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Superconducting microwave metamaterials offer enormous potential for quantum optics and in-
formation science, enabling the development of advanced quantum technologies for sensing and
amplification. In the context of circuit quantum electrodynamics, such metamaterials can be imple-
mented as coupled cavity arrays (CCAs). In the continuous effort to miniaturize quantum devices
for increasing scalability, minimizing the footprint of CCAs while preserving low disorder becomes
paramount. In this work, we present a compact CCA architecture using superconducting NbN thin
films manifesting high kinetic inductance. The latter enables high-impedance CCA (∼ 1.5 kΩ), while
reducing the resonator footprint. We demonstrate its versatility and scalability by engineering one-
dimensional CCAs with up to 100 resonators and with structures that exhibit multiple bandgaps.
Additionally, we quantitatively investigate disorder in the CCAs using symmetry-protected topo-
logical SSH modes, from which we extract a resonator frequency scattering of 0.22+0.04

−0.03%. Our
platform opens up exciting new prospects for analog quantum simulations of many-body physics
with ultrastrongly coupled emitters.

Metamaterials made of superconducting circuits [1]
have emerged as highly versatile platforms at the fore-
front of quantum technologies, offering a broad range of
applications encompassing sensing [2], amplification [3],
and quantum information processing [4, 5]. Moreover,
when quantum emitters are strongly or ultrastrongly cou-
pled to microwave superconducting metamaterials that
feature high quality and mode density [6–8], or to struc-
tured photonic baths [9, 10], it provides a valuable frame-
work for exploring many-body phenomena through ana-
log quantum simulation [11–13]. In particular, coupled
cavity arrays (CCAs) have emerged as a flexible archi-
tecture for realizing artificial photonic materials in the
tight-binding limit [14, 15], enabling the creation of band
structures with varying complexity [16, 17]. These struc-
tures are even capable of realizing non-Euclidean ge-
ometries [18], non-trivial tolopogical lattices [19–21], and
flat bands [22], offering insights into complex many-body
physics [23] and enabling various quantum information
processing tasks [4, 5, 24].

Conventional on-chip superconducting CCAs are re-
alized with distributed coplanar waveguide (CPW) [25]
or lumped element LC [26] resonators, typically made
of aluminum (Al) or niobium (Nb) superconducting thin
films. This architecture allows for arbitrary band en-
gineering by tailoring the frequency and coupling of the
cavities [1, 18, 27]. Despite this flexibility, the large phys-
ical footprint of a single resonator at frequencies ∼ 5GHz
covers several millimeters’ square [25, 28], and can re-
strict the scalability of the array. Recent research has
explored alternative approaches, such as the replacement

of the geometric inductance with the Josephson induc-
tance of compact junction arrays [24, 29, 30]. However,
achieving control of the Josephson junction inductance
with an imprecision below a few percent [31, 32], remains
challenging, leading to significant variability in cavity pa-
rameters and impacting the spectral properties of the
CCAs. Additionally, this approach introduces significant
nonlinearity, affecting the higher excitation manifold of
the CCA. Despite the variety of approaches, the challenge
of realizing a CCA made of unit cells that combine si-
multaneously high-quality, ultra compactness, and weak
nonlinearities, while maintaining a low overhead in fabri-
cation, still remains elusive. To fully harness the poten-
tial of CCAs while dramatically reducing their size, it is
crucial to maintain low scattering of the cavity frequen-
cies and inter-site coupling, as well as to develop methods
to efficiently quantify the impact of disorder.

In this work, we report on a compact and versatile
lumped-element CCA architecture characterized by low
disorder, with only 0.22+0.04

−0.03% deviation in resonator fre-
quency. The resonators are made of high kinetic induc-
tance NbN thin film resulting in compact inductors [33–
35]. We show the versatility and scalability of the plat-
form by engineering one-dimensional CCAs with up to
100 resonators with multiple band-structures. To effi-
ciently quantify the amount of disorder in the system, we
develop a topology-inspired metric for assessing the res-
onators’ frequency scattering by systematically exploring
the in-gap mode distribution of CCAs that realize the
Su-Schrieffer-Heeger (SSH) chain [36]. Due to the bulk-
edge correspondence [37] in-gap modes are also sensitive
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FIG. 1. High-impedance CCA. a. Optical micrograph of a representative rectangular-design CCA comprising 25 resonators.
The dark part is silicon while the light part is NbN. b. False-colored scanning electron micrographs of the zoomed-in regions
of the CCA [marked by black frames in a]. The microwave port is colored in blue and the cavities in green. Inset: Further
zoom-in on a portion of the inductor [marked by a red frame in b]. c. Optical micrograph of a representative hexagonal-design
CCA comprising 26 resonators. d. False-colored scanning electron micrograph of the zoomed-in region of the CCA [marked
in panel c]. The microwave port is colored in blue and the cavities in green. The insets [yellow (red) frame] show a zoom-in
on the mutual capacitor between two cavities (the inductor of a cavity). e. Schematic of the lumped-element model of the
CCAs, cf. Eq. (1). Each cavity is modeled as an LC resonator with an inductor Lig and a capacitor Cig to ground; the i and j
cavities are coupled via a mutual capacitor Ci,j . The cavities at the edges of the CCA are coupled to the microwave ports via
the capacitors Cp in blue. f. Schematic of the corresponding chain Hamiltonian including first (second) neighbor interaction
Ji,i+1 (Ji,i+2) between cavities i and i+ 1 (i+ 2), cf. Eq. (2). The input and output microwave ports are represented in blue,
and âin(out) indicates the input (output) field operator.

to chiral symmetry-breaking disorder in the bulk of the
CCA. Thus, by focusing solely on the boundary modes
we can infer the overall disorder present in the entire sys-
tem. Notably, the high kinetic inductance of our devices
enables the realization of high-impedance resonators in
the array. This characteristic increases the coupling to
charge degree of freedom of both superconducting [38]
and semiconducting [39] qubits, enhancing the possibility
to achieve the ultra-strong coupling regime [40]. This de-
velopment lays the groundwork for integrating quantum
emitters into our bath-engineered CCA environment.

I. PLATFORM

We design, simulate, fabricate, and investigate 1-
dimensional (1D) CCAs comprising rectangular (Figs. 1a
and b) and hexagonal geometries (Figs. 1c and d).
Each CCA is fabricated from a high kinetic inductance
NbN thin film (see Methods) and can be modelled as
an array of N superconducting lumped-element LC res-
onators, as schematically represented in Fig. 1e. Each
resonator is defined by a capacitor with total capacitance
CΣ,i ≈ Cig+Ci−1,i+Ci,i+1, where Cig represents the ca-
pacitance to ground of the ith cavity, which also shares
mutual capacitances, Ci−1,i and Ci,i+1 with its neigh-
boring resonators. These latter two capacitances can be
adjusted by varying the spacing between the resonators
di−1,i and di,i+1, or by adjusting the interdigitated ca-
pacitor, see Figs. 1b and d. The resonance frequency
of the ith resonator, denoted as ωi/2π, is determined by

1/
√
LigCΣ,i. Both Cig and Ci±1,i can be tailored in-

dependently, while keeping CΣ,i and, consequently, the
resonance frequency ωi/2π, constant. The inductance to
ground, Lig, of the nanowire inductor with width wind

and length lind (Figs. 1b, d) can be expressed as [33, 34]:

Lig = Lk + Lgeo = Lk,□
lind
wind

+ Lgeo, (1)

with Lk (Lk,□) representing the (sheet) kinetic induc-
tance, and Lgeo accounting for the geometric inductance.
In our case, the ratio Lk/Lgeo ∼ 250 indicates that the
inductance of the CCA is completely dominated by its
kinetic contribution. Leveraging this property, we are
able to engineer resonators with a significantly reduced
footprint typically down to 50× 75 µm2 [35]. This size is
remarkably smaller if compared to conventional lumped-
element resonators (∼ 100× smaller) [19, 41] and CPW
distributed resonators (∼ 1500× smaller) [18, 25]. Due to
the large kinetic inductance, the resonators in the array
present an impedance Zi =

√
Lig/CΣ,i of approximately

1.5 kΩ (0.8 kΩ) for the rectangular (hexagonal) geometry.
This high impedance enhances the capacitive couplings
between resonators (Ji,i+1 ∝

√
ZiZi+1) and to quantum

emitters (gi ∝
√
Zi).

The Hamiltonian of the system is derived following
standard Lagrangian circuit quantization [42] (see Meth-
ods), and takes the form,

Ĥ =

N∑
i=1

ωiâ
†
i âi +

Q∑
q=1

N−q∑
i=1

Ji,i+q

(
â†i âi+q + h.c.

)
, (2)
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up to the Qth order in coupling in ℏ = 1 units. Here,

âi and â†i are the photonic annihilation and creation op-
erators at site i. The nearest-neighbor coupling terms,
Ji,i+1, originate mainly from direct capacitive coupling.
In our model, we neglect inductive coupling due to the
resonators’ high impedance, as it scales as 1/

√
Zi. Cou-

pling terms of order q > 1 arise from two origins: stray
capacitive coupling between next nearest-neighbor res-
onators and from the inversion of the capacitance matrix
in the circuit’s Lagrangian, the latter increases with the
ratio Ci,i+1/CΣ,i [43] (see Methods). In the following,
we focus on CCAs realized with resonators with degen-
erate frequencies, ωr/2π. To ensure this degeneracy, we
introduce ghost ports (see Fig. 1b) which guarantee the
uniformity of the capacitive environment for both edge
and bulk resonators.

II. BAND ENGINEERING

We begin by characterizing the extensibility of the in-
troduced compact CCA platform by measuring chains
with homogeneous coupling, i.e., Ji,i+1 = J1 and Ji,i+2 =
J ′, cf. Fig. 1d. To this end, we set Cig = Cg, Lig = Lg

and Ci,i+1 = C1. Note that we have M = 1 resonators
per unit cell [cf. Fig. 2a], and for J1 ≫ J ′, we expect a
finite-size sampling of a cosine dispersion, i.e., the emer-
gence of a passband centered around ωr/2π with a span
of 4J1 [24]. In Fig. 2b, we report on the transmission
spectra of several such homogeneous CCAs with N up
to 100 sites. The transmission, |S21|, is measured in a
cryogenic setup at 10mK with a vector network ana-
lyzer [43]. Each CCA transmission is normalized with
respect to its maximum transmission amplitude. We ob-
serve N distinct peaks, corresponding to the eigenmodes
of the CCA. The modes at the center of the band have
respectively larger coupling to the ports [higher peaks],
κext, and sparser frequency spacing, ∆f , relative to the
smaller coupling [lower peaks] and higher mode density
at the band edges [24] (Fig. 2b and [43]). In all exam-
ined CCAs, we resolve the majority of the modes; for
example, we detect as many as ∼ 90 distinct modes in
the case of N = 100 CCA. The missing modes can be
attributed to two dominant factors: (i) the modes at the
edges of the pass-band have lower visibility, and (ii) to
avoid erroneous counting, we exclude the frequency re-
gion around 8.1GHz (Fig. 2b), where chip slot modes are
present. On average, we extract individual mode single-
photon internal dissipation rates κMode

int /2π of 100 kHz for
ωr/2π = 5GHz (QMode

int ∼ 50 × 103), indicating low-loss
CCAs [43]. Remarkably, fabricating CCAs with a high
number of cavities doesn’t degrade the low-power quality
factor of the device [35].

We proceed to demonstrate high control over the inter-
site coupling, see Fig. 2c. By redistributing the com-
ponents contributing to the total capacitance, CΣ, of
each resonator, specifically adjusting the capacitance to
ground, Cg, and mutual capacitance, C1, we can modu-

late the inter-site coupling rate. This allows us to engi-
neer multimode environments with bandwidths ranging
from approximately 230MHz up to 4.8GHz, resulting in
a free spectral range spanning from hundreds of MHz
down to 1 MHz. Considering the low-dissipation rates
and the possibility to engineer narrow free spectral range,
this architecture opens exciting prospects for explor-
ing superstrong light-matter coupling [7] and many-body
Hamiltonians in the strongly non-linear regime [44, 45].
Notably, we demonstrate exceptional control over high-
quality CCAs comprising up to 100 resonators with a
density of 5 resonators per 100µm, highlighting our ca-
pability to finely engineer the environment bandwidth.
To demonstrate a multiband spectrum, we consider

configurations with M up to 5 cavities per unit cell
(Fig. 2d and e). We denote with Ji, where i = 1 . . .M−1,
the coupling between cavities within a unit cell (intracell
coupling) and with JM+1 the coupling between unit cells
(intercell coupling). As we increase the number of ele-
ments in the unit cell, additional bands appear in the
array spectrum [46]. As such, bandgaps are expected to
emerge in the midst of the CCA’s spectrum, with up to
M passbands. In the dimer case (M = 2), each resonator
presents the same two coupling capacitances, in an alter-
nating fashion, which automatically satisfies the resonant
condition. However, for M > 2, accomplishing the reso-
nant frequency condition for all cavities requires precise
control over the mutual and ground capacitances [43].
In all measurements in Fig. 2, the influence of higher-

order coupling terms, J ′, are present and manifest in
two primary aspects: first, the mode distribution in the
passband is asymmetric with respect to ωr, resulting in
higher mode density at lower frequencies [43]. Second,
the mode coupling to the ports, κext, for the low fre-
quency eigenmodes is lower than for their higher fre-
quency counterpart [43]. By fitting the CCA spectra (see
Methods), we estimate J ′ ≈ 10%J for the rectangular
designs (dominated by direct stray capacitive coupling),
while for the hexagonal one, J ′ ≈ 20%J (due to high
Ci,i+1/CΣ,i ratio), where J is the mean of the nearest
neighbor couplings in the CCA (see Table in Fig. 2c).
Furthermore, the asymmetry observed in the size of the
bandgaps (Fig. 2e) can be attributed to systematic de-
sign imperfection [43].

