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Abstract. In digital pathology, the multiple instance learning (MIL)
strategy is widely used in the weakly supervised histopathology whole
slide image (WSI) classification task where giga-pixel WSIs are only
labeled at the slide level. However, existing attention-based MIL ap-
proaches often overlook contextual information and intrinsic spatial rela-
tionships between neighboring tissue tiles, while graph-based MIL frame-
works have limited power to recognize the long-range dependencies. In
this paper, we introduce the integrative graph-transformer framework
that simultaneously captures the context-aware relational features and
global WSI representations through a novel Graph Transformer Inte-
gration (GTI) block. Specifically, each GTI block consists of a Graph
Convolutional Network (GCN) layer modeling neighboring relations at
the local instance level and an efficient global attention model capturing
comprehensive global information from extensive feature embeddings.
Extensive experiments on three publicly available WSI datasets: TCGA-
NSCLC, TCGA-RCC and BRIGHT, demonstrate the superiority of our
approach over current state-of-the-art MIL methods, achieving an im-
provement of 1.0% to 2.6% in accuracy and 0.7%-1.6% in AUROC.

Keywords: Whole slide image classification · Multiple instance learn-
ing· Graph Transformer

1 Introduction

With the significant advance in high-throughput whole slide tissue scanning tech-
nology, digital pathology leverages high-quality whole slide images (WSIs) and
is an actively developing component in pathology study [24]. As WSIs are often
giga-pixels by scale and lack of pixel-level annotations, an efficient and effective
way to analyze such high-resolution WSIs becomes critical to facilitate cancer di-
agnosis and prognosis. Due to the remarkable performance, deep-learning based
multiple instance learning (MIL) is often employed in such weakly-supervised
scenarios where only slide-level labels are available [12,14,15,30]. By the MIL
scheme, each image patch or instance is first encoded as a feature embedding
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using a pretrained feature extractor [15]. These embeddings are next passed to
an aggregator module that compiles embeddings into a comprehensive bag-level
representation before the classification [27].

Multiple digital pathology studies in the MIL framework adopt attention
mechanisms and achieve promising results with the global WSI representations [13,21].
However, these methods assume that all instances are independent and thus ig-
nores the critical correlations across different tissue regions. The self-attention
mechanism from vision transformers (ViT) [10] has been used to address this
problem, where pairwise similarity scores across all instances are computed [26,5,28].
However, such pairwise calculation exhibits quadratic complexity, often too de-
manding to support a large number of input instances for the WSI classification.
The Nyström-attention [29] has been applied to alleviate this problem in Trans-
MIL [26]. It utilizes a subset of landmarks to approximate the self-attention
process. Similarly, FlashAttention [8] achieves the full self-attention ability and
uses the IO-aware mechanism to enhance the attention efficiency.

Besides the correlation across instances, the tissue spatial relationship is cru-
cial for the WSI analysis. However, it is often overlooked in existing MIL studies.
The use of position encoding in Transformers for fixed-length sequences [10] can
preserve positional information, but it cannot be directly used in the WSI anal-
ysis due to the variable lengths of input instance embeddings. To address this,
TransMIL [26] employ Convolution Neural Network(CNN) to characterize the
spatial information. However, it reorganizes the tissue patches and thus does
not accurately reflect the genuine spatial relationships among patches. Conse-
quently, the inherent potential for spatial arrangement within WSI has not been
thoroughly explored.

By contrast, the graph structure is widely known for its intrinsic merit for
spatial relationship representations and graph-based MIL methods have increas-
ingly gained attention for the histopathology WSI analysis. The Graph Convo-
lution Network (GCN) utilizes a foundational local message-passing mechanism
to capture spatial interactions and integrate neighboring instances and provides
a cutting-edge graph-based paradigm for the digital pathology study. However,
such GCN-based frameworks may suffer from over-smoothing [16] due to the
repeated aggregation of local information, and over-squashing [2] as a result
of the increased model depth. Moreover, graph-based MIL frameworks exhibit
limitations in recognizing long-range dependency.

