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Abstract

Training machine learning interatomic potentials often requires optimizing a loss function composed of

three variables: potential energies, forces, and stress. The contribution of each variable to the total loss is

typically weighted using fixed coefficients. Identifying these coefficients usually relies on iterative or heuristic

methods, which may yield sub-optimal results. To address this issue, we propose an adaptive loss weighting

algorithm that automatically adjusts the loss weights of these variables during the training of potentials,

dynamically adapting to the characteristics of the training dataset. The comparative analysis of models

trained with fixed and adaptive loss weights demonstrates that the adaptive method not only achieves a

more balanced predictions across the three variables but also improves overall prediction accuracy.
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1. Introduction

Machine learning inter-atomic potentials (ML-IAPs) can be broadly split into two types. The first is

descriptor-based ML-IAP, in which the descriptors (or fingerprints) are used to describe the environment of

the atoms in a system. Various descriptors have been proposed in the literature, such as Atom-Centered

Symmetry Functions (ACSF) [1], Smooth Overlap of Atomic Positions (SOAP), Atomic Cluster Expansion

(ACE) [2], and Moment Tensor Potentials [3], among others. A comprehensive review of the descriptors can

be found in Musil et al.’s work [4]. Representative descriptor-based ML-IAPs include: Behler and Parrinello

Neural Network potential [1, 5], Gaussian approximation potential (GAP) [6], Spectral Neighbor Analysis

Potential (SNAP) [7], Moment Tensor Potential (MTP) [3], Performant implementation of the atomic cluster

expansion (PACE) [8], and DeePMD [9] among others. The second type of ML-IAP is the end-to-end

potential, which operates differently by learning directly from the types and positions of atoms, without the

need for predefined descriptors. Representative ones include: Crystal Graph Convolutional Neural Networks

(CGCNN) [10, 11], SchNet [12], and MatErials Graph Network (MEGNet) [13] among others. Although the

end-to-end ML-IAPs leverage more recent and advanced feature learning AI technology, there is currently no
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conclusive evidence to suggest that end-to-end ML-IAPs outperform the descriptor-based ML-IAP in terms

of prediction accuracy. The study reported in this paper are performed using ACSF.

The training of most ML-IAPs involves minimizing a loss function, which measures the difference between

the predicted outputs of the potential and the actual target value obtained from Ab initio simulations.

Typically, an ML-IAP’s loss function comprises three components: potential energy, atomic forces, and

stress tensor, each weighted by a prefactor (i.e. loss weight). Most of current ML-IAPs assign a predefined

loss weight to each component, which stays as a constant throughout the training process [3, 5, 7, 8].

The approaches like DeepMD modulate these weights linearly during training, though the rationale and

effectiveness of this approach are not fully clear [9, 14]. In this paper, our study demonstrates that varying

combinations of loss weights significantly impact model performance, raising a key question: what constitutes

an effective combination of loss weights that balances energy, force, and stress predictions? Our hypothesis

is that a universally optimal set of loss weights for all ML-IAPs may not exist, as the optimal weights are

likely tied to the material system and the characteristics of individual training datasets. Instead, we propose

a new method that automatically adjusts the loss weights during the training of potentials. This approach

dynamically adapts to the characteristics of the training dataset and optimizes ML-IAPs predictions.

The paper is structured as follows: first, we provide an overview of ML-IAPs based on neural networks,

including the formulation of loss functions. Next, we introduce the principle and algorithm of adaptive loss

weighting. Then, the results from models using adaptive methods are compared with those from models

using fixed loss weights, in order to demonstrate the advantage of the adaptive method. Finally, the paper

is concluded with a summary of main findings.

2. Computation Methods

The adaptive loss weighting algorithm can be applied to a wide range of ML-IAPs that require minimizing

a loss function. In this study, to demonstrate its applicability, we implemented it within the framework of

the Behler and Parrinello type of neural network potential [1, 5] inside an open-source package AtomDNN

[15] developed by the authors.