III. ENGINEERING LOCALIZED MODES

Using our architecture, we demonstrated excellent con-
trol over the bulk spectrum of the CCA. Relying on topol-
ogy, the creation of low-dimensional bound modes can
prove useful for coupling to quantum emitters [47–50].
Remaining in a 1D chain geometry, we turn to engineer
CCAs in the topologically non-trivial SSH configuration
(Fig. 3) [36, 37]. The SSH chain is a ubiquitous chi-
ral symmetry protected topological phase of matter that
manifest in 1D systems. Its bands exhibit a quantized
bulk polarization, with associated mid-gap 0D boundary
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FIG. 2. Band engineering. a. General CCA schematic displaying the cavities in green, with a unit cell including M cavities.
b. Transmission spectrum |S21| for CCAs with N = 25, 50 and 100 cavities with rectangular design with M = 1. The
shaded region around 8.05GHz highlights the presence of microwave chip slot modes. c. Top: Same as b for M = 1 CCAs
with J1/2π = 58MHz (rectangular design), J1/2π = 200MHz (rectangular design), and J1/2π = 1200MHz (hexagonal design).
Additional slot modes are visible around 11.1GHz. Inset: a zoom-in on the two lower coupling CCAs in the main panel. Bottom:
Frequency difference, ∆f = fi − fi+1, between two consecutive modes for the corresponding CCAs. The crosses represent the
∆f extracted for the CCAs, each plotted in relative to the averaged modes’ frequencies (fi + fi+1)/2. The continuous black
lines indicate fits of the extracted ∆f according to the eigenmodes of the CCAs Hamiltonian (see Methods). Inset table collects
the coupling J1/2π, the stray capacitance ratio C′/CΣ, where C′ = Ci,i+2, and next nearest-neighbor couplings ratio J ′/J1 for
the three CCAs. d. Top: Same as c for dimerized CCAs (rectangular design, M = 2) with ∆J/2π = |J2 − J1|/2π ∼ 50MHz
(100MHz) on the left (right). Bottom: Extracted modes (crosses) and their fits to the eigenmodes of the CCAs Hamiltonian
(continuous line) (see Methods). e. Same as c for (top to bottom) unit cells with M = 3, 4 and 5. All the transmission spectra
are normalized by their maximum amplitude.

modes. The model has been extensively studied in pho-
tonic CCAs [51], cold-atoms [52, 53], polaritonics [54],
and optomechanical arrays [55], and used to engineer di-
rectional topological waveguide QED [19, 56].

Our microwave photonic analogue of the SSH model
comprises a dimerized (M = 2) chain (Fig. 3a). The
intra- (J1) and inter-cell (J2) hopping are alternating,

leading to a two bulk-band spectrum. However, a gap
closing occurs when J1 = J2 (Fig. 3b). The gap clos-
ing marks a topological phase transition between the
topologically-trivial (J2 < J1, cf. Fig. 2d) and the topo-
logical nontrivial cases (J1 < J2, cf. Fig. 3). A quantized
jump in the bulk polarization of the chain distinguishes
between the two cases, where in the latter it implies the
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FIG. 3. Engineering SSH modes. a Schematic of the SSH model. Each unit cell contains two cavities A and B, both with
frequency ωr. J1 and J2 are respectively the intracell and intercell coupling. b Simulated phase transition diagram of the SSH
model from trivial (J1 > J2) to topological (J1 < J2) phase, with J ′ = 0. The black lines represent the bulk modes for a CCA
with N = 32. For J1 ̸= J2, the system presents a bandgap of size ∆32

Bulk. In the non-trivial phase, two hybridized SSH modes
(red and orange) are enabled at the center of the bandgap and are separated by ∆32

Topo. The grey area represents the phase
transition diagram N → ∞. c (e) Simulated photonic population of the CCA with N = 64 in correspondence of the symmetric
(red) and antisymmetric (orange) hybridized SSH modes in the weakly localized configuration, J2/J1 = 1.22 (strongly localized
configuration, J2/J1 = 1.57) according to the eigenvectors of the CCAs Hamiltonian (see Methods). d (f) Left: Transmission
spectrum |S21|, for CCAs with J2/J1 = 1.22 (J2/J1 = 1.57) and N = 16, 32 and 64. Right: Reflection spectra Arg S11,22, as
a function of the frequency detuning f − fTopo, for a frequency region of 100 MHz around the SSH modes. fTopo is the mean
frequency of the two SSH modes. The modes in red and orange represent the symmetric and antisymmetric hybridized SSH
modes, respectively.

appearance of two degenerate mid-gap boundary modes.
The Hamiltonian of our SSH CCA, in quasimomentum

space reads [43, 57]:

Ĥ(k) = (ω0 + 2J ′ cos kd) τ0

+
(
J1 + J2e

−jkd
)
τx + ξ τz

(3)

where k is the reciprocal wavevector, d is the lattice con-
stant (distance between the unit cells), and τ0, τx and τz
represent the Pauli matrices. Note that the appearance
of next nearest-neighbor hopping J ′, and disorder terms
ξ due to fabrication imperfections lead to deviation from
the standard SSH model [43, 57]. The latter breaks the
chiral symmetry and will move the topological boundary
modes away from the middle of the gap. Disorder in Ji
does not break the chiral symmetry and will bear a lesser
impact on the boundary modes [37, 43].

In a finite-size CCA (Fig. 3a), the tails of the mid-
gap boundary states overlap in the bulk, resulting into a
finite hybridization that gives rise to a frequency splitting
according to

∆N
Topo/2 ∝ e−((N−1)/ζ), (4)

where ζ is the boundary modes’ spatial localization

ζ =
1

log J2/J1
. (5)

The degree of hybridization between the SSH states
depends on the chain’s size, N , and the coupling ra-
tio, J2/J1. Correspondingly, the hybridized SSH states

form symmetric and antisymmetric superpositions be-
tween the left and right boundary states, see Figs. 3c
and e. In the remainder of the manuscript, we will refer
to the hybridized SSH states as SSH modes.

We experimentally investigate two distinct configu-
rations: a weakly-localized case with J2/J1 = 1.22
(Figs. 3c, d) and a strongly-localized case with J2/J1 =
1.57 (Figs. 3e, f). These configurations present CCAs
with N = 16, 32, and 64 resonators. Measurements
of CCA transmission, S21, reveal a significant reduc-
tion in the amplitude of the SSH modes as the size of
the CCA increases. This reduction can be attributed
to the decreasing overlap of the localized edge states in
the bulk region, resulting in reduced coupling and, there-
fore, reduced transmission between the two microwave
ports [43]. This trend is also visible in the behavior of
the phase shift of the SSH modes measured in reflection
(S11, S22) [58] (right panel of Figs. 3d and f). As the
modes’ hybridization reduces, the phase shift of the SSH
modes becomes more prominent, indicating a stronger
coupling to the microwave ports due to localization at
the boundary.

As for the topologically trivial CCAs (Sec. II), next
nearest neighbor coupling have an influence on the SSH-
CCAs spectra. We expect that the two edge modes for
J ′ ̸= 0 do not exhibit anymore perfect localization on a
single sub-lattice of the unit cell [43]. Instead, some pho-
tonic population extends into the neighboring sub-cell,
thereby breaking chiral symmetry, even in the absence of



6

a τz term in the Hamiltonian in Eq. (3). For J ′ smaller
than the bandgap, the SSH modes retain partial protec-
tion [59, 60]. ∆N

Topo exponentially decreases as a function

of N , even in the presence of non-zero J ′.

IV. DISORDER

We have demonstrated the scalability and versatility
of the architecture, exhibiting a high degree of control
and suggesting minimal resonant frequency scattering be-
tween the cavities. However, some amount of disorder
remains evident in the spectra of the CCAs. In the bulk,
disorder manifests in deviations from a smooth envelope
profile of the mode’s transmission and in displacement
of mode frequencies from their expected dispersion rela-
tion (Figs. 2 and 3). Quantifying disorder from the bulk
modes is challenging due to the system complexity. On
the other hand, SSH modes, despite being localized at the
edges of the CCA, are readily probed. Crucially, due to
the bulk-edge correspondence [37] they are also sensitive
to chiral symmetry-breaking disorder in the bulk of the
CCA. Hence, they can serve as a reliable indirect probe
to quantitatively assess the extent of disorder in the bulk,
solely by analysing the behavior of the two SSH modes.

To investigate the impact of disorder on the SSH
modes, we fabricate and characterize additional SSH de-
vices [43] with a coupling ratio of J2/J1 = 1.22, as il-
lustrated in Fig. 3d. In Fig. 4a, we present a dataset
comprising ∆N

Topo values extracted from the measured
CCAs as a function of chain length N . Notably, while
∆N

Topo exhibits the expected exponential decay with re-
spect to N , it does not asymptotically approach zero,
demonstrating significant deviations from the theoretical
prediction (black vs red line Fig. 4a).

To rigorously account for this observation, we conduct
numerical simulations that introduce Gaussian noise, de-
noted as σL, applied to the inductance values of all res-
onators within the chain. The choice to introduce scat-
tering in Lg as the main noise source is motivated by the
fact that the inductors have the most critical dimension
in the resonator design, rendering them more suscepti-
ble to scattering during the fabrication process. The σL

noise applied to the inductors induces both τz and τx
type of disorder in Eq. (3), impacting respectively the
resonant frequency and the coupling of the resonators in
the CCA. Our analysis primarily focuses on the principal
effect of σL scattering namely τz-type disorder (breaking
chiral symmetry), which we refer to as σL→z.
In the inset of Fig. 4a, we present the simulated Prob-

ability Density Function (PDF) for ∆64
Topo as a function

of σL→z (see Methods). For σL = 0, ∆64
Topo ∼ 0, with

J2/J1 = 1.22. As the disorder increases, the probability
of observing ∆64

Topo values higher than ∼ 0 also increases,
along with the standard deviation.

In the measurements shown in Fig. 4a, a notable de-
viation is observed for ∆22

Topo compared with the gen-
eral trend. To gain further insight into the source of

this deviation, we perform time-resolved measurements
of the SSH modes amplitude, using the pulse sequence
illustrated in Fig. 4b. This sequence involves sending
a Gaussian pulse at a frequency between the two SSH
modes, leading to beating oscillations in time between
the modes’ population if the two modes are hybridized,
with a frequency of the beating corresponding to the cou-
pling rate ∆N

Topo/2 [43]. The results of this measurement
are presented in Fig. 4c for the cases corresponding to
the two circled data points in Fig. 4a: N = 22 (the out-
lier point in Fig. 4a) and N = 26 (a representative of
devices following the trend in Fig. 4a). For the N = 26
SSH-CCA, we distinctly observe beatings between the
two SSH modes at a frequency of approximately 4.97
MHz, aligning with the value of ∆26

Topo = 4.96MHz ex-

tracted from spectroscopy measurements (Fig. 4a). In
contrast, for the N = 22 CCA, we observe a significantly
reduced visibility of the beating pattern, indicating weak
coupling to the edge microwave ports and, therefore, sug-
gesting that the modes are localized not at the edge but
more in the bulk of the CCA. This could be due to two
effects: a strong disorder at the edge lifts the resonant
frequency of a resonator or a strong impurity in the bulk
(strongly detuned resonator) effectively divides the chain
and quenches the transmission. We utilize these time-
resolved measurements to identify devices with strong
local disorder that no longer conform to our Gaussian
disorder model of the SSH.
To evaluate the overall disorder introduced during the

fabrication process, we conduct a comprehensive statisti-
cal analysis involving 26 CCAs in the SSH configuration.
These 26 devices, manufactured during different fabrica-
tion runs, have been designed in the two SSH configu-
rations depicted in Fig. 3 [43]. To quantify the disor-
der, we extract ∆N

Topo from spectroscopy measurements
for all the tested devices and generate their associated
PDFs as functions of σL and N for each sample batch
S. For each batch, we compute the likelihood of the in-
ferred frequency fluctuation with respect to the model as
a function of σL, which we refer to as likelihood function,
defined as follows:

LS(σL) =
∏
i

PDFS(Ni,∆
Ni

Topo,i;σL), (6)

where Ni and ∆Ni

Topo,i represent respectively the number
of resonators in the CCA and the SSH mode frequency
splitting of the ith CCA. We report the extracted max-
imum likelihoods and their full width at half maximum
(FWHM) in Fig. 4d. To obtain an estimate of the disor-
der across all the tested batches, we computed the com-
bined likelihood, represented by the black line in the same
figure (see Methods). Our analysis yield an extracted
relative disorder value of σC

