(
PAr +A⊤

r P
)
e (t)

= −e⊤ (t)Qe (t) .

Hence, (41) can be rewritten as as

V̇ (e (t)) =− e⊤ (t)Qe (t) + 2e⊤ (t)PBpK̃ (t)xp (t)

+ 2e⊤ (t)PBpL̃ (t) r (t) .

Substituting xp(t) = e(t) + xr(t), we get

V̇ (e (t)) =− e⊤ (t)
(
Q− PBpK̃ (t)

)
e (t)

+ 2e⊤ (t)PBpK̃ (t)xr (t)

+ 2e⊤ (t)PBpL̃ (t) r (t) .

Defining
c1(t) := ∥PBpK̃(t)∥,

and

c2(t) := 2∥PBpK̃(t)∥∥xr(t)∥+ 2∥PBpL̃(t)∥∥r(t)∥,
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Fig. 2. State of the system xp(t), and state of the reference model xr(t).

we have

V̇ (e(t)) ≤ − (λmin(Q)− c1(t)) ∥e(t)∥2+c2(t)∥e(t)∥, (42)

where λmin(Q) > 0 is the minimum eigenvalue of Q. Note
that (39) does not have a finite escape time; from Corollary 2
we have that K̂(t) and L̂(t) are continuous and bounded,
which means that K̃(t) and L̃(t) are also continuous and
bounded, hence (39) may only go to infinity as time goes
to infinity. Moreover, if Φ(t) is PE, then K̃(t) and L̃(t)
converge to zero asymptotically, which lets us conclude that
c1(t) is bounded, and there exists t1 ≥ 0 such that λmin(Q) >
c1(t) for all t ≥ t1. We can define

c̄1 = sup{c1(t), t ≥ t1}, (43)
c̄2 = sup{c2(t), t ≥ t1}. (44)

This implies that for all t ≥ t1 we get that if

∥e(t)∥ >
c̄2

λminQ− c̄1
,

then V̇ < 0, and we can conclude that e is bounded. This
further implies that xp is bounded, which finally implies that
u is bounded, showing that all signals in the closed-loop
system are bounded. Combining this with Corollary 2 we
get

lim
t→∞

(
V̇ (e(t)) + e⊤ (t)Qe (t)

)
= 0.

This implies that e(t) converges to 0, asymptotically, i.e.,
xp(t) asymptotically converges to xr(t).

VI. SIMULATIONS

In this section, we illustrate the behavior and perfor-
mance of the proposed MMRAC scheme through a set of
simulation tests performed on an uncertain model (2), a
reference model (3), and a set S (6) that defines the polytopic
uncertainty. We compare the results with simulations using
a single model for MRAC.
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Consider the uncertain system with n = 3, m = 2 given
by the matrices

Ap =

−4.725 −6.275 −2.175
−0.925 −3.85 0.35
−3.65 −8.125 −2.825

 , Bp =

−0.575 −2.2
−0.45 0.575
−1.025 −1.625

 .

The reference model (3) is

Ar =

−1 0 0
0 −1 0
1 1 −1

 , Br =

1 0
0 1
1 1

 .

It can be verified that Assumption 1 is satisfied by defining
the matrices

K∗ =

[
−3.16 −7.48 −0.36
−0.87 −0.89 −0.89

]
, L∗ =

[
−0.44 −1.66
−0.34 0.44

]
.

Considering the following 5 matrix pairs

A1 =

−0.75 0.25 0.25
−3.75 −4.75 −3.75
−2.5 −2.5 −4.5

 , B1 =

0.25 −0.5
1.25 2.5
1.5 2

 ,



A2 =

 −16 −30 −5
−3.5 −8.5 −1.5
−17.5 −36.5 −7.5

 , B2 =

−5 −10
−1 −2.5
−6 −12.5

 ,

A3 =

 2 0 −1
−0.5 −1.5 −0.5
−0.5 0.5 −2.5

 , B3 =

 −1 1
−0.5 0
−1.5 1

 ,

A4 =

 −1.5 −0.75 −0.75
−0.25 −0.875 1.125
0.25 0.375 −0.625

 , B4 =

 0.25 0.25
0.125 −0.375
0.375 −0.125

 ,

A5 =

−4 −1 −5
5 −2 8
3 −1 2

 , B5 =

 2 −1
−3 2
−1 1

 ,

we can define the set

S =
{[

A1 B1

]
, · · · ,

[
A5 B5

]}
.

