
Optimizing Cyber Response Time on Temporal Active Directory
Networks Using Decoys (Extended Version)

Huy Q. Ngo

The University of Adelaide

Adelaide, Australia

quanghuy.ngo@adelaide.edu.au

Mingyu Guo

The University of Adelaide

Adelaide, Australia

mingyu.guo@adelaide.edu.au

Hung X. Nguyen

The University of Adelaide

Adelaide, Australia

hung.nguyen@adelaide.edu.au

ABSTRACT
Microsoft Active Directory (AD) is the default security manage-

ment system for Window domain network. We study the problem

of placing decoys in AD network to detect potential attacks. We

model the problem as a Stackelberg game between an attacker and a

defender on AD attack graphs where the defender employs a set of

decoys to detect the attacker on their way to Domain Admin (DA).

Contrary to previous works, we consider time-varying (temporal)

attack graphs. We proposed a novel metric called response time,

to measure the effectiveness of our decoy placement in temporal

attack graphs. Response time is defined as the duration from the

moment attackers trigger the first decoy to when they compromise

the DA. Our goal is to maximize the defender’s response time to

the worst-case attack paths. We establish the NP-hard nature of

the defender’s optimization problem, leading us to develop Evolu-

tionary Diversity Optimization (EDO) algorithms. EDO algorithms

identify diverse sets of high-quality solutions for the optimization

problem. Despite the polynomial nature of the fitness function, it

proves experimentally slow for larger graphs. To enhance scalabil-

ity, we proposed an algorithm that exploits the static nature of AD

infrastructure in the temporal setting. Then, we introduce tailored

repair operations, ensuring the convergence to better results while

maintaining scalability for larger graphs.

CCS CONCEPTS
• Security and privacy → Network security; • Computing
methodologies→ Randomized search.

KEYWORDS
Active Directory, Network Security, Decoy Placement, Evolutionary

Diversity Optimization, Stackelberg Game

ACM Reference Format:
Huy Q. Ngo, Mingyu Guo, and Hung X. Nguyen. 2024. Optimizing Cyber

Response Time on Temporal Active Directory Networks Using Decoys

(Extended Version). In Proceedings of ACM Conference (Conference’17). ACM,

New York, NY, USA, 11 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA
© 2024 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Active Directory is Microsoft’s identity and access management

system designed forWindows domain networks. It’s widely adopted

and plays a critical role in the networks of many enterprises and

government bodies. However, its popularity has also made it a

prime target for many cyber adversaries over the years. According

to a report from Microsoft [15], there has been an alarming surge

in attacks targeting AD users, with 30 billion attempted password

attacks on AD accounts reported each month in 2023.

An Active Directory network naturally describes an attack graph,

with nodes representing both physical and virtual entities such

as users, computers, security groups, etc., and directed edge (𝑖, 𝑗)
representing the vulnerability and accesses that an attacker can

exploit to gain access from node 𝑖 to node 𝑗 . BloodHound 1
is one

of the most influential tools for analysing/visualising the AD attack

graph. BloodHound models the identity snowball attack, a concept
initially introduced by Dunagan et al. [8]. The identity snowball at-

tack models the sequence of attack in the network allowing them to

gain access of higher privileges nodes from a low privilege node (ex.

Account A

AdminTo−−−−−−−→ Computer B

HasSession−−−−−−−−−→ Account C). However,

Dunagan et al. [8] and several other works on defending Active

Directory network [9–11, 13, 22] over-simply the problem with the

assumption that AD network is static. In practice, the AD graph

is very dynamic which will effect the security landscape overtime.

One of the major sources of changes in the AD graphs is caused by

users’ activities. In Windows systems, user authentication leaves

behind credential material, typically in the form of a hash or clear-

text password in the computer’s memory. Adversaries can exploit

this vulnerability, harvesting credentials for lateral movement. In

the BloodHound, this vulnerability is presented as ’HasSession’.

HasSession edges will stay online until being removed from the

graph when the user signs off from the computer after a period

of time. In this work, we formally model the dynamics of the AD

graph using the temporal attack graph, wherein attackers gain ac-
cess to nodes in the AD graph through the identity snowball attack,
presented as temporal paths. For example, in Figure 1, the identity

snowball attack in temporal graph for gaining access of account

𝑈3 from compromised node 𝑠2 can be the following temporal path:

𝑠2
1−→ 𝐶𝑝1

2−→ 𝐶𝑝3
4−→ 𝑈3 where number on each arrow is time the

attacker exploit the edge to gain the access to next node. The static

attack graph can not capture this attack path if generated at time

steps 𝑡 ∈ [1, 4) ∪ (6, 10]

The manuscript have been accepted as full paper at The Genetic and Evolutionary

Computation Conference (GECCO) 2024

1
https://github.com/BloodHoundAD/BloodHound

ar
X

iv
:2

40
3.

18
16

2v
2

 [
cs

.C
R

]
 1

2
A

pr
 2

02
4

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Ngo, et al.

Figure 1: Example of an Active Directory graph sampled over
a period of 10 time units. The timestamps on each edge indi-
cates its appearance time. Black labels represent static edges,
while orange labels denote dynamic edges (HasSession).

In this paper, we study a method for defending temporal AD

attack graph by using active defense with cyber decoys. Decoys or

honeypots [6, 14] are fake assets such as fake users, and fake hosts

that trigger an alert when attackers engage them. They are designed

to lure attackers to them bymirroring authentic assets. By allocating

decoys in strategic locations, they can serve as the sentinel for the

early detection of the cyber threat. An early detection of a threat can

increase the effectiveness of incident response process of IT admin

and reduce the further damage caused by the attack [2]. Motivated

by the early detection use case of the network decoy, we proposed

a problem for decoy allocation in temporal network called𝑚𝑎𝑥𝑅𝑇 .

In this problem, defender aims to optimize the response time of
the decoy to any attack path. The response time is defined as the

duration from the moment attacker triggers the first decoy to when

they can reach DA. Defender want to maximize the response time

to ensure the early detection, providing IT admin with sufficient

time to respond to the incident before the attacker reaches the DA.

We model our problem as a two-player Stackelberg game model

with a pure strategy. In our game, the defender (leader) wants to

allocate at most 𝑏 decoys on a set of blockable nodes. The defender’s
allocation intercepts the attacker’s temporal attack path while maxi-

mizing the response time of the allocation to ensure early detection.

The attacker (follower) has access to a set of compromised en-

try nodes. The attacker can also observe the entire temporal AD

graph and the defensive strategy. This assumption is based on the

practicality of attackers employing reconnaissance tools similar to

Sharphound
2
to collect data from domain controllers and build an

AD attack graph. The attacker’s strategy specifies an entry node,

and from it, a temporal attack path to DA. The attacker’s best re-

sponse is to choose a temporal attack path that has the minimum

response time. We will later show that the attacker’s optimal plan

can be found in polynomial time.

