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Abstract— We present a computational method for open-loop
minimum-norm control synthesis for fixed-endpoint transfer of
bilinear ensemble systems that are indexed by two continuously
varying parameters. We suppose that one ensemble parameter
scales the homogeneous, linear part of the dynamics, and
the second parameter scales the effect of the applied control
inputs on the inhomogeneous, bilinear dynamics. This class of
dynamical systems is motivated by robust quantum control
pulse synthesis, where the ensemble parameters correspond
to uncertainty in the free Hamiltonian and inhomogeneity
in the control Hamiltonian, respectively. Our computational
method is based on polynomial approximation of the ensemble
state in parameter space and discretization of the evolution
equations in the time domain using a product of matrix
exponentials corresponding to zero-order hold controls over
the time intervals. The dynamics are successively linearized
about control and trajectory iterates to formulate a sequence
of quadratic programs for computing perturbations to the
control that successively improve the objective until the iteration
converges. We use a two-stage computation to first ensure
transfer to the desired terminal state, and then minimize the
norm of the control function. The method is demonstrated for
the canonical uniform transfer problem for the Bloch system
that appears in nuclear magnetic resonance, as well as the
matter-wave splitting problem for the Raman-Nath system that
appears in ultra-cold atom interferometry.

I. INTRODUCTION

The synthesis of open-loop optimal controls for bilinear
dynamical systems has been studied for decades [1]. The
bilinear dynamics in this setting are characterized by evolu-
tion equations that are linear ordinary differential equation
(ODE) systems where some coefficients can be chosen as
functions of time, and a minimum norm control input is
typically desired. The so-called bilinear-quadratic problems
that result have been addressed by iterative feedback control
synthesis methods [2], and the approach has been extended
to open loop controls for fixed-endpoint state transfers [3].
In practice, it is of interest to synthesize controls that are
robust or insensitive to uncertainty or variation in system pa-
rameters, and this leads to infinite-dimensional systems [4].
State feedback is impractical or unavailable in this setting,
and thus open-loop controls are sought. Control robustness is
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typically understood as a uniform state transfer effect on all
dynamical units in an ensemble or collection of structurally-
similar systems indexed by parameters varying on a compact
set [3], [5]. The desired control solution will steer the
entire ensemble from the initial state to within an allowable
distance of the desired target state. Rigorous definitions and
conditions under which ensemble controllability is assured
have been established for ensemble systems that have certain
bilinear structures [6], [5], [7], [8].

Interest in control synthesis methods for fixed-endpoint
transfers of bilinear ensembles has been driven over the
past decades by problems related to quantum control ap-
plications [9]. Several approaches to solve the associated
optimal control problem (OCP) employ fixed-point iteration
directly either using linearization and approximation by
Freholm operators [10] or by solving the quadratic-bilinear
Riccati problem [3]. A variety of methods have been pro-
posed to approximate infinite-dimensional ensembles using
finite-dimensional representations, which typically involves
spectral approximation [11]. A promising recent concept
involves so-called polynomial moments [12], in which the
system dynamics are represented in ensemble space over
a basis of orthogonal functions. Moment dynamical system
representations were recently used for control synthesis in
bilinear systems that appear in quantum applications [13].

There are significant trade-offs between accurate represen-
tation of system dynamics and scale of the computational
representation when synthesizing optimal controls using
polynomial moment dynamics. Depending on the truncation
of the polynomial order, error tolerances, and time horizon,
the resulting nonlinear program that discretizes the OCP can
require complicated representations and very large numbers
of optimization variables [14]. A promising recent approach
to optimal control syntheses for nonlinear systems subject to
constraints is to apply iterative quadratic programming to a
sequence of linear approximations to the dynamics that are
locally updated at each iteration [15].

In this study, we develop a computational method
for open-loop minimum-norm control synthesis for fixed-
endpoint transfer of a class of bilinear ensemble systems
that are indexed by two continuously varying parameters,
subject to constraints on the controls. We suppose that one
ensemble parameter scales the homogeneous, linear part of
the dynamics, and the second parameter scales the effect of
the applied control inputs on the inhomogeneous, bilinear
dynamics. The class of systems with this structure can be
applied to model a broad range of phenomena in the control
of quantum and robotic systems [16], [17]. We examine
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in particular aspects of the linearization and discretization
that promote computational scalability of the numerical
algorithm. We show that the order in which linearization
and discretization are applied to the bilinear system can
result in different approximations of the ensemble trajectory,
so these operations are not in general commutative. These
results are in agreement with prior studies on dynamical
systems [18], [19], which show that such commutation and
approximation quality depend on the structure of the system
and the discretization method. In addition to characterizing
the discretization that leads to the best approximation, we
also prove that linearization and discretization operations
commute in the limit of numerical endpoint quadrature.
Finally, we demonstrate the generality of the method through
computational experiments that involve two bilinear systems
that arise in quantum control.

