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Abstract— Natural gas consumption by users of pipeline
networks is subject to increasing uncertainty that originates
from the intermittent nature of electric power loads serviced
by gas-fired generators. To enable computationally efficient
optimization of gas network flows subject to uncertainty, we
develop a finite volume representation of stochastic solutions
of hyperbolic partial differential equation (PDE) systems on
graph-connected domains with nodal coupling and boundary
conditions. The representation is used to express the physical
constraints in stochastic optimization problems for gas flow
allocation subject to uncertain parameters. The method is based
on the stochastic finite volume approach that was recently
developed for uncertainty quantification in transient flows
represented by hyperbolic PDEs on graphs. In this study, we
develop optimization formulations for steady-state gas flow over
actuated transport networks subject to probabilistic constraints.
In addition to the distributions for the physical solutions, we
examine the dual variables that are produced by way of the opti-
mization, and interpret them as price distributions that quantify
the financial volatility that arises through demand uncertainty
modeled in an optimization-driven gas market mechanism. We
demonstrate the computation and distributional analysis using
a single-pipe example and a small test network.

I. INTRODUCTION

The increasing use of wind and solar electricity production
concurrently with growing reliance on gas-fired power gen-
eration for both base load and to compensate for intermittent
renewables results in more volatile and uncertain demands
on natural gas delivered by pipelines [1]. This issue has
been addressed in part by developing probabilistic scheduling
methods based on power grid physics and operations for
calibrated planning of gas-fired electricity generation and its
fuel consumption [2]. For instance, stochastic optimization
methods were developed based on sampling demand and
price scenarios associated with wind uncertainty [3]. These
methods take advantage of the understanding that power
grid physics are approximated well for operations scheduling
using direct current (DC) power flow modeling. In contrast,
it has been well known for decades that probabilistically con-
strained optimization for gas pipeline network flow allocation
is highly challenging because of nonlinearity [4].
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The notion of robust optimization involves the formulation
of mathematical programs to determine optimal decisions
that are feasible under a range of parameter values [5],
[6]. Formulations based on scenario sampling have been
developed for managing demand uncertainty in operations
of steady and transient gas network flows [7], [8], including
recent approaches that account for composition uncertainty
[9]. Recent formulations have proposed integrated optimiza-
tion formulations to jointly manage day-ahead uncertainty
in a power grid and interconnected gas pipeline, including
compensation for interval [10] and intertemporal [11] vari-
ability. Despite these advances, the more fundamental steady-
state optimal gas flow under demand uncertainty remains
challenging to analyze and scale to large networks.

The interconnections between physical and financial man-
agement of the power grid and gas pipelines in the presence
of fuel price volatility and renewable generation uncer-
tainty raise complex economic issues [12], [13]. Whereas
economics are connected to operations in the power grid
through well-established optimization-driven wholesale elec-
tricity markets [14], such mechanisms for gas pipeline
management have been explored much more recently [15].
Deterministic optimization-driven market mechanisms for
steady-state and dynamic hourly scheduling and pricing of
natural gas delivery have been developed [16], [17], and
such formulations were shown to scale well to realistic
systems [18]. However, the extension of market mechanisms
for gas pipelines to stochastic formulations have not been
examined to date. It is well known that optimization of gas
pipeline flows under uncertainty is highly complex, because
of the substantial nonlinearity and computational complexity
involved [4], [7]. The challenge of modeling the effect of
intertemporal uncertainty in time-dependent simulation of
gas pipelines has to an extent been met by a new stochastic
finite volume (SFV) method for uncertainty quantification
(UQ) in gas pipeline flows [19], which was shown to model
the propagation of uncertainty in associated initial boundary
value problems. Moreover, finite volume methods have been
used in financial analysis of markets that do not involve
underlying physics, such as options pricing [20].

