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Abstract

Consider a compact metric space S and a pair (j, k) with & > 2
and 1 < j < k. For any probability distribution 6 € P(S), define a
Markov chain on S by: from state s, take k i.i.d. () samples, and
jump to the j’th closest. Such a chain converges in distribution to
a unique stationary distribution, say m; 1 (6). This defines a mapping
ik : P(S) = P(S). What happens when we iterate this mapping? In
particular, what are the fixed points of this mapping? A few results are
proved in a companion article [I]; this article, not intended for formal
publication, records numerical studies and conjectures.

This document records our investigation into the novel topic described
below. Numerics and heuristics suggest a variety of general conjectures,
but what we can actually prove is seriously limited. The rigorous results
stated here (Theorems E[) are proved in an accompanying article
[1]. This document is intended as informal discussion of a big picture. The
introduction below expands on the introduction to [1J.

1 Introduction

We start with informal background that led to the formulation of the ques-
tions to be studied. If I suggest a specific compact metric space (S, d) and
ask you to define some “interesting” mapping f : S — S then you can cer-
tainly do so. However, if I challenge you to define a scheme which can be
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used in any “generic” such space S, without exploiting any structure of the
specific space, then that seems very difficult. For instance you could define

f(s) = argmaxd(s, y)

that is the most distant point from s; this works for any space S with the
property that the most distant point is always unique. Are there any more
interesting general schemes?

Instead let us write P(S) for the space of probability distributions on
S. Consider the analogous challenge: define a scheme which can be used to
specify a mapping P(S) — P(S) for a generic S. In contrast to the case
of mappings S — 5, there are perhaps many ways to do so. In particular,
there are schemes involving Markov chains. For instance, given 6 € P(S)
you can define a transition kernel K(s,-) for s € support(6) by conditioning
0 to the ball of radius 1 around s:

K(s,A) =0(ANball(s,1))/0(ball(s, 1)).

Under a simple connectivity conditionﬂ on 0, the corresponding Markov
chain has a unique stationary distribution, which we can call 7(6). So this
scheme defines a map 7 : Py(S) — P(S) for every S but only for the subset
Po(S) C P(S) satisfying the connectivity condition. One could view this as
a continuous-space analog of random walk on a graph.

In this project we study a scheme which works for all compact metric
spaces S and all of P(S). Given 6 € P(S), one can consider the Markov
chain that from point s makes the step to the nearer of 2 random points
drawn i.i.d. from 6, breaking ties uniformly at random. This scheme nat-
urally generalizes as follows: fix k > 2 and 1 < j < k, and step from s
to the j’th nearest of k random points drawn i.i.d. from 6, again breaking
ties uniformly at random. This defines a kernel K%7% on S. Write the
associated chain as X%7* = (X%3F(¢),t = 0,1,2,...). Theorem [1| proves
that this chain always has a unique stationary distribution, which we can
call 7;1(6). So now we have defined a mapping 7,5 : P(S) — P(S) for
every S. Moreover Theorem [I| proves that the distributions 6 and 7;(6)
are mutually absolutely continuous, so in particular have the same support.

These maps ;) have apparently not been studied previously, even for
special spaces S, so the purpose of this project is to initiate their study.
There is a range of problems one might consider. The proof of Theorem
using the natural coupling, does not yield any helpful explicit expression for
the stationary distribution. So one can ask

!Essentially, that Usesupport(9)ball(s, 1) is connected.



On a given space S, is there any informative description of 7; ;. (6)
in terms of 67

In this project our focus is different. Given a mapping 7 from a space to
itself, it is mathematically natural to consider iterates

" TH0) = n(7"(9)),n > 1.

In our setting it seems plausible that (at least for typical initial §) the iterates
should converge to some fixed point, that is we expect

71 (0) =w ¢ as n — 00 (1)

and then we expect the limit to satisfy

k() = ¢. (2)

We will call such a construction (Wﬁk(G),n > 0) the iterative procedure.
Note that this does not have any simple stochastic process interpretation,
in contrast to the mapping 6 — 7; 1(6) derived from the Markov chain.

If ¢ satisfies we call it a fixed point or an invariant distribution for
m; k- One can view this property as a kind of “self-similarity under sampling”
property. The original motivation for this project was the hope that a typical
compact metric space might have “interesting” invariant distributions. Our
first attempt at finding such distributions was via numerically implementing
the iterative procedure. But in doing so, with initial distributions lacking
symmetry, we observed that typically there is a limit but it is supported on
only one or two points. This seemed counter-intuitive, and prompted the
further study of fixed points in this article.

Let us emphasize the trivial observation:

On any S and for any (j,k), two types of measures are always
invariant: we call these the omnipresent measures.

e The distribution J; degenerate at one point s;

e The uniform two-point distribution s, s, = (65, + 6s,).

Are there others?



1.1 Formulating a program

There are some subtleties involved in formulating a precise program, as
follows.

(i) Convergence in (|1]) is weak convergence. Recall that a Markov chain
is a Feller chain if its kernel K is weakly continuous:

K(sp, ) —w K(s,-) for all s, — s. (3)

It is straightforward and well known ([3] section 12.3) that a Feller chain
on a compact S always has at least one stationary distribution. Our chains
X%k are not necessarily Feller, the obstacle arising when the chain involves
ties — see discussion in section 2.l But it turns out that we do not need the
Feller property for the foundational result, Theorem [I| On the other hand
one might hope that the mapping m; : P(S) — P(S) is continuous, but we
can only prove that it is continuous at (roughly speaking) distributions 6
for which the Feller property holds — see Proposition |2l So convergence
does not automatically imply that the limit is a fixed point , though we
do not know a counter-example.