L→z/fr = 0.22+0.04
−0.03%, equiv-

alent to an absolute disorder value of σC
L→z = 10.97+2.28

−1.59

MHz for ωr/2π ∼ 5GHz. This represents a minimal fre-
quency scattering, especially considering the high com-
pactness of the implemented CCAs, and it is comparable
to what is achieved with lattices of CPW resonators (but
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FIG. 4. Using topology to study disorder. a. Study of the frequency splitting, ∆N
Topo, between the hybridized SSH modes

for CCAs with different N (J2/J1 = 1.22). The cross and the circles show ∆N
Topo extracted for CCAs with N = 14, 16, 18,

22, 26, 30, 32 and 64, respectively from spectroscopy and time resolved measurements. The continuous black line represents
the expected evolution of ∆N

Topo vs N for the disorderless case according to the eigenmodes of the CCAs Hamiltonian (see

Methods). The continuous red line represents the median of the most likely evolution (see panel d) of ∆N
Topo vs N in the

presence of disorder with standard deviation σC
L→z = 10.3MHz applied to ωr of the cavities in the CCAs. The shaded region

represents the 1σ uncertainty on the estimation of ∆N
Topo. The inset shows the simulated logarithm of the Probability Density

Function (PDF) of ∆64
Topo as a function of σL→z. The red line shows the median for each disorder realization. The red dotted

lines show the 1σ standard deviation. b. Pulse sequence used for the time-resolved measurement. A gaussian pulse is sent at a
frequency between the hybridized SSH modes from one of the edge of the CCA, while the signal is acquired on both side of the
CCA. The orange (red) dot on the y-frequency axis on the left side, highlights the frequency of the antisymmetric (symmetric)
hybridized SSH modes. c. Time traces of the transmitted |S21| and reflected |S11| signals of the CCAs with N = 26 and 22 in
panel (a). Each data points is averaged 20000 times. The continuous lines highlight the fit done with an exponentially decaying
cosine [43]. d. Disorder likelihood extracted for different batches of devices. The dots highlight the maximum likelihood
extracted for each batch. The error bars show the respective FWHM. The black line shows the combined likelihood extracted
among the different batches. The shadowed purple area shows its FWHM. The color code is according to Fig. 3d and f. Batch
A (C), contains the CCAs with N = 16, 32 and 64 (14, 18, 22, 26, 30) of panel a.

with 102−3 larger footprint) [15] and state of the art fre-
quency scattering control of advanced MKIDs detector
arrays [61, 62].

V. CONCLUSIONS

We have introduced a novel platform based on coupled
cavity arrays (CCAs) utilizing high kinetic inductance
NbN thin films, which serve as compact multipurpose
high-impedance metamaterials in the microwave domain.
The compactness of each cavity allows for the integration
of 1D CCAs with up to 100 resonators within a few mil-
limeters of sample space. The remarkable versatility of
our CCA platform has been demonstrated through the
creation of CCAs with bandwidths ranging from a few
100 MHz up to 4.5 GHz and the engineering of multi-
ple bandgaps. Importantly, all fabricated devices exhib-
ited mode dispersion in excellent agreement with our ex-
act models. Furthermore, using the SSH chain’s in-gap
modes, we extracted a small resonator frequency scatter-
ing of σC

L→z/fr = 0.22+0.04
−0.03%.

Our findings pave the way for advancing technological
applications and fundamental investigations using mul-
timode light-matter systems. This platform will allow
for a straightforward extension to very large-scale 1D
and 2D multimode systems with up to 104 cavities on

a single 5×5mm2 chip. The versatility of our platform
in controlling mode densities presents exciting prospects
for exploring devices where emitters are coupled to high-
impedance multimode environments [7]. This provides
the means to study the ultrastrong coupling limit in both
the passband of the CCA [63] and atom-photon bound
states close to the band edges [24, 64]. This will allow to
investigate quantum-impurity models like spin-boson [65]
or Frenkel-Holstein [16, 17] type Hamiltonians. Addi-
tionally, the compact nature of the resonators facilitates
coupling to superconducting qubits at multiple points,
potentially with non-trivial phase delays. This makes our
architecture a natural platform for studying giant-atom
photon bound states [66] interacting with structured en-
vironments [67].

On the other hand, photon lattices also offer promis-
ing avenues for future experiments aimed at investigat-
ing quantum phase transitions [1, 68]. By effectively re-
ducing random disorder, cavity arrays can be fabricated
with controlled levels of disorder, potentially enabling the
study of many-body localization effects [45]. While our
current work remains non-interacting, the incorporation
of interactions is feasible through the inherent nonlin-
earity present in high kinetic inductance materials, re-
sulting in both χ2 and χ3 nonlinearities [69], or by inte-
grating qubits into each resonator [68]. We aim to lever-
age nonlinearities in CCAs as a novel tool for studying
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driven-dissipative phase transition [68, 70, 71]. Moreover,
these lattices facilitate the creation of unique devices ca-
pable of hosting photons in curved spaces [18], gapped
flat band [72], and novel forms of qubit-qubit interac-
tion [19, 73].

ACKNOWLEDGMENTS

The authors thank Jan Košata and Andrea Bancora
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VI. METHODS

Fabrication: The fabrication recipe is detailed
in [35]. We fabricate planar coupled cavity arrays
(CCAs) based on lumped LC resonators by etching
13 nm-thick NbN film, with typical sheet kinetic in-
ductance Lk,□ of 100 pH/□. The fabrication process
commences with a 2-minute immersion in a 40% HF
bath to eliminate the native oxide layer and potential
surface impurities from a 100 mm silicon wafer, which is
of high-resistivity (≥ 10 kΩcm) and has a ⟨100⟩ orienta-
tion. Using a Kenosistec RF sputtering system at room
temperature, NbN films are bias sputtered following the
method described in [35, 74] with Ar/N2 flows of 80/7
sccm respectively and a deposition pressure of 5 µbar.
Optical lift-off technique is employed to deposit Ti/Pt
alignment markers, followed by a dehydration step at
150°C for 5 minutes. 80 nm-thick CSAR positive e-beam

resist is then spun on the wafer, which is subsequently
baked at 150°C for 5 minutes. Employing electron
beam lithography (Raith EBPG5000+ at 100 keV), the
resist is patterned to form the desired devices. This
is achieved by developing the resist in amyl acetate
for 1 minute, followed by rinsing in a 9:1 MiBK:IPA
solution. In order to transfer the pattern onto the
NbN, a reactive ion etching process is employed using
a CF4/Ar mixture. The etching is carried out with a
power of 15 W, using a stepped approach consisting of
10 steps, each lasting for 1 minute. These etching steps
are alternated with 1-minute purges using Ar gas. This
stepped etching technique has proven advantageous as
it reduces the damage caused to the CSAR resist due
the etching process, thereby facilitating its subsequent
stripping without the need for plasma oxygen, which
may damage the underlying superconductor. The resist
is then stripped using Microposit remover 1165 heated
to 70°C. Finally, the wafer is coated with a 1.5 µm AZ
ECI 3007 positive photolithography resist to protect the
devices before being diced.

Model: In this section, we derive the Hamiltonian
of the CCAs using standard circuit quantization [42]. We
consider a chain composed of N capacitively coupled LC
resonators as depicted in Fig. 1. Each ith resonator pos-
sesses an inductance Lig connected to ground and capac-
itance Cig to ground. Resonators i and j are mutually
coupled via the coupling capacitance Ci,j between the
two resonators. The potential energy in the inductors
can be expressed as:

EL =
1

2

N∑
n=1

ϕ2
n

Lng
, (7)

where ϕn denotes the flux at node n. The total kinetic
energy stored in the chain’s capacitors is given by:

EC =
1

2

 N∑
n=1

Cngϕ̇
2
n +

∑
i,j

Ci,j(ϕ̇i − ϕ̇j)
2

 , (8)

where ϕ̇n represents the electric potential at node n. We
neglect mutual inductance-induced coupling due to the
high impedance of the resonators [38]. We can now write
the Lagrangian, L, of the circuit as,

L = EC − EL (9)

=
1

2

N∑
n=1

[
Cngϕ̇

2
n − ϕ2

n

Lng

]
+

1

2

∑
i,j

Ci,j

(
ϕ̇2
i − ϕ̇2

j

)
.

(10)

It can be written in a matrix form as

L =
1

2
ϕ̇T [C] ϕ̇− 1

2
ϕT

[
L−1

]
ϕ, (11)
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with the vectors ϕ̇T
n = (ϕ̇1, ϕ̇2, . . . , ϕ̇N ) and ϕT

n =
(ϕ1, ϕ2, . . . , ϕN ). The capacitance matrix is defined as,

[C]ij =


CΣi, if i = j,

−Ci,j , if i ̸= j and |i− j| ≤ 3,

0, if i ̸= j and |i− j| > 3,

(12)

where we only consider mutual capacitances where |i −
j| ≤ 3. CΣi is the total capacitance of the ith cavity
defined as,

CΣi = Cig +

N∑
n ̸=i

Ci,n. (13)

The inverse inductance matrix is defined as,

[L−1]ij =

{
1/Lig, if i = j,

0, if i ̸= j.
(14)

We now introduce the node charge variable canonically
conjugated to the node flux ϕn

Q =
∂L

∂ϕ̇
, (15)

with QT = (Q1, Q2, . . . , QN ).
For the given system, the charge variables are Q =

[C]ϕ̇. Making use of the matrix formalism, the CCA
Hamiltonian H then reads

H =
1

2
QT [C−1]Q+

1

2
ϕT [L−1]ϕ. (16)

The real space Hamiltonian can be found to be [42]:

Hn/ℏ =
√
[C−1][L−1], (17)

and have the following matrix form

Hn

ℏ
=



ω1 J1,2 J1,3 . . . . . . J1,N

J2,1 ω2 J2,3
. . .

. . .
...

J3,1 J3,2 ω3
. . .

. . .
...

...
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . . ωN−1 JN−1,N

JN,1 . . . . . . . . . JN,N−1 ωN


. (18)

For small Ci,i+1/CΣ,i ratio, and without stray next near-
est neighbor capacitances, the coupling is,

Ji,j =

√
ωiωj

2

Ci,j√
CΣ,iCΣ,j

. (19)

However, non-negligible additional contributions arise
from both parasitic capacitances Ci,l ̸=j and large
Ci,i+1/CΣ,i ratio, modifying the Hamiltonian [43]. In

that case, one cannot resort to simple analytical for-
mulas and a full numerical diagonalization is required.
Eigenvalues of Eq. (18) represent the frequencies of
the modes ωk and eigenvectors represent the spatial
localization of the modes. We utilize this model to fit
the CCA modes’ frequencies, as detailed in the following
section.

Extraction of parameters: The estimation of the
parameters is performed by extracting the modes’ fre-
quencies from the device’s spectrum and fitting them to
the eigenvalues of Eq. (18). The fitting process involves
5 to 8 fitting parameters, depending on the specific de-
sign, i.e. if the CCA is dimerized, trimerized, etc . . . .
Initially, we make the assumption that each fitted CCA
is disorder-free and uniform. The influence of disorder is
studied in the following section. The fitting parameters
include:

• Cg, the capacitance to ground. For a single res-
onator (M = 1) or a dimer (M = 2), the capacitive
environment is automatically identical for each res-
onator and we use a single value for Cg. However,
for M > 2, the capacitive environment of each cav-

ity is not identical [43] and Cg becomes a list, C⃗g,
comprising the different Cig within a unit cell.

• Lg, the inductance to ground. ForM ≤ 2, since the
capacitive environment is similar for each cavity,
having a constant inductance ensures a constant
frequency for each cavity in the unit cell and we use
a single value for Lg. For M > 2, in order to keep
the resonant frequency constant, Lg is adjusted for

each cavity [43]. In this case, it becomes a list L⃗g.

• C⃗c, the coupling capacitances, which form a list
increasing with the size of the unit cell, i.e. for
M = 2, Cc = (C1, C2), C1 and C2 being the intra-
and inter-cell capacitances.

• Ci,i+2/C, the ratio of second neighbor coupling ca-

pacitances over C, the mean value of C⃗c.

• Ci,i+3/C, the ratio of third neighbor coupling ca-

pacitances over C.

For the fits to converge, we must either fix Lg or Cg

as they both contribute comparably to the resonant fre-
quency of the cavities and the coupling between cavi-
ties. To this end, we choose to fix Lg. We determine
the value of Lg through finite-element microwave simula-
tions, where we estimate the sheet kinetic inductance of
the film using Sonnet simulation software. This process
involves three steps:
1. We initially fit the modes of the measured spectrum

with the eigenvalues of Eq. (18), fixing Lg with an initial
guess. This provides a precise estimation of the resonant
frequency of the cavities but not of the other parameters.
2. We then conduct a simulation for a single cavity in

Sonnet, while sweeping the kinetic inductance, Lk,□. The
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simulated cavity has a capacitive environment equivalent
to that of the cavities in the fitted CCA, ensuring accu-
rate estimation of the resonant frequency. Subsequently,
we extract and fit the resonant frequency of the cavity as
a function of the kinetic inductance using the following
function for the frequency:

f =
1

2π
√

(Lk,□
lind

wind
+ Lgeo)CΣ

, (20)

where CΣ represents the total capacitance of the res-
onator and Lgeo is the geometric inductance. The ex-
tracted Lgeo is usually 2 orders of magnitude smaller
than Lk. The parameters lind and wind are fixed de-
sign parameters, corresponding to the length and width
of the inductor, respectively. This procedure allows us
to fit Lg = Lk,□

lind

wind
. To extract Lk,□ it is necessary to

properly estimate the dimension of the inductor via an
SEM of the device.

