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We investigate the sedimentation of chiral particles in viscous fluid flow. We identify helical
ribbons as simple particles with strong translation-rotation coupling whose symmetry ensures that
the centers of mass, buoyancy, resistance, and mobility coincide. Experimental measurements of both
relevant mobility tensors show excellent agreement with simulations of ribbons made of interacting
spheres. We observe quasi-periodic angular dynamics causing complex spatial trajectories. In tilt-
spin phase space, orbits are closed due to time-reversal and reflection symmetry. Changing the
helical ribbon length reveals a bifurcation at which the stable sedimentation orientations switch.

How can the geometry of a rigid solid particle be used
to manipulate its sedimentation through a highly viscous
fluid? This has been a central problem in fluid dynam-
ics and there are many pressing applications such as the
transport of plankton [1] or microplastics [2].

The underlying Stokes flow theory is well known [3–
5], but analytic or numerical predictions for the mobility
or resistance tensors that are validated by experimen-
tal measurements are rare, particularly for particles that
couple translation to rotation [6–10].

In the viscous limit, and with no velocity gradients in
the fluid, particle velocity v and rotation rate ω depend
linearly on externally applied force f and torque τ :[

v
ω

]
=

1

µ

[
a′ b′T

b′ c′

] [
f
τ

]
(1)

The mobility tensors a′, b′, and c′ are determined by
particle shape and orientation [3], with primes indicating
that these are in the laboratory frame. In sedimentation
problems for particles with homogeneous mass density,
the torque can be computed about the common center
of mass and buoyancy which sets τ to zero. Then with
the rotation matrix from the body-fixed frame to the lab
frame, R, the equations of motion are

d
dtx = v , µv = R a R−1f (2a)
d
dtR = ω ∧ R , µω = R b R−1f . (2b)

A core difficulty of this problem is the strongly non-
linear relationship between particle geometry and mobil-
ity tensors. Recent advances in fabrication and track-
ing have allowed experimental measurements of parti-
cles with complex geometries and the observed dynamics
have been quite surprising. Collins et al. [8] showed that
the isotropic helicoid proposed by Kelvin in 1871 [11]
has much smaller translation-rotation coupling than ex-
pected [3, 12]. Miara et al. [9] identified a particle that

is non-chiral and yet exhibits translation-rotation cou-
pling with chiral trajectories whose handedness depends
on initial particle orientation.

Many different applications have motivated theoretical
work connecting particle geometry and sedimentation dy-
namics [13–17]. Witten and Diamant [5] review the wide
range of possible dynamics of chiral sedimentation. Par-
ticles typically have periodic orbits in orientation when b
is symmetric while approaching fixed orientations when
there is an anti-symmetric part of b [14, 17]. The conse-
quences of shape symmetries for particle dynamics have
been explored in some detail [5, 8, 15, 18–21], but there
still does not exist a general framework for classifying
particle trajectories based on shape, or for guiding de-
sign of particle shapes with desired trajectories.

In this paper, we identify an underlying reason why
new particle shapes continue to surprise us. We do not
have a clear roadmap that leads from shapes with simpler
b tensors through more complex geometries. For the a
tensor, the roadmap from spheres through spheroids to
triaxial ellipsoids already spans all possibilities since a
is symmetric and so is diagonal in its eigenbasis. If we
define torques using the center of mobility (also called
center of twist [5]) then b is also symmetric. So when
the center of mass, buoyancy, and mobility coincide, b is
symmetric around a point with zero torque. Additionally,
if a, b, and c are all diagonal in the same eigenbasis,
then the center of resistance is equal to the center of
mobility [4]. Co-centered particles with a single center
of mass, buoyancy, resistance, and mobility are a natural
simplest case for particles with non-trivial b tensors.

The chiral particles that have received the most atten-
tion in the literature are not co-centered. The importance
of bacterial flagella led Purcell [6] and a sequence of re-
searchers [10, 16, 22, 23] to focus on helical fibers. These
are efficient at propulsion and accessible to theory and
computation through slender body theory. However, for
arbitrary lengths, they are not co-centered. Experimen-
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FIG. 1. (a) Body coordinate system and dimensions for a
helical ribbon with Length 2πL/s = 5π/4 (b) A measured
trajectory in space (Helix is not to scale, length 3π/4) (c)
top view. Red dots are measurements. Yellow line is a nu-
merical integration using measured parameters for this parti-
cle. Blue line continues the numerical trajectory. (d) Same
measured trajectory in tilt-spin space. Supplemental video is
available [24].

tal measurements of translation-rotation coupling of heli-
cal fibers find good agreement with predictions, but have
only explored a single tensor element along the axis [23].