Our Contribution. This paper aims to propose a solution for

the decoys allocation in Active Directory problem. We first prove

NP-hard nature of the defender’s combinatorial optimization prob-

lem. We then introduce the Evolutionary Diversity algorithm as

a heuristic solver. However, the vanilla EDO algorithm does not

scale well for our problem when it fails to converge to any feasible

2
https://github.com/BloodHoundAD/SharpHound

solution (response time > 0) in some graphs. When we mention

"vanilla" EDO algorithm, we refer to directly applying the EDO

implementation from Goel et al. [9, 10] to our problem. In an at-

tempt to run the vanilla EDO algorithm on the ADX10 graph in our

experiment, the response time of the solution remains 0 even after 2

million iterations (equivalent to almost 3 days of computational ef-

fort). To enhance our algorithm, we propose several improvements.

Firstly, the computation of the attacker’s optimal path relies on the

earliest-arrival path, which is computationally slow in AD graphs.

We observe an contradiction that the state-of-the-art algorithm for

computing the earliest-arrival path becomes highly inefficient in

temporal graphs with a large number of static edges. Despite the

dynamic characteristics of the AD graph, a significant portion of

the AD infrastructure remains static. To address this problem in

AD-specific graphs, we present a novel Dijkstra-based algorithm for

computing the earliest-arrival path which significantly improves

the run-time of the fitness function. Secondly, we introduce two

constraint-handling techniques to tackle the difficulty of finding

feasible solutions in the vanilla EDO. The first method introduces a

repair mechanism using Integer Linear Program (ILP) to directly

patch the infeasible solution every round. The second approach

introduces the surrogate/penalty fitness function. The surrogate

function is a lightweight fitness function that replaces the compu-

tationally expensive real fitness function, allowing the evaluation

of individuals at a lower cost during each iteration. The surrogate

function is designed to evaluate a solution on a set of "important"

attack paths instead of the whole graph and penalize the infeasible

individuals. We experimentally verify that our proposal effectively

improves the scalability of the EDO algorithms on our problem.

2 MODEL DESCRIPTION
2.1 Background
Temporal directed graph define as 𝐺 = (𝑉 , 𝐸1, · · · , 𝐸𝑡𝑚𝑎𝑥

) =
(𝑉 , 𝐸 = (𝐸𝑖)𝑖∈[𝑡𝑚𝑎𝑥])) where 𝑉 is a set of vertices in the graph and

𝐸𝑖 is the set of edges at time 𝑖 . We denote the tuple (𝑢, 𝑣, 𝑡) ∈ 𝐸𝑡 the
edge from 𝑢 to 𝑣 appears at time 𝑡 . For the sake of model simplicity,

we assume that every edge has a duration of 1. In other words,

if an attacker traverse edge (𝑢, 𝑣, 𝑡), they will start from node 𝑢

at time 𝑡 and arrive 𝑣 at time 𝑡 + 1. Despite this simplification,

all our algorithms remain effective in more general settings in

which the duration of every edge is larger or equal 1. We call 𝑡𝑚𝑎𝑥

the lifetime of the graph. We also define the underlying graph
of graph 𝐺 as 𝐺↓ = (𝑉 , 𝐸↓) where 𝐸↓ =

⋃𝑡𝑚𝑎𝑥

𝑡=1
𝐸𝑡 . For the ease

of demonstration in the paper, we also denote 𝑡𝑖𝑚𝑒_𝑙𝑎𝑏𝑒𝑙 (𝑢, 𝑣) =
(𝑡𝑖)𝑘𝑖=1 as a (ascending) sorted list of time units that edge (𝑢, 𝑣)
appears (or is on) if (𝑢, 𝑣, 𝑡𝑖) ∈ 𝐸𝑖 where 𝑡𝑖 ∈ 𝑡𝑖𝑚𝑒_𝑙𝑎𝑏𝑒𝑙 (𝑢, 𝑣).
Otherwise, we say edge (𝑢, 𝑣) disappears or is off at time step 𝑡𝑖
if 𝑡𝑖 ∉ 𝑡𝑖𝑚𝑒_𝑙𝑎𝑏𝑒𝑙 (𝑢, 𝑣). We denote a set of static edges as 𝐸𝑠 ,

we say an edge (𝑢, 𝑣) ∈ 𝐸𝑠 is static if they appear in every time

step throughout the graph’s lifetime or |𝑡𝑖𝑚𝑒_𝑙𝑎𝑏𝑒𝑙 (𝑢, 𝑣) | = 𝑡𝑚𝑎𝑥 .

Similarly, we denote set of dynamic edges as 𝐸𝑑 , we say an edge

(𝑢, 𝑣) ∈ 𝐸𝑑 is dynamic if they disappear from the graph for some

of the time units or |𝑡𝑖𝑚𝑒_𝑙𝑎𝑏𝑒𝑙 (𝑢, 𝑣) | < 𝑡𝑚𝑎𝑥 .

Temporal (𝑠, 𝑑)-path is defined as a sequence of edges in graph

𝐺 exhibiting a monotonic increase in edge labels. For any two

distinct nodes 𝑠, 𝑑 ∈ 𝑉 , a temporal path between two vertices 𝑠

Optimizing Cyber Response Time on Temporal Active Directory Networks Using Decoys (Extended Version) Conference’17, July 2017, Washington, DC, USA

and 𝑑 is represented by the sequence of edges: 𝜋 = 𝜋 (𝑠, 𝑑) = ⟨(𝑠 =
𝑣0, 𝑣1, 𝑡1), (𝑣1, 𝑣2, 𝑡2), . . . , (𝑣𝑘−1, 𝑣𝑘 = 𝑑, 𝑡𝑘)⟩ = ⟨(𝑣𝑖−1, 𝑣𝑖 , 𝑡𝑖)⟩𝑘𝑖=1 where
𝑣𝑖 ≠ 𝑣 𝑗 and 𝑡𝑖 < 𝑡 𝑗 for all 𝑖, 𝑗 ∈ {0, . . . , 𝑘} with 𝑖 ≠ 𝑗 . We denote