In this paper, we adapt the SFV representation for so-
lutions of the nonlinear gas flow equations with uncertain
boundary conditions to optimize the steady-state flow allo-
cation in a pipeline system subject to uncertain demands.
We propose this type of uncertainty modeling because of
its computationally efficient representation of the probability
densities of state variables throughout a pipeline system, and
in particular its amenability to higher-order reconstructions in
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representing probabilistic inequality constraints. The primary
contribution of our study is a chance-constrained optimiza-
tion formulation that extends the problem of steady-state flow
allocation for a gas pipeline system [16], resulting in a single
solution for compressor configuration and optimized flows
that extremizes an operational and/or economic objective
in expectation. By utilizing the proven method of chance-
constraints, our pipeline demand uncertainty management
approach provides probabilistic robustness guarantees that
can be calibrated based on risk tolerance. Furthermore, when
the objective function is interpreted as an expected economic
value created for users of the pipeline system, we examine
the dual variables of the optimization solution and use them
to reconstruct functions that we interpret as the probability
distributions of locational values of gas.

The paper is structured as follows. We describe gas
pipeline flow modeling and the steady-state optimal gas flow
optimization formulation in Section II. This is extended to
the chance-constrained stochastic steady-state optimal gas
flow formulation that accounts for uncertain loads using the
SFV method in Section III. In Section IV, we describe our
computational implementation and two small interpretable
case studies, then briefly propose an economic interpretation
of the results, and finally conclude in Section V.

II. STEADY-STATE OPTIMAL GAS FLOW PROBLEM

We formulate a general robust optimization problem for
steady-state gas flow, in which the objective minimizes aver-
age gas compressor power (for maximal operating efficiency)
and maximizes the expected economic value for users of
the system in the form of revenue collected by the pipeline
operator. The formulation admits situations in which gas
consumptions at demand nodes are specified, as well as
problems where the gas delivery to one or more nodes is
an optimized variable. In the latter case, price-quantity bids
for withdrawal (by consumers) and injection (by suppliers)
are provided, and we suppose that a market authority solves
the steady-state flow allocation problem subject to uncertain
flows that are unknown but within a specified range.

A. Gas Flow Modeling

We consider a minimal turbulent flow approximation re-
lating pressure to mass flow for compressible gas in a pipe.
The flow of gas through a pipe in the turbulent regime can
be described by a simplification of the Euler equations [21],

∂tρ+ ∂xφ = 0, ∂tφ+ ∂xp = − λ

2D

φ|φ|
ρ

, (1)

where φ is per-area mass flux (kg/m2/s) of the gas, p is
pressure (Pa), and ρ is gas density (kg/m3), which are
defined on a domain x ∈ [0, L] at each time t ∈ [0, T ].
The parameters that determine flow capacity are the pipe-
specific non-dimensional friction factor λ, pipe diameter D,
and pipe length L, and the wave propagation speed a that
is a property of the gas that depends on composition and
temperature. Recall that the per-area mass flux is φ = ρ·u,
and is related to the total flow ϕ through a pipe by φ = ϕ/A

where A = πD2/4 is the cross-sectional area of the pipe. We
assume that the wave speed a is uniform system-wide, and
that gas pressure p and density ρ are related by the ideal gas
law p = a2ρ. We simplify this way to focus on probabilistic
modeling, and the results can be extended to more complex
settings such as non-ideal gases. In steady-state, mass flux
φ is constant, so that equations (1) will have the form

∂xφ = 0, ∂xp = − λ

2D

φ|φ|
ρ

. (2)

The second equation above defines the change of gas density
along the pipe, and integrating it along space yields

(ρ(L))2 − (ρ(0))2 = −βφ|φ|, β = λL/(a2D). (3)

B. Pipeline Network Modeling

A pipeline network can be modeled as a set of edges E
connected at junctions in a set V where gas is withdrawn
from or injected into the network. Gas flow is actuated
by compressors in a set C ⊂ E , which are modeled as
multiplicative pressure boosters that preserve through-flow.
Expressing equation (3) in terms of squared pressures Πi and
Πj at nodes i, j ∈ V and flow ϕij on pipe (i, j) ∈ E yields
a flow equation for each edge in the set of pipes P ⊂ E ,