2.1. Neural Network Potentials

In a descriptor-based neural network potential designed for a system with N atoms, the Cartesian coor-

dinates of each atom i are denoted as ri = {r(1), ..., r(N)}, which are transformed into a descriptor vector

Gij with M components, where j = 1, ...,M . While many descriptor types can be integrated with neural

networks, in this study, atom-centered symmetry functions (ACSF) are utilized. The working principle of the

neural network potential can be explained in Fig. 1, where a scenario with three atoms of the same chemical

species is considered. These atoms are represented by 4 component descriptors, which feed into the neural

network as inputs. This network consists of two densely connected layers, each containing 5 neurons, and

concludes with a linear concatenation layer. The network can be considered as a high dimensional non-linear
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Figure 1: Schematic of neural network interatomic potential where the potential energy, forces,
and stresses are calculated using a feed-forward, descriptor-based neural network.

function mapping, parametrized with weight matrices and bias vectors which are optimized during training.

The equations in the figure constitute a forward-pass through the network, where W 1
jk, W

2
kl and W 3

l are the

weight matrices of layers 1, 2 and, 3, respectively, b1k, b
2
l , and b3 are the corresponding biases, and f is the

activation function.

In this model, each atom of the same chemical species is processed through an identical neural network,

yielding a per-atom energy Ei. In systems comprising multiple chemical species, separate parallel networks

are employed for each species. The total potential energy of the system, E , is the sum of per-atom energies,

which can be written in terms of descriptors as

E =

N∑
i

Ei =

N∑
i

Ei(Gi1, Gi2, ..., GiM ), (1)

where i is the index for individual atom that is described by a feature vector with M components. The

atomic forces can be obtained from the negative gradients of the total potential energy with respect to the

atomic positions, which can be expressed in terms of the derivatives of descriptors using a chain rule

fjα = − ∂E
∂rjα

= −
N∑
i=1

M∑
m=1

∂Ei

∂Gim

∂Gim

∂rjα
, (2)

where rjα(α = 1, 2, 3) are the Cartesian coordinates of the j -th atom. The derivatives of descriptors,

∂Gim/∂rjα, are fed to the network as additional inputs (represented by ∇Gij in Fig. 1). The other derivative

term, ∂Ei/∂Gim, is readily available from the back-propagation algorithm used during the training process.

In addition, for solid-state materials, Cauchy stress tensor can be used for training ML-IAPs, which can be
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written as

σαβ =
1

V

N∑
i=1

M∑
m=1

∑
j∈NBi

∂Ei

∂Gim

∂Gim

∂rjα
rjβ , (3)

where V is the current volume and NBi represents the neighbor list of atom i withing the cutoff distance rc.

The derivation of Eq. (3) can be found in Appendix A.

2.2. Loss Function of ML-IAPs

The loss function for training neural network potential as well as many other types of ML-IAPs can be

written as Eq. (4), which is composed of three components: potential energy, forces, and stresses.

L =
α1

N

N∑
i=1

(
Êi − Ei

)2

+
α2

3N

N∑
i=1

3∑
α=0

(
f̂iα − fiα

)2

+
α3

6

6∑
j=1

(σ̂j − σj)
2
, (4)

where α1, α2, and α3 are the weight coefficients to balance each component towards the calculation of the

total loss. The variables with hat refer to the true values from DFT calculations, and the Voigt notation is

applied to stress components. Previous studies have indicated that training of ML-IAP with both energy

and force is beneficial as it integrates data from potential energies and their gradients, leading to more

stable predictions and a reduction in the quantity of data structures needed for effective training [16, 17].

The loss term for stresses has also been shown to be beneficial in promoting transferability of the ML-IAP

[18]. However, the specific impact of incorporating stress in the loss has not been thoroughly investigated.

It is also noteworthy that most prior studies have limited their focus to only the potential energy and force

components in training, which could lead to unsatisfactory stress predictions, as our later computation results

will show.