The rest of this paper is organized as follows. Mini-
mal energy control of a collection of bilinear dynamical
systems is formulated in Section II, and the reduction to
a finite-dimensional system using the method of moments
is presented there as well. Section III provides details of
linearization and discretization of the reduced dynamical
system. Section IV presents the iterative quadratic program
used to compute the minimal energy control action. Results
of the control design are demonstrated in Section V for
numerical applications in nuclear magnetic resonance and
ultra-cold atom interferometry. Concluding remarks and an
outlook for further development of the control algorithm are
presented in Section VI.

II. ROBUST OPTIMAL STATE TRANSFER FOR A
CONTINUUM OF BILINEAR SYSTEMS

We formulate an optimal control problem (OCP) for a
class of bilinear systems with dynamics that are affected by
two parameters that vary over compact intervals.

A. Bilinear Ensemble System

We consider an uncountable collection of structurally-
identical bilinear dynamical systems of the form

Ẋ(t;α, β) = αAX(t;α, β) + β

m∑
i=1

Ui(t)BiX(t;α, β), (1)

where Ui(t) ∈ [Umin, Umax] (i = 1, . . . ,m) represent control
input functions and X(t;α, β) ∈ Rn represents the state
of the ensemble of bilinear systems indexed by parameters
α ∈ [αmin, αmax] and β ∈ [βmin, βmax] that affect the
evolution of individual dynamical units in the ensemble. The
constant matrix A ∈ Rn×n characterizes the homogeneous
part of the state dynamics, and each Bi ∈ Rn×n characterizes
the influence of input Ui on the state evolution for each
i = 1, . . . ,m. We will refer to the parameterized collection
of bilinear systems and the associated collection of indexed
states as the ensemble system and the ensemble state, re-
spectively. For each fixed pair of parameters α and β, the
above equation describes the time-evolution of the associated
state X(t;α, β) as it progresses under the influence of
the control action Ui(t) (i = 1, . . . ,m). The parameters

α and β are used to represent intrinsic system modeling
uncertainty and inhomogeneity in applied control actuations,
respectively. This class of bilinear ensemble systems can be
used to broadly represent a variety of quantum dynamical
phenomena and associated control systems [16].

B. Optimal Control Problem

Given a specified finite time T , we seek a single open-loop
control solution of minimal energy that steers the ensemble
state from uniform initial state X0 ∈ Rn to uniform target
terminal state XT ∈ Rn during the time interval [0, T ]. These
endpoint conditions take the form

X(0;α, β)=X0, ∀α∈ [αmin, αmax], ∀β∈ [βmin, βmax], (2a)
X(T ;α, β)=XT , ∀α∈ [αmin, αmax], ∀β∈ [βmin, βmax]. (2b)

Although the target state is assumed to be independent of the
parameters α and β, the setting may be extended to selective
excitations in which distinct target states could be associated
to disjoint subsets of the parameter space [20], i.e. XT could
depend on α and β [13]. We further suppose that control
inputs are constrained by application requirements for all
i = 1, . . . ,m according to the inequalities

Umin ≤ Ui(t) ≤ Umax, ∀t ∈ [0, T ], (3a)

∆Umin ≤ U̇i(t) ≤ ∆Umax, ∀t ∈ [0, T ], (3b)

where the amplitude constraint bound values Umin and Umax

and the derivative limits ∆Umin and ∆Umax are problem
parameters. The objective function for the variational min-
imization is the energy of the applied control, which is
expressed as

min
{Ui(t)}m

i=1

m∑
i=1

∫ T

0

∥Ui(t)∥2dt. (4)

The notation ∥x∥2 = x′x indicates the squared Euclidean
norm of a vector x, where x′ denotes the transpose of x.
The objective in equation (4) is minimized subject to the
dynamic constraints (1), the initial and terminal conditions
in equations (2), and the control amplitude and derivative
constraints in equations (3). In our computational imple-
mentation, we explicitly enforce the initial state condition
X(0;α, β) = X0 as defined in equation (2a), and relax the
terminal state condition (2b) to the inequality

∥X(T ;α, β)−XT ∥ ≤ ϵ, (5)

where ϵ is a positive error tolerance.

