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Abstract—Cytology plays a crucial role in lung cancer 

diagnosis. Pulmonary cytology involves cell 
morphological characterization in the specimen and 
reporting the corresponding findings, which are extremely 
burdensome tasks. In this study, we propose a 
report-generation technique for lung cytology images. In 
total, 71 benign and 135 malignant pulmonary cytology 
specimens were collected. Patch images were extracted 
from the captured specimen images, and the findings were 
assigned to each image as a dataset for report generation. 
The proposed method consists of a vision model and a 
text decoder. In the former, a convolutional neural network 
(CNN) is used to classify a given image as benign or 
malignant, and the features related to the image are 
extracted from the intermediate layer. Independent text 
decoders for benign and malignant cells are prepared for 
text generation, and the text decoder switches according 
to the CNN classification results. The text decoder is 
configured using a Transformer that uses the features 
obtained from the CNN for report generation. Based on the 
evaluation results, the sensitivity and specificity were 
100% and 96.4%, respectively, for automated benign and 
malignant case classification, and the saliency map 
indicated characteristic benign and malignant areas. The 
grammar and style of the generated texts were confirmed 
as correct and in better agreement with gold standard 
compared to existing LLM-based image-captioning 
methods and single-text-decoder ablation model. These 
results indicate that the proposed method is useful for 
pulmonary cytology classification and reporting. 

Index Terms—Convolutional neural network, cytology, deep 
learning, image captioning, report generation, Transformer  
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I. Introduction 
ANCER statistics show that lung cancer has the highest 
incidence and death rate among all cancers [1]. In addition 

to surgery, effective methods for treating lung cancer, including 
radiotherapy and chemotherapy, have been developed. Early 
and accurate diagnosis is necessary to obtain good therapeutic 
outcomes with these treatment modalities. 

Pathological diagnosis, which involves cytological and 
histological analyses, plays an important role in detailed lung 
cancer diagnosis. In cytological diagnosis, a specimen is 
prepared from cells collected via bronchoscopy or other 
procedures, and a cytotechnologists or cytopathologists uses a 
microscope to observe the cell nucleus, cytoplasm, and cell 
arrangement to distinguish benign from malignant cases and 
determine the histological type; the results are then described in 
a report. However, cytological diagnosis is time-consuming 
and burdensome because it is extremely complicated and 
requires the observation of a large number of cells under a 
microscope while writing reports. If the image analysis and 
report generation processes could be automated, the diagnosis 
efficiency would improve, and the burden associated with 
diagnosis could be greatly reduced. 

Various classification methods have been developed for 
cytology. Zhang et al. [2] proposed a convolutional neural 
network (CNN)-based cervical cell classification method. 
Fine-tuning of the CNN pre-trained on ImageNet using two 
datasets resulted in a 98.3% classification accuracy. Gelardi et 
al. [3] used a three-block CNN to classify nasal cytology 
images and obtained a 99.0% classification accuracy. Bal et al. 
[4] used a CNN to differentiate ductal carcinoma of the breast 
using hematoxylin and eosin (HE)- and Giemsa-stained breast 
specimens; the classification accuracy for the HE- and 
Giemsa-stained specimens was 96.5% and 97.5%, respectively. 
In contrast, we focused on lung cytology and conducted several 
studies. First, a simple five-layer CNN was used to classify the 
lung cancer tissue types in Papanicolaou-stained lung 
specimens [5]; obtaining a classification accuracy of 71.1%. 
Subsequently, by integrating the results of fine-tuning multiple 
pre-trained CNNs, the classification accuracy improved to 
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78.9% [6]. In addition, the pre-trained CNNs were used for 
benign and malignant lung cell classification, and a 
classification accuracy of 79.2% was obtained [7]. Moreover, 
as the first cytology study using generative artificial 
intelligence (AI), we proposed a method using images 
generated by generative adversarial networks and classification 
accuracy was improved to 85.3% [8]. 