Recent research has demonstrated that integrating self-attention mechanisms
into graph-based approach can effectively mitigate the limitations of message-
passing mechanism, such as over-squashing and over-smoothing, thereby enhanc-
ing the model’s capability for representation [25]. Furthermore, the application
of graph transformers has extended to multi-modal, multi-task, and multi-scale
analysis of WSIs [23,31,9]. The GTP [32] has been developed for WSI classi-
fication which employs a clustering-based mincutpool [3] to bridge GCN and
transformer layers. However, the GCN layers in GTP are still prone to over-
squashing, and the inevitable information loss from the pooling layer constrains
the transformer’s capabilities.
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To alleviate these limitations, we develop a novel Integrative Graph-Transformer
(IGT) framework for WSI representation and classification. The core architecture
of the IGT framework consists of a sequence of graph transformer integration
blocks, where each block integrates a GCN layer for encoding spatial relation-
ships among adjacent instances and a global attention module capturing global
WSI representations. Our framework is able to simultaneously models spatial re-
lationships at the local instance level and long-range pairwise correlations across
all instances. We demonstrate the efficacy of our method on three public WSI
datasets, TCGA-NSCLC, TCGA-RCC and BRIGHT. With extensive testing on
these datasets, our IGT framework presents a superior performance to the state-
of-the-art methods, achieving a 1.0% to 2.6% improvement in accuracy and a
0.7% and 1.6% increase in AUROC.

2 Method

Illustrated in Fig. 1, the proposed IGT framework consists of three key compo-
nents: graph construction, the backbone, and the downstream process. During
the graph construction, feature vectors are extracted, and the corresponding ad-
jacency matrix is created. The backbone module processes this undirected WSI
graph representation, serving as an efficient encoder. Finally, the refined features
from the last GTI block are provided to the downstream model for classification.

2.1 Graph Construction

For eachWSI graphG construction, we first partition aWSI into non-overlapping
256 × 256 tissue region patches/instances. Note that the number of extracted
instances N varies for different WSIs. A ResNet50 [11] model pre-trained on
ImageNet is used to encode each instance into a 1024-dimensional feature vec-
tor {hi ∈ R1024, i = 1, 2...N}. Each feature is regarded as a node in the WSI
graph and we assemble instance feature vectors as the node feature matrix
{H ∈ RN×1024} for each WSI. To depict the node connectivity in the WSI graph,
we preserve the patch spatial coordinates in the WSI and find adjacent nodes by
the K-Nearest Neighbor algorithm (i.e. k-NN, k=8) [7]. Thus, we build the WSI
graph G = (H,A) in the Euclidean space, where {A = [Aij ],A ∈ RN×N} is the
adjacency matrix. Its entry Aij = 1 when there exists a connection between node
i and j by the k-NN algorithm on node feature representations (hi,hj). Other-
wise, Aij = 0. This graph models the local neighborhood information across the
entire WSI.

2.2 Graph-Transformer Integration Block

The spatial relationships across tissue instances are crucial for the WSI represen-
tation and classification [1]. Therefore, we design the GTI block to concurrently
aggregate the local instance relationships and capture long-range pairwise cor-
relations across the entire tissue domain.
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Fig. 1. Overview of the proposed method: The process begins with the graph construc-
tion module where a graph representation G = (H,A) is generated for the subsequent
backbone network. Here, the H is the feature matrix and A denotes the associated
adjacent matrix. Within each l-th integration block of the backbone, a global attention
layer processes Hl to produce the feature matrix Tl+1, and a GCN layer processes
both Hl and A to update the graph representation Gl+1. Finally, the integrated fea-
ture Hl+1 from the last block is utilized for prediction in the downstream module.

As depicted in the integration block (Fig. 1), the l-th GTI block operates on
the GCN and GlobalAttention layers in parallel and integrates their outputs
through a simple summation as follows:

Gl+1 = GCN
(
Hl, A

)
(1)

Tl+1 = GlobalAttn
(
Hl
)

(2)

Hl+1 = GTI
(
Hl,A

)
= Gl+1 + Tl+1 (3)

where Gl+1 ∈ RN×d is the generated graph representation, Tl+1 ∈ RN×d is the
global attention feature matrix and d is the dimension of the feature embedding.