Πj −Πi = κijϕij |ϕij |, ∀(i, j) ∈ P, (4)

where κij = a2λijLij/(A
2
ijDij). The pressure boost

achieved by compressor stations is modeled according to

Πj = αijΠi, ∀(i, j) ∈ C, (5)

where αij is a factor that relates the squares of the com-
pressor discharge and suction pressures. The network nodes
V are categorized either as slack (pressure) nodes in the
set Vs or nonslack (flow) nodes in the set Vq . The slack
nodes are characterized by a given squared pressure Πj , and
nonslack nodes are characterized by a given withdrawal flow
qj (negative if an injection), according to

Πj = p2j , j ∈ Vs, and qj = dj − sj , j ∈ Vq, (6)

where the values of pj and withdrawals dj ≥ 0 or injections
sj ≥ 0 must be specified. We suppose that each node j ∈ V
is either consumer or supplier, so only one of dj or sj can
be positive. Conservation of flow is enforced at each node
in the network as∑

i∈∂+j

ϕij −
∑

k∈∂−j

ϕjk = qj , ∀j ∈ V, (7)

with the notation ∂+j = {i ∈ V | (i, j) ∈ E} and ∂−j =
{k ∈ V | (j, k) ∈ E} used to denote the sets of nodes con-
nected to j by incoming and outgoing edges, respectively. To
ensure mass flow balance for the system, pressure is fixed at
a slack node into which flow is free, which represents a large
supply source with an injection (negative withdrawal). The
withdrawal dj or supply sj at a flow node j ∈ Vq specified
in (6) may be a decision variable. If the withdrawal dj ≥ 0 is
optimized, we write that j ∈ Od ⊂ Vq , and if supply sj ≥ 0
is optimized, we write that j ∈ Os ⊂ Vq .



C. Deterministic Optimal Gas Flow

The deterministic steady-state optimal gas flow problem
is comprised of an objective function solved subject to the
physical flow constraints and boundary conditions defined
in equations (4)-(7) as well as inequality constraints, which
we define below. These limitations are imposed due to
engineering and operating requirements. We suppose that the
gas pressure at each location j ∈ V in the network is bounded
according to

Πmin
j ≤ Πj ≤ Πmax

j , ∀j ∈ V, (8)

and that the compressor ratios are bounded according to

1 ≤ αij ≤ αmax
ij , ∀(i, j) ∈ C. (9)

The objective function balances two quantities, the first of
which approximates the cost of operating the pipeline by
using energy to operate compressors. Following our previous
studies [22], [17], we approximate the compressor power by
the energy needed for adiabatic compression, which takes
the form

Wc =
∑

(i,j)∈C

ηijϕij(α
m
ij − 1), (10)

where 0 < m = (γg − 1)/γg/2 < 1 where γg is the heat
capacity ratio of the gas [23], and ηij is a constant coefficient.
The second component of the objective function quantifies
the economic value produced by the pipeline for its users,
which is defined as

We =
∑
j∈V

(cdjdj − csjsj), (11)

where cdj is the bid price of a consumer and csj is the
offer price of a supplier. In practice, we suppose that the
economic value We is at least an order of magnitude greater
than Wc for an pipeline system design. Finally, in a market
mechanism for gas flow scheduling, we may constrain any
optimized demand flows by

0 ≤ dj ≤ dmax
j , j ∈ Od, (12a)

0 ≤ sj ≤ smax
j , j ∈ Os. (12b)

Synthesizing the objective function subject to equality and
inequality constraints yields the deterministic steady-state
optimal gas flow problem:

min
α,d,s

Wc −We as in eq. (10) and (11) (13a)

s.t. pipe momentum conservation (4) (13b)
compressor actions (5) (13c)
node flow balance (7) (13d)
pressure constraints (8) (13e)
compressor ratio limits (9) (13f)
nomination limits (12) (13g)

The form of this optimization problem can be modified by
collecting variables and parameters into vectors. Let us define
the vectors cd and cs of nodal demand and supply prices
for optimized flows d and s at nodes in the sets Od and

Os, respectively. Define also the vectors q of nodal gas
withdrawals, κ of pipe resistances κij , ϕ of flows through
all pipes, Π of all nodal pressures, and α of all compressor
ratios. We then define the incidence matrix A of the graph

Aik =

 1 edge k = (j, i) enters node i,
−1 edge k = (i, j) leaves node i,
0 else.