The set S satisfies Assumption 2. The design parameters for
the estimation scheme and the controller are Γ = 2I5×5,
λ = 0.5, and α = 0.01, with the initial condition ŵ(0) =[
0.2 0.15 0.15 0.1 0.4

]⊤
. The input to the reference

model is taken to be r1 (t) = r2 (t) = sin (t) + 0.5 sin 2t.
With these definitions the full controller is[
ϕ̇1(t)

ϕ̇2(t)

]
= −λ

[
ϕ1(t)
ϕ2(t)

]
+

[
xp(t)
u(t)

]
,

˙̄̂w (t) = PrΠ, ˆ̄w

(
−Γ
(
E⊤ (t)E (t) ˆ̄w (t) + E⊤ (t) ε5 (t)

))
,

ŵ5 (t) = 1−
4∑

i=1

ŵi (t) ,

K̂ (t) = B̂†
p(t)

5∑
i=1

ŵi (t)BiKi,

L̂ (t) = B̂†
p(t)

5∑
i=1

ŵi (t)BiLi,

u (t) = K̂ (t)xp (t) + L̂ (t) r (t) .

The simulations of the MMRAC are compared to a direct
adaptive control technique using a single model MRAC (see
Chapter 9 of [23]). The simulations consider the same initial
condition for the system, the same reference, and the initial
gains are calculated as

K̂(0) = B̂†
p(0)

5∑
i=0

wi(0)Ki,

L̂(0) = B̂†
p(0)

5∑
i=0

wi(0)Li.

In Figure 2 we see the time evolution of each of the states
for the reference model, the states generated by the MMRAC,
and the states generated by MRAC. Convergence is achieved
for both controllers, with a clear advantage of the multiple-
model technique while using approximately the same control
effort, as depicted in Figure 3. The convergence speed is
a key factor to consider, and there is a clear advantage of

using multiple models when we analyze the dynamics of
the error. In Figure 4 we compare the time evolution of the
norm of the error for the case of MMRAC, and MRAC.
To better visualize the advantage in convergence speed, we
present the norm of the error in log-scale in Figure 5, as
we perform a linear regression on each of the signals. We
see that the convergence speed of the MMRAC scheme is
approximately two order of magnitude faster than the single
model approach (the slope of the linear regressions are -
0.0333 and -0.0103 for MMRAC and a single model, re-
spectively), matching with the conjecture in [29]. Finally, as
mentioned in Section IV, we achieve asymptotic convergence
of the estimated system’s matrices. In Figures 6 and 7 we
see the asymptotic convergence of each entry of the matrix
pairs

[
Âp(t) B̂p(t)

]
to
[
Ap Bp

]
, respectively.

VII. CONCLUSIONS

In this article we developed a multiple model reference
adaptive control (MMRAC) scheme for multi-input, linear,
time-invariant systems with uncertain parameters that lie
inside a known compact and convex polytope. The controller
performs online parameter identification of the system matri-
ces as a convex combination of an arbitrary number of fixed
model, one at each extreme point of the convex polytope of
uncertainty. The identification is proven to be asymptotically
stable, and sufficient conditions for perfect identification of
the uncertain system matrices are provided. The tracking
controller of the MMRAC guarantees that all close-loop
signals are bounded, and that the difference between the plant
states and the ones generated by a linear reference model
asymptotically converge to zero. To verify the effectiveness
of the proposed MMRAC scheme we compare it to a single
model MRAC scheme through MATLAB and Simulink
simulations. For the simulation examples, we observe that the
convergence speed is approximately two orders of magnitude
faster than using a single model, with similar control effort.
Future lines of research include generalizing the proposed
scheme to linear, time-varying systems and nonlinear sys-
tems.
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