C. Spectral Approximation in Parameter Space by Polyno-
mial Moments

We develop a numerical approximation method to rep-
resent the uncountable parameter space using a finite-
dimensional polynomial moment expansion. Rather than
direct sampling of the parameter space, we consider a super-
position of the ensemble state onto orthogonal basis functions
over the parameter domain [αmin, αmax]× [βmin, βmax], and
then truncate the series to obtain a finite approximation.
We employ Legendre polynomials as the orthogonal basis,



following a foundational study on ensemble dynamics [21].
First, we transform the two parameter intervals [αmin, αmax]
and [βmin, βmax] to the interval [−1, 1] on which Legendre
polynomials are defined. The transformations are defined as

α(a) = αa+ α, β(b) = βb+ β, (6)

in which we use the notation γ = (γmax + γmin)/2 and γ =
(γmax−γmin)/2 where γ represents one of α or β. Observe
that α(−1) = αmin, α(1) = αmax, β(−1) = βmin, and
β(1) = βmax. Define the normalized Legendre polynomial
of degree k as a function of the variable γ ∈ [−1, 1] by

Lk(γ) =

√
2k + 1√
22kk!

dk

dγk
(γ2 − 1)k. (7)

The functions in equation (7) satisfy the recurrence relation

γLk(γ) = ck−1Lk−1(γ) + ckLk+1(γ), (8)

where ck = (k + 1)/
√

(2k + 3)(2k + 1). We assume that
X(t, α(a), β(b)) is square-integrable over a, b ∈ [−1, 1] for
all t ∈ [0, T ], and that Ẋ(t, α(a), β(b)) is continuous for
t ∈ [0, T ] and a, b ∈ [−1, 1]. Using the completeness and
orthonormality of the normalized Legendre polynomials on
the interval [−1, 1], we expand the ensemble state as

X(t;α(b), β(b)) =

∞∑
p,q=0

xp,q(t)Lp(a)Lq(b), (9)

where the expansion coefficients are

xp,q(t) =

∫ 1

−1

∫ 1

−1

X(t;α(a), β(b))Lp(a)Lq(b)dadb. (10)

By truncating the series, we obtain a numerically tractable
approximation given by

X(t;α(b), β(b)) ≈
N∑

p,q=0

xp,q(t)Lp(a)Lq(b), (11)

where N denotes the maximum degree of the Legendre
polynomials in the truncated expansion. By the dominated
convergence theorem and the recurrence relation (8), the dy-
namics of the coefficients are shown to satisfy the differential
equation system

ẋp,q(t)=A (cp−1αxp−1,q(t) + αxp,q(t) + cpαxp+1,q(t))

+

m∑
i=1

Ui(t)Bi

(
cq−1βxp,q−1(t) + βxp,q(t)

+cqβxp,q+1(t)
)
, ∀p, q. (12)

All terms of the form xp,N+1 and xN+1,q for p = 0, . . . , N
and q = 0, . . . , N are removed from the expressions in equa-
tion (12). The initial and desired target states of the ensemble
correspond uniquely to initial and target states of the expan-
sion coefficients. In particular, x0,0(0) = 2X0 and x0,0(T ) =
2XT , whereas xp,q(0) and xp,q(T ) are n-dimensional zero
vectors for all p, q ̸= 0 because of the orthogonality of the
Legendre polynomials and the independence of the initial
and target states from the ensemble parameters. The above
procedure reduces an uncountable collection (1) of bilinear

systems to an approximate finite-dimensional system (12) of
representative coefficients. We can concatenate the dynamics
of the ensemble state as represented by the coefficients by
defining x = [x′

0,0, . . . , x
′
0,N , . . . , x′

N,0, . . . , x
′
N,N ]′ and the

(N + 1)× (N + 1) tri-diagonal symmetric matrices

Cγ =



γ c0γ
c0γ γ c1γ

c1γ γ
. . .

γ cN−1γ
cN−1γ γ


for γ = α, β. We also define the n(N + 1)2-dimensional
vectors x0 = [2X ′

0, 0, . . . , 0]
′ and xT = [2X ′

T , 0, . . . , 0]
′

to represent the initial and target states in the truncated
polynomial coefficient space. With these definitions, the
dynamics in terms of the coefficients as stated in equation
(12) may be written as

ẋ(t) = Ax(t) +

m∑
i=1

Ui(t)Bix(t), (13)

where the n(N + 1)2 × n(N + 1)2 matrices are defined by

A = Ca ⊗ IN+1 ⊗A, Bi = IN+1 ⊗ Cb ⊗ Bi. (14)

Here, IN+1 represents the (N+1)× (N+1) identity matrix
and C ⊗ D represents the Kronecker product of matrices
C and D. Our subsequent exposition is done for the finite-
dimensional system in equations (13)-(14). The initial and
desired target states of this finite-dimensional system are
equal to x0 and xT , respectively, as defined above.