(14)

The problem (13) can then be stated as

min
α,d,s

Wc − (cTd d− cTs s) (15a)

s.t. Πj −Πi = κijϕij |ϕij |, ∀(i, j) ∈ P (15b)
Πj = αijΠi, ∀(i, j) ∈ C (15c)
Aϕ = q (15d)
Πmin ≤ Π ≤ Πmax (15e)
1 ≤ α ≤ αmax (15f)
0 ≤ d ≤ dmax, 0 ≤ s ≤ smax (15g)

Formulations similar to the optimization problem (15) have
been examined in previous studies [24], [25], and extended
to transient flows [17] and gas mixtures [22], and economic
interpretations were also developed [16], [26]. Steady-state
formulations such as problem (13) can be viewed as pro-
viding a day-ahead flow allocation for an operating day,
assuming steady ratable offtakes by customers. Here we
extend the steady-state optimal gas flow problem to account
for uncertain demands using the SFV approach.

III. CHANCE-CONSTRAINED OPTIMAL GAS FLOW

In the steady-state flow setting, we aim to develop a
chance-constrained formulation to provide probabilistic guar-
antees given a known distribution in one or more gas flow
withdrawals from a pipeline network. This type of formula-
tion can be more flexibly calibrated than robust optimization
approaches that compensate for arbitrary interval uncertainty
[24], [27]. The key concern for pipeline systems is to
assure delivery of gas to all customers given uncertainty in
some loads while maintaining adequate pipeline pressure.
The lower bound in constraint (8) (i.e., (15e)) is somewhat
flexible in practice, as long as it is not violated significantly
and pressures can be returned to adequate levels for the
subsequent operating day. We enforce this limit using chance
constraints, allowing for a small probability ϵ of violation.

Suppose that a subset of gas pipeline nodes S ⊂ V has
stochastic gas consumptions of the form

dj(ω) = dj + rj(ω), j ∈ S, (16)

where we suppose that (Ωj ,Bj , µj) is a probability space
where rj : Ωj → Rj is a random variable taking values on
a compact interval Rj = [rj , rj ] ⊂ R and where Bj is the
Borel σ-algebra. The fixed parameters dj denote the nominal
baseline load. Letting Ω =

∏|S|
j=1 Ωj , we consider samples

ω ∈ Ω as instances of stochastic loads across the pipeline
network. We suppose that values of random parameters rj(ω)
corresponding to various values of q in problem (15) would
result in different optimal solutions of that problem. Thus



in the stochastic extension below we consider the physical
solutions Π and ϕ to also depend on the sample ω, and
we seek to find a single decision for the value of α and
any optimized flows dj or sj for j ∈ O ⊂ V such that the
inequality constraints corresponding to (15e) are satisfied in
a probabilistic sense. The flow equations (4) and compressor
conditions (5) must be evaluated for all samples ω as

Πj(ω)−Πi(ω)=κijϕij(ω)|ϕij(ω)|, ∀(i, j)∈P,∀ω∈Ω, (17)
Πj(ω) = αijΠi(ω), ∀(i, j) ∈ C, ∀ω ∈ Ω. (18)

Conservation of flow (7) is enforced for all samples as∑
i∈∂+j

ϕij(ω)−
∑

k∈∂−j

ϕjk(ω)=qj(ω), ∀j∈V, ∀ω∈Ω, (19)

where qj(ω) = dj + rj(ω) − sj . The chance constraint for
minimum pipeline pressure is expressed using a quadratic
penalty function