In previous studies, weight coefficients for ML-IAPs were typically kept constant during training. For

instance, in a recent study, a series of ACE-based potentials were trained using various energy and force

weight combinations on a copper dataset. The findings suggested that an 0.8 : 0.2 ratio of potential energy

to force loss weight was optimal for performance [19]. In anther study, the ACE-based potential was trained

by assigning varied loss weight coefficients to different subsets of the training data, though the methodology

for selecting these parameters was not detailed [8]. Moreover, instead of fixed weight coefficients, a different

approach was taken in training a neural network potential using DeepMD-kit. This method uses a monotonic

decrease in the force weight while increasing the energy weight during the training of a dataset containing

pure Silica zeolite structures [20]. However, the effectiveness of this particular training strategy was not

detailed.

2.3. Adaptive Loss Weighting

In this study, we propose to dynamically adjust loss weights during the potential training process. This

concept is inspired by the work of Heydari et al. [21], who developed an adaptive loss weighting algorithm

for a convolutional neural network for image reconstruction and synthetic data generation. Similar to their
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Algorithm 1 Adaptive Loss Weighting for gradient descent based neural network training. The set of
trainable variables of the model are represented by θ. Note, batching is omitted here for simplicity purposes.
Normalization of s vector is considered as a default for reasons previously mentioned.

Require: optimizer
Require: loss fn (loss function, which calculates the difference between target yk value and prediction

h(x, θ))
Require: n (update loss weights every n epochs)

Require: α
(0)
k (initial loss weights values)

Require: ϵ = 10−8 for numerical stability
1: loss weights← list() empty list to store average loss weights for n epochs

2: α
(i)
k ← α

(0)
k

3: for i = 1 in epochs do

4: l
(i)
k ← loss fn(y, h(x,θ)) Compute loss for current loss weights

5: lT ← α
(i)
k Compute total loss using current loss weights

6: Perform back-propagation to update θ parameters
7: if (epoch%n) == 0 then
8: epoch loss weights← list() empty list to store loss weights for current epoch
9: end if

10: s
(i)
k ← l

(i)
k − l

(i−1)
k /

(
(
∑M

m=1 |s|) + ϵ
)

11: α
(i)
k ← exp(βs

(i)
k )/

(
(
∑M

m=1 exp(βs
(i)
m )) + ϵ

)
12: Append α

(i)
k to epoch loss weights

13: if [(epoch+ 1)%n] == 0 then
14: loss weights← Compute average of n entries in epoch loss weights
15: end if
16: end for

strategy, our method was designed to manage multipart loss functions by dynamically altering each loss

weight. This is accomplished by continuously recalibrating the loss weights based on the change in loss

values from one epoch to the next, ensuring a balanced optimization process without any single component

becoming overly dominant. The advantages of this approach are twofold: it avoids the scenarios for certain

loss components to disproportionately impact the training process and eliminates the need for manually

determining the optimal fixed weight combination each time the material system or dataset changes.

The proposed adaptive method is presented in Algorithm 1. To illustrate the machinery of the algorithm,

we first re-write Eq. (4) as

Li =

3∑
k=1

αi
kℓk, (5)

where ℓ1, ℓ2, and ℓ3 are the loss components for potential energy, forces, and stresses, respectively. The

weight factor αk is calculated at the i-th epoch by

αi
k =

eβ·s
i
k∑3

m=1 e
β·sim

, (6)
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where

sik = ℓik − ℓi−1
k (7)

represents the rate of change of k-th loss component, scaled by a hyperparameter β. Eq. (6) adopts the

classic Softmax function, and therefore, the algorithm is referred to as Softadapt. This equation indicates

that a positive value of β places a higher weight on the component with the most positive rate of change,

which corresponds to the worst performing component in terms of learning. On the other hand, a negative

value of β results in a higher relative weight for the term with the most negative rate of change or the best

performing component. A zero value of β yields equal fixed weights for each loss component. The magnitude

of β determines how sensitive the loss weights respond to the changes in individual loss components, with

larger β values leading to more responsive adjustment. While the Softadapt method may require adjusting

the hyperparameter β, it offers greater convenience compared to the iterative adjustment of the ratio among

three loss weights required in the fixed loss weight approach.

