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Abstract

Pseudo log-likelihood is a type of maximum likelihood estimation (MLE) method used in various fields
including contextual bandits, influence maximization of social networks, and causal bandits. However,
in previous literature [Li et al., 2017, Zhang et al., 2022a, Xiong and Chen, 2022, Feng and Chen, 2023,
Feng et al., 2023], the log-likelihood function may not be bounded, which may result in the algorithm they
proposed not well-defined. In this paper, we give a counterexample that the maximum pseudo log-likelihood
estimation fails and then provide a solution to correct the algorithms in [Li et al., 2017, Zhang et al., 2022a,
Xiong and Chen, 2022, Feng and Chen, 2023, Feng et al., 2023].

1 Problem Description

In [Li et al., 2017, Zhang et al., 2022a, Xiong and Chen, 2022, Feng and Chen, 2023, Feng et al., 2023], the
authors use the same maximum likelihood estimation (MLE) method. Suppose X1, X2, . . . , Xd are random
variables such that Xi ∈ [0, 1]. For convenience, we use X to denote the vector (X1, X2, · · · , Xd). The function
µ is a monotone increasing and second-order differentiable function from R to R, and m(x) is defined as:

m(x) =

{

∫ x

0 µ(x′)dx′ x ≥ 0

−
∫ 0

−x
µ(x′)dx′ x < 0

.

There is a set of parameters θ∗1 , θ
∗
2 , . . . , θ

∗
d, which we also denote by vector θ∗. Moreover, Y ∈ [0, 1] is the outcome

of X1, X2, . . . , Xd such that E[Y |X ] = µ(X⊺
θ
∗). Y depends on X

⊺
θ
∗ and its noise term is independent of X

and θ
∗.

There are in total t rounds and in the ith round, the values of X1, X2, . . . , Xd are x1,i, x2,i, . . . , xd,i, and the
value of Y is yi. For convenience, we denote the vector (x1,i, x2,i, . . . , xd,i) by xi. To estimate θ

∗, the MLE
method [Li et al., 2017, Zhang et al., 2022a] takes

θ̂t = argmax
θ∈Rd

t
∑

i=1

(yix
⊺

i θ −m(x⊺

i θ)) (1)

as the estimation of θ∗. Since m is a second-order differentiable function, when θ̂t is a maximum of

t
∑

i=1

(yix
⊺

i θ −m(x⊺

i θ)) ,

the gradient
∑t

i=1(yi − µ(x⊺

i θ̂t))xi should be 0. In [Xiong and Chen, 2022, Feng and Chen, 2023, Feng et al.,

2023], they solve θ̂t by the equation
∑t

i=1(yi − µ(x⊺

i θ))xi = 0.
Theorem 1 in [Li et al., 2017], Theorem 3 in [Zhang et al., 2022b], and Lemma 1 in [Feng and Chen, 2023]

provide a guarantee for the distance from θ̂t to θ
∗ when θ̂t exists. However, none of these previous literature
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[Li et al., 2017, Zhang et al., 2022a, Xiong and Chen, 2022, Feng and Chen, 2023, Feng et al., 2023] discusses

the existence of θ̂t, i.e., whether
∑t

i=1 (yix
⊺

i θ −m(x⊺

i θ)) could tend to positive infinity when some elements

of θ tend to infinity. If θ̂t does not exist, the deductions in all the previous literature collapse. In this short
paper, we present a counterexample to show that θ̂t may not exist under the conditions of the previous papers
[Li et al., 2017, Zhang et al., 2022a, Xiong and Chen, 2022, Feng and Chen, 2023, Feng et al., 2023] and provide
a solution to address this issue. For consistency, we will use the notations in this section throughout this paper.
Readers can correlate the notations with those of previous papers.

2 Counter-Examples

In this section, we present a counterexample to demonstrate the incorrectness of the default assumption that
θ̂t exists. In [Li et al., 2017], X1, . . . , Xd, Y are continuous variables in [0, 1]. In our counterexample, we let the
link function be µ(x) = 1

2+2e−x , which satisfies Assumptions 1 and 2 in [Li et al., 2017]. For convenience, we

denote
∑t

i=1 (yix
⊺

i θ −m(x⊺

i θ)) by H(θ).
When x1,i = x2,i = · · · = xd,i > 0 and yi >

1
2 for i = 1, 2, . . . , t, the jth element of the gradient of H(θ)

satisfies:

∂H(θ)

∂θj
=

(

t
∑

i=1

(yi − µ(x⊺

i θ̂t))xi

)

j

=

t
∑

i=1

(yi − µ(x⊺

i θ̂t))xj,i

>

t
∑

i=1

(

1

2
−

1

2 + 2e−x
⊺

i
θ̂t

)

xj,i

> 0.