We study helical ribbons, formed by a thin rectangular
sheet twisted about its long axis so that its long edges
form a double helix, shown in Fig. 1(a). These particles
are co-centered because they have three perpendicular
axes with discrete symmetry under rotation by π. Two
of these symmetries are sufficient to ensure that a parti-
cle is co-centered since any rotational symmetry fixes all
centers to lie along the rotation axis.

We fabricated helical ribbons using projection micro
stereolithography 3D printing in order to obtain precise
geometry and good density homogeneity [24]. Four dif-
ferent helical ribbons were used with different lengths
labeled by their twist angles, 2πL/s = 3π/4, 5π/4, 4π/3,
and 3π/2, where s = 20 mm is the length over which

the helix twists through a full rotation. All particles
had width W=4 mm, thickness T = 0.5 mm, and den-
sity 1.20 g/cm3. They were dropped in a 20x20x20 cm
tank of silicon oil with mass density ρ =0.97 g/cm3 and
kinematic viscosity µ/ρ= 520 cSt. The particle Reynolds
number based on length, Rep = L|v|ρ/µ, ranged between
0.027< Rep <0.092, firmly in the viscous limit.
Three-dimensional positions and orientations of parti-

cles were reconstructed using 3 cameras with nearly or-
thogonal viewing angles [24, 25]. It is convenient to mea-
sure particle orientation using Euler angles [26] where ψ
measures spin about the particle’s long axis, θ is the po-
lar angle measuring the tilt of body coordinate ê3 away
from vertical, and ϕ is the azimuthal angle. We define
ψ = 0 to be when ê1 is normal to the plane formed by
ê3 and the z axis. Note that tilts away from horizontal
correspond with deviations from θ = π

2 .
Figure 1(b) shows a typical trajectory which reveals

quasi-periodic orbits in particle orientation. Seen from
above [Fig. 1(c)], the trajectory forms a quasi-periodic or-
bit with lobes similar to those made by a spirograph toy.
In the space of tilt (θ) and spin (ψ) shown in Fig. 1(d), it
appears to be a simple closed periodic orbit. The mecha-
nism for these tilt-spin orbits is that a tilted ribbon drifts
horizontally and begins to spin. The spinning changes
which end of the ribbon experiences greater drag and so
the tilt changes.
Figure 2 shows many trajectories measured with dif-

ferent initial orientations for each of the four particles.
From these data, the six unknown eigenvalues of a and b
can be determined using least-squares fitting of the ex-
perimental position and orientation data to trajectories
numerically integrated using Eqs. 2. The black lines in
Fig. 2 show simulated trajectories using best fit mobil-
ity tensors. We see that theory and experiment agree
quite well. There are some differences, likely the result
of imperfect particle geometry, foreign objects such as
lint or bubbles attached to the particles, or systematic
orientation measurement errors.
For all four particles, and for all measured initial ori-

entations, the trajectories appear to follow closed orbits
in the θ-ψ-plane. Two fixed points, one a center and the
other a saddle, appear in each phase diagram. A sur-
prising feature of Fig. 2 is that as the particle increases
length from Fig. 2(c) to 2(d), there is a bifurcation at
which the fixed points switch stability.
To study the bifurcation as a function of ribbon length,

Eqs 2 can be used to obtain evolution equations for the
Euler angles. For our co-centered particles, we can use
the reference frame in which a and b are both diagonal
to obtain

ψ̇ = [(b11 − b22) cos
2 ψ − b11 + b33] cos θ , (3a)

θ̇ = (b11 − b22) sinψ cosψ sin θ , (3b)

ϕ̇ = −(b11 − b22) cos
2 ψ + b11 . (3c)
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FIG. 2. Angular dynamics for different particle lengths, 2πL/s: (a) 3π/4, (b) 5π/4, (c) 4π/3, and (d) 3π/2. Particle images
are above each plot. Solid black lines show numerically integrated trajectories. Color symbols indicate distinct experimental
trajectories.

Here the dynamics of the spin angle, ψ̇, and the tilt angle,
θ̇, do not depend on the azimuthal angle ϕ because there
is continuous rotational symmetry about the gravity di-
rection. The continuous translational symmetry in space
ensures that the angular dynamics does not depend on
the position of the particle center, and so the phase space
is two dimensional.