2.4. Benchmark Data Generation

Due to lack of accessible datasets comprising high-fidelity stress data, we created a benchmark dataset

using a two-dimensional Molybdenum Ditelluride (MoTe2) as a model material. The dataset consists of a

total of 3, 146 structures, evenly distributed between the 2H and 1T’ phases of MoTe2. These structures are

subjected to various tensile and compressive strains, both uniaxial and biaxial, ranging from −10% to 10%.

The data include both the deformed equilibrium structures and the structures in which atoms are random

perturbated, i.e., randomly drawn from a normal distribution with 0.1 Å standard deviation.

All DFT calculations for data generation were performed using the plane-wave-based Vienna Ab-initio

Simulation Package (VASP) [22, 23]. Projector augmented wave (PAW) pseudopotentials [24, 25] were

used to represent ionic cores, and the electronic kinetic energy cutoff for the plane-wave basis describing

the valence electrons was set to 293 eV. The Perdew-Burke-Ernzerhof (PBE) with the generalized gradient

approximation (GGA) [26] was chosen for the exchange-correlation functional. The k-point selection was

adapted to the dimension of each structure along the armchair and zigzag directions, keeping a k-point

resolved value of 0.02π × Å
−1

in both directions, following the Monkhorst-Pack scheme [27] in VASPKIT

[28]. As for the out-of-plane direction, a vacuum layer of 25 Å was used to separate the periodic images in

the out-of-plane direction, thereby single k-point was maintained along this direction. The electronic energy

and atomic forces were converged to 10−4 meV and 1 meV/Å, respectively.

3. Results and Discussion

The neural network models in this study are designed with a specific architecture, consisting of two hidden

layers, each containing 30 neurons. A hyperbolic tangent function serves as the activation mechanism. The

optimization is performed using the Adam optimizer, set at a learning rate of 0.001. Training of these models

6



Fixed Loss Weights Training RMSE Testing RMSE
Model α1 α2 α3 Energy Force Stress Energy Force Stress

1 1.0 0.00 0.00 2.37 1934.61 2832.32 19.28 2940.90 4890.23
2 0.90 0.10 0.00 1.98 15.87 489.98 2.30 24.28 520.72
3 0.90 0.05 0.05 2.72 21.39 22.02 2.29 28.42 34.10
4 0.05 0.90 0.05 7.61 16.00 30.17 6.12 21.39 37.20
5 0.05 0.05 0.90 7.79 42.69 15.48 7.42 48.43 23.43
6 0.33 0.33 0.33 3.58 20.23 18.11 5.41 25.50 22.44

Table 1: RMSE for models trained with different loss weights combinations. The contribution
of potential energy (meV/atom), force (meV/Å), and stress (MPa) are weighted by α1, α2, and
α3, respectively.

continued until negligible learning gains were observed. The dataset was divided into 70% training, 20%

validation, and 10% testing.

3.1. Results of Fixed Loss Weights

As dicussed in Section 2.2, while various weighting schemes have been used in the literature, a detailed

study that simultaneously considers potential energy, forces, and stresses in the loss function and investigates

their weightings’ impacts on the training performance is still missing. To address this, we first conducted

a sequence of studies focusing on the effects of fixed loss weights. This involved systematically varying

these weights and analyzing their impact on the performance of the trained model in terms of predictive

capabilities in comparison with DFT calculations. The results are shown in Table 1.