This occurs with a nonzero probability1, and it indicates that limθ1→+∞,...,θd→+∞ H(θ) = +∞ and thus Eq.(1)
does not have a solution. This is a contradiction, and therefore, the proof of Theorem 1 in [Li et al., 2017]
collapses.2

In [Zhang et al., 2022a, Xiong and Chen, 2022, Feng and Chen, 2023, Feng et al., 2023], X1, . . . , Xd, Y are
binary variables. In our counterexample, we let µ(x) = 1 − e−x, satisfying all assumptions in these papers.
When x1,i = x2,i = · · · = xd,i = 1 and yi = 1 for i = 1, 2, . . . , t, the jth element of the gradient of H(θ) satisfies:

∂H(θ)

∂θj
=

(

t
∑

i=1

(yi − µ(x⊺

i θ̂t))xi

)

j

=

t
∑

i=1

(yi − µ(x⊺

i θ̂t))xj,i

>

t
∑

i=1

e−x
⊺

i
θ̂t > 0.

This also occurs with a nonzero probability and it indicates that limθ1→+∞,...,θd→+∞ H(θ) = +∞ and thus
Eq.(1) does not have a solution. This is a contradiction, and therefore, the proofs of Theorem 3 in [Zhang et al.,
2022a] and Lemma 1 in [Feng and Chen, 2023] collapses. Furthermore, the regret analysis in [Zhang et al.,
2022a, Xiong and Chen, 2022, Feng and Chen, 2023, Feng et al., 2023] collapse.3

3 The Solution

In this section, we provide a feasible solution to promise the existence of θ̂t, which fixes the issues in the analysis
of the five previous papers we mentioned in Section 1. Before our solution, one should notice that the constraint
on µ in all five previous papers is Assumptions 1 and 2 in [Li et al., 2017].

Assumption 1 (Assumption 1 in [Li et al., 2017]). κ := infx∈[0,1]d,‖θ−θ∗‖≤1µ
′(x⊺

θ) > 0.4

1In [Li et al., 2017], the first τ rounds of Algorithm 1 are random.
2Even when θ is bounded, this is still a contradiction because the proof of Theorem 1 in [Li et al., 2017] uses ∇θH(θ) = 0.
3In [Xiong and Chen, 2022], only the regret analysis of Algorithm 1 uses the MLE method in Eq.(1) and collapses due to this

counterexample.
4Li et al. [2017] use a weaker version with ‖x‖ ≤ 1. The other four papers use the current stronger version.
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Assumption 2 (Assumption 2 in [Li et al., 2017]). Function µ is twice differentiable. Its first and second-order
derivatives are upper-bounded by Lµ and Mµ, respectively.

In summary, our solution is replacing function µ by another function h in the algorithm such that the
following conditions hold: limx→+∞ h(x) = +∞, limx→−∞ h(x) = −∞, h is monotone increasing and twice

differentiable, h satisfies Assumptions 1 and 2, and when x is in the range
[

−
∑d

i=1 ReLU(−θ∗i ),
∑d

i=1 ReLU(θ
∗
i )
]

5,

h(x) = µ(x).
We firstly prove that µ can be converted to a monotone increasing function g satisfying limx→+∞ g(x) = +∞.

If we already have limx→+∞ µ(x) = +∞, we can directly let g ≡ µ. Otherwise, µ has an upper bound. In
[Zhang et al., 2022a, Xiong and Chen, 2022, Feng and Chen, 2023, Feng et al., 2023], θ∗i ∈ [0, 1] so each θ∗i
is bounded. In [Li et al., 2017], since µ is upper-bounded, we know that limx→+∞ µ′(x) = 0. According to

Assumption 1, θ∗i ≤ max{x : µ′(x) = κ} − 1.6 Therefore,
∑d

i=1 ReLU(θ
∗
i ) is also upper-bounded in this case,

we denote the upper bound by U . We find a x∗ ≥ U + d such that µ′′(x∗) < 0. If x∗ does not exist, we know
that µ(x) ≥ µ(U + d) + µ′(U + d)(x− (U + d)) when x ≥ U + d, which is contradictory to µ is upper-bounded.
Hence, when µ is upper-bounded, we define the conversion as

g(x) =

{

µ(x) x ≤ x∗

µ(x∗) + µ′(x∗)2

µ′′(x∗) ln
(

− µ′(x∗)
µ′′(x∗)

)

− µ′(x∗)2

µ′′(x∗) ln
(

x− x∗ − µ′(x∗)
µ′′(x∗)

)

x > x∗
.