Γ(z) =

{
γz2, if x ≥ 0,

0, otherwise,
(20a)

and a penalized minimum pressure violation variable

vmin
j (ω) = Γ

(
Πmin

j −Πj(ω)
)
. (20b)

The quadratic penalty is chosen in order to reflect the
practical consideration that larger violations of the lower
pressure limits are more problematic. Additionally, because it
is twice differentiable, it facilitates a well-behaved nonlinear
program. The chance constraint is then

Eω

[
vmin
j (t, ω)

]
≤ ϵj , ∀t ∈ T, (21)

where the acceptable violation probability ϵj may depend
on the network node j ∈ V . We approximate the constraint
(21) in a deterministic manner (i.e., without requiring Monte
Carlo simulation) by applying the SFV method as follows.
We discretize the stochastic space Ω, which has one-to-
one correspondence with the interval Rj on which the
random consumption rj(ω) appears, into M cells delimited
by M +1 uniformly spaced boundary points, each of which
corresponds to a value of rjωm. We construct the penalty
variable using a third order spline expansion on Ω of form

vmin
j (ω) = Γ

(
Πmin

j −Πj(ω)
)
=

∑
m∈M

ajmbjm(ω), (22a)

where bjm(ω) is the m-th spline function on the uniform
stochastic space grid that is completely known. The con-
straint (21) is expressed as an expectation over ω as

Eω[v
min
j (ω)] =

∑
m∈M

ajm

∫
ω

bjm(ω)dµj ≤ ϵj , (22b)

where the coefficients ajm serve as decision variables that
can be optimized. Aside from minimum pressure limits, all
other constraints including the maximum operating pressure,

Πj(ω) ≤ Πmax
j , ∀j ∈ V, (23)

are strictly enforced for all values of ω. The objective

function components must also be evaluated in expectation,

Eω[Wc] =
∑

(i,j)∈C

ηij(α
m
ij − 1) · Eω[ϕij ], (24)

Eω[We] =
∑
j∈V

(cdj (dj + Eω[rj ])− csjsj). (25)

Assembling the objective function and probabilistic con-
straints in the stochastic setting results in the chance-
constrained optimal gas flow problem given by

min
α,d,s

Eω[Wc]− Eω[Wc] as in eq. (24) and (25) (26a)

s.t. pipe momentum conservation (17) (26b)
node flow balance (19) (26c)
compressor actions (18) (26d)
pressure constraints (22a)-(22b) and (23) (26e)
compressor ratio limits (9) (26f)
nomination limits (12) (26g)

Invoking the vector notations used to express formulation
(13) as (15) above, and using r to state the vector of random
withdrawals provided at prices cr for j ∈ S, we re-write
problem (26) as

min
α,d,s

Eω[Wc]− (cTd d− cTs s)− cTr Eω[r] (27a)

s.t. Πj(ω)−Πi(ω)=κijϕij(ω)|ϕij(ω)|,
∀(i, j) ∈ P, ∀ω ∈ Ω, (27b)

Πj(ω) = αijΠi(ω), ∀(i, j) ∈ C, ∀ω ∈ Ω, (27c)
Aϕ(ω) = q(ω), ∀ω ∈ Ω (27d)
Π(ω) ≤ Πmax, ∀ω ∈ Ω (27e)
1 ≤ α ≤ αmax (27f)

Γ
(
Πmin

j −Πj(ω)
)
=

∑
m∈M

ajmbjm(ω),

∀j ∈ V, ∀ω ∈ Ω, (27g)∑
m∈M

ajm

∫
ω

bjm(ω)dµj ≤ ϵj , ∀j∈V, ∀ω∈Ω, (27h)

0 ≤ d ≤ dmax, 0 ≤ s ≤ smax (27i)

In the rest of the paper, we examine the computational
solution of problem (27) for to small test networks by
estimating the distributions of physical solutions. Because
the optimization objective (27a) is formulated as an expected
economic value, we also examine the possibility of recon-
structing the distributions of dual variables and interpreting
them as stochastic locational values of natural gas.