(ii) For given 6§ the iterates 7}/, (6),n > 0 all have the same support but
we will see that the limit usually has much smaller support, so we cannot
insist on limits having full support on .S. On the other hand, any fixed point
distribution over a space Sy is automatically a fixed point distribution over
a superspace S1 D Sp, and to talk about “fixed points for S;” we want the
fixed point to have some relation with S1. So an appropriate precise problem
formulation is

Program. (a) Given a compact metric space (S,d) and given
(4, k), find all the fixed points of 7;; with full support on S.
(b) Given a compact metric space (S,d) and given (j, k), deter-
mine which invariant measures (not necessarily with full support
on S) arise as limits (1f) of the iterative procedure from some ini-
tial 6 with full support on S.

1.2 Toward a big picture

This article reports on our extensive study via numerics of different various
spaces S, which provides the following heuristic “big picture” of issues in
the program above.

(a) For k = 2, there are no invariant measures other than the omnipresent
ones, except perhaps for “exist by symmetry” ones; with that exception, for



j =1,k = 2 the iterates converge to some J,, and for j = 2,k = 2 the
iterates (1)) converge to some ds, ¢,. The precise limits (s, s1, s2) may depend
on the initial #. In the case of ds, s,, the pair (s1, s2) is a local maximum of
().

(b) For larger k, for some types of space S there are additional sporadic
invariant measures; we don’t see a pattern.

(c) For large k, as j increases we see a transition, around j/k = 0.7,
between convergence to some Js and convergence to some dg, 5,. However
there seems no reason to believe that there is a universal value near 0.7.

(d) Except for the omnipresent ones, all invariant measures ¢ that we
have encountered are unstable, in that from any initial distribution of the
form ¢ plus a generic (not symmetry-preserving) small perturbation, the
iterates converge to some d, or ds, s,.

We have succeeded in proving only a few small parts on this picture.
The shorter article [1] contains proofs of the following theorems, only stated
in this document.

e Theorem |1| is the Markov chain convergence result stated above.

e Theorem {4t For every S, the set of invariant distributions for m o is
the same as the set of invariant distributions for mo 2. This is surpris-
ing, in that apparently (as in (a) above) the iterates almost always
converge to some d, for 7 o, but to some ds, 5, for m 9.

e Theorem There are mo m o or ma-invariant distributions on the
space of finite binary tree leaves (see section @ other than the om-
nipresent ones.

e Theorem E There are mno m o or ma-invariant distributions on the
interval [0, 1] other than the omnipresent ones.

1.3 Outline of this article

Our main focus is on simulation results, leading to formulation of conjec-
tures. We also provide technical comments.

e Section [2|serves to define the map 7, (Theorem |1|) and discusses the
Feller property.

° Section discusses the “symmetry is preserved” feature of 7; ;, imply-
ing that some invariant distributions exist “by symmetry”, but also
suggesting that initial distributions with symmetry are atypical. It



also gives the counter-intuitive, though easily verified, result (Theorem
that the invariant distributions for w22 coincide with the invariant
distributions for my 2.

e Section 4] observes that even the 2-point case S = {a, b} is interesting:
as well as the obvious fixed points, for certain values of (j, k) there are
extra fixed points, but these appear (from numerics) to be unstable
under the mapping 7; .

e Section [5| gives examples of non-uniform invariant distributions for
finite spaces S. We record the strong conjecture that, for finite .S, the
iterative process from almost all initial distributions converges to one
of the omnipresent limits; this is tantamount to saying that other fixed
points are unstable.

e Section [6] describes the binary tree leaves space, on which we can prove
(Theorem [8) that for £k = 2 the only invariant distributions are the
omnipresent ones.

e The natural basic example of a continuous compact space is the unit
interval, and we give a simulation study in section |7} In examples we
see convergence to limit distributions supported on one or two points;
we do not know whether (for any (j,k)) there exist invariant distri-
butions with full support, though we have partial results including
Theorem [0

e Section [§ studies the case of the circle, for which the uniform distri-
bution is invariant. Section [J] considers a high-dimensional case. Both
are simulation studies.

2 Existence and uniqueness of stationary distribu-
tions

Theorem 1 ([1I] Theorem 1) Consider a compact metric space (S,d) and
a probability distribution 6 € P(S). For each pair 1 < j < k, k > 2, the
Markov chain X03F = (X03:5(t),t = 0,1,2,...) has a unique stationary dis-
tribution m; (). From any initial point, the variation distance D(t) between
7 1(0) and the distribution of X%7k(t) satisfies

D2t <(1—-1/EF1 1<t<oo (4)



and so there is convergence to stationarity in variation distance. Moreover,
for m=m;,(0)
0¥ (A) < m(A) < kf(A), ACS (5)

and so m and 0 are mutually absolutely continuous.

Remarks. (a) Note that the bound on variation distance depends only
on k.