𝑠𝑡𝑎𝑟𝑡 (𝜋) = 𝑡1 and 𝑒𝑛𝑑 (𝜋) = 𝑡𝑘 + 1 as the starting time and end-
ing time of a path 𝜋 (𝑠, 𝑑). We further denote by 𝑑𝑢𝑟 (𝜋 (𝑠, 𝑑)) =
𝑒𝑛𝑑 (𝜋 (𝑠, 𝑑)) − 𝑠𝑡𝑎𝑟𝑡 (𝜋 (𝑠, 𝑑)) the duration of travelling from the

starting vertex to the ending vertex of the path 𝜋 (𝑠, 𝑑). Next, we de-
fine a set of every possible temporal path from 𝑠 to 𝑑 between inter-

val [𝑡𝛼 , 𝑡𝜔] asΠ(𝑠, 𝑑, [𝑡𝛼 , 𝑡𝜔]) = {𝜋 : 𝜋 is a (s, d)-temporal path such

that𝑠𝑡𝑎𝑟𝑡 (𝜋) ≥ 𝑡𝛼 , 𝑒𝑛𝑑 (𝜋) ≤ 𝑡𝜔 }. Then, a path 𝑝 ∈ Π(𝑠, 𝑑, [𝑡𝛼 , 𝑡𝜔])
is an earliest-arrival path if 𝑒𝑛𝑑 (𝜋) = 𝑚𝑖𝑛{𝑒𝑛𝑑 (𝜋 ′) : 𝜋 ′ ∈
Π(𝑠, 𝑑, [𝑡𝛼 , 𝑡𝜔])}.

Temporal (𝑠, 𝑑)-cut, also known as a temporal (𝑠, 𝑑)-separator,
refers to the set of nodes 𝐶 (𝑠, 𝑑) in the graph𝐺 that the removal of

every node in set 𝐶 (𝑠, 𝑑) will disconnects all temporal paths from

𝑠 to 𝑑 . It is essential to note that in this paper, the terms "cut" or
"separator" specifically refers to the allocation of decoy on vertices.
When we employ a temporal (𝑠, 𝑑)-cut the graph, we guarantee
every (s, d) temporal path has a contact with the cut 𝐶 . Given a

path 𝜋 (𝑣0, 𝑣𝑘) = ⟨(𝑣𝑖−1, 𝑣𝑖 , 𝑡𝑖)⟩𝑘𝑖=1 in graph 𝐺 and a cut 𝐶 (𝑣0, 𝑣𝑘),
we define a node 𝑣 as the first point of contact between the

path 𝜋 (𝑣0, 𝑣𝑘) and the cut 𝐶 (𝑣0, 𝑣𝑘) if 𝑣 ∈ 𝐼 : ∀𝑢 ∈ 𝐼 , dur(𝑣0, 𝑣) ≤
dur(𝑣0, 𝑢) where 𝐼 = 𝑉 (𝜋 (𝑣0, 𝑣𝑘)) ∩ 𝐶 (𝑣0, 𝑣𝑘). In plain language,

the first point of contact represents the first honeypot encountered

when following the path.

Response time denoted as 𝑅𝑇 is a key parameter introduced

in this paper for our specific problem. The response time of a

path 𝜋 is defined as the duration between the moment when the

attacker encounters or triggers the first honeypot and the time

when the attacker compromises the Domain Admin while fol-

lowing path 𝜋 . Let’s us consider the temporal path 𝜋 (𝑠, 𝐷𝐴) =

⟨(𝑠 = 𝑣0, 𝑣1, 𝑡1), . . . , (𝑣𝑘−1, 𝑣𝑘 = 𝐷𝐴, 𝑡𝑘)⟩ = ⟨(𝑣𝑖−1, 𝑣𝑖 , 𝑡𝑖)⟩𝑘𝑖=1 with

𝑣𝑥 where 1 < 𝑥 < 𝑘 is the first point of contact of 𝜋 (𝑠, 𝐷𝐴) and
the defense solution 𝐶 (𝑠, 𝐷𝐴). The response time of path 𝜋 (𝑠, 𝐷𝐴)
is defined as 𝑅𝑇 (𝜋,𝐶) = 𝑑𝑢𝑟 (𝜋 (𝑠, 𝐷𝐴)) − 𝑑𝑢𝑟 (𝜋 (𝑠, 𝑣𝑥)) = 𝑡𝑘 − 𝑡𝑥
As a defender, we want to maximize the response time of every

temporal path in the attack graph to let IT admin have enough time

to react to the incident.

Example 2.1. Figure 1 illustrates a temporal Active Directory

graph. The graph includes two compromised users, denoted as 𝑠1
and 𝑠2. The graph consists of two sets of edges: static edges, al-

lowing the attacker to move between nodes at every time step,

and dynamic edges, which appear for a limited time. In this ex-

ample, we assume the defender allocates honeypots to a set of

nodes 𝐶 = {𝐶𝑝2,𝐶𝑝3}. Consider the following temporal path 𝜋 =

⟨(𝑠1,𝐺𝑟1, 2), (𝐺𝑟1,𝐶𝑝2, 4), (𝐶𝑝2,𝑈2, 6), (𝑈2, 𝐷𝐴, 7)⟩ from 𝑆 to 𝐷𝐴.

Assuming the attacker from 𝑠1 chooses this path, the honeypot on

node𝐶𝑝2 is triggered at time 4 (as the attacker steps on it), alerting

the IT admin to the attacker’s presence. In this context, node 𝐶𝑝2
is considered as the first point of contact for the attacker. The re-

sponse time, defined as the time from honeypot alert to the attacker

compromising the DA, is 𝑅𝑇 = 𝑑𝑢𝑟 (𝜋 (𝑠1, 𝐷𝐴)) −𝑑𝑢𝑟 (𝜋 (𝑠1,𝐶𝑝2)) =
(7 + 1− 2) − (4 + 1− 2) = 3 units (plus 1 due to the assumption that

traversing each edge takes 1 time unit). During this window, the IT

admin has 3 time units to isolate compromised systems and termi-

nate the attacker’s unauthorized session. Note that the proposed

response time is a realistic model of real hackers’ behaviour where

they would wait in the system for a long time before an opportunity

arises for the next movement.

2.2 Problem formulation
Temporal directed attack graph We define an AD attack graph

in our model as a Temporal directed graph𝐺 = (𝑉 , 𝐸1, · · · , 𝐸𝑡𝑚𝑎𝑥
).