IV. COMPUTATIONAL STUDIES

We explore solutions to problem (27) obtained using
our SFV-based uncertainty management method using two
example systems. The first consists of a single pipe with
a compressor at the sending end, and the second is an 8-
node test network that consists of 5 pipes and 3 compressor
stations, and which was described in our previous studies
[28], [19], [22]. We examine the distributions of physical
flows and pressures that arise given uniform or truncated



normal probability distributions in withdrawal gas flows.
The problem (27) is implemented as a nonlinear constrained
optimization model in JuMP [29], an algebraic modeling
language in Julia, and solving using an open source interior
point method based optimization solver IPOPT [30]. For
computational well-conditioning, we re-scale the pressure,
flow, distance, and velocity variables according to the non-
dimensionalization in a previous study [31]. We suppose for
simplicity in this study that the value of the exponent m in
equation (10) is m = 1, so that the specific heat capacity
ratio of the gas is 0.5.

Fig. 1. Single pipe test system and component parameters.

A. Single Pipe with Compressor

The first test network consists of a single pipe with a
compressor connected to the inlet node, as shown in Figure
1. The injection node (N1) acts as a slack node with fixed
pressure set at pslack1 = 4.3367 MPa. The pressure bounds at
the withdrawal node (N3) are specified as Pmin = 4.0 MPa
and Pmax = 6.0 MPa. The compressor ratio is bounded by
α ∈ [1, 1.4]. The uncertain withdrawal flow is parameterized
by an uncertain parameter (ω) as q3(ω) = d3+r3(ω), where
d3 represents the nominal value that is fixed at 250 kg/s. We
consider a scenario where the uncertain flow r3(ω) follows a
uniform distribution r3 ∼ U [−50, 50], and a scenario where
r3(ω) follows a truncated normal distribution with zero mean
and standard deviation σ = 50/3, i.e., r3 ∼ N (0, 50/3) with
support on [−50, 50]. The distributions of the withdrawal
q3(ω) are shown in Figure 2. We discretize the sample space

180 200 220 240 260 280 300 320

Flow (kg/s)

0

0.005

0.01

0.015

0.02

0.025

P
ro

ba
bi

lit
y

Withdrawal Probability Density Functions

Uniform
Truncated Normal

Fig. 2. Single pipe example probability distribution functions q3 ∼
U [200, 300] and q3 ∼ N(200, 50/3) with truncated tails.

Ω3 into K = 100 stochastic cells that uniformly partition
the interval [200, 300] and solve the reformulated chance

Fig. 3. Pressure Probability Distribution at Withdrawal Node J3. Top:
Truncated Normal Uncertainty q3 ∼ N(200, 50/3); Bottom: Uniform
Uncertainty q3 ∼ U [200, 300]

constrained optimization problem (27) for several values of
the acceptable violation probability parameter ϵ3, namely,
ϵ3 ∈ {0.01, 0.05, 0.1}. The distribution of the pressure at the
withdrawal node N3 is approximated by the kernel density
estimate method (ksdensity in MATLAB) using 10000
empirical samples of pressure distribution obtained from the
optimal solution. The pressure probability density function
(PDF) estimate at the withdrawal node is plotted for these
constraint violation probabilities and shown in Figure 3.

Observe that the withdrawal pressure PDF retains a bell
curve type shape for normally distributed uncertain with-
drawal flow but the pressure PDF for uniform uncertain
withdrawal has a non-uniform distribution over the pressure
values. The withdrawal pressure PDFs are consistent as they
show higher violation for higher values of ϵ and vice-versa.
We also note that the estimated probability of violation for
the pressure constraint (P ≤ Pmin) is higher in the uniform
uncertainty case than the normal distribution for same chance
constraint violation probability parameter (ϵ3). This happens
because the pressure drop inside the pipe increases with
increasing withdrawal flow resulting in lower pressure at
the withdrawal node, and the probability of withdrawal flow
near the upper end of the uncertainty interval [200, 300] is
higher given uniform uncertainty than when considering the



normally distributed uncertainty scenario. A uniform distri-
bution for the uncertain flow also results in higher compres-
sor ratio solution α = {1.1985, 1.192, 1.187} compared to
normal uncertainty (α = {1.183, 1.171, 1.164}), where these
enumerations correspond to the values ϵ3 = {0.01, 0.05, 0.1}
for the acceptable violation probability.