III. LINEARIZATION AND TIME-DISCRETIZATION

The iterative optimization algorithm that we develop to
solve the OCP defined in Section II-B requires linearization
of the bilinear system dynamic constraints (1) and a discrete-
time representation. In this section, we detail the linearization
and discretization of the bilinear system in equations (13)-
(14). The effect of the order in which linearization and
discretization are applied to a dynamical system has been
investigated and is generally found to be dependent on the
system structure and the discretization method [18], [19].
One of the results presented in this section verifies that
the order in which linearization and exact discretization are
performed gives rise to different expressions for the discrete-
time linear approximation of the state trajectory. Therefore,
these operations do not commute, in general, when applied to
a bilinear system of form (1). However, we prove that these
operations commute in an approximate sense and converge
with finer discretization. For both orderings, we consider a
zero-order hold framework in which control variables are
piece-wise constant over each specified time interval.

A. Discretization followed by Linearization

The time interval [0, T ] is discretized into K sample times
t1 = 0, . . . , tK = T . Under the assumption of zero-order
hold, the bilinear system in equation (13) is equivalent to a



linear time-invariant system over each sub-interval [tk, tk+1].
Thus the transition from X(tk) to X(tk+1) is given by the
matrix exponential expression

x(tk+1) = e∆tk(A+
∑m

i=1 Ui(tk)Bi)x(tk), (15)

where ∆tk = tk+1 − tk.
Suppose that {U i(tk)} for k = 1, . . . ,K and i =

1, . . . ,m denotes nominal piece-wise constant controls used
to advance a nominal state trajectory {x(tk)} according to
equation (15). The nominal state is defined to satisfy the
initial condition x(0) = x0. Consider slightly perturbed
piece-wise constant control inputs δui(tk) and the associ-
ated perturbed state δx(tk) of the bilinear system, so that
Ui(tk) = U i(tk) + δui(tk) and x(tk) = x(tk) + δx(tk). By
regulating the norm of the perturbed control vector to be
sufficiently small, as defined subsequently, we may consider
the linear system approximation about the nominal control
and state variables.

We proceed to linearize the discrete transition in equation
(15). The matrix exponential associated with the updated
control input is written explicitly as

∞∑
j=0

∆tjk
j!

(
A+

m∑
i=1

(U i(tk) + δui(tk))Bi

)j

. (16)

Linearizing the above representation about δui(tk) = 0, over
all i = 1, . . . ,m, gives the expression

∞∑
j=1

∆tjk
(j − 1)!

(
A+

m∑
i=1

U i(tk)Bi

)j−1

·

(
m∑
i=1

δui(tk)Bi

)

=∆tkexp

(
∆tkA+∆tk

m∑
i=1

Ui(tk)Bi

)
·
m∑
i=1

δui(tk)Bi. (17)

By linearizing equation (15), we obtain the approximate
dynamics of the perturbation given by

δx(tk+1) = A(tk)δx(tk) +B(tk)δu(tk), (18)

where δu(tk) = [δu1(tk), . . . , δum(tk)]
′ and

A(tk)=exp

(
∆tkA+∆tk

m∑
i=1

U i(tk)Bi

)
, (19)

B(tk)=∆tkA(tk)[B1x(tk), . . . , Bmx(tk)]. (20)

B. Linearization followed by Discretization

Let us reconsider the continuous-time bilinear system in
equation (13). Linearizing in continuous-time about U(t) and
x(t) results in

∆ẋ(t) = A(t)∆x(t) +B(t)δu(t), (21)

with the time-varying state and control matrices defined by

A(t) = A+

m∑
i=1

U i(t)Bi, (22a)

B(t) = [B1x(t), . . . , Bmx(t)]. (22b)

As before, the nominal state satisfies the initial condition
x(0) = x0. Under the assumption of zero-order hold, the

above state matrix A(t) is time-invariant for t ∈ [tk, tk+1].
The transition from ∆xk to ∆xk+1 is therefore given by

∆xk+1 = Ak∆xk +

∫ tk+1

tk

e(tk+1−τ)AkB(τ)dτδuk, (23)

in which we denote the evaluation of a variable at time t = tk
with a subscript of index k for simplicity of exposition. For
example, ∆xk = ∆x(tk) and Ak = A(tk).