Lemma 1. By doing the conversion above, we can replace function µ by g such that limx→+∞ g(x) = +∞, g

is monotone increasing and twice differentiable, g satisfies Assumptions 1 and 2, and when x is in the range
[

−
∑d

i=1 ReLU(−θ∗i ),
∑d

i=1 ReLU(θ
∗
i )
]

, g(x) = µ(x).

Proof. When µ is not upper-bounded, we let g ≡ µ so the claim is proved. When µ is upper-bounded, during the

producing process of Y , the input of µ is X · θ∗, which is in the range
[

−
∑d

i=1 ReLU(−θ∗i ),
∑d

i=1 ReLU(θ
∗
i )
]

⊆

(−∞, U ]. Hence, when we replace µ with g, the joint conditional distribution of Y on X is not impacted.
Moreover, we can compute that

g′(x) =







µ′(x) x ≤ x∗

− µ′(x∗)2

µ′′(x∗)
(

x−x∗− µ′(x∗)

µ′′(x∗)

) x > x∗ ,

and

g′′(x) =







µ′′(x) x ≤ x∗

µ′(x∗)2

µ′′(x∗)
(

x−x∗− µ′(x∗)

µ′′(x∗)

)2 x > x∗ .

Therefore, we have limx→x∗+ g(x) = µ(x∗) and limx→x∗− g(x) = µ(x∗). Hence, g is continuous. Moreover,
limx→x∗+ g′(x) = µ′(x∗) = limx→x∗− g′(x) and limx→x∗+ g′′(x) = µ′′(x∗) = limx→x∗− g′′(x), so g(x) is twice
differentiable and g′′ is continuous.

Now we only need to verify Assumptions 1 and 2. Firstly, when x > x∗, we have g′(x) < g′(x∗) = µ′(x∗) ≤ Lµ

and g′′(x) < g′′(x∗) = µ′′(x∗) ≤ Mµ, so Assumption 2 holds. Secondly, maxx∈[0,1]d,‖θ−θ∗‖≤1 x · θ ≤ U + d ≤ x∗,
so the conversion does not impact the value of κ. The claim then follows.

We secondly prove that g can be converted to a monotone increasing function h satisfying limx→+∞ h(x) =
+∞ and simultaneously, limx→−∞ h(x) = −∞. If we already have limx→−∞ µ(x) = −∞, we can directly let
h ≡ g. Otherwise, µ has a lower bound. In [Zhang et al., 2022a, Xiong and Chen, 2022, Feng and Chen, 2023,
Feng et al., 2023], θ∗i ∈ [0, 1] so each θ∗i is bounded. In [Li et al., 2017], since µ is lower-bounded, we know that

limx→−∞ µ′(x) = 0. According to Assumption 1, θ∗i ≥ min{x : µ′(x) = κ}+1. 7 Therefore, −
∑d

i=1 ReLU(−θ∗i )
is also lower-bounded in this case, we denote the lower bound by L. We find a x∗∗ ≤ L−d such that µ′′(x∗∗) > 0.

5
ReLU(x) = max{0, x} and X

⊺
θ
∗ has to be in this interval.

6Otherwise, when xj = 0 if j 6= i, xi = 1 and θ∗
i

> max{x : µ′(x) = κ} − 1, θi = θ∗
i
+ 1 > max{x : µ′(x) = κ}, we have

x
⊺
θ > max{x : µ′(x) = κ} and thus µ′(x⊺

θ) < κ, which is a contradiction to Assumption 1.
7Otherwise, when xj = 0 if j 6= i, xi = 1 and θ∗

i
< min{x : µ′(x) = κ} + 1, θi = θ∗

i
− 1 < min{x : µ′(x) = κ}, we have

x⊺θ < min{x : µ′(x) = κ} and thus µ′(x⊺θ) < κ, which is a contradiction to Assumption 1.
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If x∗∗ does not exist, we know that µ(x) ≤ µ(L−d)+µ′(L−d)(x−(L−d)) when x ≤ L−d, which is contradictory
to µ is lower-bounded. Hence, when µ is lower-bounded, We define the conversion as

h(x) =

{

g(x) x ≥ x∗∗

g(x∗∗)− g′(x∗∗)2

g′′(x∗∗) ln
(

− g′(x∗∗)
g′′(x∗∗)

)

+ g′(x∗∗)2

g′′(x∗∗) ln
(

−x+ x∗∗ + g′(x∗∗)
g′′(x∗∗)

)

x < x∗∗ .