Fig. 4. 8-node Gas Pipeline Network System

B. 8-node Pipeline Test Network

In our second case study, we apply the SFV-based opti-
mization approach to an uncertainty management scenario
for an 8-node gas pipeline test network with 5 pipes, 3
compressors, 2 withdrawal (at nodes J3 and J5), and 1 slack
injection node (J1) with constant pressure P slack

1 = 5.0 MPa
(shown in Fig.4). This test network has been examined for
steady-state and transient flow algorithms in several previous
studies [28], [19], [26], [22]. The lower bounds for pressure
at withdrawal nodes is specified as Pmin

5 = 4.0 MPa at
node J5, and Pmin

3 = 3.0 MPa at the other nodes. We
suppose that the withdrawal flow at node J5 is uncertain
and parameterized using a uniformly distributed uncertain
parameter, whereas the withdrawal flow q3 at node J3 is a
decision variable in the optimization problem. The uncertain
withdrawal flow at node J5 is modeled as q5(ω) = d5+r5(ω),
where d5 = 64 kg/s and rj = U [0, 32]. In our implemen-
tation, Ω5 = [0, 32] is discretized using K = 50 uniform
stochastic cells. We solve three cases with different values
of the withdrawal nomination constraint bound qmax

3 ≡ dmax
3 ,

namely, qmax
3 ≡ dmax

3 ∈ {200, 300,∞} kg/s, using the same
value of violation probability parameter ϵ = 0.1 in each case.

Estimates of the pressure PDFs at two withdrawal nodes J3
and J5 are shown in Figure 5. The pressure profile shows no
violation at withdrawal node J3 for any instance. In contrast,
the pressure at withdrawal node J5 exhibits bound violation
for all instances and the pressure profile for the instance with
no upper bound (qmax

3 = ∞) has values less than Pmin
5 =

4.0 MPa for each uncertain scenario. The pressure PDFs also
show a higher standard deviation in withdrawal pressure at
node J3 for qmax

3 = ∞ and in withdrawal pressure at node
J5 for qmax

3 ∈ {200, 300} kg/s. The optimal withdrawal flow
q3 at J3 is shown in Fig 6. We observe that the withdrawal
is at upper bound limits for qmax

3 ≡ dmax
3 ∈ {200, 300} kg/s,

Fig. 5. Pressure probability distributions for 8-node case study. Top: Node
3; and Bottom: Node 5.

Fig. 6. Withdrawal Flow Probability Distribution at Node 3

but has a continuous PDF estimate when there is no upper
bound for the withdrawal flow variable.

C. Economic Interpretation of Lagrange Multipliers

We now explore the possibility of economic analysis of
solutions to problem (27) by use of the associated Lagrange



Fig. 7. Marginal price probability distribution associated with the flow
balance constraint at Node J5

multipliers to reconstruct stochastic locational prices. In
particular, by solving problem (27) we obtain the Lagrange
multipliers λq(ω) that are associated with the nodal mass
flow balance constraint (27d), as well as Lagrange multipliers
λd(ω) associated with upper bound constraint (27i) for the
optimized withdrawal flows the withdrawal bound constraint
(in particular, d3(ω) ≤ dmax

3 the 8-node example). These
multipliers at the optimal solution, which we interpret as
marginal prices, follow the Karush-Kuhn Tucker (KKT)
conditions, and can be derived by assembling terms in the
Lagrangian as shown in equation (28), differentiating with
respect to d to obtain the first order condition in equation
(29), and solving for the extremal value. For the 8-node
example, the relevant parts of the Lagrangian take the form

L(.,d) = −cd3(d3 + Eω[r3]) +
∑
ω∈Ω

λT
q (Aϕ(ω)− q(ω))