Set of vertices V represents all physical and virtual entities such as

user, computer, security group, etc. The set of edge 𝐸𝑖 denotes the

link modelling the security dependency and relationships between

entities which represent vulnerabilities for attacker to make lateral

movements. There is a set 𝑆 ⊆ 𝑉 of initial footholds called entry

vertices, and the attacker has already compromised these vertices at

the start of the attack. The attack goal is to compromise the Domain

Admin (DA), the attacker can laterally move through the network

using any of the temporal (s, DA)-path.
Formulation with game theory The problem of defending a

temporal AD network with honeypots can be modelled as a Stack-

elberg game. In our proposed model, the defender can deploy a

set of honeypots on a set of vertices 𝐶 (a cut) such that form a

temporal (𝑆, 𝐷𝐴)-cut. In our model, each honeypot will "monitor"

any malicious activities on their allocated vertices. The honeypots

will set an alert to IT admin once the attacker steps on one of these

vertices. Defender can only allocate honeypot on a set of blockable

vertices, denoted by 𝑁𝑏 ⊆ 𝑉 . In consideration of a worst-case sce-

nario, we assume the attacker has full visibility into the temporal

graph and the honeypot placements. The attacker can bypass these

honeypots if the honeypot’s placement does not form a temporal

(𝑠, 𝐷𝐴)-cut, which in this case, the response time is 0. Consequently,

when the budget of the defender problem is exactly the size of the

minimum temporal cut, our problem’s solution is also the solution

for the minimum temporal (𝑠, 𝑑)-separator problem [23] which is

known to be a NP-complete problem. However, our problem goes

beyond this by also maximizing the response time of the temporal

cut which tends to "push" the solution further away from the DA.

Generally speaking, nodes further away from the DA tend to be

lower privilege nodes instead of servers or admin. Therefore, our

solution incurs lesser disruption to the network. We say 𝐶 is a de-

fender’s feasible solution if 𝐶 is strictly a temporal (𝑆, 𝐷𝐴)-cut,
otherwise, it is a infeasible solution. Strategically, when facing a

defence solution 𝐶 , the attacker selects a path that minimizes the

response time. The attacker optimal attack path can be found via

min𝜋∈Π 𝑅𝑇 (𝜋,𝐶) whereΠ is the set of every possible temporal path

between each vertex 𝑠 ∈ 𝑆 to DA. In contrast, the defender aims

to find a cut 𝐶 that maximize the response time. The defender’s
objective is formulated as

max

𝐶⊆𝑁𝑏 , |𝐶 |<𝑏
{min

𝜋∈Π
𝑅𝑇 (𝜋,𝐶)}. (1)

Theorem 1. Defender’s problem is NP-hard.

Due to space constraints and anonymity, we omit the proofs of
every theorems in this submission. Detailed proofs will be provided in
the extended technical report, supplementing the main manuscript.

Conference’17, July 2017, Washington, DC, USA Ngo, et al.

3 RELATEDWORK
Identity Snowball Attack in dynamic environment. In the

literature, there are several efforts to model the identity snowball

attacks with consideration of the dynamic nature of the attack

graph. Ngo et al. [16] also study the honeypot/decoys allocation

on Active Directory network with the consideration of the dy-

namic setting. However, their approach to modelling dynamism is

somewhat simplistic. They capture the dynamic nature by taking

independent static snapshots of the attack graph at each time step,

treating each snapshot as an attacker’s scenario in a static graph.

Their allocation strategy jointly optimizes the number of attack

paths in each snapshot. Ngo et al. [16] fail to model the identity

snowball attack in the temporal graph. In practical scenarios, at-

tackers can patiently "lurk" in a node until a more opportune path

emerges. This characteristic makes our model more sophisticated

and practical than theirs. Albanese et al. [1] attempted to model

the credential hopping attacks/identity snowball attacks on the

time-varying user-computer graph. They assume that attacker does

no observation on the network topology and employ a heuristic

algorithm to find the upper-bound of the attacker attack effort. In

contrast, our work considers the worst scenario where attacker

have the observation on the attack graph and we can derive the

optimal attack response. Pope et al. [18] also consider a similar

model to Albanse et al. except they employ genetic programming

to predict the attacker success rate/effort. We highlight that none

of these works considers the temporal graph for modelling the

dynamic of AD graph.

Active Directory. In the literature, two primary defender strate-

gies have been explored for defending Active Directory: edge-

blocking and decoy allocation (node-blocking). The seminal work

by Dunagan et al. [8] was the first to study the defense problem in

Active Directory through edge-blocking by introducing the heuris-

tic edge-blocking algorithm. Follow-up researches on the edge-

blocking optimization problem includes Guo et al. [11] proposed an

optimal edge-blocking strategy using Fixed-Parameter Tractable

algorithms; [13, 22] improved scalability through Mixed-Integer

Programming and the Double Oracle algorithm; Goel et al. [9, 10]

proposed the Evolutionary Diversity Optimization (EDO) algorithm

to defend against attackers in a configurable environment; and Guo

et al.[12] studied optimal edge-blocking problem with minimal

human input. Another approach for defending Active Directory

found in the literature involves node-blocking, which abstracts the

concept to decoy allocation. Ngo et al. [16] are the first to study the

honeypot allocation problem for defending Active directory where

they proposed MIP algorithm to solve the problem.

Evolutionary Diversity Optimization [19] is a recent branch

of Evolutionary Computation. EDO is designed to identify a set of

solutions that is both high-quality and structurally diverse. In the

literature, there have been considerable efforts exploring the EDO

algorithm for various combinatorial problems, including the travel-

ling salesperson problem [3, 7, 17], minimum spanning tree problem

[5], knapsack problems [4], and more. Among these studies, the

work of Goel et al. [9, 10] is particularly relevant to our research.

Goel et al. consider the edge-blocking problem against attacker in

AD graph where edges are associated with a failure rate and de-

tection rate. They deploy a neural network/reinforcement learning

to approximate the attacker’s strategy and apply EDO algorithm

to solve the defender problem. In our study, our EDO algorithm

draws inspiration from Goel et al. [10], including the design of

the mutation/crossover operator and diversity measure strategy.

However, our experimental findings reveal that the vanilla EDO

algorithm performs poorly when directly applied to our specific

problem.

4 PROPOSED METHODOLOGY
4.1 Game-theoretical rational attacker
In our model, the game-theoretical rational/optimal attacker will

choose the attack path that has the minimal response time. We

illustrate such paths using the following example from Figure 1.

We assume the defender allocates honeypots to a set of nodes 𝐶 =

𝐶𝑝2,𝐶𝑝3. Starting from the entry node 𝑠1, let’s examine two poten-

tial attack paths:𝜋1 = ⟨(𝑠1,𝐺𝑟1, 1), (𝐺𝑟1,𝐶𝑝2, 2), (𝐶𝑝2,𝑈2, 6), (𝑈2, 𝐷𝐴, 7)⟩
and 𝜋2 = ⟨(𝑠1,𝐺𝑟1, 1), (𝐺𝑟1,𝐶𝑝2, 5), (𝐶𝑝2,𝑈2, 6), (𝑈2, 𝐷𝐴, 7)⟩. The
difference between these 2 paths lies in the departure time of ex-

ploiting the second edge (𝐺𝑟1,𝐶𝑝2). After exploiting the first edge

(𝑠1,𝐺𝑟1) at time 1, the attacker has 2 options: either immediately

exploit the next edge at time 2 (𝜋1) or wait until time 5 to continue

(𝜋2). Despite both paths leading to the attacker reaching DA at

time 7, the attacker is more "troublesome" if they opt for 𝜋1. This is

because the decoy only identifies them at time 5 (𝑅𝑇 = 2) for path

𝜋1, whereas for path 𝜋2, the attacker is detected at time 2 (𝑅𝑇 = 5),

providing the defender with significantly more time to respond to

the incident. 𝜋1 in this example is actually the worst-case/optimal

attack path.