3. Using the obtained value of Lk,□, we calculate the
inductance to ground Lg using Eq. (1) and then refit
the measured spectrum with the correct Lg as a fixed
parameter. This enables us to determine the values of

Cg, C⃗c, Ci,i+2/C, and Ci,i+3/C. It is important to note
that the estimation of parameters using this method
is affected by disorder in the CCA, which introduces a
small systematic error [43].

Disorder estimation: In this section, we outline
the procedure for extracting the level of disorder from the
frequency splitting of the hybridized SSH modes, ∆N

Topo.
The study is performed on six different batches realized

in different fabrication runs. Each batch comprises three
to six devices with different number of resonators. Two
batches, A and C, are designed to have a coupling ratio
J2/J1 ≈ 1.22, while the others batches are designed to
have J2/J1 ≈ 1.57. We observed changes in Lk,□ due
to potential fluctuations in the film deposition process
(thickness or composition), resulting in up to 15% change
of the CCA resonant frequency, ωr/2π. Those change
have a minimal effect on J2/J1.
We initially employ the fitting routine presented in the

previous Methods section to extract the mean capaci-
tances and inductances specific to each batch, assuming
a disorder-free scenario.

Then we utilize these parameters in the Hamiltonian
Eq. (18) where we introduce Gaussian noise with a stan-
dard deviation σL applied to the inductances:

Hn/ℏ =
√

[C−1][L−1 (σL)]. (21)

Due to the high kinetic inductance of the films and the
small size of the inductors, the inductances are sensitive
to fabrication imperfection. Hence, the Gaussian noise,

σL, is applied to the inductances of the cavities. For each
batch, number of resonators N and disorder value σL, we
generate 30,000 realizations of the Hamiltonian Eq. (21).
We then diagonalize each of the Hamiltonians and extract
∆N

Topo. Using these simulations, we construct for each
batch a three-dimensional probability density function
(PDF) that depends on the number of resonators, the
SSH-modes splitting and the level of disorder (Fig. 5a).

Several insights can be derived from these PDF. First,
as expected, the splitting between the SSH modes de-
creases with an increasing number of resonators. Sec-
ondly, the PDF exhibit an asymmetry which tends to
increase the splitting as a function of disorder. This
asymmetry arises from the fact that disorder can only
increase the splitting between the SSH modes. However,
it is noteworthy that for short CCAs, such as the case
with 16 resonators shown in Fig. 5a, the splitting can
also decrease with increasing disorder. This occurs when
the SSH modes enter the bulk for sufficiently large disor-
der values. Thirdly, when ∆N

Topo approaches zero, devi-
ation from its expected value become significantly more
prominent.

We proceed to compute the likelihood for each batch
S, using an interpolated PDF, defined as follows:

LS(σL) =
∏
i

PDFS(Ni,∆
Ni

Topo,i;σL) (22)

where Ni and ∆Ni

Topo,i represent the number of resonators
and the SSH modes frequency splittings of data point
(device) i, respectively. PDFS is the Probability den-
sity function used for batch S. The likelihood functions
(Fig. 5b) are then normalized by their area from which
we extract the full width at half maximum of the different
likelihoods.

To obtain an overall assessment of disorder across all
devices of different batches, we employ the method of
combined likelihood, defined as follows:

LC(σL) =
∏
S

LS(σL), (23)

where S represents the label of the batch. This function
characterizes the typical disorder among all fabricated
devices in the topological configuration and is illustrated
in Fig. 5c. It is important to note that this method also
presents some limitations, as it is sensitive to the accu-
racy of the estimation of the CCA parameters. Errors in
the estimation of the coupling capacitances, for example,
can lead to significant changes in the decay of the SSH
modes. One way to mitigate this sensitivity is to operate
in a regime where the hybridization between the modes is
weak, reducing the impact of parameter misestimation.
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J. Estève, Optical Materials Express 11, 1224 (2021).

[28] Y. Liu and A. A. Houck, Nature Physics 13, 48 (2017).
[29] N. A. Masluk, I. M. Pop, A. Kamal, Z. K. Minev, and

M. H. Devoret, Phys. Rev. Lett. 109, 137002 (2012).
[30] A. Osman, J. Fernández-Pendás, C. Warren, S. Kosen,

https://doi.org/10.1103/physrevapplied.15.034074
https://doi.org/10.1126/science.aaa8525
https://doi.org/10.1038/s41567-024-02408-0
https://doi.org/10.1038/s41467-017-02046-6
https://doi.org/10.1038/s41467-017-02046-6
https://doi.org/10.1038/s41534-018-0104-0
https://doi.org/10.1038/s41534-019-0134-2
https://doi.org/10.1103/PhysRevApplied.14.064033
https://doi.org/10.1103/PhysRevApplied.14.064033
https://doi.org/10.1103/PhysRevLett.111.163601
https://doi.org/10.1103/PhysRevLett.111.163601
https://doi.org/10.1073/pnas.1603788113
https://doi.org/10.1073/pnas.1603788113
https://doi.org/10.1103/RevModPhys.86.153
https://doi.org/10.1103/RevModPhys.86.153
https://doi.org/10.1103/PRXQuantum.2.017003
https://doi.org/10.1038/nphys2251
https://doi.org/10.1038/nphys2251
https://doi.org/10.1038/s41467-023-41034-x
https://doi.org/10.1038/s41467-023-41034-x
https://doi.org/10.1103/physreva.86.023837
https://doi.org/10.1103/physreva.86.023837
https://doi.org/10.1103/PRXQuantum.3.040308
https://doi.org/10.1007/s11128-016-1489-3
https://doi.org/10.1007/s11128-016-1489-3
https://doi.org/10.1038/s41586-019-1348-3
https://doi.org/10.1038/s41586-019-1348-3
https://doi.org/10.1103/PhysRevX.11.011015
https://doi.org/10.1103/PhysRevX.11.011015
https://doi.org/10.1021/acsphotonics.1c01751
https://doi.org/10.1021/acsphotonics.1c01751
https://doi.org/10.1038/s41567-022-01671-3
https://doi.org/10.1103/physrevlett.123.113901
https://doi.org/10.1126/science.ade7651
https://doi.org/10.1103/PhysRevX.12.031036
https://doi.org/10.1103/PhysRevX.12.031036
https://doi.org/10.1063/1.3010859
https://doi.org/10.1364/OME.414517
https://doi.org/10.1038/nphys3834
https://doi.org/10.1103/PhysRevLett.109.137002


12

M. Scigliuzzo, A. Frisk Kockum, G. Tancredi, A. Fa-
davi Roudsari, and J. Bylander, Physical Review Re-
search 5, 10.1103/physrevresearch.5.043001 (2023).

[31] D. O. Moskalev, E. V. Zikiy, A. A. Pishchimova, D. A.
Ezenkova, N. S. Smirnov, A. I. Ivanov, N. D. Ko-
rshakov, and I. A. Rodionov, Scientific Reports 13,
10.1038/s41598-023-31003-1 (2023).

[32] A. Osman, J. Fernández-Pendás, C. Warren, S. Kosen,
M. Scigliuzzo, A. Frisk Kockum, G. Tancredi, A. Fa-
davi Roudsari, and J. Bylander, Phys. Rev. Res. 5,
043001 (2023).

[33] N. Samkharadze, A. Bruno, P. Scarlino, G. Zheng, D. P.
DiVincenzo, L. DiCarlo, and L. M. K. Vandersypen,
Physical Review Applied 5, 044004 (2016).

[34] D. Niepce, J. Burnett, and J. Bylander, Physical Review
Applied 11, 044014 (2019).

[35] S. Frasca, I. Arabadzhiev, S. B. de Puechredon,
F. Oppliger, V. Jouanny, R. Musio, M. Scigliuzzo,
F. Minganti, P. Scarlino, and E. Charbon, Physical Re-
view Applied 20, 044021 (2023).

[36] W. P. Su, J. R. Schrieffer, and A. J. Heeger, Physical
Review B 22, 2099 (1980).

[37] J. K. Asbóth, L. Oroszlány, and A. Pályi, A Short Course
on Topological Insulators, Lecture Notes in Physics, Vol.
919 (Springer International Publishing, Cham, 2016).

[38] M. Devoret, S. Girvin, and R. Schoelkopf, Annalen der
Physik 519, 767 (2007).

[39] A. Stockklauser, P. Scarlino, J. V. Koski, S. Gasparinetti,
C. K. Andersen, C. Reichl, W. Wegscheider, T. Ihn,
K. Ensslin, and A. Wallraff, Physical Review X 7, 011030
(2017).

[40] A. Frisk Kockum, A. Miranowicz, S. De Liberato,
S. Savasta, and F. Nori, Nature Reviews Physics 1, 19
(2019).

[41] H. Wang, A. Zhuravel, S. Indrajeet, B. Taketani,
M. Hutchings, Y. Hao, F. Rouxinol, F. Wilhelm, M. La-
Haye, A. Ustinov, and B. Plourde, Physical Review Ap-
plied 11, 054062 (2019).

[42] U. Vool and M. Devoret, International Journal of Circuit
Theory and Applications 45, 897–934 (2017).

[43] See Supplemental Material.
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Appendix A: Model of CCAs with M = 1

In this section, we perform approximations on the
derivation of the Hamiltonian presented in Methods
Sec. VI, which allows the implementation of an ini-
tial simplified tight-binding interpretation (only includ-
ing first nearest neighbor interaction) of the CCAs. We
then enrich the model to include higher-neighbor cou-
pling terms and study their effect on the band structure.

From the model developed in Methods, we start with
a CCA with N resonators with M = 1, assuming a CCA
with constant coupling and resonant frequency. We de-
fine the capacitance to ground as Cg, the inductance
to ground as Lg, and the mutual capacitances between
resonators as C1. We proceed to two assumptions on
the capacitance matrix developed in Methods (Eq. (12)).
The first one is to neglect the stray capacitance between
resonators higher than their first neighbors, Ci,i+j = 0
for j > 1. The second assumption has to do with the
inversion of the capacitance matrix, where the terms
Ci,i+jCi+j,i are neglected for orders higher than 1, valid
when Ci,i+1/CΣ,i is small as mentioned in the main text.
Doing so, the inverse of the capacitance matrix becomes

[
C−1

]
= Lgω

2
r



1 β 0 . . . . . . 0

β 1 β
. . .

. . .
...

0 β 1 β
. . .

...
...

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . . β

0 . . .
. . .

. . . β 1


, (A1)

where we have

β =
C1

CΣ
, (A2)

ωr =
1√
LgCΣ

. (A3)

CΣ is the total capacitance of the resonator defined as
CΣ = Cg+2C1. With this simplified capacitance matrix,
the Hamiltonian can now be written using Eq. (16) of
Methods as

H =
1

2

N∑
n=1

(
Lgω

2
rQn +

1

Lg
ϕn

)

+
Lgω

2
rβ

2

N−1∑
n=1

(QnQn+1 +Qn+1Qn) .

(A4)

We now quantize this Hamiltonian, assuming the com-

mutation relation
[
Q̂n, ϕ̂m

]
= iℏδnm [42] which allow to

define,

Q̂n =

√
ℏ

2Lgωr

(
â†n + ân

)
, (A5)

ϕ̂n =

√
ℏLgωr

2

(
â†n − ân

)
, (A6)

where â†n (ân), is the annihilation (creation) operators
at site n. Including the above relations Eq. (A5) and
Eq. (A6) in the Hamiltonian, Eq. (A4), we get

Ĥ =

N∑
n=1

ℏωr

(
â†nân +

1

2

)

+ ℏJ
N−1∑
n=1

(
â†nân+1 + h.c.

)
,

(A7)

where

J =
ωr

2

C1

CΣ
, (A8)

is the coupling between the cavities. In this case, the
tight-binding model predicts the emergence of a passband
centered around the bare resonance frequency of a single
cavity (ωr = 1/

√
Lg(Cg + 2C1)) with a span of 4J with

N modes.
Now, we investigate how coupling terms above first

neighbor modify this simplified model. Higher order cou-
pling terms will generate terms of type

K̂q =

N−q∑
n=1

ℏJ (q)
(
â†nân+q + h.c.