Equations (18) and (23) indicate that linearization and
discretization of the bilinear system are not commutative
operations, in general, even though both of the discrete
transitions are computed exactly with closed form matrix
exponential expressions. We note that other methods of
discretization may in fact commute with linearization. For
example, regardless of whether or not the controls are
piecewise constant, the Euler discretization and linearization
are commutative operations on the bilinear system. We have
the following result.

Proposition 1: Suppose that the integration in equation
(23) is evaluated using the left-endpoint quadrature method.
Then δxk in equation (18) is equal to ∆xk in equation (23)
for all k = 1, . . . ,K.

Proof: Applying the left-endpoint method to the inte-
gration in equation (23) results in∫ tk+1

tk

e(tk+1−τ)AkB(τ)dτ ≈ ∆tke
∆tkAkB(tk). (24)

The expression on the right-hand side of equation (24) is
the definition of Bk in equation (20). Therefore, from the
hypothesis of the proposition, the state and control matrices
in equations (18) and (23) are equivalent. Because δuk is the
same control action used in both equations (18) and (23), we
have

δxk+1 −∆xk+1 = Ak(δxk −∆xk) (25)

for all k = 1, . . . ,K − 1. The initial condition of the
nominal state vector translates to the initial conditions δx1 =
∆x1 = 0. From equation (25), we have δx2 −∆x2 = 0 or
δx2 = ∆x2. It follows by induction that δxk = ∆xk for
k = 1, . . . ,K.

Because the error resulting from left-endpoint integration
is well-known to be bounded in proportion to ∆t2k [22], the
above result suggests that either of the two expressions in
equations (18) or (23) may be approximated with the other
if ∆tk and T are sufficiently small. Moreover, although
equation (23) reduces to equation (18) when approximate
integration is performed, this does not necessarily imply that
equation (23) is more accurate than equation (18). We arrive
at this conclusion with Taylor’s multivariate theorem [23].
In particular, the exact transition xk provided by equation
(15) and the approximate transition xk + δxk in equation
(18) agree up to and including first order terms in both the
state and control perturbation variables. This is generally not
true for the transition xk +∆xk provided by equation (23).
During preliminary computations of solutions to the OCP for
the examples described in Section V, we observed numerical
inaccuracies caused by linearizing before discretizing. We



note here without proof that the error tolerance ϵ is generally
able to be orders of magnitude smaller when discretizing
before linearizing compared with the reverse order of these
operations. Because of the limited accuracy of the latter
method, we use the discrete linear system in equation (18).

IV. ITERATIVE QUADRATIC PROGRAM

We describe here an algorithm for solving the OCP
formulated in Section II using a two-stage iterative quadratic
programming approach. We outline the algorithms here and
refer the interested reader to a recent study for details on
the convergence of iterative quadratic programs for nonlinear
dynamic systems [24]. The first algorithm determines a
control action that steers the ensemble from the uniform
initial state to within a specified error of the target state,
as specified by (5). The second algorithm is then applied
to gradually adjust the steering control action to minimize
the control energy objective in equation (4) while fixing the
initial and terminal states achieved in the first stage.

The number of equality constraints in equation (18), for
k = 1, . . . ,K, is equal to n(N + 1)2K, which ranges
between hundreds of thousands to tens of millions for the
examples we consider in Section V. This could be prob-
lematic even for efficient quadratic programming algorithms.
Fortunately, the problem can be simplified by recursively
evolving the dynamics according to

δx2 =A1δx1 +B1δu1,

δx3 =A2A1δx1 +A2B1δu1 +B2δu2,
... (26)

δxK=

K−1∏
k=1

Akδx1 +

K−1∑
k=1

 K−1∏
j=k+1

Aj

Bkδuk,

where we define
∏K−1

j=K Aj = In(N+1)2 . The zero-input re-
sponse term

∏j
k=1 Akδx1 vanishes from the above sequence

of equations because δx1 = 0. Because we are concerned
with steering the terminal state of the system, the only
equation from the above sequence that needs consideration
is the one that defines δxK in terms of the control variables.
We define the n(N + 1)2 ×m(K − 1) evolution matrix

H = [AK−1 · · ·A2B1, . . . ,AK−1BK−2, BK−1] , (27)

so that δxK = Hδu, where δu = [δu′
1, . . . , δu

′
K−1]

′. We are
now in position to present the control algorithms.