(b) The variation distance bound is exponentially decreasing in time,
but it is more natural to consider mizing time in the sense of [4]. The
example of the uniform distribution 6 on a 2-point space with j = 1 shows
that the mixing time as a function of k can be order 2%.

(c) As mentioned earlier, the proof of Theorem |lI| does not say anything
about 7 (6) except . We do not know if there are informative analytic
descriptions of 7; 1 (6) in terms of 6.

2.1 Concerning the Feller property
As an example to show that the Markov chains X%7* are not necessarily

Feller, consider S = [0,1] and § = (8 4+ &1 + A) for Lebesgue measure .

Here the requirement that K(x;,-) = K(%, ‘) as x; — % fails.

This difficulty occurs because there are ties in the distances to the points
(Y, 1 < i < k) sampled i.i.d. from . Suppose, for given 0 € P(S) and given
s€eS,

d(s,Y;) has non-atomic distribution. (6)

This of course cannot hold for finite S. Property @ implies
P(d(s, Y;) = d(s,Y})) = 0 for j #i. (7)

It is straightforward to show that, if (|7]) holds for all s € S, then the Markov
chain X%7* is Feller. Let us consider the slightly weaker property: for given
0eP(S)

d(s,Y;) has non-atomic distribution for f-almost all s € S. (8)
Note this is equivalent to
P(d(Y1,Y2) =d(Y1,Y3)) = 0. (9)
We can now give a partial continuity property for the maps ;.

Proposition 2 If 6 € P(S) has property (§) then mj(0n) —w mx(0) for
all 0,, =, 0.



Proof. Consider 6, —,, 6. Write (X (t),t =0,1,2,...) for the chain X%/¥
started with distribution 6 and write (X"(¢t),t = 0,1,2,...) for the chain
X O3k started with distribution 6,,. It is sufficient to prove that, for fixed
t, we have convergence in distribution

dist(X™(t)) = dist(X () as n — oo (10)

because then the result will follow from . Proving this would make a
nice exercise in a course on weak convergence. We will write out the case
(7, k) = (1,2): the general case is similar.

We prove by induction on t. Fix ¢, assume for that ¢, and recall
that by construction

dist(X(t)) < k6. (11)
There exist couplings (Y;,Y;") of  and 6, such that

a(n) :==Ed(Y;,Y;") - 0asn — o0
and there exist couplings (X (¢), X"(t)) of ¢ and ¢,, such that
b(n) :=Ed(X(t),X"(t)) = 0 as n — oo.
We have

X(t+1) = YifdX(1),Y1) < d(X(t),Ys)
= Yé if d(X(t)7Y1) > d(X(t)7Y2)

and also the case of ties. Combining with the analog for X" (¢ + 1) we have

AX(t+1),X"(t+1) = d(V1,Y") on A,

Ap = {d(X(t),Y1) < d(X(t),Ya) and d(X"(t),Y]) < d(X"(t), Y])}
AX(E+1),X"(t+1) = d(Ya,Y]) on B,

B, = {d(X(t),Y1) > d(X(t),Ys) and d(X"(t),Y]) > d(X"(t),Y])}

Now A,, contains the event A, (¢), where for £ > 0
Ap(e) :={d(X(t),Y1) < d(X(t),Ya)—3e; d(X(t),X"(t)) <e; d(Ya,Yy") < &}

and B,, contains an analogous event By, (¢). Taking account of the remaining
cases, we obtain

Ed(X (t + 1), X™(t + 1)) < 2a(n) + AP((An(¢) U Ba(€))°)



where A < oo is the diameter of S. Using Markov’s inequality to bound the
probability of events like {d(X (), X"(t)) > €}, we obtain

£

Ed(X (t+1), X"(t+1)) < 2a(n)+A (M FP(A(X (1), Y1) — d(X (1), Ya)| < 35) .
Letting n — oo we see that it suffices to prove
P(|d(X(t),Y1) —d(X(t),Y2)| <3¢) > 0ase—0

but this follows from and . m

3 General remarks about fixed points of the map-
ping

On every compact metric space S we have an obvious “preservation of sym-

metry” result

Lemma 3 If § € P(S) is invariant under an isometry ¢ of S then m; ()
s also invariant under ¢.

This has several implications.

3.1 Fixed points existing by symmetry

In some cases there are distributions ¢ € P(S) which are invariant (that
is, fixed points) “by symmetry”. In particular, the omnipresent examples
mentioned earlier:

(i) The distribution ds degenerate at one point s;

(i) The uniform two-point distribution &, s, = 3 (0s, + Js,);

But there are further examples:
(iii) The Haar probability measure on a compact group S with a metric
invariant under the group action.
(iv) On a finite space S, a sufficient condition for the uniform distribution
to be invariant is that S is transitive, that is if for each pair s, s’ there is an
isometry taking s to s’. This is equivalent to the finite case of Haar measure.
But for finite S a weaker condition suffices, because all that matters is the
rank matriz — see section [B.11

Now in those cases the distribution is invariant for all 7; ;. So the ques-
tion becomes: for a particular (j, k), are there invariant distributions with
full support, other than those “forced by symmetry” as above?



3.2 Symmetry in the limit

If 0 € P(S) is invariant under an isometry ¢, then by Lemma (3| each iterate
71, (0) is invariant and so we expect (recall that we do not know that ;x is
continuous) that a limit ¢ will be invariant. This observation will be relevant
for the formulation of conjectures.