)
, (A9)

where q is the order of the coupling term. J (q) represents
coupling terms to the qth nearest neighbor cavity. In the
following, we refer to terms of order q = 2, 3 and 4 as
J ′, J ′′ and J ′′′, respectively. These higher coupling terms
will simply add up to the real space Hamiltonian Eq. (A7)
as

Ĥtot = Ĥ +

I∑
i=2

K̂i, (A10)

up to the Ith order. These higher coupling terms can
arise due to the two origin mentioned above, meaning
higher order terms due to the inversion of the capacitance
matrix and direct stray mutual capacitance. In Fig. 6,
we show the scaling of these effects on the next nearest
neighbor coupling using the Hamiltonian introduced in
the Methods section.
In Fig. 6c, we show the effect of the increase of the rela-

tive coupling capacitance with respect to the total capac-
itance, C1/CΣ, on the relative higher mth order photonic
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FIG. 6. Simulation of higher order coupling terms.
a. Circuit schematic of the CCA under consideration. The
resonators, highlighted in green, with capacitance Cg and in-
ductance Lg to ground, respectively, are coupled to the first
nearest neighbor (NN) with the capacitances C1. We repre-
sent the second NN coupling capacitance with C′. b. Equiva-
lent CCA schematic. The resonators are represented as cavi-
ties with resonant frequency ωr/2π. The first and second NN
coupling are respectively indicated with J1 and J ′. c. Cou-
pling ratio J(i)/J1 of the coupling to the ith NN over C1/CΣ.
The evolution of second NN coupling J ′, third NN coupling
J ′′ and fourth NN coupling J ′′′ are reported. The two dashed
lines indicate the typical C1/CΣ for the rectangular (Fig. 1b)

and hexagonal designs (Fig. 1d). d. J(i)/J1 as a function of
C′/C1. The simulations in panel c and d are performed using
Eq. (18) in Methods Sec. VI.

hopping rates, J (m)/J1, when the stray mutual capaci-
tance, C ′ = Ci,i+2, is set to 0. As the relative coupling
capacitance is increased, higher-order terms become more
important. In the figure, we highlight the typical cou-
pling ratios, C1/CΣ extracted for the rectangular (6%)
and hexagonal (26 %) CCA. The higher neighbor cou-
pling terms in the hexagonal CCA mainly arise due to
a high ratio C1/CΣ. In Fig. 6d, we show the effect of
the relative stray capacitance, C ′/C1, on J (m)/J1. J

′/J1
increases linearly, as expected from Eq. (A8). Addition-
ally, we see that as C ′ increases, higher and lower order
coupling terms also start to emerge.

In summary, for the rectangular CCA geometry, the
second nearest neighbour couplings J ′ ≈ 10%J1 (domi-
nated by direct stray capacitive coupling), while for the
hexagonal one, J ′ ≈ 22%J1 (due to high C1/CΣ ratio).
It is worth remarking that a tight-binding Hamiltonian,
which includes only the first two terms in Eq. (A10), rep-
resents a valid approximation only when the ratio J ′/J1
is negligible.

Applying periodic boundary conditions to Eq. (A10),
we can write this Hamiltonian in momentum space (k-
space), using the Fourier transform of the real space cre-
ation operator at site n,

ân =
1√
N

∑
k

ejkndâk, (A11)

where d is the size of the unit cell and k is the wavevec-
tor. From the equation above we find the k-space Hamil-
tonian,

H(k) =
∑
k

ℏ (ωr + 2J ′ cos (2kd)) â†kâk

+ 2ℏJâ†kâk+1 cos (kd) .

(A12)

The corresponding dispersion relation reads,

ωk = ωr + 2J1 cos (kd) + 2J ′ cos (2kd) . (A13)

In the limit where J ′ = 0, we find the standard cosine
dispersion relation of the tight-binding model, spanned
over 4J and centered around ωr. However, when J ′ ̸= 0,
significant deviations between the tight-binding model
spectrum and this model become evident. It manifests
in an asymmetric passband with respect to ωr, result-
ing in higher mode density at lower frequencies and the
eigenmodes of the CCA shift upward with respect to
ωr(Fig. 7). The effect on the dissipations in the pass-
band is studied in App. D.

Appendix B: Gapped CCAs with M ≥ 2

In this section, we model CCAs with gapped spectrum
and study, as in the previous section, how they are af-
fected by higher neighbor coupling terms. In order to
open bandgaps, several methods are possible relying on
the generation of unit cells [28, 75]. Depending on the
coupling configuration inside the unit cell, the number of
cavities per unit cell will define the number of bandgaps:
forM cavities per unit cell, there will beM−1 bandgaps.

We first show the case for a dimerized CCA (M = 2),
which is defined by alternating the mutual capacitances
C1 and C2, while keeping the same inductance to ground,
Lg, and constant resonance frequency among the res-
onators(see Sec. II of the main text). In this case, the in-
verse of the capacitance matrix (Eq. (12)) can be rewrit-
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ωr ωr ωr ωr ωr ωr ωr ωr

J1 J'

FIG. 7. Simulation of the influence of second near-
est neighbor coupling. a. Schematic of a uniform CCA
with cavity resonant frequency ωr/2π, coupling to first near-
est neighbor (NN) J1 and coupling to second NN J ′. b.
Eigenvalues for a CCA with N = 32 and couplings typical
of a rectangular geometry, calculated according to Eq. (A10)
as a function of J ′/J1. The modes frequencies are represented
as a function of the detuning ∆ω = ω−ωr. The red line rep-
resents ω = ωr.

ten as,

[
C−1

]
= Lgω

2
r



1 β1 0 . . . . . . 0

β1 1 β2
. . .

. . .
...

0 β2 1 β1
. . .

...
...

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . . β1

0 . . .
. . .

. . . β1 1


, (B1)

where the stray next nearest neighbor coupling capaci-
tances and the higher order terms in C1C2, C

2
1 , C

2
2 have

been neglected, as for Eq. (A1) in App. A, and

βi = Ci/CΣ. (B2)

We can then rewrite the Hamiltonian using Eq. (16) as

H =
1

2

N∑
n=1

Lgω
2
r

[(
QA

n

)2
+
(
QB

n

)2]
+

1

2

N∑
n=1

1

Lg

[(
ϕA
n

)2
+
(
ϕB
n

)2]
+

Lgω
2
rβ1

2

N−1∑
n=1

(
QA

nQ
B
n +QA

nQ
B
n

)
+

Lgω
2
rβ2

2

N−1∑
n=1

(
QA

nQ
B
n+1 +QA

n+1Q
B
n

)
.

(B3)

We quantize this Hamiltonian by introducing the quan-

tized charge, Q̂S
n , and flux, ϕ̂S

n , operators, acting on the

Sth sub-lattice site of the nth unit cell, satisfying the
commutation relation,[

Q̂S′

n , ϕ̂S
m

]
= iℏδn,mδS,S′ . (B4)

They are defined as,

Q̂S
n =

√
ℏ

2Lgωr

(
ŝ†n + ŝn

)
(B5)

ϕ̂S
n =

√
ℏLgωr

2

(
ŝ†n − ŝn

)
, (B6)

where ŝ†n (ŝn) is the annihilation (creation) operator of
sub-lattice S of the nth unit cell.
Inserting Eq. (B5) and Eq. (B6) into Eq. (B3), we find
the dimerized Hamiltonian,

Ĥ = ℏωr

N∑
n=1

(
â†nân + b̂†nb̂n

)
+ ℏJ1

N∑
n=1

(
â†nb̂n + ânb̂

†
n

)
︸ ︷︷ ︸

Intracell coupling

+ ℏJ2
N−1∑
n=1

(
â†n+1b̂n + ân+1b̂n

)
︸ ︷︷ ︸

Intercell coupling

.

(B7)

A higher neighbor coupling term can be added similarly
to the approach in App. A.
Analogously to the procedure described in App. A, one

can derive the k-space Hamiltonian to get a grasp of the
effect of second neighbor coupling to the mode structure.
To do so, we use the Fourier transform of the normal
space field operator, for both A and B sublattice, as in
Eq. (A11). We find the following Hamiltonian in recip-
rocal space,

Ĥ(k) = ℏ
∑
k

[
(ω0 + 2J ′ cos (kd))

(
â†kâk + b̂†k b̂k

)
(
J1 + J2e

−ikd
)
â†k b̂k +

(
J1 + J2e

ikd
)
âk b̂

†
k

]
.

(B8)

By diagonalizing the above Hamiltonian, we recover the
dispersion relation,

ω±/ℏ = ω0 + 2J ′ cos (kd)±
√

J2
1 + J2

2 + 2J1J2 cos (kd).

(B9)
Here again, we can see that J ′ will have a k-dependent ef-
fect on the band dispersion. We simulate its effect on the
mode distribution in Fig. 8b. Increasing second neighbor
coupling compresses the lower band and dilates the up-
per band. This effect can create strong band asymmetry
and could be a way to engineer extremely high-density
bands.
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One can generalize the model previously introduced for
multiple gap systems (M > 1), where we follow the same
recipe as before:

Ĥ = ℏωr

N/M∑
n=1

M∑
m

â†m,nâm,n

+ℏ
N/M∑
n=1

M−1∑
m=1

Jm,m+1

(
â†m,nâm+1,n + h.c.

)
+ℏ

N/M−1∑
n=1

JM,1

(
â†M,nâ1,n+1 + h.c.

)
,

(B10)

where âm,n is the creation operator on the mth cavity in
the nth unit cell.

Increasing second neighbor coupling will have the same
effect as for the case of single gap devices: compression
(expansion) of the lower (upper) bandgaps (Fig. 8d).
In the measurements presented in Fig. 2e of the main

text, we see a clear asymmetry in the bandgap size of
the spectra with more than 1 gap. This asymmetry can
be explained by a systematic deviation of the resonator’s
inductances of the real device with respect to the de-
signed one. We attribute this deviation to the resonant
frequency difference between the resonators at the edge
and in the bulk of the unit cells. In the design, this effect
was taken into account by having different inductances
for edge and bulk resonators of a unit cell (see App. C).
This effect is highlighted in Fig. 9, where we show that er-
rors on the estimation of the inductance as low as 0.6 nH,
about 1.5% of the total inductance, drastically affects the
band structure.

Appendix C: Design and simulation

All designs were created in the .gds format using the
gdspy Python library [76]. To ensure the lumpedness
of the designed resonators, the inductor and capacitor
self-resonances’ are designed to be much higher than the
frequency range we are working in. The typical design
workflow begins with an initial tight-binding simulation
based on the model established in App. A and App. B.
Subsequently, we use Sonnet simulation software to sim-
ulate the frequency response of the designs. In this sim-
ulation, the inductance is set by defining the number of
squares in the inductor to match the required inductance
corresponding to the kinetic inductance of the film. From
this simulation, we extract the impedance and resonant
frequencies of the design.
For the rectangular CCAs, the calibration of the cou-

pling rate between resonators is achieved by simulating
two resonators positioned adjacent to each other, with a
distance denoted as dr (dp) with respect to the neigh-
boring resonator (microwave feedline), as depicted in
Fig. 10a.

The coupling between two resonators is proportional

to Ji,i+1 ∝ Ci,i+1

CΣ
, with Ci,i+1 being the coupling ca-

pacitance and CΣ the total capacitance of the resonator.
As the distance between the two resonators is increased,
the coupling between them is reduced as Cc is decreasing
(Fig. 10b).

For the hexagonal CCAs, the calibration of the cou-
pling rate between resonators is implemented by sweep-
ing the width of the coupling capacitor Cw from 15 to
35 µm for three different finger width equal to the finger
spacing fw = 1, 2, 3 µm (see Fig. 11). We then extract the
mode splitting from which we infer the coupling between
the cavities.

For M = 1 cavities per unit cell, all cavities are cou-
pled to one another with the same mutual capacitance,
Ci,i+1 = C1, have a capacitance to ground, Cg, and an in-
ductance to ground, Lg. In this case, all cavities will have
the same total capacitance, i.e. CΣ = Cg + 2C1. This
condition ensures that all cavities have the same reso-
nant frequency, ωr = 1/

√
LgCΣ. Maintaining a constant

resonant frequency among all the resonators in the array
poses a challenge due to the presence of local fabrica-
tion imperfections and edge coupling points to the input-
output ports. While the former is determined by fabri-
cation capabilities, the latter can be mitigated by intro-
ducing ”ghost” cavities, as indicated in blue in the SEM
micrographs (Figs. 1b and d of the main text). Such
elements are designed to mimic the capacitive environ-
ment of bulk resonators, ensuring uniform resonant fre-
quencies also for the 1st and Nth resonators of the CCA,
provided that all resonators share identical inductance
values. These ”ghost” elements are designed to be non-
resonant with the CCA and are electrically connected
to the input/output waveguide, serving as input/output
ports of the CCA with capacitance Cp ≈ C1, Cp being
the capacitor between the coupling ports and the edge
cavities.

For M = 2, the cavities are coupled in an alternative
fashion with the capacitances C1 and C2, and have a
capacitance to ground, Cg, and an inductance to ground,
Lg. Similarly to the case with M = 1, the cavities will all
have the same total capacitance, i.e. CΣ = Cg +C1 +C2

for each cavity. Hence, they will have the same resonant
frequency, ωr/2π, provided that the coupling capacitance
to the input/output waveguides is equal to C2.