Consider a nominal control vector U = [U
′
1, . . . , U

′
K−1]

′

and the evolution of the associated state of the bilinear
system x = [x′

1, . . . , x
′
K ]′ in equation (15). These vectors

are used to define or update the matrices in equations (19)-
(20) and (27). The control perturbation vector δu that will
move xK closer to xT must be constrained according to

Umin ≤ Uk + δuk ≤ Umax, ∀k = 1, . . . ,K, (28a)

∆Umin ≤ Uk+1 + δuk+1 − Uk − δuk

∆tk
≤ ∆Umax,

∀k = 1, . . . ,K − 1, (28b)

following the OCP constraints (3), and is determined by
solving the quadratic program defined by

minδu ∥Hδu+ xK − xT ∥2 + λ∥Dδu∥2,
s.t. Inequality constraints in Eqns. (28), (29)

where D = diag(∆t1, . . . ,∆tK−1)⊗Im and λ is a regulation
parameter that is adjusted between iterations. The penalty
term weighted by λ in the objective function serves to
regulate the norm of the perturbed control vector to render
linearization applicable. The solution δu is used to update
the control action U := U + δu, with which the associated
evolution of the bilinear state x is simulated according to
equation (15). The procedure is repeated until ∥xK−xT ∥ ≤ ϵ
or until ∥Dδu∥ ≤ δ, where δ is a positive threshold. When
either of these metrics are achieved, the updated vectors U
and x are stored and the steering algorithm is terminated. The
nominal control input that initializes the steering algorithm
can be specified arbitrarily. Moreover, the regularization
parameter is adjusted between iterations according to λ =
λ0∥xK − xT ∥, where λ0 is a positive constant.

The minimal energy control action is computed as follows.
First, the vectors U and x with which the first stage termi-
nated and the associated matrix H are used to initialize the
control energy minimization algorithm. These are passed to
the quadratic program defined by

minδu ∥D
(
U + δu

)
∥2 + µ∥Dδu∥2,

s.t. Hδu = xT − xK ,
Inequality constraints in Eqns. (28),

(30)

where µ serves the same purpose as λ. We initialize the
algorithm with µ = µ0, where µ0 is constant. Then µ is
updated between iterations according to µ = 0.9 · µ0 if
∥Dδu∥ ≤ 10·δ. The solution δu is used to define the updated
control action U := U + δu, from which the updated state x
is simulated according to equation (15). If ∥Dδu∥ ≤ δ, then
the iterative algorithm is terminated. Otherwise, the matrix
H in equation (27) is updated using the vectors U and x,
and the process is repeated.

V. COMPUTATIONAL STUDIES

The performance of the iterative quadratic programming
algorithm presented in Section IV to solve the OCP described
in Section II-B will be demonstrated for two examples that
arise in quantum control applications. The computations are
performed in Matlab R2023a on a MacBook Pro with 32
GB of usable memory and an Apple M2 Max processing
chip. The quadratic program at each stage of the iteration
is implemented with the general-purpose Matlab function
quadprog using the sparse-linear-convex algorithm and
sparse linear algebra operations. The CPU user load ranges
between 12% and 60% of the maximum capability of the
computer and the used memory is less than 3.5 GB.

A. Nuclear Magnetic Resonance Spectroscopy

Imaging modalities that take advantage of nuclear mag-
netic resonance (NMR) apply a strong constant magnetic
field to a sample of nuclei and then apply radio-frequency



Fig. 1. State transfer for the Bloch system with two different values of the maximum degree N of the Legendre polynomials in equation (11). The control
and state variables are shown for (a) N = 0 and (b) N = 8. (c) Error resulting over the parameter regions for N = 0 (top) and N = 8 (bottom).

(RF) fields in the transverse plane to manipulate the nuclear
spins of the sample. The spin dynamics are modeled using
the Bloch equations [20], [25], [6]. The system of Bloch
equations in a rotating reference frame without relaxation
[26], [6] may be written as

Ẋ =

 0 −α βU1

α 0 −βU2

−βU1 βU2 0

X, (31)

where X(t;α, β) represents the bulk magnetization of the
nuclei, and U1(t) and U2(t) represent the applied field.
Variations in system parameters appear as dispersion in
the intrinsic frequencies of the nuclei and the strength of
the applied field [27]. Here, the ensemble is defined by
the continuum of parameter values α ∈ [−1, 1] and β ∈
[0.9, 1.1], which respectively represent variations in Larmor
frequency and the amplitude of the applied field. We seek
controls U1(t) and U2(t) of minimal energy that steer the
ensemble state from the zero-input equilibrium state X0 =
[0, 0, 1]′ to the excited state XT = [1, 0, 0]′. This example
has received significant attention [9], [10], [13]. The example
presented here demonstrates that the performance of our
control approach is comparable to earlier contributions.