In model 1, where the loss function incorporates only potential energy, the model’s predictions for the

forces and stresses are notably poor. Additionally, the testing error for energy in this model is an order of

magnitude higher than that of other models despite favorable training error. This suggests that the model

trained with energy alone lacks generalization capabilities. In the case of model 2, which is trained on both

potential energy and atomic forces, we observe good performance in predicting energy and forces. However,

this approach leads to inaccurate stress predictions. Apparently, the absence of stress data during training

notably deteriorates the model’s ability to predict stress accurately. Although this was observed in this

particular dataset, it is likely applicable to others as well. Model 3, which is trained on all three components

delivers more balanced results across all metrics. The comparison between model 2 and 3 emphasizes the

importance of incorporating stress data in training ML-IAPs to more accurately predict the stresses, in

addition to energies and forces.

Models 3 to 5 were each trained with distinct weight combinations, specifically designed to prioritize

one of three variables: potential energy, force, or stress. The results showed that the weight coefficient

for one variable improves its corresponding result but at the cost of reducing accuracy in the other one or

two variables. Specifically, model 3, which prioritized potential energy, exhibited the lowest testing loss for

potential energy but did so by sacrificing stress prediction accuracy. Model 4, focusing on force, achieved

the lowest force testing loss, but compromising energy and stress accuracy. Similarly, model 5 achieved
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the best results for stress at the expense of potential energy and force accuracy. This observed trade-off

pattern suggests that previously reported approaches, which favor the forces during potential training (such

as α1 : α2 = 1 : 10) [29], or completely overlook the energy term and focus exclusively on forces [30], might

not be universally applicable across different datasets or material systems. Additionally, model 6, which

distributed weights evenly across all three variables, managed to achieve satisfactory test results for force

and stress, yet it did not accurately predict the potential energy. Therefore, this fixed weight approach could

require extensive experimentation with loss weight combinations, specific to the material dataset, in order to

attain a balanced performance among all three variables. This suggests the potential benefits of employing

automated methods to streamline the training process.

3.2. Results using Adaptive Loss Weights

As discussed in the previous section, achieving optimal results for potential energy, force, and stress

simultaneously may require iteratively adjusting the loss weight ratios based on material and dataset char-

acteristics. By contrast, we propose the Softadapt method to dynamically balance each term’s contribution

to the loss function. In this section, the results of models trained using Softadapt are compared with those

trained using fixed weights. For a fair comparison, all neural network models implementing the adaptive

algorithm were configured with the same architecture and activation function to their fixed weight counter-

parts.

The results of models trained with Softadapt algorithm are presented in Table 2. The hyperparameter β

controls how sensitively the weights respond to rate changes in loss components, with higher β values causing

more rapid adjustments in loss weights during training. For the benchmark data, the optimal performance

of Softadapt algorithm is achieved when β is around the order of 1.0, offering a better and more balanced

testing errors across energy, force, and stress compared to the fixed loss weight models. When β is too low,

the weight adjustments don’t adequately keep up with loss rate changes. Conversely, when β is set too high,

it leads to significant fluctuations in loss weights, resulting in unstable training and increased errors. The

comparison between models trained using Softadapt algorithm with β = 1 and those trained using fixed

weights is illustrated in Fig. 2. Notably, for each term of potential energy, force, and stress, the Softadapt

method achieves an accuracy level equivalent to that of the corresponding fixed model where that specific

term is prioritized.

Softadapt Training RMSE Testing RMSE
Model β Energy Force Stress Energy Force Stress

1 0.01 4.58 26.51 25.67 4.03 32.52 29.70
2 0.1 3.47 21.20 19.42 4.15 27.27 27.08
3 1.0 3.07 18.32 14.55 2.74 23.85 23.54
4 2.0 2.80 17.90 15.24 2.57 25.70 24.62

Table 2: RMSE for models trained using Softadapt algorithm with different β values. Units for
potential energy, force, and stress are meV/atom, meV/Å, and MPa, respectively.
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Energy

Force

Stress

2.74

23.85

23.54

2.29

28.42

34.10

6.12

21.39

37.20

7.42

48.43

23.43

Softadapt
Fixed #3 (prioritize energy)
Fixed #4 (prioritize force)
Fixed #5 (prioritize stress)

Figure 2: RMSE comparison between the model trained using Softadpt algorithm and three
models trained with fixed loss weights, each prioritizing potential energy, force, and stress. The
RMSE values are taken from Table 1 and 2. Units for potential energy, force, and stress are
meV/atom, meV/Å, and MPa, respectively.