Several studies have been conducted to generate diagnostic 
reports using radiological images. For example, Wang et al. [9] 
proposed a report-generation method with a network 
combining a CNN and a recurrent neural network (RNN), 
which was evaluated using the ChestXRay-14 dataset with a 
BLEU-1 of 0.286 and ROUGE-L of 0.226 [9]. Hou et al. [10] 
proposed a report-generation method that combined a CNN and 
Transformer. DenseNet121 was used as the CNN and its 
features were used in the Transformer to generate text 
sentences, with evaluation results of 0.232 for BLEU-1 and 
0.240 for ROUGE-L. Studies on report generation for 
pathological images have been conducted on histological 
images. Zhou et al. [11] used a graph-neural network and 
Transformer to analyze histological images of urothelial 
papillary carcinoma and the structural cell information 
extracted from them to generate a report. The accuracy of this 
report was 0.608 for BLEU-4 and 0.409 for SPICE, with a 
classification accuracy of 79.0%. 

To the best of our knowledge, no report-generation method 
for cytological images has been reported to date. In this paper, 
we propose a hybrid scheme for diagnosis and report generation 
for lung cytological images that combines our previously 
developed classification method [7] with a text-generation 
method. The main contributions of this study can be 
summarized as follows. 
1) A report-generation method for cytology specimens. 
2) We propose an end-to-end model consisting of a 

cell-classification model and a Transformer-based text 
decoder that is selected based on the results. 

3) A highly accurate classification model improves the 
diagnostic accuracy and generates higher-quality reports than 
existing image captioning methods. 

4) The proposed model provides classification results, reports, 
and saliency maps, and can be used as a support tool for 
cytological diagnosis in terms of understanding, transparency, 
and accuracy. 

II. METHODS 
A. Outline 

An overview of the proposed scheme is shown in Fig. 1. The 
vision model uses a CNN fine-tuned using cytological images 
to distinguish malignant from benign cells and extracts features 
for text decoders. Based on the CNN classification results, text 
decoders (Text Decoders #1 and #2) are invoked for benign and 
malignant cells, and a report is generated based on the CNN 
features. The saliency map generated by the Grad-CAM is also 
exported to the report. To confirm the effectiveness of the 
proposed method, we compared it with a model with a 
single-text decoder and existing state-of-the-art (SOTA) 

image-captioning models. Cytological images are provided to 
the CNN, which classifies them as benign or malignant. Based 
on the results, the two text decoders are switched and a report is 
generated based on the CNN-provided image features. 
 

 
B. Dataset 

This study was conducted as a retrospective study with 
approval from the Institutional Review Board of Fujita Health 
University (IRB No. HM23-390). Informed consent was 
obtained from all patients under data anonymization. All 
experimental protocols were performed in compliance with the 
Declaration of Helsinki and in accordance with relevant 
guidelines and regulations. In this study, lung cells were 
collected from 206 patients via interventional cytology, using 
either bronchoscopy or computed-tomography-guided 
fine-needle aspiration cytology; the collected cells consisted of 
71 benign and 135 malignant cases. The malignant cases 
included 83 adenocarcinomas and 52 squamous cell 
carcinomas. These diagnoses were combined with the 
histological analysis of the biopsy specimens for the final 
determination. Biopsy tissues were collected at the same time 
as the cytology specimens, fixed in 10% formalin, dehydrated, 
and embedded in paraffin. The cytological specimens were 
prepared via liquid-based cytology using the BD SurePathTM 
liquid-based Pap test (Beckton Dickinson, Franklin Lakes, NJ, 
USA) and stained using the Papanicolaou method. A 
microscope (BX53, Olympus Corporation, Tokyo, Japan) 
attached to a digital camera (DP20, Olympus Corporation) was 
used to acquire 219 microscopic benign cell images and 460 
malignant cell images in JPEG format with a size of 1280 × 960 
pixels. 

To construct the image dataset for report generation, a 
cytotechnologist and cytopathologist extracted a 296 × 
296-pixel patch image of the area where cells were present 
from the original microscopic image, as shown in Fig. 2. The 
final dataset consisted of 797 patch images, with 325 benign 
and 472 malignant cell images. Microscopic findings were then 
prepared for these images to describe the cell type, shape of the 
cell nucleus, cell arrangement, and background, which 
represented conditions other than the target cells. The method 
used to describe the findings was based on the World Health 
Organization (WHO) reporting system for lung cytopathology 
[12]. A sample of the dataset is shown in Fig. 3. 

Finally, the datasets are randomly divided into training and 
evaluation datasets. The training dataset consisted of 270 
images from 57 benign cases and 377 images from 108 
malignant cases, while the evaluation dataset consisted of 55 
images from 14 benign cases and 95 images from 27 malignant 
cases. Images of the same patient were not mixed in the training 
and evaluation datasets. 