Algorithm 1 for finding such paths can be described as follows.

Let’s consider an attack graph 𝐺 and a defender’s honeypot allo-

cation 𝐶 ∈ 𝑉 . We define a tuple (𝜋1, 𝑐, 𝑡𝑐), where 𝜋1 represents a
temporal path, 𝑐 is a node in 𝐶 , and 𝑡𝑐 is a time. Firstly, for each

node 𝑐 ∈ 𝐶 , we verify if it is reachable from any of the entry nodes

𝑠 ∈ 𝑆 at time 𝑡𝑐 in a graph 𝐺 ′ = ((𝑉 \𝐶) ∪ 𝑐, 𝐸) (line 4) —here, we
remove all nodes in 𝐶 except node 𝑐 (line 2). The condition in line

4 ensures the worst-case condition of the optimal attack path. If we

can reach node 𝑐 from 𝑆 at time 𝑡𝑐 using path 𝜋1, we then find the

earliest-arrival path 𝜋2 from 𝑐 to DA within the interval [𝑡𝑐 , 𝑡𝜔]
(line 5-6). We add the tuple (𝜋1, 𝜋2) to Ψ (line 7). Next, for every

tuple (𝜋1, 𝜋2) ∈ Ψ, we merge 2 path to form a temporal (𝑠, 𝐷𝐴)-
path 𝜋 = 𝜋1 + 𝜋2. We identify the tuple with the smallest duration

𝑑𝑢𝑟 (𝜋2), the duration of the earliest-arrival path 𝜋2 is actually the
response time for the attack path 𝜋 = 𝜋1 + 𝜋2 (line 8). Therefore, the
optimal attack path 𝜋𝑂𝑃𝑇 is the one where the 𝜋2 sub-path has the

smallest duration. The fitness function giving a defender solution

𝐶 can be defined as:

𝑓 (𝐶) =
{
min𝜋∈Π 𝑅𝑇 (𝜋,𝐶), if 𝐶 is feasible (temporal cut).

0, otherwise.
(2)

Optimizing Cyber Response Time on Temporal Active Directory Networks Using Decoys (Extended Version) Conference’17, July 2017, Washington, DC, USA

Algorithm 1 Algorithm for Computing Optimal Attack Path

Input: Temporal graph 𝐺 , set of source nodes 𝑆 , set of honeypot

𝐶 , destination node DA, time interval [𝑡𝛼 , 𝑡𝜔]
Output: Optimal attack path 𝜋

1: foreach 𝑐 ∈ 𝐶 do
2: Remove nodeset 𝐶 \ 𝑐 from graph 𝐺

3: foreach 𝑡 ∈ [𝑡𝛼 , 𝑡𝜔] do
4: if 𝑐 can be reached from any 𝑠 ∈ 𝑆 at time 𝑡 do
5: Store the path used to reach c by time 𝑡 to 𝜋1
6: 𝜋2 ← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑒𝑎𝑟𝑙𝑖𝑒𝑠𝑡_𝑎𝑟𝑟𝑣𝑙_𝑝𝑎𝑡ℎ(𝐺, 𝑐, 𝐷𝐴, [𝑡, 𝑡𝜔])
7: Add (𝜋1, 𝜋2) to Ψ
8: 𝜋 = argmin(𝜋1,𝜋2) ∈Ψ dur(𝜋2)
9: return 𝜋

For computing earliest-arrival path subroutine (line 6) we can use

the state-of-the-art algorithm proposed by Wu et al. [20] which has

been proven to be time-polynomial. This makes computing attacker

optimal attack plan time polynomial. Despite this, Wu’s algorithm

is inefficient when running on AD-specific graph, slowing down

the computation of the optimal attack plan. We will discuss this

issue in the next section and propose a more efficient approach for

calculating the earliest-arrival path.

4.2 Faster computation for earliest-arrival path
As outlined in Section 4.1, the response time of an attack path is

determined by the duration of the earliest-arrival path from an

initial point of contact to the DA. Therefore, the computation of

optimal attack for fitness function required the call of computing

the earliest arrival path subroutine. The first candidate algorithm

that we use for computing the earliest arrival path in our imple-

mentation is Wu’s algorithm [20]. In [20], the author explored the

computation of minimal paths in temporal graphs, including the

earliest-arrival path. Wu et al. introduced a one-pass algorithm

for computing the earliest-arrival path, which stands as one of the

state-of-the-art algorithms for this task. Wu’s algorithm generates

a set of edge streams, a chronological sequence of all edges 𝐸 or-

dered by the time at which the edge is collected. The algorithm

scans through the edge stream, greedily updating the earliest ar-

rival time at each node that satisfies the arrival condition. This

process required the duplication of every static edge to correctly

update the earliest arrival time which explain the contradictory of

the inefficiencies of Wu’s algorithm in AD-specific temporal graph.

In general, Wu’s algorithm poses inefficiencies when applied to

graphs with a substantial number of static edges as Wu’s algorithm

requires the scan of every edge in 𝐸. In practice, while the AD graph

exhibits dynamic characteristics, a significant portion of the AD

infrastructure remains static. For instance, in a snapshot taken from

the University of Anonymous on 13/10/2021 at 02:00 pm, a total of

1,151,962 relationships (edges) were identified as online at that time

while only 4,039 of these edges were the HasSession edges, which

are deemed as the primary source contributing to the dynamism of

the AD graph.

Our proposed approach utilises the Dijkstra’s edge scanning

strategy which allows us to perform the scan only on the under-

lying edges 𝐸↓. The intuition behind this algorithm lies in using

the Dijkstra greedy scanning strategy, which scans through each

underlying edge only once to expand the earliest-arrival paths. The

pseudocode is given in Algorithm 2. The idea of using Dijkstra for

finding earliest-arrival path has been proposed in [21]. However,

we further enhance the runtime on graphs with numerous static

edges by introducing a conditional statement between lines 11-14

in Algorithm 2

The correctness of the Dijkstra Greedy Strategy for computing

the earliest-arrival path is provided in Theorem 2. In the general

case, the time complexity of Wu et al.’s algorithm can be expressed

in our notation asO((𝜀𝑠+𝜀𝑑) ·𝑡𝑚𝑎𝑥), whereas the time complexity of

our proposed algorithm is O((𝜀𝑠 + 𝜀𝑑 · 𝑡𝑚𝑎𝑥) log (|𝑉 |)). In scenarios

where the number of static edges 𝜀𝑠 = |𝐸𝑠 | outweighs the number

of dynamic edges 𝜀𝑑 = |𝐸𝑑 |, our algorithm demonstrates more

efficient runtime, as theoretically presented in Theorem 3.