3.3 Fixed points for m, and 7y,

Perhaps the basic example of a compact space is the unit interval [0, 1],
and for that space we will give a detailed simulation study of the iterative
process in section m Figure |I| shows the observed behavior of iterates of m o
and 7y o from the initial uniform distribution. As observed above, limits of
such iterates should be invariant under the reflection isometry x — 1 — z.
We see the former converging to 41/, and the latter to dg,;. We believe this
qualitative difference will hold very generally — see the related Conjectures
and [7] So the following general result seems very counter-intuitive.

theta = U[0,1], k=2, j=1 theta = U[0,1], k=2, j=2

— ter=1 — ter=1
— ter=2 . — ter=4
— ter=4 — iter=10
iter = 6 iter = 30
10 — ter=8 — iter = 100

Figure 1: Iterates of mj 2 (left) and w2 (right) on the unit interval from
uniform initial distribution.

Theorem 4 ([1I] Theorem 3) For every compact metric space S, the set
of invariant distributions for mw o is the same as the set of invariant distri-
butions for mo .

4 Two elements — the binomial case

One might suppose that the case of a 2-element set S = {a,b} would be
trivial, but it is not. Parametrizing a distribution 6 on S by p := 6(a), we
view the mapping 7 : P(S) — P(S) as a mapping 7 : [0,1] — [0, 1]

10



defined as follows. In the associated 2-state Markov chain, the transition
probabilities are

ka,b = P(Bln(k,p) < .7)7 kb,a = P(Bln(k‘,p) >k — ])
for Binomial random variables. From the stationary distribution we find

ronlp) = P(Bin(k, p) > k — j)
PEP) = B(Bin(k,p) > k — j) + B(Bin(k, p) < j)

So a fixed point is a solution of the equation

T k(p) = p. (12)

We know by symmetry that p = 0,p = 1/2,p = 1 are fixed points; are there
others? By symmetry it is enough to consider 0 < p < 1/2.

We have not tried to find solutions analytically, but we will show results
of numerical calculations of the iterates ﬂzk(p), n=12,3,.... For a given
(k,j), we observe three possible types of qualitative behavior:

(i) 77 (p) = 0 as n — oo, for all 0 < p < 1/2.
(ii) 77 (p) = 1/2 asn — oo, for all 0 < p < 1/2.
(

n
iii) %here exists a critical value perir € (0,1/2) such that

Perit 18 invariant

and ngk(p) —0asn— oo, for all 0 < p < perit

and 77, (p) = 1/2 as n — oo, for all periy < p < 1/2.
For us, (iii) is the interesting case. It first arises with k = 5, j = 4, as shown
in Figure [2l We see the critical value pg.; = 0.17267.... We also see this is
an unstable fixed point.

Table [1f shows the type of behavior — types (i) or (ii) or (iii) above — for
all pairs (j,k) with £ < 9. One take-away message is that for S = {a, b}
there exist some (j, k) for which 7, has fixed points in addition to those
existing by symmetry, but these fixed points are unstable. Another take-
away message is that, except for these additional fixed points, the limit of
the iterative process is either d, or d, or d,p, the latter only when j/k is
somewhat close to 1. Of course the 2-point space may be very special. What
properties extend to other S7

5 Finite spaces

5.1 Non-uniform invariant distributions

In our initial investigations, via simulations of the iterative process on differ-
ent spaces, we found that the iterates always converged to one- or two-point

11



2-point, k=5, j=4 0175 2-point, k=5, j=4

. ¢ e%e p=0.17269
L ese p=0.17266
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°
N
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-

-

-
-
-

0.1 * 0.172

0.0}|**e p=0.3 * * * * * *
oo p=0.17267 0171
wrs p=0.1

-0.1
-2 0 2 4 6 8 10 -2 0 2 4 6 8 10

n iterations

Figure 2: S = {a,b}; k = 5,7 = 4. Iterates n = 0,1,2,...,10. Left panel
shows type (iii) behavior, Right panel shows the unstable fixed point at
0.17267.

support invariant distributions, d, or d;, s,. As mentioned before, on a space
with sufficient symmetry the uniform distribution will be invariant. So per-
haps the existence of non-uniform invariant distributions on the 2-element
space for k > 5 is an anomaly? These observations were consistent with
the possibility that all invariant distributions supported on more than two
elements are uniform on their support. But a numerical search revealed the
following counter-example, in the simplest case j = 1,k = 2.

A finite metric space can be represented by the matrix D of distances
d(i,7). By taking all the non-zero distances to be between 1 and 2, the
triangle inequality is automatically satisfied. Consider the example of a
5-element space with distance matrix

0 1.714 1.341 1.656 1.74
1.714 0 1.298 1.794 1.03
D= ]1.341 1.298 0 1.715 1.844
1.656 1.794 1.715 0 1.524
1.74 1.03 1.844 1.524 0

What matters for our purposes, assuming as in this example that all dis-
tances are distinctEl, is the rank matriz R, where r(i,7) = 4 means that
d(i,j) is the 4’th smallest of {d(i,1),d(,2),...,d(s,|S])}. For the distance

2Precisely, all distances d(i,j),1 < i < j < n are distinct.