 
Fig. 1.  Outline of the proposed report-generation scheme. 
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C. Vison Model 

Vision models have multiple roles. First, a given patch image 
is classified as benign or malignant. Fig. 4 shows the structure 
of the CNN-based visual model used in this study. For the CNN 
architecture, we introduced VGG16 [13], InceptionV3 [14], 
ResNet50 [15], and DenseNet121 [16], which are existing 
SOTA models. The parameters of these CNNs were pre-trained 
using the ImageNet dataset. The fully connected layers of the 
original CNNs were replaced with ones comprising 1024 units 
and 3units; and the entire network was fine-tuned using actual 
patch images. The images were rotated 90° for data 
augmentation during training. 

For classification using CNNs, to see the regions of interest 
along with the output report, we used Grad-CAM to obtain a 
saliency map [17]. When a CNN is used for classification into 
two classes, the background area, where no object exists, may 
have a high value on the saliency map. To focus on the target 
benign and malignant cells for analysis, we added one category 
for no cells, similar to object detection models [18]. In addition 
to benign and malignant images, 300 background images 
without lung cells were prepared, and a CNN was trained to 
classify these three categories. The benign and malignant cell 
probabilities were compared and the category with the highest 
probability was used as the classification result.  

In the training of each CNN model used in this study, we 
used the Adam optimization algorithm, a learning coefficient of 
1.0×10-5, a batch size of 16, and a fixed number of 50 training 
epochs, after which the training was terminated automatically if 
the validation error did not improve. A CNN classifies images 
into benign, malignant, and background. The features obtained 
from the intermediate layer are used in the text decoder.  

 

 
D. Text Decoder 

The text decoder outputs the text based on the image features 
provided by the vision model. Before being input into the text 
decoder, the text provided as training data was divided into 
tokens by separating them with spaces and punctuation marks. 
Then, each token was converted into an integer value using a 
vectorizer, which also provided positional information to 
vectorize the text. Next, the text was decoded using a 
Transformer with multiple Transformer layers, as shown in Fig. 
5. Each layer consisted of a multi-headed causal self-attention 
layer, a cross-attention layer, and a fully connected layer with 
512-256 units. Finally, the output-vectorized text was 
converted into words using the reverse tokenization procedure 
to obtain the final text. 

In this study, two text decoders specializing in benign and 
malignant cells were implemented, and the decoder was 
switched according to the classification results of the vision 
model. Each decoder was trained to generate reports only for 
benign and malignant cells, and the learning parameters for the 
text decoder were the Adam optimization algorithm and a 
learning coefficient of 1.0×10-4. Regarding the number of 
training epochs, training was terminated if the validation error 
did not improve after 100 epochs. 

 

 
E. Evaluation Metrics 

We evaluated the classification performance of the CNNs 
used in the proposed method and the quality of the 
report-generation model. First, to evaluate the CNN 
performance for classifying benign and malignant cases, we 
performed five iterations with multiple CNN-based SOTA 
models and calculated their detection sensitivity, specificity, 
and average (balanced accuracy). Based on the results, we 
selected the CNN-based model to be used in the vision model of 
the proposed method. 

Next, we evaluated the image-captioning techniques by 
assessing the agreement between the ideal and generated 
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Fig. 2.  Preparation of patch images and the report. Cytology 
specimens were taken under a microscope, and experts selected the 
areas of the specimens that should be output as a report and converted 
into a patch image. A report corresponding to each image was then 
prepared. 
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There are small clusters of columnar 
epithelial cells.

Report (Microscopic findings)

 
Fig. 3.  Four examples of patch images and the corresponding report 
description in our dataset. 

The background is relatively clean. 
There is the clusters of columnar epithelial cells

There are columnar epithelial cells in the inflammatory 
background.

There are adenocarcinoma cells with hyperchromatic 
nucleus, nucleus with irregular shape, pale cytoplasm, 
promient nucleoli, filled with foamy mucus.

There are squamous cell carcinoma cells with keratinized 
squamous cell, hyperchromatic nucleus, nucleus with 
irregular shape.