As previously shown [9], [13], the required degree N of
the truncated Legendre polynomial expansion generally in-
creases as the specified terminal error tolerance ϵ in equation
(5) is decreased. We analyze the effect of the performance for
two different values of N . For the case N = 0, the bilinear
system of coefficients in equation (13) reduces to

ẋ(t) = αAx(t) + β

m∑
i=1

Ui(t)Bix(t), (32)

with initial and terminal conditions x(0) = 2X0 and ∥x(T )−
2XT ∥ ≤ ϵ. This system is equivalent to an individual system
from the ensemble in equation (1) when sampled at the mean
values α = α and β = β. In this case, the aim of the control
design is to find a minimal energy control action that steers
only the nominal ensemble system. Therefore, one should
expect the performance of this specific control action to be
poor for parameter values far from the nominal values.

Figure 1 illustrates the control actions, state vectors, and
error contour plots over the region of parameters for both
N = 0 and N = 8. In addition to the parameters above,
we use T = 1 s, K = 500, Umin = −30, Umax = 30,
λ0 = 0.1, µ0 = 20, ϵ = 0.001, and δ = 0.001. The algorithm
is initialized with the nominal control action U i(t) = 0.
We first discuss results with N = 0. The total number of
equations in (18) is n(N + 1)2K = 1500 and the size of
H in equation (27) is n(N + 1)2 × m(K − 1) = 3 × 998.
The algorithm converges to a minimum energy control after
five iterations in less than five seconds. For N = 8, the total
number of equations in (18) is 121500 and the size of H in
equation (27) is 243×998. The algorithm converges after 643
iterations and the elapsed time is about 14 minutes. It is clear
from Figure 1 that the control corresponding to N = 0 results
in poor performance compared to the control corresponding
to N = 8. In particular, the error contour plot shows that the
error for N = 0 is generally two orders of magnitude larger
than the error for N = 8. This verifies that a minimum
energy control action computed with an individual sample
of the bilinear ensemble system is generally not robust to
parameter variation, and the polynomial moment approach
successfully compensates for such variation.

B. Ultra-Cold Atom Interferometry

We consider a quantum control setting related to a pro-
posed technique for interferometry, in which a dilute Bose-
Einstein condensate (BEC) composed of atoms that are
initially at rest is manipulated to elicit a diffraction pattern.
The relevant dynamics for the initial matter-wave splitting
are modeled using the Raman-Nath equations [28]. Standing-
wave optical pulses modulated by square-shaped [29], Guas-
sian [30], and other transcendental envelopes [31] were
designed to split the stationary condensate into a definite
state of high-order momentum or a superposition of such
states. Recently, optimal control was applied to a bilinear
ensemble that approximates the Raman-Nath equations with
uncertainty in the intensity of the applied optical pulse [14].
There, the authors numerically demonstrate the ability to
split the BEC into a high-order momentum state with a high



Fig. 2. Control and state variables for splitting a BEC into (a) the ±2ℏk momentum level and (b) the ±4ℏk level. (c) Error resulting over the parameter
regions for ±2ℏk (top) and ±4ℏk (bottom).

degree of fidelity. In the current example, we extend the
recent results to incorporate uncertainty in both light intensity
and photon recoil energy [32].

The dynamics of the BEC may be described by a single
wave function because the particles are indistinguishable and
collectively occupy the same energy state. The wave function
Ψ(t, x) is governed by the one-dimensional Schrödinger
equation [28], [31], [14],

i
∂Ψ

∂t
= − ℏ

2m

∂2Ψ

∂x2
+ U(t) cos2(2k0x)Ψ, (33)

where U(t) is the amplitude of the light shift potential and k0
is the vacuum wave number of the photons. In this example,
we adhere to convention and use the symbols i, m, and x
to denote the imaginary unit, the mass of the BEC, and
the independent spatial variable, respectively. As in prior
studies [28], [31], we make the following assumptions and
expand Ψ into a superposition of the zero momentum state
with coefficient C0(t, k) and high-order symmetric and anti-
symmetric momentum states with coefficients C+

2n′(t, k) and
C−

2n′(t, k), where k represents the wave number distribution
of the manipulated atom. First, the wave function is initially
in the zero momentum state. Second, there exists a positive
integer N ′ such that U(t)/2 ≪ (2N ′)2ωr for all t ∈ [0, T ],
where ωr = ℏk20/(2m) is the photon recoil energy. Third,
the duration T of the optical pulse is sufficiently short so that
k ≪ k0 and the Raman-Nath approximation can be applied
[32]. Then, as described in recent studies [14], [31], the
dynamics of diffraction may be approximated by the reduced
vector X = [C0, C