Eqs. 3 show that the angular dynamics changes as b11−
b22 switches sign, because θ̇ vanishes at this point. Linear
stability analysis of Eqs. 3 confirms that for b11−b22 > 0,
the fixed point at ψ = 0, θ = π/2 is a center while the
fixed point at ψ = π/2, θ = π/2 is a saddle, and they
switch when b11 − b22 changes sign. Helicoids with b11 =
b22 have axisymmetric translation-rotation coupling and
are apparently special particles with simpler dynamics
than the general helical ribbon.

Eqs. 3 have a constant of motion [5]. It can be obtained
by integrating dθ/dψ = θ̇/ψ̇:

C = [b33 − b11 + (b11 − b22) cos
2 ψ] sin2 θ . (4)

This constant of motion, C, exists because the dynamics
are reversible [27–30], invariant under joint application of
time reversal and a reflection in phase space. One way to
see reversibility mathematically is that Eqs. 3 are invari-
ant under t→ −t and ψ → −ψ. The separate symmetry
under t→ −t and θ−π/2 → π/2− θ would also be suffi-
cient to ensure reversibility. Physically, reversibility can
be seen as a consequence of co-centered chiral geometry.
A reflection of the particle in space aligned with principal
axes, such as ê3 → −ê3, converts a helical ribbon from
right handed to left handed and switches the signs of the
diagonal elements of b. Combined with time reversal,
this also leaves Eqs. (3) invariant. Although the angular
dynamics in Eqs. (3) do not conserve phase-space vol-
ume, reversibility excludes stable or unstable spiral fixed
points and limit cycles.

Note that the second argument above using the phys-
ical reflection ensures closed orbits for co-centered chiral
particles, but it does not predict closed orbits for par-

ticles with anti-symmetric parts of b since they do not
switch sign in general under spatial reflections. Many
chiral particles will have anti-symmetric parts of b which
can cause spiral orbits in orientation space that converge
to special orientations given by the eigenvectors of b [5].
A different case with closed orientation orbits for non-
chiral particles was discovered by Miara et al [9]. In this
case, there is also a symmetry in phase space under re-
flection and time-reversal.

To understand the possible mobility tensors for heli-
cal ribbons, we computed the mobility tensors numer-
ically for ribbons made out of small hydrodynamically
interacting spheres that are rigidly connected to each
other [8, 31]. The computed mobility tensor eigenval-
ues for both a and b are shown in Fig. 3 as functions
of helical ribbon length. Fig. 3(a) shows that the nor-
malized a eigenvalues change little with length, except at
very short lengths where the ribbon becomes more like
a thin flat rectangle. The key is in the eigenvalues of b

0 /3 2π/3 4 /3 5 /3 2 7 /3
-1

0

0.5

π π π π π
Helical Ribbon Length,  2πL/s 

b α
α

  / 
b 33

b11/b33 

b22/b33 

a α
α

  / 
(tr

 ( 
 )/

3)
 

π

0.7

1

1.3
a33 

a11 a22 

FIG. 3. Diagonal elements of the mobility tensors for a (top)
and b (bottom) as functions of helical ribbon length. Dia-
monds indicate experimentally measured values. Solid lines
are numerical simulations using the bead-model described in
the text.
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FIG. 4. Spatial trajectories from numerical simulations for selected initial conditions. Insets show the same trajectories
(matched by color) in tilt-spin phase space. Helical ribbons lengths are (a) 3π/4, (b) 5π/4, (c) 4π/3, and (d) 3π/2. Videos
showing the full range of trajectories are available [24].

shown in Fig. 3(b). Here the critical bifurcation lengths
at which b11 = b22 are clearly shown. In addition to the
bifurcation just above 4π/3 seen in Fig. 2, the numerical
results show that there are two further bifurcations, near
lengths 0.7 and 7.2. There is no apparent special geo-
metric symmetry for particles with any of these lengths.
We expect the oscillation to continue as ribbons become
longer and approach the simple chiral rod with only b33
non-zero.

Figure 3 also shows the experimentally measured
eigenvalues of the a and b tensors. As normalized, the
measurements are in quite good agreement with the com-
puted values. We choose to normalize the elements of a
by its trace and b by b33. Discussion of this normal-
ization convention and plots of Tr a and b33 are in the
supplemental material [24]. In Fig. 3, the deviations
between experiment and theory are slightly larger for a.
This may be a tank-size effect as confinement should es-
pecially decrease the measured a11 and a22, and the nor-
malization could produce the observed discrepancy [32].
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FIG. 5. (a) Spatial trajectory curvature switching for a 3π/4
particle. Arrows indicate direction on the super-helical paths.
Trajectories switch from clockwise to counterclockwise as the
initial orientation is changed. (b) Phase space orbits of the
trajectories in (a), matched by color.