12



Table 1: S = {a,b} and 2 < k < 9. The values of j with each type of

behavior, and (critical values) in type (iii) behavior.

matrix D above, the rank matrix is

oy
I
fSQESCRSCRN NG

N O N

2 3
3 5
1 4
4 1
5 3

— N Ot N Dt

k() (i) (i1)
2 1 2
3 (1,2 3
4 [1-3] 4
5 [1—3] 4 (0.17267) 5
6 [1—4] 5 (0.09558) 6
7 [1—5] 6 (0.06276) 7
8 [1—5] 6 (0.26405) 7,8
9 [1—6] 7(0.18884); 8 (0.03364) 9

By numerical calculation, for 72 on this space there is an invariant distri-

bution

6 ~ (0.149 0.188 0.203 0.298 0.162)

for which the transition matrix is

0.276 0.097
0.111 0.341
K~ |[0.159 0.265
0.139 0.036
0.083 0.28

0.304
0.222
0.365
0.118
0.041

0.297
0.089
0.185
0.507
0.298

0.026
0.237
0.026
0.201
0.298

This example was found by simulating random distance matrices D, ob-
taining the rank matrix R, and then numerically solving for invariant dis-
tributions 6 until finding a solution with full support. Note this involved
non-linear equations: we need to solve 6 K = 6 but here K depends on 6,

for instance for 7 o

k(i,i) =1— (1 —6(i))>
if (i, §) = 5 then k(i,j) = 6%(j).

13



Note also that for |S| = 5 there are only a finite number of possible rank
matrices R, so this counter-example is not like a counter-example depending
on a real parameter taking a specific value.

To be precise, let us define a rank matriz R to be a matrix where each row
consists of {1,2,...,]S|} in some order and each diagonal element r; = 1.
We are concerned with rank matrices which are feasible in that they arise
from some distance matrix D with distinct entries. We do not know precise
conditions to determine whether a given rank matrix is feasible. Also, we do
not have any general conjecture about conditions under which non-uniform
invariant distributions exist.

We observed that the invariant distribution in Figure [2| was unstable.
Here is another example. Consider again 7 2 and the rank matrix (easily
checked to be feasible)

R= (13)

N = N =
=N =N
W = W
— W o W

for which the invariant distribution is
_ (1122
0=(G556)
and the transition matrix is
11/36  1/4 1/9 1/3
1/4 11/36 1/3 1/9
1/36 7/36 5/9 2/9
7/36 1/36 2/9 5/9
This is unstable under a generic small perturbation of the invariant distri-
bution, as illustrated in Figure

However if instead of 71 2 we consider g 9 for the same rank matrix ,
then by Theoremj We have same invariant distribution § = (3 1 2 2) but
2

K=

if we take an initial distribution of the form (% +e % + € ’ %6 ¢ g 5§ —
) then iterates do converge to the fixed point. This example seems to
depend on a certain “partial symmetry” property of the rank matrix which
is copied to the perturbed initial distribution. We do not know a precise
formulation of the “partial symmetry” idea here. We avoid that issue as
follows, formulating the strongest conjecture to which we do not have a

counter-example.

Conjecture 5 On any finite space S with distinct distances, for almost all
initial distributions 0 the iterative process (w7, (0),n > 1) converges to a
limit of the form ds or ds, s, -

14
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Figure 3: |S| = 4, rank matrix R at (L3), m1 2. Unstable behavior of iterates
0;(n),n = 0,1,2,...,20 in panels i = 1,2, 3,4, starting from two different
initial distributions 87,0~ near the fixed point.

Here almost all is with respect to the natural uniform measure on the sim-
plex of probability distributions on S. This would imply that our original
plan for finding invariant distributions, by iterating from some haphazardly-
chosen initial distribution, would not be effective in finding all invariant
distributions.

5.2 Uniform invariant distributions

We noted earlier that strong symmetry conditions on a compact metric space
S would be sufficient to imply that the uniform distribution was invariant.
For finite S, it is clearly sufficient that the rank matrix R is a Latin square.
To fit our context we need the rank matrix to be feasible, so we mention the
following result: we do not know if it is new.

Lemma 6 If a rank matriz R is a Latin square, then R is feasible if and
only if R is a symmetric matriz.

5.3 Finite sets in Euclidean space

As another exploratory example of finite S, Figure [4] shows results of simula-

tions for a 9-point set. The points are located as a perturbed 3 x 3 pattern,

15



marked as e in the Figure, with Euclidean distance in the plane. We fix
k = 10 and consider each 7 = 1,2,...,10. Results for three different initial
distributions are shown, indicated by the three different colors. The colored
vertical lines in each square indicate the initial probabilities at the associ-
ated point e. The results show behavior analogous to the previous settings,
in that the “fixed point” limit of the iterative procedure is either a unit mass
05 OF g, 5y = %(681 +0s,). In Figure a dg limit for the j'th nearest process
is represented by a colored j in square s, or a limit J;, 5, is represented by a
colored (j) in both square s1 and square sy. For instance, for j = 8 the limit
is (for each initial distribution color) uniform on some two points: top left
and top right for blue, bottom left and middle right for red, and top center
and bottom left for brown.

°
(8-10) (9-10) ® (3 | (8)1-3(9-10)

‘ | L | .

° °
(7) 5 (145 (1) g” ] 6 (8)
L
7-10

| ‘(8) 1-3 ¢ (9-1(& 6 (9-10)

1 ‘ ‘ | | ‘

Figure 4: A 9-point set in the plane. See text for explanation.