In the dimer case (M = 2), each resonator presents the
same two coupling capacitances, in an alternating fash-
ion, which automatically satisfies the resonant condition.
However, for M > 2, the translation uniformity for a sin-
gle resonator is not preserved anymore. Therefore, ac-
complishing the resonant frequency condition for all cav-
ities requires precise control over the mutual and ground
capacitances. We address this challenge by utilizing RF
simulation software to calibrate the resonant frequency as
a function of the coupling strength of each of the cavities
in the unit cell. In fact, forM > 2, the cavities in the unit
cell are coupled to one another with C1, C2, C3, . . . , CM−1

and with CM between unit cells. They have a capaci-
tance to ground, C1g, C2g, C3g, . . . , CMg and inductance
to ground L1g, L2g, L3g, . . . , LMg. In this case the cavi-
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FIG. 8. Simulation of the influence of second neighbor coupling on gapped CCAs. a. Schematic of a dimerized
(M = 2) CCA with cavity resonant frequency ωr/2π, intracell coupling J1, intercell coupling J2 and coupling to second nearest
neighbor (NN) J ′. b. Left: Eigenvalues for a CCA with N = 32 and couplings typical of a rectangular geometry, calculated
according to Eq. (B7) as a function of J ′/J , J = 1/2(J1 + J2). The modes frequencies are represented as a function of the
detuning ∆ω = ω − ωr. The red line represents ω = ωr. The grey areas highlight the passbands at J ′/J = 0. Right: Cut
of the plot in the left panel with J ′/J = 0%, 10% and 40%. c. Schematic of a multigap (M > 2) CCA with cavity resonant
frequency ωr/2π, intracell couplings J1, intercell coupling J2 and coupling to second nearest neighbor (NN) J ′. d. Eigenvalues
for a CCA with N = 50 and couplings typical of a rectangular geometry, calculated according to Eq. (B10) as a function of
J ′/J , J = 1/5(4J1 + J2). The modes frequencies are represented as a function of the detuning ∆ω = ω − ωr. The red line
represents ω = ωr.

ties within the unit cell will each have a different total
capacitance, CΣ,i = Cig + Ci−1 + Ci+1. To ensure the
same resonant frequency for all cavities, the inductances
have to be adjusted such that, CΣ,iLi = CΣ,jLj . In or-
der to simplify the design, the CCAs presented in Fig. 2e,
are implemented restricting the mutual capacitances to
C1 and C2, the capacitances to ground to C1g and C2g

and the inductances to ground to L1g and L2g.

For instance, for the CCA with M = 3 presented
in the main text, the unit cell coupling capacitance

C⃗c = (C1, C1, C2). Hence, here the cavities at the edges
of the unit cell will experience a different capacitive envi-
ronment than the cavities in the bulk of the CCA. There-
fore, we need to adapt the inductances for only two types
of cavities: the ones at the edges and the ones in the bulk

of the unit cell. L⃗g = (L1g, L2g) needs to be adjusted to
keep a constant resonant frequency.

The designs of the CCA with multiple gaps were chosen
by testing different coupling configurations. The simula-
tions were performed using the Hamiltonian introduced
in Eq. (B10) in App. B. The simulated mode profiles of
each chosen design measured in Fig. 2e are displayed in
Fig. 13.

Appendix D: Dissipations

1. Modelling of the CCA dissipations

In this section, we focus on the dissipations occurring
in the CCA. We derive a non-Hermitian Hamiltonian and
the scattering matrix for the CCA that we implemented.
The presence of non-negligible second neighbor coupling
among cavities suggests the possibility of coupling be-
tween the input waveguide and the second closest res-
onator to the microwave ports. In our subsequent anal-
ysis, we incorporate these couplings and observe their
effect, noting that they introduce asymmetry in dissipa-
tion with respect to frequency detuning. To model dissi-
pations, we start from the Heisenberg-Langevin equation
of motion [77],

∂

∂t
ân(t) = j

[
Ĥ, ân(t)

]
+

κn

2
ân(t)

+
√
κext (δn,1âin,L(t) + δn,N âin,R(t))

+
√
κ′
ext (δn,2âin,L(t) + δn,N−1âin,R(t)) ,

(D1)

where κext and κ′
ext are the dissipation rates to the

coupling ports from the closest and second closest res-
onator to the microwave ports, respectively. κn = κint +
(δn,1 + δn,N )κext +(δn,2 + δn,N−1)κ

′
ext is the total dissi-

pation of the nth cavity, where κint is the cavity’s internal
dissipation. âin,L(R) is the input field on the left (right)
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FIG. 9. Simulation of the influence of systematic
inductance deviation in gapped CCA spectra. a.
Schematic of a multigap (M = 5) CCA. b. Schematic of the
lumped-element model of the CCA enclosed by the dashed
rectangle in a. The mutual coupling capacitance between the
resonators inside the unit cell is C1 and the capacitance be-
tween the unit cells is C2. The capacitance and inductance
to ground for the resonators inside the bulk of the unit cell
are C0g and L0g, whereas on the edge of the unit cell they
are defined as C1g and L1g, respectively. c. Simulation of the
modes’ frequencies as a function of L1g. The red and blue
dashed lines highlight the designed and extracted frequency,
respectively. The simulation in panel c is performed using the
Hamiltonian Eq. (16) in Methods Sec. VI

port. Ĥ is the Hamiltonian of the system under study; in
this case, we work with the normal Hamiltonian Eq. (A7)
for the sake of simplicity. In the following, we assume
that the internal dissipation rate, κint, is the same for all
cavities.

One can write the previous equation in the steady
state regime where ân(t) = ân exp (−iωt) and âin(t) =
âin exp (−iωt), resulting in,

ân

(
∆− j

κn

2

)
+ J (ân+1 (1− δn,N ) + ân−1 (1− δn,1))

− j
√
κext (δn,1âin,L + δn,N âin,R)

− j
√
κ′
ext (δn,2âin,L + δn,N−1âin,R) = 0,

(D2)

where ∆ = ωr − ω is the detuning between the probe
frequency ω/2π and ωr. We can now use the two in-

put/output relations,

âin,L(R) + âout,L(R) =
√
κextâ1(N) (D3)

âin,L(R) + âout,L(R) =
√

κ′
extâ2(N−1) (D4)

dp dr

a

b

c

2J

FIG. 10. Coupling calibration for rectangular CCA
geometry. a. Schematic of the calibration design, with the
cavities in green, the coupling ports in blue and the ground
plane in grey. dp is the distance between the ports (ghosts)
and cavities, and dr is the distance between the cavities. b.
Simulation using Sonnet software of the transmission ampli-
tude |S21| through the dimer as a function of the excitation
frequency. The coupling, J , is extracted from the frequency
splitting between the two modes frequencies. c. Coupling
extracted from Sonnet simulations as a function of dr for dif-
ferent values of dp, assuming Lk,□ = 100 pH/□.

where âout,L(R) is the output field on the left (right) side
of the CCA. Note that the two input/output relations
use the same input/output fields. By inserting Eqs. (D3)
and (D4) into Eq. (D2) one obtains,

ân

(
∆− j

κn

2

)
+ J (ân+1 (1− δn,N ) + ân−1 (1− δn,1))

− j
√
κext

√
κ′
ext (δn,1â2 + δn,2â1)

− j
√
κext

√
κ′
ext (δn,N−1âN + δn,N âN−1)

− j
√
κext

√
κ′
ext (δn,1âout,L + δn,N âout,R)

− j
√
κext

√
κ′
ext (δn,2âout,L + δn,N−1âout,R) = 0,

(D5)

This allows us to write down the non-Hermitian Hamil-
tonian in the field basis A = {â1, â2, . . . , ân},
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FIG. 11. Coupling calibration for hexagonal CCA ge-
ometry. a. Schematic of the calibration design, with the
cavities in green, the coupling ports in blue, the capacitors
that are swept through the simulation in red, and the ground
plane in grey. Cw is the coupling capacitor width. b. Cou-
pling extracted from Sonnet simulations as a function of Cw

for different values of, fw, representing the finger and gap
width. The inset shows a zoom-in of the capacitor from panel
a, assuming Lk,□ = 100 pH/□.

HNon-Herm
n

ℏ
=



ωr − j κ1

2 J − j
√
κ′
ext

√
κext 0 . . . . . . 0

J − j
√

κ′
ext

√
κext ωr − j κ2

2 J
. . .

. . .
...

0 J ωr − j κ3

2 J
. . .

...
...

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . . ωr − j κN−1

2 J − j
√
κ′
ext

√
κext

0 . . . . . . . . . J − j
√

κ′
ext

√
κext ωr − j κN

2


. (D6)

Despite this non-Hermitian has been derived for a uni-
form CCA, this procedure is valid for any CCAs dis-
cussed in the manuscript. We use this non-Hermitian
Hamiltonian to extract the dissipation properties of the
resonators in the CCA. Before moving on to this part,
we show below how to obtain the scattering coefficients
of any CCA. One can conveniently define the scattering
coefficients as [78],

Skl =
aoutl

aink
= j

√
κext,kκext,l

[
M−1

]
kl
− δkl, (D7)

where κext,j and κext,l are the dissipation rates to the
output, k, and input, l, measurement ports, respectively.
[M ] is the equation of motion matrix defined as,

[M ] = [HNon-Herm
n ]− ω1. (D8)

Given our choice of coupling ports, we only measure the
scattering parameters SN1, S11, SNN and S1N , which we
call with the standard notation, S21, S11, S22 and S12.
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FIG. 12. Calibration of the resonant frequency for
multigap CCAs. a. Schematic of the calibration design,
with the capacitor of the cavity in green, the inductor swept
through the simulation in red, the coupling ports in blue, and
the ground plane in grey. b. Simulated resonant frequency
of the cavity as a function of the length of the inductor for
different spacing to coupling ports, dp, using Sonnet software
and assuming Lk,□ = 100 pH/□. The dots represent the res-
onant frequencies extracted from the simulation and the lines
are fits with Eq. (20).

2. Extracting dissipations

In order to extract the dissipation parameters of
the system, we use both the non-Hermitian Hamilto-
nian Eq. (D6) and the scattering matrix Eq. (D7). Fit-
ting the full scattering matrix is challenging, due to the
number of fitting parameters and the long computational
time of the full scattering matrix. We proceed instead
by extracting the dissipations mode by mode, modeling
each eigenmode as a single resonator with a certain ex-
ternal coupling (κMode

ext ) and internal loss rate (κMode
int ).

The reflection scattering parameter of a single mode can
be defined as

S11 = 1− κMode
ext

i∆+ (
κMode
ext

2 +
κMode⋆
int

2 )
= S22, (D9)

where κMode⋆
int is the extracted internal dissipation from

the fit, which also takes into account the dissipation to
the other coupled microwave waveguide, at the other end
of the CCA. Hence, we have κint = κMode⋆

int −κMode
ext , where

κint is the internal dissipation to the environments.
We can fit the total modes’ dissipation, κMode

tot =
κMode
int + κMode

ext with the complex part of the eigenvalues

of the non-Hermitian Hamiltonian, Eq. (D6), from which
we can extract the internal and external dissipations of
the cavities in the CCA. In Figs. 14 (c, f and i), we fit the
extracted dissipations for some representative devices in
the normal (J1 = J2), topologically trivial (J1 > J2) and
topologically non-trivial (J1 < J2) coupling configura-
tions. From this fit, we can observe a clear asymmetry in
the dissipations to the coupling port: the lower frequency
modes (lower passband) are less coupled than the upper
frequency modes (upper passband). We establish that
this effect is caused by, κ′

ext the coupling between the
microwave port and the second closest resonator to the
microwave ports. Even though κ′

ext ≈ 10 kHz ≪ κext, it
has a significant effect on the modes amplitudes. This ef-
fect is also qualitatively observable in all measured trans-
mission spectra in Fig. 2, Fig. 3, Fig. 23 and Fig. 24.

Appendix E: SSH

SSH states represent a unique category of symmetry
protected topological states that manifest in 1D systems
characterized by alternating hopping amplitudes. They
have been originally introduced in the realm of condensed
matter physics to describe the electronic structure of
polyacetylene chains, a 1D organic polymer [36]. For a
careful derivation of the SSH model and discussion of its
properties, we refer the reader to [37, 79].

1. SSH model and influence of second neighbor
coupling

In this section, we numerically model the devices mea-
sured in Fig. 3. Specifically, we study the evolution of
the energy spectra of the SSH CCA as a function of the
next nearest neighbor coupling, J ′, and the number of
resonators, N . The CCA in the SSH coupling config-
uration is described by the Hamiltonian Eq. (B8) with
J1 < J2. With the CCA in the SSH configuration and
J ′ = 0, we expect the formation of bulk bands separated
by 2|J2 − J1| and the presence of in-gap modes at the
center of the bandgap physically localized at the edges of
the CCA.
We are now going to consider the J ′ ̸= 0 term in

Eq. (B8) and study its effects on the spectrum of the
CCAs. In Eq. (B8) of the main text, we observe that
the action of J ′ in the Hamiltonian is proportional to τ0,
for J ′/J < 30% it should not influence qualitatively the
topological properties of the system [57]. We first study
how J ′ ̸= 0 modifies the SSH CCA spectrum (Fig. 16).
As already observed in the topologically trvial case (see
Fig. 8) we observe a compression of the low passband
together with an expension of the upper passband as a
function of J ′. In addition, while increasing J ′ the SSH
modes are also shifted with respect to the resonant fre-
quency of the CCA resonators, ωr/2π (see red line in
Fig. 16), up to the point where they cannot distinguished
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FIG. 13. Mode dispersion for multigap CCAs. a. (c., e.) CCA schematic of the unit cell of multigap designs used in
Fig. 2e with M = 3 (4, 5) cavities per unit cell, resulting in 2 (3, 4) bandgaps. b. (d., f.) Simulated mode dispersion for the 2
(3, 4) bandgap devices with N = 60 (56, 60) cavities, simulated with the Hamiltonian Eq. (18) presented in Methods Sec. VI.