Experimentally, when we use these algorithms to find the earliest

path from every source to every node in graph 𝐴𝐷𝑋10 (section),

while Wu’s algorithm takes 18.370 seconds to complete the task,

Dijkstra Greedy’s runtime is only about 3.389 seconds (5x faster).

Theorem 2. Algorithm 2 correctly compute the earliest-arrival path

from a source vertex 𝑥 to every vertex 𝑣 ∈ 𝑉 within a given interval

[𝑡𝛼 , 𝑡𝜔] with the complexity of O((𝜀𝑠 + 𝜀𝑑 · 𝑡𝑚𝑎𝑥) · log (|𝑉 |))

Theorem 3. When 𝜀𝑠 ≫ 𝜀𝑑 , the complexity of Dijkstra-based algo-

rithm become O(𝜀𝑠 · log (|𝑉 |) while complexity of Wu’s algorithm

become O(𝜀𝑠 · 𝑡𝑚𝑎𝑥)

Algorithm 2 Dijkstra-based algorithm for Computing Earliest-

Arrival Time

Input: Temporal Graph 𝐺 , source nodes 𝑆 , time interval [𝑡𝛼 , 𝑡𝜔]
Output: The earliest-arrival time from every source nodes 𝑠 ∈ 𝑆

to every vertex

1: 𝑃𝑄 = 𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦_𝑄𝑢𝑒𝑢𝑒

2: 𝐼𝑁𝑆𝐸𝑅𝑇𝑃𝑄 (𝑡𝑖 , 𝑠),∀𝑠 ∈ 𝑆
3: 𝑠𝑒𝑒𝑛[𝑠] = 𝑡𝑖 ,∀𝑠 ∈ 𝑆
4: 𝑎𝑟𝑟𝑣𝑙_𝑡𝑖𝑚𝑒 ← 𝑒𝑚𝑝𝑡𝑦 𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑦

5: while 𝑃𝑄 ≠ ∅ do
6: (𝑡𝑢 , 𝑢) ← 𝑃𝑂𝑃_𝑀𝐼𝑁𝑃𝑄 ()
7: if 𝑢 in 𝑎𝑟𝑟𝑣𝑙_𝑡𝑖𝑚𝑒 do
8: continue

9: 𝑎𝑟𝑟𝑣𝑙_𝑡𝑖𝑚𝑒 [𝑢] = 𝑡𝑢
10: for successor 𝑣 of 𝑢 do
11: if (𝑢, 𝑣) is a 𝑠𝑡𝑎𝑡𝑖𝑐 𝑒𝑑𝑔𝑒 then
12: 𝑣_𝑎𝑟𝑟𝑣𝑙 ← 𝑡𝑢 + 1
13: else then
14: 𝑣_𝑎𝑟𝑟𝑣𝑙 ←𝑚𝑖𝑛{𝑡 : 𝑡 ∈ 𝑡𝑖𝑚𝑒_𝑙𝑎𝑏𝑒𝑙𝑠 (𝑢, 𝑣), 𝑎𝑛𝑑 𝑡 > 𝑡𝑢 }
15: if 𝑣 in 𝑎𝑟𝑟𝑣𝑙_𝑡𝑖𝑚𝑒 then
16: continue
17: elseif 𝑣 not in 𝑠𝑒𝑒𝑛 or 𝑣_𝑎𝑟𝑟𝑣𝑙 < 𝑠𝑒𝑒𝑛[𝑣] do
18: 𝑠𝑒𝑒𝑛[𝑣] ← 𝑣_𝑎𝑟𝑟𝑖𝑣𝑎𝑙

19: 𝐼𝑁𝑆𝐸𝑅𝑇𝑃𝑄 (𝑣_𝑎𝑟𝑟𝑣𝑙, 𝑣)
20: return 𝑎𝑟𝑟𝑣𝑙_𝑡𝑖𝑚𝑒

4.3 EDO Algorithm for max-𝑅𝑇
In this section, we discuss the application of the Evolutionary Di-

versity Optimization (EDO) algorithm within our problem context.

Conference’17, July 2017, Washington, DC, USA Ngo, et al.

The pioneering work of Goel et al. [9, 10] introduced the EDO

technique for addressing the edge-blocking problem in AD attack

graphs. We initially applied Goel’s EDO algorithm to our scenario.

In our problem, the defender employs EDO to acquire a diverse set

of defensive plans denoted as 𝐶 , where the fitness function 𝑓 (𝐶)
can be obtained by computing the optimal attack plan. Let’s define

𝑃 as the population of defensive solutions. An individual 𝑝 ∈ 𝑃

is defined as the binarization of solution 𝐶 where each individual

has a length of |𝑁𝑏 |, with 1 signifying the decision to block the

corresponding node and 0 implying no blocking.

We initiate the process by generating a random population 𝑃 of

defensive solutions. An individual 𝑝 is randomly selected from 𝑃 to

undergo either mutation or crossover, each with a probability of 0.5.

The number 𝑥 of mutated bits in the offspring is chosen randomly

based on a Poisson distribution. Formutation, we randomly select

an individual 𝑝′ from 𝑃 and flip 𝑥 random bits, changing 0s to 1s

and 1s to 0s. For example, if we choose 𝑝′ = ⟨1, 0, 1, 1, 0, 1⟩ from 𝑃

and 𝑥 = 2, the resulting offspring could be 𝑝 = ⟨0, 1, 0, 1, 1, 1⟩. For
crossover, we again randomly select two parents 𝑝′ and 𝑝′′ from
𝑃 . We identify 𝑥 coordinates where 𝑝′ has 0s and 𝑝′′ has 1s, and
flip the bits at those coordinates on both 𝑝′ and 𝑝′′. Similarly, we

identify 𝑥 coordinates where 𝑝′ has 1s and 𝑝′′ has 0s, and flip the

bits at those coordinates. After having the offspring using mutation

and crossover operation, we add the new offspring to the population

only if their fitness score is close to the best fitness score of the

population and reject the individuals that contribute the least to

the diversity of the population. We follow the diversity measure
of population implementation of [9, 10]. But to summarise our

diversity measure aims to maximise the diversity of "unique" nodes

in the population. Let 𝐶𝑛𝑡𝑃 (𝑣𝑖) be the function that counts the

number of individuals in population 𝑃 that contain 𝑣𝑖 . We say that

𝑣𝑖 is more "unique" to the population if they have a lower 𝐶𝑛𝑡𝑃 (𝑣𝑖)
score. Again, we noted that this paper is not intended to redesign
mutation, crossover operations, or diversity measures. Instead, our
focus lies in the design of an algorithm aimed at enhancing the overall
runtime and the convergence time to feasible solutions.