+ ...+
∑
ω∈Ω

λd,3(d3 − dmax
3 ), (28)

and taking the variation with respect to the optimized with-
drawal d3 yeilds

∇Lq3(.) = − c3
K

+ λq,3 + λd,3 = 0. (29)

Recall that the parameter K denotes the number of stochastic
cells used to discretize the interval Ω, which in this case is
Ω3 ≡ [200, 300]. The probability distribution functions of
λf,3 and λq,3 are shown in Figure 8, and in this case they
are discrete. Observe that the dual variables satisfy the KKT
condition where c3 = 20 and K = 50 and the sum of the
dual variables is equal to c3/K = 0.4. We also observe
that for instances with qmax

3 ∈ {200,∞} kg/s, the dual
variable λq,3 is constant at 0.02 and 0.39 respectively for
each scenario, whereas the dual variable λd,3 ≈ 0 and 0.38
respectively. For the instance with qmax

3 = 300 kg/s, the
dual variables (λq,3, λd,3) are dependent on the scenario, and
their sum is equal to 0.4 as expected based on (29). Based on
these observations, we see that the SFV-based computational
method satisfies the KKT conditions for this case study.

Fig. 8. Marginal price probability distributions at Node 3. Top: associated
with the withdrawal bound constraint; Bottom: associated with the flow
balance constraint

Let us now examine the PDF estimate for locational
marginal price λq,5 at withdrawal node J5, which is shown
in Figure 7. The marginal price denotes the sensitivity of
the optimal objective function value J(α, d, s) to varia-
tion in the uncertain withdrawal flow q5(ω) as λq,5(ω) =
∂J(α, d, s)/∂q5(ω). Because q5(ω) is a random variable,
then we the multiplier λq,5(ω) is a random variable as
well, and its distribution can be reconstructed from the dual
variables corresponding to flow balance constraints (27d)
in the optimal solution to problem (27). We observe that
distribution of the marginal price λq,5(ω) of gas at node
J5 is always zero for qmax

3 = 200 and sometimes 3.18
when qmax

3 = 300. If there is no specified upper bound
on optimized withdrawal to node J3, i.e., qmax

3 = ∞, then
the optimization solution is driven by the probabilistic lower
pressure consraint at node J5 and as a result the marginal
price distribution at node J3 is continuous.

V. CONCLUSION

We have developed a stochastic finite volume represen-
tation for solutions of the steady-state gas flow equations
on a pipeline network with compressors subject to uncer-
tain boundary conditions. This representation is used to



formulate a stochastic optimization problem for steady-state
flow allocation in a pipeline system subject to uncertain
demands. This type of uncertainty modeling enables the
generalizable representation of arbitrary probability distri-
butions in problem parameters, and facilitates higher-order
reconstructions in computationally efficient calibration of
probabilistic inequality constraints. The primary contribution
of our study is a chance-constrained optimization formulation
for steady-state flow allocation for a gas pipeline system, and
a method for computing solutions for compressor configura-
tion and nomination flows that optimize an operational and/or
economic objective in expectation. By extending the proven
method of chance-constraints using higher-order nonlinear
reconstructions, our pipeline demand uncertainty manage-
ment approach provides probabilistic robustness guarantees
that can be calibrated based on risk tolerance. Furthermore,
when the objective function is interpreted as an expected
economic value created for users of the pipeline system,
we show that the dual variables of the optimization solution
can be used to reconstruct distributions that we interpret as
probability densities of locational gas prices. Such solutions
could be used to quantify the financial volatility of energy
in an optimization-driven gas market mechanism that ac-
counts for demand, supply, transportation capacity, and price
volatility. Compelling future work would include analysis of
convergence in modeling accuracy and probability measure,
as well as an investigation of the trade-offs between com-
putational cost and stochastic degrees of freedom examined.
We note that, because consumption uncertainty throughout a
network may be correlated, it is possible to represent wide-
area uncertainty using only a few stochastic dimensions.
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