 
Fig. 4.  Structure of the vision model. 
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Fig. 5.  Text decoder structure. The Transformer layer consists of a 
multi-head causal self-attention layer, a cross-attention layer, and a 
feed forward network. The output is the vectorized text. 
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reports using five metrics: BLEU [19], METEOR [20], 
ROUGE [21], CIDEr [22], and SPICE [23]. 

The number of layers and heads of the Transformer used for 
text decoding can vary, and the performance of the proposed 
method changes accordingly. Therefore, we evaluated the 
performance of the proposed method by varying the number of 
layers between one, two, and three, and the number of heads 
between two, four, and six. 

As an ablation study, we also built a single-text decoder 
model of the proposed method that was shared by both the 
benign and malignant cells and compared the performance of 
the proposed method's Transformer. The aforementioned 
number of heads and layers of the Transformer were also 
optimized in the same manner as in the proposed method.  

In addition, we fine-tuned the major captioning models, 
namely, GIT [24], BLIP [25], and BLIP2 [26], using large 
natural language models (LLMs) and compared them with the 
proposed method. For GIT and BLIP, we used the Base and 
Large models, while for BLIP2, we used a model incorporating 
OPT [27] with parameters of 2.7B and 6.7B as the LLM. For 
these processes, a PC with an NVIDIA RTX 6000Ada GPU and 
an AMD Ryzen9 CPU was used. 

III. RESULTS 
Table I presents the classification performance evaluation 

results for the CNN used as the vision model. In this evaluation, 
fivefold cross-validation was repeated five times using the 
training data, and the average and standard deviations of the 
sensitivity, specificity, and balanced accuracy were obtained. 
By comparing the classification performance of the multiple 
CNN models, it was found that the balanced accuracy did not 
differ significantly among the models. Considering the 
importance of sensitivity in classifying benign and malignant 
cases, it was determined that ResNet50 was the best CNN 
model for use as a vision encoder. 

Subsequently, ResNet50 was trained using all the training 
data prepared in this study, and the confusion matrix of the 
classification procedure was calculated using the test data, as 
presented in Table II. The sensitivity and specificity for 

detecting malignant cells were 100% and 98.1%, respectively. 
 

 

 
Next, we processed and evaluated the entire 

report-generation method, using ResNet50 as the CNN for the 
vision model and changing the number of layers and heads used 
in the Transformer. Table III presents the evaluation accuracy 
results for the reports generated using BLEU, ROUGE, 
METEOR, CIDEr, and SPICE. As the proposed method uses 
different text decoders for benign and malignant cells, the 
evaluation was divided into benign and malignant cell cases. 
For benign cells, the smallest model with one layer and two 
heads exhibited the best generated text output, whereas for 
malignant cells, the model with two layers and four heads 
exhibited the best performance. 

Table IV presents the evaluation results for the proposed 
method, the single-text decoder prepared as an ablation study, 
and the existing SOTA image-captioning models, including 
GIT, BLIP, and BLIP2. The Hugging-Face library was used to 
implement the captioning process using GIT, BLIP, and BLIP2. 

 

 

TABLE I 
CLASSIFICATION PERFORMANCE OF THE CNNS FOR THE VISION MODEL 

CNN MODEL SENSITIVITY SPECIFICITY BALANCED 
ACCURACY 

RESNET50 0.981±0.019 0.938±0.046 0.958±0.024 

VGG16 0.979±0.015 0.989±0.010 0.962±0.027 

INCEPTIONV3 0.924±0.029 0.924±0.047 0.953±0.025 

DENSENET121 0.966±0.040 0.924±0.076 0.945±0.035 

 
TABLE II 

CLASSIFICATION CONFUSION MATRIX (RESNET50) 
 PREDICTED 

BENIGN MALIGNANCY 

ACTUAL 
BENIGN 54 1 

MALIGNANCY 0 95 
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TABLE III 
NETWORK STRUCTURE OPTIMIZATION IN THE TEXT DECODER 

  BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr SPICE 

LAYER 1 
HEAD 2 

BENIGN 0.959 0.950 0.941 0.932 0.683 0.966 8.509 0.946 

MALIGNANT 0.850 0.798 0.749 0.714 0.487 0.841 4.598 0.715 

LAYER 1 
HEAD 4 

BENIGN 0.961 0.950 0.939 0.928 0.671 0.965 8.170 0.942 

MALIGNANT 0.849 0.796 0.746 0.712 0.485 0.835 4.419 0.684 

LAYER 1 
HEAD 6 

BENIGN 0.950 0.938 0.926 0.914 0.653 0.950 7.976 0.920 

MALIGNANT 0.852 0.797 0.744 0.709 0.486 0.837 4.651 0.723 

LAYER 2 
HEAD 2 

BENIGN 0.959 0.949 0.939 0.928 0.675 0.966 8.340 0.943 

MALIGNANT 0.847 0.791 0.736 0.699 0.481 0.835 4.459 0.717 

LAYER 2 
HEAD 4 

BENIGN 0.944 0.926 0.908 0.888 0.623 0.943 7.103 0.906 

MALIGNANT 0.853 0.804 0.756 0.724 0.494 0.844 4.883 0.718 

LAYER 2 
HEAD 6 

BENIGN 0.950 0.933 0.917 0.901 0.637 0.946 7.539 0.925 

MALIGNANT 0.853 0.800 0.749 0.714 0.489 0.842 4.735 0.710 

LAYER 3 
HEAD 2 

BENIGN 0.954 0.939 0.923 0.905 0.639 0.956 7.297 0.922 

MALIGNANT 0.824 0.767 0.710 0.672 0.462 0.814 4.025 0.674 

LAYER 3 
HEAD 4 

BENIGN 0.949 0.938 0.927 0.916 0.668 0.957 8.230 0.938 

MALIGNANT 0.852 0.799 0.748 0.713 0.488 0.842 4.704 0.721 

LAYER 3 
HEAD 6 

BENIGN 0.940 0.924 0.908 0.891 0.627 0.941 7.273 0.902 

MALIGNANT 0.841 0.787 0.736 0.700 0.480 0.833 4.563 0.702 
In the Transformer for benign and malignant tumors, as shown in Fig. 5, the numbers of layers and heads were changed to 

assess the accuracy of the report. The indexes other than CIDEr have higher performance as they approach 1, and the larger the 
CIDEr, the higher the performance. 
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TABLE IV 
PERFORMANCE COMPARISON BETWEEN THE PROPOSED METHOD AND SOTA MODELS 

  BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr SPICE 

Proposed 
Method 

BENIGN 0.959 0.950 0.941 0.932 0.683 0.966 8.509 0.946 
MALIGNANT 0.853 0.804 0.756 0.724 0.494 0.844 4.883 0.718 
BALANCED 0.906 0.877 0.849 0.828 0.589 0.905 6.696 0.832 

CNN + 
single text 
decoder 

BENIGN 0.959 0.948 0.937 0.927 0.670 0.960 8.339 0.945 
MALIGNANT 0.835 0.777 0.722 0.685 0.471 0.816 4.370 0.689 
BALANCED 0.897 0.863 0.830 0.806 0.571 0.888 6.355 0.817 

GIT Base 
BENIGN 0.940 0.924 0.911 0.899 0.636 0.935 7.976 0.921 
MALIGNANT 0.810 0.745 0.681 0.633 0.446 0.797 3.139 0.676 
BALANCED 0.875 0.835 0.796 0.766 0.541 0.866 5.558 0.799 

GIT Large 
BENIGN 0.941 0.926 0.911 0.897 0.633 0.939 7.554 0.913 
MALIGNANT 0.821 0.752 0.685 0.636 0.448 0.803 3.073 0.691 
BALANCED 0.881 0.839 0.798 0.767 0.541 0.871 5.314 0.802 

BLIP Base 
BENIGN 0.971 0.962 0.952 0.942 0.688 0.975 8.339 0.952 
MALIGNANT 0.835 0.777 0.719 0.672 0.467 0.828 3.010 0.717 
BALANCED 0.903 0.870 0.836 0.807 0.578 0.902 5.675 0.835 

BLIP Large 
BENIGN 0.933 0.919 0.905 0.890 0.635 0.939 7.529 0.899 
MALIGNANT 0.831 0.766 0.701 0.653 0.457 0.812 2.939 0.695 
BALANCED 0.882 0.843 0.803 0.772 0.546 0.876 5.234 0.797 