We note that there is some dependence of the numeri-
cally simulated mobility tensors on the number and size
of the spheres used to represent the helical ribbon. This
dependence is negligible for the normalized eigenvalues,
but the values of Tr a and b33 depend on the detailed
configuration of spheres.
The spatial trajectories produced by non-trivial b ten-

sors can be very intricate [9]. Orbits in θ-ψ phase space
combine with precession in ϕ and the unequal eigenval-
ues of a to produce motion at multiple frequencies. Fig. 4
shows spatial trajectories obtained numerically using fit-
ted mobility tensor values. Experimental trajectories are
much shorter, but show the same structure. Trajecto-
ries that do not pass through θ = π

2 (horizontal) remain
tilted [Fig. 4(c)] and have large super-helical spatial tra-
jectories. Those that pass through θ = π

2 have complex
trajectories similar to those made by the spirograph toy
[Figs. 4(a,b,d)]. All four particles show both types, but
we only show tilted trajectories in Fig. 4(c).
For some helical ribbons, an interesting phenomenon

can occur where the handedness of the spatial trajectory
switches signs, shown in Fig. 5. In these cases there exists
a critical trajectory for which the helical ribbon is not
constrained within a finite horizontal area, in contrast
to previous work [33]. This phenomenon can occur when
b11 and b22 have different signs, highlighting the fact that
no single number can quantify a particle’s chirality; in-
stead, at least a second rank tensor is needed [34]. The
b tensors measured here provide a useful general tool for
quantifying the chirality of a shape.
In conclusion, the helical ribbon is a chiral shape with 3

rotational symmetries that fix the centers of mass, buoy-
ancy, mobility, and resistance to a single point. We find
that helical ribbons exhibit strong translation-rotation
coupling and identify them as a needed reference case
with which more complex particles can be compared.
With precise 3-dimensional measurements of position
and orientation of helical ribbons sedimenting at particle
Reynolds number less than 0.1, we measure both mobil-
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ity tensors a and b. We observe angular orbits that are
closed in the two-dimensional space of tilt and spin.

There are helical ribbons with special lengths that have
axisymmetric translation-rotation coupling. At these
lengths, a bifurcation occurs where the fixed points in
tilt-spin space switch between centers and saddles. These
axisymmetric helicoids have a particularly simple b ten-
sor and can function as a first step on the roadmap that
extends to general helical ribbons with triaxial b and on
to yet more general shapes that are not co-centered. We
also find that helical ribbons with b11 and b22 of opposite
signs can have trajectories whose horizontal center-of-
mass displacement is unbounded.

Experiments that precisely fabricate complex shapes
and measure full mobility tensors have now revealed sev-
eral unexpected features of translation-rotation coupling
during sedimentation [8, 9]. Together with the present
work, these point to an important design challenge to
create geometries that optimize translation-rotation cou-
pling. Some progress in this direction has been made [35],
but the challenge goes far beyond optimizing propulsion
efficiency in one dimension. For co-centered particles,
each eigenvalue of b can be optimized relative to the oth-
ers to achieve different goals. A full picture of which ge-
ometries optimize translation-rotation coupling in Stokes
flow could be a major step toward the broader goal of de-
veloping better ways to quantify chiral geometry.

SUPPLEMENTAL MATERIAL

Reconstruction of 3D Trajectories

We use three Phantom VEO 640 cameras with nearly
orthogonal viewing angles to capture 3D dynamics. LED
panels provide bright field illumination onto which black
helical ribbons produce clean images. We use methods
of camera calibration and orientation measurement de-
veloped in [25].

Initial camera calibration parameters are obtained us-
ing a static two-plane calibration and then they are re-
fined to sub-pixel accuracy with a dynamic calibration
using images of small settling metal spheres.

To find the position and orientation of the helical rib-
bon from video images, we project a set of points on
the surface of an ideal 3D helical ribbon onto the image
planes of the three cameras using the camera calibration.
The average distance of each these points from a bright
pixel in the thresholded image is minimized to find the 3
position and 3 orientation coordinates.