Lemma 2. By doing the conversion above, we can replace function µ by h such that limx→+∞ h(x) = +∞,

limx→−∞ h(x) = −∞, h is monotone increasing and twice differentiable, h satisfies Assumptions 1 and 2, and

when x is in the range
[

−
∑d

i=1 ReLU(−θ∗i ),
∑d

i=1 ReLU(θ
∗
i )
]

, h(x) = µ(x).

Proof. When µ is not lower-bounded, we let h ≡ g so the claim is proved by Lemma 1. When µ is lower-bounded,

during the producing process of Y , the input of µ isX·θ∗, which is in the range
[

−
∑d

i=1 ReLU(−θ∗i ),
∑d

i=1 ReLU(θ
∗
i )
]

⊆

[−L,+∞). Hence, combining Lemma 1, when we replace µ with h, the joint conditional distribution of Y on
X is not impacted.

Moreover, we can compute that

h′(x) =







g′(x) x ≥ x∗∗

g′(x∗∗)2

g′′(x∗∗)
(

−x+x∗∗+ g′(x∗∗)

g′′(x∗∗)

) x < x∗∗ ,

and

h′′(x) =







g′′(x) x ≥ x∗∗

g′(x∗∗)2

g′′(x∗∗)
(

x−x∗∗− g′(x∗∗)

g′′(x∗∗)

)2 x < x∗∗ .

Therefore, we have limx→x∗∗+ h(x) = g(x∗∗) and limx→x∗∗− h(x) = g(x∗∗). Hence, h is continuous. Moreover,
limx→x∗∗+ h′(x) = g′(x∗∗) = limx→x∗∗− h′(x) and limx→x∗∗+ h′′(x) = g′′(x∗∗) = limx→x∗∗− h′′(x), so h(x) is
twice differentiable and h′′ is continuous.

Now we only need to verify Assumptions 1 and 2. Firstly, when x < x∗∗, we have h′(x) < h′(x∗∗) = g′(x∗∗) ≤
Lµ and h′′(x) < h′′(x∗∗) = g′′(x∗∗) ≤ Mµ, so Assumption 2 holds. Secondly, minx∈[0,1]d,‖θ−θ∗‖≤1 x ·θ ≥ L−d ≥
x∗∗, so the conversion does not impact the value of κ. Until now, the claim has been proven.

Hence, we can replace µ by h in the MLE method in (1) without impacting the data distribution and our

requirements on µ. Finally, we prove that by using h in (1), the existence of θ̂t is promised. let

mh(x) =

{

∫ x

0
h(x′)dx′ x ≥ 0,

−
∫ 0

−x
h(x′)dx′ x < 0.

Lemma 3. When h is monotone increasing, limx→+∞ h(x) = +∞, and limx→−∞ h(x) = −∞, the maximum

of Hh(θ) =
∑t

i=1 (yix
⊺

i θ −mh(x
⊺

i θ)) exists.

Proof. We only need to prove that

Hh(θ) =

t
∑

i=1

(yix
⊺

i θ −mh(x
⊺

i θ))

is a concave function with respect to θ and lim(θ)j→∞ Hh(θ) = −∞ or ∂Hh(θ)
∂(θ)j

≡ 0 for all j ∈ [d], which implies

that H has a maximal point. Firstly, we know that

∂2mh(x)

∂x2
= h′(x) > 0,

so mh is a convex function. Therefore, for any vectors θ1, θ2 ∈ R
d and λ ∈ [0, 1], we have

mh (x
⊺

i (λθ1 + (1− λ)θ2)) = mh (λx
⊺

i θ1 + (1− λ)x⊺

i θ2))

≤ λmh(x
⊺

i θ1) + (1− λ)mh(x
⊺

i θ2),

4



so mh(x
⊺

i θ) is also a convex function with respect to θ and the Hessian matrix H[mh(x
⊺

i θ)] of mh(x
⊺

i θ) with
respect to θ should be positive semidefinite. Now we can compute the Hessian matrix H[Hh(θ)] as

H[Hh(θ)] =

t
∑

i=1

(−x
⊺

i xi ·H[mh(x
⊺

i θ)]) .