(1)GCN: The message passing functions of the generalGCN operator, acting
on the local neighborhood of node u at l-th layer, can be represented as follows:

ml
u = AGG

({
ml

uv = ρ
(
hl
u,h

l
v,h

l
euv

)
, v ∈ N (u)

})
(4)

gl+1
u = ϕ

(
hl
u, ml

u

)
(5)

where ρ, AGG, and ϕ are differentiable functions. The message construction
function ρ constructs a message for node u by integrating the node u feature
hl
u, features of its neighbors hl

v, and the edge features hl
euv

. The AGG is a
permutation invariant function that aggregates all messages directed towards
node u. In essence, the AGG function executes MIL-manner operations within a
graph’s local neighborhood. The resulting feature gl+1

u of node u is then updated
by merging the original node feature hl

u and the aggregated message ml
u via the

update function ϕ. As the choice of these GCN related functions is flexible, we
adopt the generalized graph convolution GENConv from the DeeperGCN [18].
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The corresponding message passing functions are defined as follows:

ml
uv = ReLU

(
hl
v + 1

(
hl
euv

)
· hl

euv

)
+ ϵ (6)

ml
u =

∑
v∈N (u)

exp
(
βml

uv

)∑
v∈N (u)

exp (βml
uv)

·ml
uv (7)

gl+1
u = ϕ

(
hl
u, ml

u

)
= MLP

(
hl
u +ml

u

)
(8)

The message is constructed by a ReLU activation function with the neighboring
node feature hl

v and the associated edge feature between node u and v where
1(·) is an indicator function. A small positive constant (ϵ = 10−7) is added to the
ReLU activation function output to ensure positive feature values for the numer-
ical stability. The resulting messages from neighboring nodes are summed with
weights by the SoftMax function where hyper-parameter β denotes the inverse
temperature. This aggregation method concentrates on the local instance inter-
actions. Finally, the update function is structured as a two-layer MLP. These
configurations ensure an effective feature transformation and message propaga-
tion.

(2) Global Attention: While GNNs can be used to describe the entire WSI
graph, they can be constrained for long-range dependency characterization due
to the limited receptive field. Although an increase in a GNN depth could be
a potential remedy, it can result in indistinguishable node representations, an
issue known as over-smoothing or over-squashing. To alleviate these problems,
we implement a global attention modules in parallel to the GCN (Fig. 1). This
design enhances the ability to identify discriminating node representations from
the entire WSI graph. Specifically, the global attention layer employs the self-
attention mechanism, with its formulation given below:

GlobalAttn(Q,K,V) = softmax

(
QKT√

dq

)
V (9)

where feature representations Q,K,V are calculated by projecting instance fea-
ture matrix H using distinct three weight matrix Wi ∈ Rd×di . While the
self-attention mechanism in the original transformer is effective and well-suited
for this scenario, its O(N2) computational complexity limits its ability to pro-
cess a large number of input instances efficiently. To address this limitation, we
leverage FlashAttention (FA) [8] to fully harness the potential of the multi-head
self-attention mechanism without information loss or an expensive computa-
tional cost. Integrating global feature embeddings with those from the GCN
branch, we produce effective and expressive WSI representations that are able
to capture the global contextual information and the local neighbor interactions.

After the feature processing via GTI blocks, a straightforward attention-
based MIL pooling [13] strategy is used for feature aggregation in the down-
stream phase in Fig. 1. The resulting bag-level representation hbag ∈ R1×d is
computed by the weighted average of the instance representations by the atten-
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tion scores α as follows:

hbag = αTHL (10)

In the final phase, the bag-level feature hbag is provided to the MLP layer to
achieve the final bag-level classification.

3 Experiments

3.1 Datasets

To demonstrate the efficacy of our novel IGT framework, we conduct experi-
ments and compare our method with SOTA methods on three widely used public
datasets: TCGA-NSCLC (The Caner Genome Atlas Non-Small Cell Lung Can-
cer), TCGA-RCC (Renal Cell Carcinoma) and BRIGHT [4]. We use the official
data split if it is available, otherwise, we split the train, validation, and test
sets by an ratio of 6.5:1.5:2.0. All WSIs in these datasets are cropped at 20×
magnification.
TCGA-NSCLC is a lung cancer dataset and includes two distinct cancer
subtypes: Lung Adenocarcinoma (LUAD) and Lung Squamous Cell Carcinoma
(LUSC). It has 1,043 diagnostic digital WSIs with 531 and 512 WSIs of LUAD
and LUSC, respectively. We follow the same random split for DSMIL study [17].
TCGA-RCC is a kidney cancer dataset and consists of 940 WSIs. Specifically,
there are 121 WSIs of 109 Kidney Chromophobe Renal Cell Carcinoma (TCGA-
KICH) cases, 519 WSIs of 513 Kidney Renal Clear Cell Carcinoma (TCGA-
KIRC) cases, and 300 WSIs of 276 Kidney Renal Papillary Cell Carcinoma
(TCGA-KIRP) cases.
BRIGHT is a breast cancer dataset and contains 503 diagnostic slides across
six breast tumor subtypes: Pathological Benign (PB), Usual Ductal Hyperpla-
sia (UDH), Flat Epithelia Atypia (FEA), Atypical Ductal Hyperplasia (ADH),
Ductal Carcinoma in Situ (DCIS), and Invasive Carcinoma (IC). We use the
official data split, where 423 WSIs are for training and 80 WSIs for testing.