What we observe in these results (in each of 11 trials from different initial
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Figure 5: A BTL space S with |S| = 7.

distributions, extending the 3 trials shown in the figure) is that

(*) for j < 6 the limit is always some 5 whereas for j > 7 the
limit is always some Js, 5,. But the precise limit — which s or
s1, 82 — depends both on 7 and the initial distribution.

Remarkably, simulations for an analogous perturbed 5 x 5 pattern S
show exactly the same behavior described in (*), and so do simulations for
an analogous perturbed 3 x 3 x 3 pattern in three dimensions.

Here is one conjecture.

Conjecture 7 For finite S embedded in the plane, with Fuclidean distance,
consider 71 2. Then for almost all initial distributions, the limit of the iter-
ative process is some Js.

Indeed this might be true on every compact metric space S, for some ap-
propriate notion of “almost all”.

6 A discrete tree space

In [I] we study binary tree leaves (BTL), illustrated in Figure [5} as a class
of finite spaces. Here S is the finite set of leaves; the edges have lengths
which serve to determine the distance between two leaves as the length of
the unique path between them; the edges also define |S| — 2 branchpoints.
To “break symmetry” we assume

all distances (d(s;, s;),J # 1) are distinct. (14)
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We claim that, as suggested by the general picture from numerics, for k =
2 there are no invariant measures other than the omnipresent ones. An
invariant measure supported on a subset of leaves is an invariant measure
on the induced spanning tree of that subset, so to prove that claim it suffices
to prove

Theorem 8 ([1I] Theorem 7) : On a BTL space S with |S| > 3 and satis-
fying , and for k = 2, there are no invariant measures with full support.

As with the analogous result below on the unit interval, the proof is a
“proof by contradiction” depending on the specific space S, which does not
suggest possible general proofs.

7 The unit interval

Here we take S to be the unit interval [0,1]. We will show simulations and
discuss what they suggest regarding convergence to fixed points. These are
Monte Carlo simulations: a distribution is represented as a population of
(typically 500,000) sample points. In the Figures, densities are drawn via
Gaussian KDE, which becomes inaccurate for sharply peaked distributions,
and also tends to be inaccurate at endpoints.

7.1 Initial distribution U|0, 1].

We first study, by simulation, iterates starting from the uniform distribu-
tion U[0,1]. Because U[0,1] is symmetric about 1/2, all iterates must be
symmetric about 1/2; in section we will study non-symmetric initial
distributions, to investigate whether symmetry might be forcing some non-
generic behavior.

theta = U[0,1], k=4, j=1 theta = U[0,1], k=4, j=2 theta = U[0,1], k=4, j=3

//\

/l W
. /%VA \
/] ——\X
— N
0.0 — 0.2 04 06 08 — 10

Figure 6: Iterates from U[0,1]; k=4,j =1,2,3.
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theta = U0,1], k=4, j=4

Figure 7: Iterates from U[0,1]; k=4,j =4

First let us show the case k = 4. Figure [6] shows the first few iterates of
U[0,1] for j = 1,2,3. Note that, here and throughout, the vertical scale
and the numbers of iterations shown may not be the same from one panel
to the next. What we see strongly suggests that the iterates are converging,
quickly for 5 = 1 but rather slowly for j = 3, toward the degenerate distribu-
tion 0y /5. This is strongly supported by examining the standard deviations
of the iterates, shown on log scale in Figure which will be discussed be-
low. In contrast, Figure [7] for j = 4 strongly suggests that the iterates are
converging quickly toward the mixture dg ;. These two “extreme” behaviors
— convergence to dy/, for smaller j or to g for larger j — appear to hold
for all k. Figure [§] shows simulations for k& = 6, and Table 2] shows which
behavior appears to hold in simulations for each pair (j, k) with k£ < 9.

theta = U[0,1], k=6, j=2 theta = U[0,1], k=6, j=4

N\
[\

Figure 8: Iterates from U[0,1]; k=6,j = 2,4,5.

The pattern in Table [2] is reminiscent of the pattern seen earlier for
S = {a, b}, but one must be careful about the comparison. In Figure [2| for
S = {a,b} each e represents a probability distribution, whereas in Figures
|§| -8/ for S = [0, 1] a probability distribution is represented by the estimated
density curve. Figure |2| shows iterates of the same 7 from different initial
distributions, all on the same graphic. But for S = [0,1] we will show
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Table 2: Conjectured limits of iterates from UJ0,1]; the values of j with
each type of behavior.

kE — 51 5 50’1
2 1 2

3 [1,2] 3

4 [1-3] 4

5 [1—4] )

6 [L—4] [5,6]
7 [1-5] [6,7]
8 [1—-6] [7,8]
9 [1-7 [8,9]

different graphics for the different initial distributions — that is, we should
compare Figures [6] - [7] with Figures [12] - [I3] below.