Hence, H[Hh(θ)] is negative semidefinite because multiplying a positive semidefinite matrix by a negative scalar
preserves the semidefiniteness. Thus H is a concave function with respect to θ.

Now for any j ∈ [d], we prove that lim(θX)j→+∞ Hh(θX) = −∞ and lim(θX)j→−∞ Hh(θX) = −∞ or
∂Hh(θ)
∂(θ)j

≡ 0. Firstly, we have

∂Hh(θ)

∂(θ)j
=

t
∑

i=1

(yi(xi)j − (xi)jm
′
h(x

⊺

i θ))

=
t
∑

i=1

(yi(xi)j − (xi)jh(x
⊺

i θ)) .

If (xi)j = 0 for all i ∈ [t], we have ∂Hh(θ)
∂(θ)j

≡ 0. Otherwise, we have

lim
(θX )j→+∞

∂Hh(θ)

∂(θ)j
= lim

(θX )j→+∞

t
∑

i=1

(yi(xi)j − (xi)jh(x
⊺

i θ))

= lim
(θX )j→+∞

t
∑

i=1

(xi)j (yi − h(x⊺

i θ))

= −∞, (lim(θX)j→+∞ h(x⊺

i θ) = +∞)

which indicates that lim(θX )j→+∞ Hh(θX) = −∞. Also, we have

lim
(θX )j→−∞

∂Hh(θ)

∂(θ)j
= lim

(θX )j→−∞

t
∑

i=1

(yi(xi)j − (xi)jh(x
⊺

i θ))

= lim
(θX )j→−∞

t
∑

i=1

(xi)j (yi − h(x⊺

i θ))

= +∞, (lim(θX)j→−∞ h(x⊺

i θ) = −∞)

which indicates that lim(θX )j→−∞ Hh(θX) = −∞.
Therefore, we have proved that Hh(θ) has at least one global maximum, which indicates that the equation

has at least one solution.

In conclusion, by combining Lemmas 1, 2, and 3, we arrive at the following main theorem:

Theorem 1 (Main Theorem). Consider a monotone-increasing and twice differentiable function µ that sat-

isfies Assumptions 1 and 2. By transforming µ into the function h as described above, we ensure that h

remains monotone-increasing and twice differentiable. Furthermore, h preserves the same mapping in the

range of input x
⊺
θ
∗ and conforms to Assumptions 1 and 2. Most importantly, the maximum of Hh(θ) =

∑t
i=1 (yix

⊺

i θ −mh(x
⊺

i θ)) exists.

Proof. According to Lemmas 1 and 2, it is established that h remains monotone-increasing and twice differen-
tiable. Additionally, these lemmas confirm that h preserves the same mapping in the range of input x⊺

θ
∗ and

conforms to Assumptions 1 and 2. Furthermore, Lemmas 1 and 2 demonstrate that limx→+∞ h(x) = +∞ and
limx→−∞ h(x) = −∞, satisfying the condition of Lemma 3. Therefore, we can conclude that the maximum of
Hh(θ) =

∑t
i=1 (yix

⊺

i θ −mh(x
⊺

i θ)) indeed exists.
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4 Conclusion

In this paper, we identify and address an issue present in a type of Maximum Likelihood Estimation (MLE)
method commonly employed in previous studies. Individuals intending to use similar methods in the future
should be cautious of the same or analogous issues. Furthermore, one might consider a more intuitive and
efficient solution to ensure the existence of θ̂t, rather than artificially constructing a new function.

6



References

S. Feng and W. Chen. Combinatorial causal bandits. In Proceedings of the AAAI Conference on Artificial

Intelligence, volume 37(6), pages 7550–7558, 2023.

S. Feng, N. Xiong, and W. Chen. Combinatorial causal bandits without graph skeleton. arXiv preprint

arXiv:2301.13392v3, 2023.

L. Li, Y. Lu, and D. Zhou. Provably optimal algorithms for generalized linear contextual bandits. In Interna-

tional Conference on Machine Learning, pages 2071–2080. PMLR, 2017.

N. Xiong and W. Chen. Combinatorial pure exploration of causal bandits. In The Eleventh International

Conference on Learning Representations, 2022.

Z. Zhang, W. Chen, X. Sun, and J. Zhang. Online influence maximization with node-level feedback using
standard offline oracles. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36(8),
pages 9153–9161, 2022a.

Z. Zhang, W. Chen, X. Sun, and J. Zhang. Online influence maximization under the independent cascade model
with node-level feedback, 2022b.

7


	Problem Description
	Counter-Examples
	The Solution
	Conclusion