3.2 Implementation Details

In the graph construction phase, background patches with a saturation level
of less than 15 are discarded. The processed 1024-dimensional feature vector
hi ∈ R1024 is downscaled to 256 and assembled for the node feature matrix
H ∈ RN×256 [22,26], before being taken as input. For model training, the cross-
entropy loss function is utilized, and the batch size is set to 1. We adopt the
Rectified Adam optimizer [20] for optimization with a weight decay of 1e-5. We
train the IGT framework for 40 epochs on both TCGA-NSCLC and TCGA-
RCC datasets, and for 30 epochs on BRIGHT dataset. The learning rate starts
at 1e-3, decaying to 1e-4 at epoch 20 for TCGA-NSCLC, and at epoch 15 for
TCGA-RCC and BRIGHT. We employ two GTI blocks for TCGA-NSCLC and
TCGA-RCC, and three GTI blocks for BRIGHT. All models are implemented
by PyTorch 2.0, and executed on an NVIDIA GeForce RTX 3090Ti GPU.
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Table 1. Comparison of accuracy and AUROC on three public datasets. The reported
metrics are presented as percentages and averaged for three times. Our IGT framework
consistently outperforms existing state-of-art MIL methods.

Method
TCGA-NSCLC TCGA-RCC BRIGHT-6class

ACC(%) AUC(%) ACC(%) AUC(%) ACC(%) AUC(%)

Mean-pooling 77.6 86.2 82.3 94.2 26.1 64.1
Max-pooling 79.0 85.8 84.0 96.1 29.3 66.0
ABMIL[13] 84.1 91.3 86.8 97.1 30.8 67.0
DSMIL[17] 86.0 93.9 87.7 97.7 36.4 72.5
CLAM-SB[22] 85.5 90.9 88.5 98.0 33.1 69.1
CLAM-MB[22] 87.9 92.9 89.9 97.9 38.1 71.7
TransMIL[26] 89.3 94.2 90.2 97.7 39.6 71.8

GCN-ABMIL[19] 87.3 94.4 89.2 97.6 33.4 68.1
Patch-GCN[6] 88.8 95.0 89.7 98.1 38.2 71.2
GTP[32] 90.5 95.8 91.4 97.7 40.8 72.9

IGT (Ours) 91.6 96.7 92.4 98.4 43.4 74.5

3.3 Results

Performance comparison with the SOTA methods: We compare the pro-
posed IGT with ten baselines: Seven of them are none graph based methods,
including max/mean-pooing, ABMIL [13], DSMIL [17], CLAM-SB [22], CLAM-
MB [22] and TransMIL [26]. Three of them are graph-based MIL methods, in-
cluding GCN-ABMIL [19], PatchGCN [6] and GTP [32]. Note both TransMIL
and GTP use Transformers. We chose overall accuracy (ACC) and area under
receiver operating characteristic curve (AUROC) as the evaluation metrics.

As illustrated in Table 1, our IGT framework surpasses current SOTA meth-
ods. To be specific, compared with the best performing graph-based method,
GTP, our method achieves a 1.1% improvement in accuracy and a 0.9% increase
in AUROC for the binary classification on the TCGA-NSCLC dataset. In multi-
class classification, our method shows a 1.0% improvement in accuracy and a
0.7% increase in AUROC for the TCGA-RCC dataset, and a 2.6% improve-
ment in accuracy with a 2.5% increase in AUROC on the BRIGHT dataset.
Similarly, when compared with the leading non-graph-based method, Trans-
MIL, our method shows a substantial 2.2%-3.8% improvement in accuracy and a
0.7%-2.7% enhancement in AUROC. In conclusion, our graph-transformer-based
method significantly outperforms current both graph-based and transformer-
based approaches, indicating the advantages of integrating local neighborhood
information with global context for enhanced performance.