Our preliminary investigation of the EDO algorithm revealed

that most of generated offspring solution are infeasible. This chal-

lenge arises due to the expansive nature of the defender solution

space (

(|𝑁𝑏 |
𝑏

)
combinations), which makes it difficult to generate

feasible solutions using conventional evolution operators alone. An-

other challenge with the vanilla EDO algorithm is its requirement

to execute the full fitness function. Although we have presented

that the fitness function can be computed in polynomial time and

pushed the runtime frontier by proposing a modification of Dijkstra-

based for computing earliest-arrival paths. The algorithm execution

time remains slow for larger graphs. In the following section, we

will explore two constraint-handling techniques that we propose

to enhance convergence to feasible solutions and improve the algo-

rithm’s runtime efficiency.

4.4 Constraint-Handling Evolutionary
Algorithm

In this section, we shall introduce two constraint-handling ap-

proaches for our EDO algorithm.

4.4.1 Integer Programming repair operator. In this proposal, we aim
to address the issue of infeasible offspring directly by employing a

problem-specific repair operator. The repair mechanism involves

solving an Integer-Programming (IP) to "patch" the cutting solution.

The complete algorithm can be describe as following. Suppose we

encounter an infeasible offspring, denoted as 𝑝 after the mutation

or crossover. For each blocked node, excluding those that have

undergone a state change during the mutation or crossover, we

probabilistically unblock them (i.e., change 1s to 0s) with a proba-

bility of 1/2. The purpose of this unblocking operation is to reserve

additional space for the subsequent repair process and fulfill the

cardinality condition. Finally, we solve our problem-specific IP re-

pair operator. Due to space constraints, we will provide the detailed
ILP formulation in the extended technical report, supplementing the
main manuscript. The ILP is formulated on the idea that if any node

𝑖 is connected to 𝑗 via edge (𝑖, 𝑗, 𝑡), and if 𝑗 can reach DA at any

time before 𝑡 , then 𝑖 can also reach DA at every time after 𝑡 + 1.
While the repair operator ensures convergence to a feasible

solution in each iteration, it is worth noting that this approach is

very memory costly. The IP requires O(|𝑉 | · 𝑡𝑚𝑎𝑥) variable and

upto O(𝜀 · 𝑡𝑚𝑎𝑥 + |𝑉 |) constraints, which can become exponentially

large for certain graphs. Additionally, solving the IP itself is known

to be a NP-hard problem.

4.4.2 Surrogate-assisted and penalty-based repair operator. Through-
out our experiment, we observed that employing the full fitness

function on the entire graph in each iteration proves to be very

costly, especially for large graphs. Additionally, when using the

vanilla EDO algorithm, we encountered difficulties as the solution

failed to converge towards feasibility.

To tackle the challenges mentioned earlier, we propose Algo-

rithm 3. The core concept behind Algorithm 3 is to evaluate the

population on a lightweight surrogate fitness function in every

iteration instead of the inefficient complete fitness function (2). The

complete fitness function required to run Algorithm 1 on the whole

graph. Our idea for design is that we only need to focus on a set

of "important" paths that are likely to have the most impact on

the evaluation, instead of inefficiently spending time on the entire

graph. We will have two separate sets of populations in our algo-

rithm namely global population 𝑃𝑔𝑙𝑜𝑏𝑎𝑙 and local population 𝑃𝑙𝑜𝑐𝑎𝑙 .

The local population is evaluated every iteration by the surrogate

fitness, while the global population is only evaluated by the com-

plete fitness function when a specific condition is met. Let Φ be the

set of "important" temporal (𝑠, 𝐷𝐴)-path for the surrogate function.

We initialize the set Φ by adding a random set of temporal paths

in graph. Then we iteratively improve the function by adding to Φ
the most up-to-date optimal attack path by the attacker when fac-

ing the current population. Our experimental results demonstrate

that the surrogate function eventually becomes as effective as the

complete fitness function. The proposed algorithm is designed to

guide the solution towards convergence of the feasible solution.

The pseudocode of the algorithm is presented in Algorithm 3. It

involved the call of 3 other subroutines:

Local Search (line 5): In the local search, the algorithm performs

the standard mutation or crossover, diversity measure and rejection.

The key difference is that instead of using a resource-intensive

fitness function, we employ a lightweight surrogate fitness function

Optimizing Cyber Response Time on Temporal Active Directory Networks Using Decoys (Extended Version) Conference’17, July 2017, Washington, DC, USA

for evaluation. We say an individual 𝑝 is a locally feasible solution
if 𝑝 can intercept all paths in Φ. Individuals failed to block any

paths in Φ will be penalized. The penalty score is determined by

the number of paths in Φ that an individual 𝑝 cannot block. The

surrogate fitness function can be presented as follows:

𝑓
𝜙
𝑠 (𝐶) =

{
min𝜋∈Φ 𝑅𝑇 (𝜋,𝐶), if 𝐶 is locally feasible.

−|{𝜋 ∈ Φ : 𝜋 ∩𝐶 = ∅}|, otherwise.
(3)

Global Search (line 7): We define that global search starts only

when there are no locally infeasible individuals in the local popula-

tion, and a specified number of local iterations have been completed.

In the Global Search, the algorithm adds each "candidate" individual

from the local population to the global population and employs

diversity measures and rejection on the global population. We use

the complete fitness function to evaluate each individual. It’s impor-
tant to note that a solution 𝐶 is locally feasible may not necessarily
be globally feasible. This concern arises because the local search

evaluates only a fraction of the graph (Φ), which may not provide

enough samples to form a cut in the graph. However, as stated in

Theorem 4, we establish that eventually, the locally feasible solu-

tion yields the globally feasible solution after a certain number of

iterations.

Update the Surrogate Fitness Function (line 8 - 12): Following every
global search, we improve the surrogate function by updating the

important path set Φ. The update is based on the performance of

each individual in the local population. For every 𝑝 ∈ 𝑃𝑙𝑜𝑐𝑎𝑙 that
is globally infeasible, we add some random temporal (s, DA)-path

to Ψ in graph 𝐺 ′ = (𝑉 \ 𝑝, 𝐸) after removing nodes in cut set 𝑝 .