Are there any cases on [0, 1] where the iterations of 75, from the uniform
initial distribution converge to a limit other than d; 5 or dp,1? Consider the
case k = 9,5 = 7 in Figure |§| (the case k = 6,7 = 5 in Figure |8 is similar).
Once two tight peaks are formed, one can see heuristically how the Markov
chain behaves. Suppose s is near the left peak. Amongst the 9 samples, 4
or 5 will typically be near the right peak, in which case the 7’th closest to
s will be the 2nd of 4 or the 3rd of 5, So on average the chain jumps to
slightly to the left of center of the right peak. This is consistent with what
we observe in Figure [0} the peaks grow in height and move slowly in the
direction of 1/2. It may be possible, in a case like this, that the iterates
converge to a limit of the form ds1_5 for 0 < s < 1/2 rather than to §; .
We cannot decide convincingly from our simulations. Thus heuristic may
be more widely applicable — see section

Simulations also suggest a scaling limit. Figure [10|shows, for some (7, k)
for which the iterates converge to d;/, (others are similar), a remarkably
precise geometric decrease in the s.d. as a function of the number of iter-
ations, after the first few iterations. This strongly suggests a certain form
of asymptotic self-similarity under scaling: that there exists a mean-zero
distribution, say dist(§;x), on R and a constant 0 < ¢j; < 1 such that
7 k[dist(& )] = dist(c; k€ k). And that dist(&; ) is the scaling limit of the
iterates, and c;, the geometric rate constant. Figure |[11]shows renormalized
(by mean and s.d.) iterates approximating dist(£2.4).

One can imagine analogous scaling limits near 0 and 1 for pairs (j, k) for
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theta = U[0,1], k=9, j=7

— iter=1
14 | || — iter=5
I || — iter=10
iter = 20

iter = 40

Figure 9: Iterates from U[0,1]; k=09,j =T.

which the iterates converge to do 1.

7.2 Non-uniform initial distributions.

Some aspects of the observed behavior above might be consequences of sym-
metry (about 1/2) of the initial distribution U[0, 1]. So here we study non-
symmetric initial distributions.

First consider the slightly “tilted” distribution 7'[0, 1] with density f(u) =
% +u. We find that the behavior remains qualitatively unchanged; compare
Figure[12 below with Figures |§| and m above. Convergence to d; /o is replaced
by convergence to some d5 where s depends on (j, k). Convergence to do 1
is unchanged: Figure [I2] shows that asymmetry persists through at least
5 iterations, but the probability masses near each endpoint tend to 1/2 in
the limit, consistent with the result that (for this case kK = 4) the only in-
variant distribution supported on {0, 1} is the uniform distribution. Figure
shows similar behavior for the “more tilted” distribution 770, 1] with
density f(u) = 2u.

7.3 Rigorous results for S = [0, 1]

The previous sections stated “results” about ;) which we confidently be-
lieve via simulations, but without proofs. At a rigorous level, the key open
questions are

e Does there exist (for any (j,k)) any invariant distribution with full
support?
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s.d. of iterate
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Number of iterations

Figure 10: The geometric decrease in s.d. for some U|0, 1] models. The lines
pass through the actual simulated values, without being fitted.

e Does there exist (for any (4, k)) any distribution other than 65 or dg 1
that occurs as a limit of iterates from some initial distribution with
full support?

We suspect the answer to each is “no”. Of course, “no” to the second
question would imply “no” to the first question.

A natural way to start a study is to write down the identity for an
invariant density f;x(z). But because we are seeking to prove non-existence,
we seek to prove there is no solution. Our partial results involve considering
the density at endpoints; the proof in [I] of Theorem |§| was constructed
by first considering the density case and then re-writing the argument for
general distributions.

Let us discuss in detail only the simplest case, that is k = 2. Recall from
Theorem @ that the invariant distributions for mo 2 and 7 2 are the same.

Theorem 9 ( [I] Theorem 4) : There are no m 2 or mo-invariant dis-
tributions on the interval [0, 1] other than the omnipresent ones.

The proof consists of analyzing the equation for an invariant density f(x)
to obtain a contradiction at f(0). A more elaborate argument (omitted)
extends the result to some other values of (7, k), as follows.

There is no 7; p-invariant density on [0,1] if j =k or if

k (=1 (k=)
(j—l 1 k:—j> (k —1)k=1 =2
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theta = U[0,1], k=4, j=2,renormalized

— iter=8

Figure 11: Renormalized iterates from U|0, 1]; k = 4, j = 2 strongly suggest
a scaling limit.

theta = T[0,1], k=4, j=3 theta = T[0,1], k=4, j=4

— ter=1 — iter=1

| — iter=4a iter = 2
5 \ | — iter=10
[\ iter = 20
\ | — iter=30

— iter=3
iter = 4

— iter=5

0 m N w s w0 o N @ ©

Figure 12: ITterates on the unit interval from a slightly tilted initial distri-
bution, k = 4,5 = 3,4.

7.4 Discrete points within [0, 1]

Somewhat relevant to the open problems at the start of section [7.3]is the
following discrete example.

Proposition 10 The uniform distribution on the 4 points 0,0.4,0.6,1 is
invariant for w3 4.

This is true by calculation: the transition matrix is

13 67 109 67

1 109 13 67 67
256 | 67 67 13 109
67 109 67 13

23



theta = TT[0,1], k=4, j=3 theta = TT[0,1], k=4, j=4

iter =1 iter =1
— iter=4
iter = 10
— iter =40

Figure 13: Iterates on the unit interval from a more tilted initial distribution,
k=4,5=3,4.

which is doubly-stochastic (like a variant of a Latin square). But it is not
clear if any analog holds for larger point sets.