+
2 , . . . , C+

2N ′ ]′ governed by

Ẋ = −i (αA0 + U(t)βB0)X , (34)

where the (N ′+1)× (N ′+1) matrices are defined by A0 =
ωrdiag(0, 4, . . . , (2N ′)2) and

B0 =
1

2


0

√
2√

2 0 1

1
. . . 1
1 0

 . (35)

We have integrated the parameters α ∈ [0.99, 1.01] and

β ∈ [0.95, 1.05] into the model to account for uncertainty
in photon recoil energy and optical intensity, respectively.
Finally, we expand the complex-valued state vector into its
real and imaginary components and substitute the expression
X = Re(X ) + iIm(X ) into equation (34). By equating real
and imaginary parts and defining X = [Re(X )′, Im(X )′]′,
the equivalent real-valued bilinear ensemble system is

Ẋ(t) = α

[
0 A0

−A0 0

]
X(t) + U(t)β

[
0 B0

−B0 0

]
X(t).

The initial and desired target states are defined by X0 =
[1, 0, . . . , 0]′ and XT = [0, . . . , 0, 1, 0, . . . , 0]′, where the
only nonzero component of the target state appears in the
(n′ +1)-th entry. Here, n′ is an integer representative of the
target momentum state ±2n′ℏk.

Figure 2 shows the control actions, state vectors, and error
contour plots over the region of parameters for both n′ = 1
and n′ = 2. The BEC system is truncated at N ′ = 4, so
that the dimension of the ensemble state vector X(t, α, β)
is n = 10. The other parameters used for the computation
are N = 10, T = 5 s, K = 1000, Umin = 0, Umax = 30,
λ0 = 10, µ0 = 50, ϵ = 0.001, and δ = 0.008. The algorithm
is initialized with the nominal control action U(t) = 1. For
both splitting examples, the total number of equations in (18)
is n(N + 1)2K = 1210000 and the size of H in equation
(27) is n(N+1)2×m(K−1) = 1210×999. For n′ = 1, the
algorithm converges to a minimal energy control after 177
iterations in 45 minutes. For n′ = 2, the algorithm converges
after 223 iterations within 75 minutes. Figure 2 demonstrates
that the control action is robust over the region of parameter
values, but the fidelity is limited to two decimal digits. For
the Bloch system example, N = 8 polynomials is sufficient
to achieve three decimal digit fidelity over the parameter
space. We see that N = 10 is generally insufficient for the
BEC splitting system to achieve comparable performance. In
order to improve fidelity, it may be necessary to double or
even triple the values of N and K. If these two parameters
double in value, then the number of constraints in equation
(18) exceed eight million. If these values are tripled, then the
number of constraints in equation (18) exceed 28 million.



VI. CONCLUSION

We have designed a computational method for open-
loop minimum-norm control synthesis for fixed-endpoint
transfer of bilinear ensemble systems that are indexed by
two continuously varying parameters. The ensemble state is
approximated using a truncated basis of Legendre polynomi-
als. The dynamics are linearized at each stage of the iteration
about control and state trajectories to formulate a sequence
of quadratic programs for computing perturbations to the
control that successively improve the objective until conver-
gence. We show that the approximation quality depends on
the order in which linearization and exact discretization are
performed. In particular, we prove that the two orders of
operations result in different systems that are approximately
equivalent in the sense of numerical quadrature.

The developed two-stage interative quadratic programming
algorithm for solving the formulated class of optimal control
problems is demonstrated for the Bloch system that appears
in nuclear magnetic resonance, as well as the Raman-Nath
equations that appear in the matter-wave splitting step of
ultra-cold atom interferometry. For the Bloch system, our
algorithm robustly achieves uniform state transfer with a
precision of up to three decimal places. The larger and
more complex Raman-Nath system requires significantly
larger values for the number of polynomials in the truncated
approximation and the number of time steps in the numerical
discretization scheme. As mentioned above, pulse design
for the Raman-Nath system can result in over 20 million
constraints for the discrete-time linear system at each state
of the iteration. Although the computation of trajectories
and linear system approximations are performed without
symbolic algebra, the matrices and time evolution are cur-
rently updated with a for-loop at each stage of the iteration.
This is generally not scalable in Matlab to systems with
tens of millions of constraints. Future work can extend the
iterative quadratic programming approach presented here to
more computationally expedient and tractable formulations
that involve purely matrix-vector operations, and may benefit
from the use of high performance computing.
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