FIG. 14. Fit of the dissipation for representative CCAs in the normal, trivial and topological configuration. a.
(d., g.) CCA schematic in the normal (trivial, topological) configuration. b. (e., h.) Magnitude of the reflection signal, |S11|,
of a CCA in the normal (trivial, topological) configuration with N = 64 (32,16), measured at low power. c. (f., i.) Internal
(blue), external (red) and total (green) dissipation rates fitted for each mode according to Eq. (D9). The green line is a fit of
the total dissipation of the modes, κMode

tot , according to the complex part of the eigenvalues of the non-Hermitian Hamiltonian
Eq. (D6).

from the bulk modes of the upper passband. J ′ also im-
pacts the modes’ spatial distribution, allowing for some
photonic population to extends into the neighboring sub-
cell, thereby breaking chiral symmetry, even in the ab-
sence of a τz term in the Hamiltonian in Eq. (B8). This

effect becomes stronger as J ′ is increased (Fig. 16).
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TABLE I. Table of quality factors of representative devices at low photon number. κMode
int and κMode

ext are the mean internal
and external dissipation rates of the modes of a CCA. κint is the internal dissipation rate of the cavities in the CCA. κext and
κ′
ext are the dissipation rates to the coupling ports from the closest and second closest cavity to the microwave ports. ωr is the

frequency of the cavities in the CCA.

Figure/Device ωr/κMode
int (×103) ωr/κMode

ext (×103) ωr/κint (×103) ωr/κext (×103) ωr/κ
′
ext (×103)

Fig. 2c/Left 20 100 11 4 1242

Fig. 2c/Middle 70 137 10 2.32 75

Fig. 2c/Right 8.6 9.5 24.6 107 49

Fig. 2d/Left 62 63 22 1.67 122

Fig. 2d/Right 85 120 33 2.73 169

Fig. 2e/Top 37 116 26 1.27 67

Fig. 2e/Bottom 41 144 26 1.5 35

Fig. 3d/16 34 29 12 1.48 145

Fig. 3f/16 75 30 35 1.1 363
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FIG. 15. Power dependence of the CCAs. a. Power scan of a CCA in the topological configuration with J2/J1 = 1.57 and
N = 16 measured in transmission. b. Zoom-in of the power scan on the SSH modes. c. Zoom-in of the power scan on a mode
of the bulk. The frequency span for both cuts is the same. d. Internal quality factors, ωr/κ

Mode
int , of representative bulk modes

as a function of the estimated photon number in the modes. The fitted modes are highlighted by the three red dashed lines
in panels a and c. e. Internal quality factors, ωr/κ

Mode
int , of a representative SSH mode as a function of the estimated photon

number. The mode is highlighted by the blue dashed lines in panels a and b.
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FIG. 16. Influence of second neighbor coupling on the
SSH modes. a. Eigenvalues for a CCA with N = 32 and
M = 2 in the topologically non-trivial coupling configuration,
calculated according to Eq. (B7) as a function of J ′/J , where
J = 1/2(J1 + J2). The modes frequencies are represented
as a function of the detuning ∆ω = ω − ωr. The red line
represents ω = ωr. For this simulation we have used, J1/2π =
160MHz, J2/2π = 240MHz and ωr/2π = 5GHz. The vertical
dashed line indicates the typical J ′/J for the rectangular CCA
geometry. b. Simulation results depicting the norm of the
spatial distribution of the symmetric SSH mode for various
strengths of second neighbor coupling are presented in a.

2. Amplitude of the SSH modes

In Figs. 3d and f one striking observation is repre-
sented by the drop in amplitude of the SSH modes for
CCAs measured in transmission (S21) as a function of
the number of resonators, N . Here, we model this effect
and show how it scales using the input/output formal-
ism introduced in App. D (Eq. (D7)). In Fig. 17, we
report the simulated |S21| in an SSH CCA characterized
by J2/J1 = 1.57 as a function of the number of cavities,
N . We clearly observe that, the amplitude of the SSH
modes drops drastically as a function of N until the SSH
modes are no more visible in transmission. This effect
can be intuitively explained from the nature of the SSH
modes. Indeed, due to their exponential localization at
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FIG. 17. Evolution of the CCA transmission in the
SSH configuration as a function of the number of cav-
ities. Input/output simulation using Eq. (D7) with Hamilto-
nian Eq. (18) of the evolution of the amplitude of the CCA
transmission, |S21|, in a CCA with J2/J1 = 1.57as a function
of the numbers of resonators, N . The inset with the red line
shows the evolution of the transmission of the symmetric SSH
mode as a function of the number of resonators, N .

the edges of the CCA, their interaction occurs primarily
through the overlap of the tails of their wavefunctions
within the bulk region. As the bulk size increases, the
overlap between these modes diminishes, leading to a re-
duction in hybridization between them. Consequently,
the effective photon hopping rate at the frequency of the
SSH modes, originating from the coupling of the two mi-
crowave ports on the side of the CCA, decreases, result-
ing in lower transmission. We anticipate a more rapid
decrease in transmission with respect to the number of
resonators, denoted as N , in the strongly localized con-
figuration.

Appendix F: Disorder

1. Influence of resonator frequency scattering on
the bulk modes

A qualitative way to understand how disorder affects
the spectrum of the CCA can be implemented by
simulating the CCA transmission, |S21|, while introduc-
ing scattering on the resonant frequencies induced by
Gaussian noise on the inductances, σL. In Fig. 18, we
plot a simulation of the transmission amplitude, |S21|, in
a uniform CCA with N = 50. The CCA parameters are
the one extracted from the CCA in Fig. 2b for different
values of Gaussian noise σL. In Fig. 18 we refer to
the applied noise as, σL→z, the disorder induced by σL
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FIG. 18. Simulation of the transmission, |S21|, in
a CCA with Gaussian disorder applied to the in-
ductances. From a. to d., transmission through CCAs
with N = 50 resonators (M = 1) with disorder values of
σL→z/fr = 0% (a), σL→z/fr = 0.2% (b), σL→z/fr = 0.4%
(c) and σL→z/fr = 0.5% (d), applied to the inductances of
the resonators. The simulation is performed using Hamilto-
nian Eq. (18) using the parameters of the device presented in
Fig. 3b and in Tab. II.

on the resonant frequency of the cavities in the CCA.
When no disorder is applied, the amplitude of the modes
follows the same trend as the eigenvalues of the complex
part of the non-Hermitian HamiltonianEq. (D6). As
we increase the disorder, we observe the appearance of
ripples in the mode’s amplitude and frequency deviation
from what is reported in Fig. 18a. This is due to the
fact that the resonators are not degenerate anymore.
From this simulated trend of the transmission spectrum,
we can safely establish that the disorder in our devices
is below σL→z/fr = 0.4%.

2. Influence of disorder on the SSH modes

Since the SSH modes are protected by chiral symme-
try, they are very sensitive to the chiral symmetry break-
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FIG. 19. Simulation of the influence of σz and σx dis-
order on the SSH modes splittings, ∆Topo. The simu-
lations are performed with a Hamiltonian on a CCA in the
SSH configuration with J2/J1 = 1.22. a. Splittings of the
SSH modes, ∆Topo, as a function of the number of resonators,
N , for different values of σz disorder (σx = 0). b. ∆Topo

as a function of N for different values of σx (σz = 0). c.
∆Topo as a function of the N for different values of σx disor-
der (σz = 0.2%fr).

ing terms in Hamiltonian Eq. (3). As discussed in the
main text, terms proportional to τz will break topologi-
cal protection. Such terms simply appear in the Hamilto-
nian due to frequency scattering between the resonators,
which naturally arise due to fabrication imperfection. In
Fig. 19, we simulate the effect of disorder on the SSH
modes’ hybridization, ∆Topo, as a function of the number
of resonators, N . The simulation is performed using the
Hamiltonian Eq. (18) in Methods, using the parameters
of the device in the SSH configuration with J2/J1 = 1.22.
The σL noise applied to the inductors induces both τz
and τx type of disorder, impacting respectively the reso-
nant frequency and the coupling of the resonators in the
CCA. Although τz-type disorder breaks chiral symmetry,
we anticipate that the SSH modes will still exhibit some
degree of resilience against τx-type disorder.

We study three cases: 1) σz ̸= 0 and σx = 0 (Fig. 19a),
2) σz = 0 and σx ̸= 0 (Fig. 19b), and 3) σz ̸= 0 and
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FIG. 20. Simulation of the influence of disorder on the SSH modes localization. a. (c., e.) Simulated mode
distribution of the norm of the antisymmetric (|ΨAS |) and symmetric (|ΨS |) SSH modes, for different disorder realizations.
The black boxes in c and e represent the mode distribution in the disorder-free case a. b. (d.,f.) Simulation of Arg(S11) and
Arg(S22) reflection spectrum for the same disorder realization as in a (c, e). The simulations are performed on CCAs with
N = 16 in the same configuration as the device presented in Fig. 3f of the main text.

σx ̸= 0 (Fig. 19c).
In Fig. 19a, we report the median of ∆Topo for dif-

ferent values of σz. For σz = 0, the disorder-free case,
one expects ∆Topo to decay exponentially as a function
N following Eq. (4). By introducing and increasing σz

disorder, we observe a saturation of ∆Topo as a function
of the number of cavities. This saturation value of ∆Topo

increases non-uniformly as a function of disorder σz.
In Fig. 19b, we implement the same study as above

but for τx type disorder.
We can observe a considerable deviation from the ex-

pected noiseless case just for high enough values of σx

and N .
In Fig. 19c, we apply both types of disorder at the

same time. We keep the disorder σz constant but sweep
σx. As expected, we observe a saturation of ∆N

Topo as
a function of N , which is independent from the magni-
tude of σx. This justifies why in the main text, we focus
only on τz type disorder. The disorder on the induc-
tance affects not only the SSH modes splitting but also
the spatial profile of the SSH modes as can be observed
in Fig. 20. Here, the effect of σL disorder is studied by
employing Hamiltonian Eq. (18) for N = 16 cavities with
J2/J1 = 1.57. In a disorder-free case, we expect the SSH
modes to hybridize and form a symmetric and an anti-
symmetric superposition, presenting equal norm on the
different CCA site (|ΨS | = |ΨAS |, see Fig. 20a). This
symmetry is also observed in the simulation according to
Eq. (D7) introduced in App. D of the phase of the re-

flected signal at the microwave ports, Arg(S11, S22) (see
Fig. 20b). From both ports, we find equal phase shifts
for the symmetric and antisymmetric SSH modes.
In the remaining panels of Fig. 20, we report two in-

dependent realization of disordered scenarios of the SSH
modes with σL→z = 10MHz. In Fig. 20c and e, we show
|ΨAS | and (|ΨS |) for the two instances of disorder, re-
spectively. We observe that the disorder will randomly
change the localization of the modes, making them asym-
metric. This behavior is again reflected in Arg(S11, S22),
as reported in Fig. 20d and Fig. 20f, respectively corre-
sponding to SSH mode profile in Figs. 20c and e. We can
observe a clear asymmetry in the phase shifts from the
two microwave ports, which suggest a stronger localiza-
tion of both SSH modes, on one side or the other of the
CCA, as opposed to the disorder-free case (Fig. 20b).

3. Influence on the parameter estimation

The estimation of the parameters extracted from the
spectra of the CCAs using the model described in Meth-
ods Sec. VI can be affected by disorder. In order to get
an estimation of the error on the extracted parameters,
we perform a statistical analysis of the fitting method
implemented as explained here below (Fig. 21).
We simulate using the Hamiltonian Eq. (18) of a CCA

with N = 32 cavities for the two SSH coupling configu-
rations introduced in the main text (J2/J1 = 1.22 and
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FIG. 21. Simulation of the influence of disorder on the estimation of parameters. Statistical simulation of the
influence of disorder on the inductance σL, for a N = 32 CCA, on the estimation of a., the inductance to ground, Lg, b., the
capacitance to ground Cg, c., the intracell capacitance C1, d., the intercell capacitance C2, e., the second nearest neighbor
coupling capacitance ratio C′/Cc and f., the third nearest neighbor coupling capacitance ratio C′′/Cc. The left (blue) and
right (orange) panels of each subfigure represent the weak and strong coupling configuration J2/J1 = 1.22 and J2/J1 = 1.57,
respectively, as in Fig. 3. The continuous lines represent the median of the extracted parameters, and the shaded areas represent
the 1σ uncertainty. The horizontal dashed lines represent the initial parameters set in the simulation.

J2/J1 = 1.57). We introduce a frequency scattering on
the cavities by applying a Gaussian noise, σL, on the in-
ductances of the resonators. For each value of disorder
σL, we perform 500 fits. In Fig. 21, we report the fitted
parameters as a function of σL. For all parameters ex-
cept the inductance, which is a fixed-fitting parameter,
we observe a deviation from the initial parameters of the
simulated CCAs in absence of disorder. For the typical
disorder extracted in our study σL/Lg = 0.44+0.09

−0.06 (high-
lighted by the black dashed lines in Figs. 21b, c and d),
we find an error of approximately 10 aF for the capaci-
tances and 0.1% for the capacitance ratios (Figs. 21e and
f).