8 The circle

Here we take S to be the unit circle C = [0, 1).

8.1 The uniform distribution

On the circle, the uniform distribution U|[C] is invariant, by symmetry. How-
ever, when we do Monte Carlo simulations of iterates, the symmetry breaks,
as shown in Figure We interpret this as implying that the uniform
distribution is an unstable fixed point.

In detail, the figure shows two realizations of each of the four cases
( =1,2,3,4) with k = 4. For each j, different realizations are qualitatively
similar. The symmetry is broken by the emergence of “waves” with some
number v = v(j, k) of peaks evenly spread around the circle. The time
(number of iterations) of emergence is similar in different realizations. In
simulations one wave eventually one takes over, as shown in Figure

Implications for the true iterative process are elusive. Recall that by
symmetry (section the uniform distribution on any number v of points
evenly spread around the circle (say 6,) is invariant. If a non-uniform initial
distribution has some symmetry property, such as invariant under a 1/v’th
fraction of one rotationEL then by the general “preservation of symmetry” re-
sult (Lemma (3)) that symmetry property persists in the iterations and hence

3For the maximum such v.
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in any limit. So it is natural to conjecture that the iterative process started
from such a distribution will converge to #,. However, the significance for
the iterative process of the numbers v(j, k) observed in initial iterates in
simulations is elusive.

8.2 Non-uniform initial distributions

We have only done brief investigations of iterates on C from non-symmetric
starting distributions. It appears that behavior here corresponds to the case
of the unit interval, in that limits are either d, or ds, s, where s; and sy are
opposite points of C. Figure [16| shows the case of the discontinuous initial
density

f&)=t+050<t<1. (15)

9 A high-dimensional example

We wish to study a high-dimensional example without any special symmetry.
Here is our rather arbitrary choice.
Take S = [0, 1]1° with elements x = (z;) and with non-Euclidean metric

d(x,y) = Z B'\zi — i (16)

for a parameter 0 < 8 < 1. And take initial distributions with density of
the form
£ x expl—a' Y a2
i

for a parameter o > 0.

Figure [17] shows simulations with & = 2. What is shown is the distri-
bution of “distance to 0” after varying numbers of iterations. The 8 panels
show the 8 combinations of

a=01lor10; 8=0.70r0.9; j=1o0r2.

The qualitative behavior is similar to previous examples: for j = 1 there is
apparent convergence to some dyx and for j = 2 we suspect there is conver-
gence to dg,1.
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theta = Uniform_Circle, k=4, j=1 theta = Uniform_Circle, k=4, j=1

6
— iter=1 — iter=1
— iter=5 — iter=5
iter =8 5 iter = 8
4
3
2
1
Q [
X 0.4 06 08 0.0 0.2 0.4 0.6 0.8
theta = Uniform_Circle, k=4, j=2 6 theta = Uniform_Circle, k=4, j=2
— iter=5 — iter=5
— iter=10 — iter=10
iter = 15 5 iter = 15
4
3
2
1
04 06 08 10 0.0 0.2 04 06 08 10
theta = Uniform_Circle, k=4, j=3 13 theta = Uniform_Circle, k=4, j=3
— — iter=5
— — iter =10
12 iter = 30
11

theta = Uniform_Circle, k=4, j=4 theta = Uniform_Circle, k=4, j=4

— iter=5 — ter=5
— iter=15 — iter=15
iter = 30 25 iter = 30

Figure 14: Iterates for U[C]; k=4,7=1,2,3,4
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theta = Uniform_Circle, k=4, j=3 theta = Uniform_Circle, k=4, j=3

— iter =30 — iter =30
— iter=70 35 — iter=70
> iter = 120 iter = 120

0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 1.0

Figure 15: Iterates for U[C], long-term: k = 4,5 = 3.

theta = slant_Circle, k=4, j=3 theta = slant_Circle, k=4, j=4

iter =1
— iter=8

iter = 20
— iter =32
SH — iter =50

Figure 16: Iterates on C from initial density , k=4,7=3,4.

10 Final remarks

1: The j ~ 3k/4 heuristic. The heuristics in section in the context
of the unit interval can be repeated more generally. Suppose k is large, and
suppose S and (j, k) are such that there is an initial tendency for the iterate
distributions to concentrate near two distinct regions. Then about half of
the k samples will be in each region, so for j > k/2 the chain will switch back
and forth between the regions. And the average distance between regions in
successive iterations will tend to increase or decrease according to whether
the chosen point at each step of the chain is farther (from the other region) or
nearer than the average, that is according to whether j > 3k/4 or j < 3k/4.

2. The only rigorous analyses of continuous S that we have completed
involve explicit calculations. To give rigorous proofs of, for instance, con-
vergence of iterates to some dg, it seems natural to investigate some kind of
monotonicity property for concentration of distributions, but we have been
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dim=10, alpha=0.1,beta=0.7, k=2, j=1

dim=10, alpha=0.1,beta=0.9, k=2, j=1
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unable to implement that idea.

3. This article studies a certain process which can be defined on any
compact metric space S, parametrized by any 6 € P(S). Are there other
interesting such processes? As one example, a certain such coverage process
is studied in [2]: “seeds” arrive as a Poisson process in time at i.i.d. (0)
locations and form the center of growing balls.
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