BLIP2 
2.7B 

BENIGN 0.405 0.393 0.380 0.366 0.517 0.642 0.856 0.909 
MALIGNANT 0.844 0.783 0.721 0.671 0.469 0.833 2.879 0.739 
BALANCED 0.625 0.588 0.551 0.519 0.493 0.738 1.868 0.824 

BLIP2 
6.7B 

BENIGN 0.962 0.955 0.949 0.944 0.697 0.961 8.994 0.942 
MALIGNANT 0.824 0.753 0.683 0.631 0.448 0.807 2.791 0.688 
BALANCED 0.893 0.854 0.816 0.788 0.573 0.884 5.893 0.815 

The results of the independent evaluation of benign and malignant cells and the average of both are labeled as Balanced. 
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Finally, Fig. 6 shows the proposed method output, including 
the input images, saliency maps using Grad-CAM, image 
classification results, and report output. For the output text, in 
addition to the proposed method, the results of the single-text 
decoder from the ablation study and the BLIP Base, which 
exhibited the best performance among the existing captioning 
models, are also shown. 

IV. DISCUSSION 
In this study, we developed an image-classification and 

report-generation model for lung cytological images using 
feature extraction by a CNN and a text decoder using a 
Transformer. The fine-tuned CNN classifier exhibited 

acceptable performance with a 95.8% correct classification rate 
for benign and malignant lung cells. Additionally, the saliency 
map extracted by Grad-CAM also exhibited high values in 
typical benign and malignant cell areas. These results confirm 
that feature extraction was properly performed. 

Based on the CNN classification results, two text decoders 
were used to generate reports on benign and malignant cells. 
The text decoders consist of multiple Transformer layers with 
causal self-attention and cross-attention, and each attention 
layer has a multi-head attention structure. By optimizing the 
text decoder network structure by changing the number of 
layers and heads, it was found that the optimal decoder model 
that generated reports for benign cells was one with one layer 
and two heads, while for the text decoder for malignant cells, it 

 
Fig. 6.  Images with saliency maps and corresponding generated reports with gold standard. The saliency map was obtained from ResNet50 
in the proposed method. The red font in the report output indicates an incorrect part. 
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was one with two layers and four heads. For benign cells, there 
were only two cell types, columnar and squamous epithelial 
cells; therefore, a simple network was sufficient. By contrast, 
malignant cells with a wide variety of cell types require large 
networks. The optimal network was selected based on the 
complexity of the target, yielding reasonable results. 

Regarding the report output accuracy, the proposed method 
correctly provided a malignant description for all malignant 
cells, and incorrectly provided malignant cells for only one case 
of benign cells. In contrast, the single-text decoder model 
evaluated in an ablation study and general captioning methods 
incorrectly output benign and malignant descriptions for some 
of the evaluated images. This difference in performance 
indicates that the proposed method has a CNN that classifies 
images into benign and malignant in the first stage and has a 
high classification accuracy. The quantitative text evaluation 
metrics also show that the proposed method outperforms the 
SOTA LLM-based captioning models, indicating the 
effectiveness of the CNN for image classification and feature 
extraction. 

Despite its many advantages, there is room for improvement 
in the proposed method in terms of the histological lung cancer 
cell description in the generative text for malignant cell images 
for any method. Regarding malignant cells in the lungs, 
adenocarcinoma and squamous cell carcinoma cells were 
included; however, it is often difficult, even for pathologists, to 
distinguish between the two in Papanicolaou-stained specimens. 
For this reason, the two are often treated together as "non-small 
cell carcinoma.” The report outputs of all models evaluated in 
this study showed that many of them did not correctly 
discriminate between adenocarcinoma and squamous cell 
carcinoma. To improve the malignant cell classification, it is 
necessary to train the CNN not only to classify benign and 
malignant cells but also to classify the cell tissue type to 
evaluate whether the report-generation performance can be 
improved. In addition, although small-cell carcinoma, which is 
epidemiologically less numerous, was excluded from this study, 
we will add small-cell carcinoma as a tissue-type classification 
category. 

V. CONCLUSION 
In this paper, we propose an image-classification and 

report-generation model for lung cytological images. The 
proposed method, which has a CNN that combines image 
classification and feature extraction and two Transformer-based 
text encoders, outperforms existing image capturing models and 
single-text-encoder models in terms of image identification and 
report-generation quality. These results indicate that the 
proposed method may be useful for generating cytological image 
reports. 
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