Appendix G: Time-domain measurements

In this section, we describe how the time-resolved mea-
surements of the SSH modes are performed and analyzed.

As described in the main text, the measurement is im-
plemented by sending a Gaussian pulse from one of the
edges of the CCA at a frequency in the middle of the
two SSH modes. The signal is acquired throughout the
full pulse sequence, i.e. before and after the excitation
pulse, from both sides of the CCA. It is then demodu-
lated at the frequency at which the pulse is sent. The
demodulated reflected or transmitted signal, away from

the pulse, is expected to take the form [80]

|S11|(t) = e−κ1t| cos (gt+ φ1)|, (G1)

|S21|(t) = e−κ2t| sin (gt+ φ2)|, (G2)

with κ1 and κ2 being the total dissipations of SSH modes
1 and 2. We use this equation to fit the beating profiles
presented in Fig. 4c of the main text.
The pulse width and shape need to be carefully cal-

ibrated to avoid spurious frequency components excit-
ing the other modes of the CCA. In Fig. 22, we show
two cases of a Gaussian pulse applied to a CCA with
N = 26 and J2/J1 = 1.22 (shown in Fig. 4 of the main
text) for different pulse length of 24 ns(Fig. 22b) and
144 ns (Fig. 22c) as a function of the pulse frequency.
The beating pattern developed by the shorter pulse is
larger because its frequency components can excite the
SSH modes even when detuned from the midpoint of the
two SSH modes. For the pulse with longer length, the
beating pattern is only happening, as expected, between
the SSH modes.

Appendix H: Extra data

In this section, we show measurements of some extra
devices similar to the one shown in the main text.
In Fig. 23, we show devices associated with Fig. 2c. In

Fig. 23a, we display spectra of devices with M = 1 and
N = 16, 32 and 64 cavities with the rectangular design.
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FIG. 22. Calibration of the time resolved measure-
ments. a. Gaussian pulse sent for the calibration measure-
ment. b. (Top) Time-resolved measurement as a function of
the frequency of the applied pulse, for a pulse length of 24 ns
on a CCA with 26 cavities in the configuration J2/J1 = 1.22.
(Bottom) Line-cut at the position of the red dashed line
(Top). c. (Top) Time-resolved measurement as a function of
the frequency of the applied pulse, for a pulse length of 144 ns
on a CCA with 26 cavities in the configuration J2/J1 = 1.22.
(Bottom) Line-cut at the position of the red dashed line
(Top).

Figs. 23b and c, exhibit several measurements of
CCAs featuring hexagonal geometry with M = 1 and
N = 26, 42 and 64. In panel b, we can observe multi-
ple spurious modes starting from 11GHz on three dis-
tinct CCAs. In panel c, we report the amplitude of the
transmission, |S21| of the same device measured during
a separate cooldown. Here, while the additional modes
at 11GHz are no longer visible, other spurious effects
emerge around 9.5GHz. These observations lead us to
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FIG. 23. Extra spectra of CCAs with M = 1 a. Trans-
mission measurements, |S21|, from a uniform rectangular
CCA (M = 1) with N = 16, 32, 64 and J/2π = 180MHz.
b Transmission measurements, |S21|, from a uniform hexago-
nal CCA (M = 1) with N = 26, 42, 64 and J/2π = 1200MHz.
Partially reproduced in Fig. 2c. b. Same device measured in
a different cooldown, with different sample packaging.

conclude that these spurious modes are not intrinsic to
the devices themselves.
In Fig. 24, we show |S21| for all the SSH-CCA used in

the disorder analysis reported in Fig. 4.

Appendix I: Measurement setup

A schematic of the measurement setup is depicted in
Fig. 25. A simplified version of the cryogenic setup is
presented in Fig. 25a. The device is thermally anchored
to the mixing chamber plate of a commercial dry dilution
cryostat (Bluefors-LD) at a temperature of 10mK. Mul-
tiple devices can be measured in a single cooldown both
in reflection and transmission making use of cryogenic cir-
culators (LNF-CICI48A) and cryogenic switches (Radiall
R577432000). The input lines are attenuated with cryo-
genic attenuators at different stages of the cryostat, as
reported in Fig. 25a. The signal output from the device
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FIG. 24. Spectrum of SSH CCA used in Fig. 4 a. Amplitude of the CCA transmission, |S21|, of devices of batch C.
b. Amplitude of the CCA transmission, |S21|, of devices of batch D. c. Amplitude of the CCA transmission, |S21|, of devices
of batch E. d. Amplitude of the CCA transmission, |S21|, of devices of batch F. The strong and light blue colors highlight
devices in the configuration J2/J1 = 1.22 and J2/J1 = 1.57 configurations, respectively. The CCAs in batches C and D are
fabricated with a different number of resonators (N = 14, 18, 22, 26, 30). Batch E and F consist of 6 repetitions of identical CCA
with N = 32. The red labels highlight spectra of CCAs presenting strong local disorder identified according to time-resolved
measurements (see Sec. IV of the main text).

goes through one circulator and three isolators before be-
ing amplified at 4K with a HEMT amplifier (LNF-LNC4-
8C). The signal is then further amplified at room tem-
perature with a low-noise amplifier (Agile AMT-A0284).
The full scattering matrix of the devices is characterized
using an R&S ZNB20 vector network analyzer (VNA)
(Fig. 25b).
We used arbitrary waveform generators (AWG) and Digi-
tizers from an OPX+ from Quantum Machine, for imple-
menting time-resolved measurements. This measurement
consists of sending a Gaussian pulse at an intermediate
frequency from the AWG OPX+ (see Fig. 25c); it is then

up-converted at room temperature with an IQ mixer in
the Octave (Quantum-machine) and sent down to the
sample. After amplification, the reflected and transmit-
ted signals are down-converted by an IQ mixer in the
Octave (Quantum-machine) and then digitized in the
OPX+ module. Finally, the signal is demodulated to
DC in slices of 4 ns and averaged over 20,000 repetitions.

Appendix J: Tables of parameters



29

O
ut

pu
t 1

In
pu

t 2
-2

0
-1

0
-1

0

-X

10 mK

100 mK

850 mK

3.2 K

45 K

300 K

-2
0

HEMT LNA
LNF-LNC4_8C

RT LNA
Agile AMT-A0284

Cryogenic 
Attenuator

Circulator
LNF-CICIC4_8A

Insulator 
LNF-ISISC4_8A

DUT

Vector Network Analyzer, ZNB20

In
pu

t 1

O
ut

pu
t 1

Microwave Switch
R591723605

O
ut

pu
t 2

In
pu

t 1
-2

0
-1

0
-1

0
-2

0

In
pu

t 2

O
ut

pu
t 2

LO LO

AD
C

LO

AD
C

LO

I Q I Q I Q I Q
QM

Octave

QM
OPX+

In
pu

t 1

O
ut

pu
t 1

O
ut

pu
t 2

In
pu

t 2

a

c

b
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TABLE II. Table of extracted CCA parameters for Fig. 2. The parameters are defined as follow: N is the number of cavities in
the CCA. L⃗g is the inductance or inductances to ground if M > 2. C⃗g is the capacitance to ground or capacitances to ground

if M > 2. C⃗c is the coupling or coupling capacitances if M > 1. ωr/2π is the resonant frequency of the cavities. Zr is the

estimated impedance of the cavities in the array. J⃗ is the coupling or couplings between the cavities if M > 1. C′/C̄c is the
second nearest neighbor capacitance over Cc. C

′′/C̄c is the third nearest neighbor capacitance over Cc.

Panel N L⃗g (nH) C⃗g (fF) C⃗c (fF) ωr/2π (GHz) Zr (kΩ) J⃗ (MHz) C′/C̄ (%) C′′/C̄ (%)

25 30.25 13.02 1.14 7.43 1.52 280 5.98 1.24

b 50 30.25 13.02 1.14 7.43 1.52 280 5.91 1.16

100 30.25 13 1.14 7.43 1.52 280 5.88 1.23

51 65.8 16.09 0.4 4.77 2.02 57 6.73 2.03

c 64 65.8 12 0.8 5.32 2.34 164 4.9 1.89

64 18.8 10.9 6.09 8.09 0.9 1164 0.01 0.01

d
32 56.56 16.36

1.48
1.24

4.86 1.72
191
160

5.91 2.03

32 48.104 14.02
1.20
0.77

5.75 1.73
217
141

6.24 2.57

60
46.43
44.05

13.93
14.03

1.19
1.19
0.76

5.874 1.7
214
226
144

5.99 1.33

e 56
46.43
48.88

13.63
13.78

1.03
1.03
0.86
1.03

5.91 1.77

197
168
164
160

5.31 0.76

60
46.43
44.05

13.36
14.83

1.16
1.16
1.16
1.16
0.81

5.91 1.77

200
192
192
190
164

6.02 0.68

TABLE III. Table of extracted CCA parameters for Fig. 3. The parameters are defined as follow: N is the number of cavities
in the CCA. L⃗g is the inductance or inductances to ground if M > 2. C⃗g is the capacitance to ground or capacitances to

ground if M > 2. C⃗c is the coupling or coupling capacitances if M > 1. ωr/2π is the resonant frequency of the cavities. Zr is

the estimated impedance of the cavities in the array. J⃗ is the coupling or couplings between the cavities if M > 1. C′/C̄c is
the second nearest neighbor capacitance over Cc. C

′′/C̄c is the third nearest neighbor capacitance over Cc.

Panel/Batch N L⃗g (nH) C⃗g (fF) C⃗c (fF) ωr/2π (GHz) Zr (kΩ) J⃗ (MHz) C′/C̄ (%) C′′/C̄ (%)

16 56.28 14.94
1.13
1.35

5.1 1.8
168
200

6.04 2.32

d/A 32 56.28 14.99
1.13
1.37

5.09 1.79
166
201

5.78 2.88

64 56.28 15
1.13
1.36

5.09 1.79
166
200

5.89 2.47

16 49.39 13.64
0.75
1.17

5.75 1.78
141
218

6.83 2.42

e/B 32 49.39 13.89
0.76
1.19

5.70 1.76
140
215

6.34 2.55

64 49.39 13.81
0.76
1.18

5.72 1.77
141
216

6.44 2.47
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TABLE IV. Table of extracted CCA parameters for Fig. 4. The parameters are defined as follow: N is the number of cavities
in the CCA. L⃗g is the inductance or inductances to ground if M > 2. C⃗g is the capacitance to ground or capacitances to

ground if M > 2. C⃗c is the coupling or coupling capacitances if M > 1. ωr/2π is the resonant frequency of the cavities. Zr is

the estimated impedance of the cavities in the array. J⃗ is the coupling or couplings between the cavities if M > 1. C′/C̄c is
the second nearest neighbor capacitance over Cc. C

′′/C̄c is the third nearest neighbor capacitance over Cc.

Batch N L⃗g (nH) C⃗g (fF) C⃗c (fF) ωr/2π (GHz) Zr (kΩ) J⃗ (MHz) C′/C̄ (%) C′′/C̄ (%)

14 56.22 14.92
1.18
1.41

5.09 1.79
174
207

5.17 0.77

18 56.22 14.82
1.16
1.41

5.11 1.79
173
209

4.72 0.9

C 22 56.22 14.67
1.21
1.33

5.13 1.81
182
200

5.78 0.5

26 56.22 15.06
1.18
1.44

5.06 1.78
171
208

5.51 1.24

30 56.22 14.95
1.17
1.42

5.09 1.79
172
208

5.29 0.74

14 56.05 13.98
0.78
1.20

5.33 1.87
131
202

5.69 0.44

18 56.05 13.81
0.9
1.07

5.36 1.88
155
184

6.29 0

D 22 56.05 13.77
0.76
1.18

5.37 1.88
133
204

5.6 0.4

26 56.05 14.01
0.78
1.21

5.33 1.87
132
203

6.13 1.16

30 56.05 13.95
0.77
1.20

5.34 1.87
132
203

5.75 0.72

32 48.10 13.84
0.76
1.18

6.07 1.66
150
230

6.33 2.43

32 48.10 13.78
0.76
1.18

6.08 1.67
150
230

6.35 2.41

E 32 48.10 13.65
0.75
1.17

6.11 1.67
150
231

6.41 2.37

32 48.10 13.78
0.76
1.18

6.07 1.66
150
230

6.36 2.41

32 48.10 13.87
0.76
1.19

6.08 1.66
150
230

6.25 2.43

32 48.10 13.87
0.76
1.18

6.1 1.67
151
232

6.58 2.28

32 48.10 13.84
0.76
1.18

6.31 1.60
155
238

6.38 2.52

32 48.10 13.79
0.76
1.18

6.32 1.61
155
239

6.33 2.51

F 32 48.10 13.68
0.76
1.17

6.35 1.61
156
240

6.33 2.54

32 48.10 13.84
0.77
1.19

6.32 1.61
155
239

6.32 2.52

32 48.10 13.83
0.77
1.19

6.30 1.60
155
238

6.19 2.56

32 48.10 13.72
0.76
1.18

6.30 1.60
155
237

6.26 2.72
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