Fabricating Co-Centered Particles

We tried three different methods for fabricating helical
ribbons. The first was mechanical twisting of polystyrene

strips. Strips were cut on a paper cutter, twisted with
a mechanical jig, annealed at 90o C, and then cut to
the desired length. This produced cost effective helical
ribbons with variability in width, length, and pitch that
required optical sorting to select specific particles. There
were also problems with non-reproducible sedimentation
dynamics, likely a result of the thin polystyrene having
mobility tensors that are very sensitive to tiny imperfec-
tions, lint, or bubbles.
The second method was 3D printing with a Form2

printer from Formlabs. This produced reproducible tra-
jectories, but there was a measurable offset of the steady
sedimentation orientation which we believe is due to den-
sity inhomogeneity in the printed material. This method
also has some challenges because it prints a single mate-
rial and so supports must be removed by hand introduc-
ing some shape irregularities.
We then obtained particles 3D printed with projec-

tion micro stereolithography developed by Boston Micro
Fabrication whose equilibrium sedimentation orientation
matches the expectations from the symmetry of the par-
ticles. Their primary drawback is the higher cost per
particle.
We have come to view Stokes sedimentation dynamics

as one of the most sensitive tools available for detecting
irregularities in geometry or mass density of rigid bodies.

Mobility tensor normalization

We measure diagonal elements of the a and b mobility
tensors and normalize them by tr(a)/3 and b33 respec-
tively. Physically, tr(a)/3 is the average drag over all
orientations. However, tr(b) can be zero, so this is not
a good normalization for b. Instead, for this particle
we choose to normalize by b33, because it is larger than
the other two eigenvalues and its sign is preserved as we
change the helical ribbon length. In the limit of infinite
length, b33 is the only non-zero eigenvalue.
Figure 6 provides absolute scaling values of the nor-

malization factors used for a and b. Notably, the helical
ribbon’s mass increases faster than its drag as length in-
creases, resulting in smaller sedimentation velocities for
shorter particles.

Movies of spatial trajectories

The spatial trajectories of an arbitrary particle fall in
a hierarchy of complexity governed by the number of dis-
tinct a and b eigenvalues. b determines what frequencies
are present and a determines if those frequencies can cou-
ple to spatial dynamics.

To communicate the wide range of spatial trajec-
tories that are possible, we created movies showing
how the trajectories change as the initial orientation
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FIG. 6. Normalization factors for mobility tensors as a func-
tion of helical ribbon length. (a) Average of the eigenvalues
of a (b) Largest eigenvalue of b.

is continuously changed. Movies are available at:
https://www.youtube.com/channel/UCVRg1jeDOSidH7oYnLdqZ2Q.
The movies show simulated trajectories using mobility
tensors measured with fits to experimental data for each
of the four helical ribbon lengths that we measured.
The shortest and longest particles show switching of the
handedness of spatial trajectories because the values of
b11 and b22 (shown in Fig. 3 in the main article) have
opposite signs. This allows cancellation of contributions
to the change in ϕ along the trajectory. The other two
particles always have left handed trajectories because
the negative eigenvalues dominate.

Additionally, a video of the example tra-
jectory shown in Fig. 1 is available at:
https://www.youtube.com/watch?v=n9FWTLHiUK4. The
angular phase space is pictured at the bottom left with
the same axes as in Fig. 1(d).

We thank Bennet Grossman for assistance in setting up
the experimental apparatus and Gleb Shevchuk for con-
versations about advanced 3D printing techniques. We
acknowledge support from the NSF under grant DMR-
1508575 and CBET-2211704, the Army Research Office
under grant W911NF-17-1-0176, and Vetenskapsr̊adet
under grant no. 2021-4452.

∗ gvoth@wesleyan.edu
[1] J. S. Guasto, R. Rusconi, and R. Stocker, Annual Review

of Fluid Mechanics 44, 373 (2012).
[2] B. R. Sutherland, M. DiBenedetto, A. Kaminski, and

T. van den Bremer, Phys. Rev. Fluids 8, 070701 (2023).
[3] J. Happel and H. Brenner, Low Reynolds number hydro-

dynamics: with special applications to particulate media,
Vol. 1 (Springer Science & Business Media, 1983).

[4] S. Kim and S. J. Karrila, Microhydrodynamics: princi-
ples and selected applications (Butterworth-Heinemann,
Boston, 1991).

[5] T. A. Witten and H. Diamant, Reports on progress in
physics 83, 116601 (2020).

[6] E. M. Purcell, Proceedings of the National Academy of
Sciences 94, 11307 (1997).

[7] E. J. Tozzi, C. T. Scott, D. Vahey, and D. J. Klingenberg,
Physics of Fluids 23, 033301 (2011).

[8] D. Collins, R. J. Hamati, F. Candelier, K. Gustavsson,
B. Mehlig, and G. A. Voth, Physical Review Fluids 6,
074302 (2021).

[9] T. Miara, C. Vaquero-Stainer, D. Pihler-Puzović,
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