The results in Table 2 were trained using equal initial weights among potential energy, force, and stress,

each equals to 0.33. It is important to note that the final results are not sensitive to the selection of the initial

weights, due to the nature of adaptive algorithm. To examine the influence of adaptive algorithm on the

changing of loss weights, we monitored the variation of loss weights throughout the training process. In this

analysis, we intentionally varied the initial loss weights across three configurations: (0.9, 0.05, 0.05), (0.05,

0.9, 0.05), and (0.05, 0.05, 0.9). As shown in Fig. 3, despite starting with very different initial loss weights,

the algorithm adjusts the contribution of each, converging to an optimum combination. Interestingly, for

this particular dataset, noticeable adjustment in loss weights mainly occur within the first 1500 epochs.
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Figure 3: Variation of loss weights during training using the Softadapt algorithm, with different
initial weight ratios among potential energy, force and stress: (a) 0.9:0.05:0.05, (b) 0.05:0.9:0.05
and (c) 0.05:0.05:0.9.
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4. Summary

We proposed an adaptive loss weighting method to dynamically adjust the contribution of penitential

energy, force, and stress, based on their corresponding loss values during the training of machine learning

interatomic potentials. Leveraging a benchmark dataset, we conducted a comparative analysis between

models trained with fixed and adaptive loss weights. The key findings are summarized as follows.

• Stress data proves critical for the accurate prediction of stress values when training machine learning

potentials.

• Models employing fixed loss weights yield imbalanced predictions for potential energy, force, and stress,

as they enhance the accuracy of a prioritized variable at the expense of others.

• Models utilizing the adaptive algorithm demonstrate an ability to balance the contributions of the

three variables, thereby yielding more balanced and accurate predictions.
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Appendix A. Cauchy Stress Derivation in ML-IAP

The first Piola-Kirchhoff (PK) stress tensor can be calculated as the work conjugate of deformation

gradient tensor

Pαβ =
1

V0

∂E
∂Fαβ

, (A.1)
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where V0 is the volume of the reference configuration, and Fαβ is the deformation gradient tensor. Similar to

the atomic force calculation, the potential energy can be written as the sum of per-atom potential energies,

so the stress can be written as

Pαβ =
1

V0

N∑
i=1

M∑
m=1

∂Ei

∂Gim

∂Gim

∂Fαβ
. (A.2)

The fingerprint Gim is determined by the coordinates of the atoms inside the neighbor list of atom i.

Therefore, using the chain rule, we have

∂Gim

∂Fαβ
=

∑
j∈NBi

3∑
γ=1

∂Gim

∂rjγ

∂rjγ
∂Fαβ

, (A.3)

where atom j is inside the neighbor list of atom i (represented by NBi). By definition, the deformation

gradient maps the atom position from the reference configuration to the current configuration

rjγ =

3∑
β=1

FγβRjβ , (A.4)

where Rjβ is the coordinates of atom j in the reference configuration. Then, the stress in Eq. (A.2) can be

written as

Pαβ =
1

V0

N∑
i=1

M∑
m=1

∑
j∈NBi

∂Ei

∂Gim

∂Gim

∂rjα
Rjβ . (A.5)

Cauchy stress can be further calculated by

σαγ = det(F )−1
3∑

β=1

PαβFγβ . (A.6)

Substitute Eq. (A.5) into Eq. (A.6), and then apply Eq. (A.4) and V = V0 det(F ), which is the volume in

current configuration, we can get

σαβ =
1

V

N∑
i=1

M∑
m=1

∑
j∈NBi

∂Ei

∂Gim

∂Gim

∂rjα
rjβ (A.7)

after replacing γ with β.
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