Ablation Studies To demonstrate the efficacy of the developed GTI block and
investigate the necessity of model components, we conduct a ablation study to
quantify the separate benefit of the individual global-attention and GCN module
using ABMIL and DSMIL as the aggregation modules. As shown in Table 2,
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compared with GTI block without self-attention, our GTI achieves a 2.4% to
5.7% improvement in accuracy. It proves that the self-attention mechanism in
our GTI captures pairwise correlation across all instances and thus improves the
performance. In comparing our GTI block with GTI block without the GCN
branch, our GTI block achieves a 3.7% to 5.6% increase in accuracy. It shows
the necessity of spatial information for WSI analysis.

An interesting finding is that the method equipped exclusively with the global
attention module exhibit inferior performance compared to those only utilizing
the GCN. This discrepancy can be attributed to the lack of spatial information
when directly applying the self-attention mechanism for WSI analysis.

Table 2. An ablation study conducted to evaluate the importance of each component
within the GTI block, utilizing ABMIL and DSMIL as the base aggregation models.

Aggregator Backbone
TCGA-NSCLC TCGA-RCC BRIGHT-6class

ACC(%) AUC(%) ACC(%) AUC(%) ACC(%) AUC(%)

ABMIL
- 84.1 91.3 86.8 96.1 30.8 67.0

GTI w/o Attn 89.2 95.2 88.8 98.1 38.7 72.5
GTI w/o GCN 86.0 93.1 87.8 98.0 38.1 71.2

GTI 91.6 96.7 92.4 98.4 43.4 74.5

DSMIL
- 86.0 93.9 87.7 97.7 36.4 72.5

GTI w/o Attn 87.9 94.3 89.8 98.1 39.0 73.7
GTI w/o GCN 87.4 95.2 88.7 98.0 37.4 73.8

GTI 91.1 95.5 91.7 98.5 42.9 73.4

4 Conclusion

In this paper, we introduce a new integrative graph-transformer framework,
IGT, that simultaneously captures the context-aware relational features from
local tissue regions and global WSI representations across instance embeddings
for histopathology WSI classification. We integrate the graph convolutional net-
work with a global attention module to construct the Graph-Transformer Inte-
gration block. Specifically, the graph convolutional network explores the local
neighbor interactions and the multi-head self-attention model captures the long-
range dependencies from all instances. The efficacy of the developed framework
is manifested with three public WSI datasets. When compared with multiple
state-of-the-art methods, our method consistently presents a superior perfor-
mance, suggesting its promising potential to support computational histopathol-
ogy analyses.
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25. Rampášek, L., Galkin, M., Dwivedi, V.P., Luu, A.T., Wolf, G., Beaini, D.: Recipe
for a general, powerful, scalable graph transformer. NIPS (2022)

26. Shao, Z., Bian, H., Chen, Y., Wang, Y., Zhang, J., Ji, X., et al.: Transmil: Trans-
former based correlated multiple instance learning for whole slide image classifica-
tion. NIPS (2021)

27. Wang, X., Yan, Y., Tang, P., Bai, X., Liu, W.: Revisiting multiple instance neural
networks. Pattern Recognition 74, 15–24 (2018)

28. Xiong, C., Chen, H., Sung, J., King, I.: Diagnose like a pathologist: Transformer-
enabled hierarchical attention-guided multiple instance learning for whole slide
image classification. arXiv preprint arXiv:2301.08125 (2023)

29. Xiong, Y., Zeng, Z., Chakraborty, R., Tan, M., Fung, G., Li, Y., Singh, V.:
Nyströmformer: A nyström-based algorithm for approximating self-attention. In:
AAAI (2021)

30. Yao, J., Zhu, X., Jonnagaddala, J., Hawkins, N., Huang, J.: Whole slide images
based cancer survival prediction using attention guided deep multiple instance
learning networks. Medical Image Analysis 65, 101789 (2020)

31. Zhao, W., Wang, S., Yeung, M., Niu, T., Yu, L.: Mulgt: Multi-task graph-
transformer with task-aware knowledge injection and domain knowledge-driven
pooling for whole slide image analysis. AAAI (2023)

32. Zheng, Y., Gindra, R.H., Green, E.J., Burks, E.J., Betke, M., Beane, J.E., Ko-
lachalama, V.B.: A graph-transformer for whole slide image classification. IEEE
transactions on medical imaging 41(11), 3003–3015 (2022)


	Integrative Graph-Transformer Framework for Histopathology Whole Slide Image Representation and Classification