Those are the paths that make the individual 𝑝 globally infeasible.

We use the modification of the Depth First Search algorithm for

temporal graphs to find the random paths. For every 𝑝 ∈ 𝑃𝑙𝑜𝑐𝑎𝑙 that
is globally feasible, we improve the surrogate function by adding

the optimal attack path when facing the defense solution 𝑝 to Φ.

Theorem 4. In Algorithm 3, the number of iterations of Global

Search until feasible solution 𝐶 on local evaluation function 𝑓
𝜙
𝑠 (𝐶)

yield feasible solution on the global evaluation function is O(|𝑉 |)
iterations at worst.

Algorithm 3 EDO with surrogate-assisted/penalty-based fitness

function

Input: Temporal Graph 𝐺 , honeypot budget 𝑏

Output: Blocking population 𝑃

1: Initialize local population 𝑃𝑙𝑜𝑐𝑎𝑙
2: Initialize global population 𝑃𝑔𝑙𝑜𝑏𝑎𝑙
3: Initialise set of paths Φ
4: while A termination criterion is met do
5: 𝑃𝑙𝑜𝑐𝑎𝑙 ← 𝐿𝑜𝑐𝑎𝑙𝑆𝑒𝑎𝑟𝑐ℎ(𝑃𝑙𝑜𝑐𝑎𝑙 , 𝜙)
6: if

∏
𝑝∈𝑃𝑙𝑜𝑐𝑎𝑙 ,𝜋∈Φ |𝑝 ∪ 𝜋 | ≠ 0 and global criterion is met do

7: 𝑃𝑔𝑙𝑜𝑏𝑎𝑙 ← 𝐺𝑙𝑜𝑏𝑎𝑙𝑆𝑒𝑎𝑟𝑐ℎ(𝑃𝑔𝑙𝑜𝑏𝑎𝑙 , 𝑃𝑙𝑜𝑐𝑎𝑙)
8: foreach 𝑝 ∈ 𝑃𝑙𝑜𝑐𝑎𝑙 do
9: if 𝑝 is a (𝑆, 𝐷𝐴) − 𝑐𝑢𝑡 in 𝐺 do
10: Compute 𝜋

𝑝
𝑜𝑝𝑡 (𝐺) and add to Φ

11: else
12: Add a random paths from 𝑠 ∈ 𝑆 to 𝐷𝐴 in graph

𝐺 ′ = (𝑉 \𝑝, 𝐸) to Φ
13: return 𝑃𝑔𝑙𝑜𝑏𝑎𝑙

5 EXPERIMENT RESULT
5.1 Experiment Set Up
All of the experiments are carried out on a high-performance com-

puting cluster with 1 CPU and 24GB of RAM allocated to each

trial. As the real-world AD graph is sensitive, we will conduct

experiments on synthetic graph generated by DBCreator
3
and Ad-

simulator
4
- two state of the art tools for creating AD graphs. Every

graph starting with R ("Rxxx") is generated by DBCreator while the

one starting with label AD ("ADxxx") is generated by the ADsimula-

tor. DBCreator only allows us to fine-tune the number of computers

and users. In contrast, Adsimulator provides greater flexibility by

enabling adjustments to various entities in the AD graph, including

Security Groups, Organizational Units (OUs), Group Policy Objects

(GPOs), and more. Consequently, we have two types of graphs

generated by Adsimulator: ’ADXx’, where default parameters are

increased by a factor of ’x’ (e.g., ADX10 is 10 times the default

setting), and ’ADUy’, mimicking ’y’ fractional proportions of the
structure of the real AD network at the University of Anonymized

(e.g., ADU05 represents 5 % of the mimicked network). Due to space

constraints, detailed information about the size of each graph will

be provided in the technical report. However, for a quick estimate,

here are the sizes of the largest graph for each type: R4000 (12001

nodes and 45780 edges), ADX20 (6013 nodes and 26671 edges), and

ADU (6875 nodes and 37292 edges).

However, these tools only generate static snapshots of the graph.

To generate a temporal AD attack graph, we will merge a "mould"

of static AD graph with authentication data which simulates the

characteristic of Hassession edge. The first source is the authenti-

cation data from The Comprehensive, Multi-Source Cyber-Security

Events dataset [7], referred to as LANL. The second source is from

an anonymous organization, labelled asCOMP. We will provide the

details of each dataset in the appendix. Combining these datasets

involved the following process. First, in each static mould AD graph,

we removed all HasSession edges. Next, we randomly mapped users,

3
https://github.com/BloodHoundAD/BloodHound-Tools/tree/master/DBCreator

4
https://github.com/nicolas-carolo/adsimulator

Conference’17, July 2017, Washington, DC, USA Ngo, et al.

Table 1: Comparison of all algorithms with DBCreator’s
graph. The results show the average response time (higher
is better) and the average last improvement time (lower is
better) of each setting. The numbers in the parenthesis are
the average last improvement time.

R2000+C R4000+C R2000+L R4000+L
VAN-V 2.10 (53177s) 3.60 (42445s) 0 0

VAN-D 2.03 (68268s) 4.09 (28514s) 0 0

ILP-V 4.07 (16715s) 4.49 (17037s) 2.62 (40999s) 3.18 (41826s)

ILP-D 4.09 (25177s) 4.58 (19067s) 2.90 (43272s) 2.90 (33305s)

EST-V 4.17 (302s) 4.70 (706s) 4.50 (11862s) 3.70 (20536s)

EST-D 4.17 (473s) 4.70 (302s) 4.60 (10257s) 3.70 (20536s)

computers and authentication events from the authentication data

to the mould graph to create an instance of the temporal graph. For

clarity in denoting the generated instances, we referred to a tem-

poral graph in the format {𝑔𝑟𝑎𝑝ℎ} + {𝑎𝑢𝑡ℎ_𝑠𝑜𝑢𝑟𝑐𝑒}. For instance,
R2000+C indicates a temporal graph derived from the mould static

graph R2000, with Hassession edge data sourced from the COMP

authentication dataset. In this notation, L refers to the LANL dataset,

and C refers to the COMP dataset.

We use Gurobi 9.0.2 solver for solving the ILP module. For each

experiment instance, we ran 10 trials. In each trial, we randomly

choose a set of 10 starting nodes and randomly re-map the authen-

tication data to the mould graph. To define the defensive budget

for our problem, we have to determine the size of the minimum

temporal cut |𝑚𝑖𝑛𝐶 |. We will discuss how we determine𝑚𝑖𝑛𝐶 in

our appendix. Given that the condition 𝑏 ≥ |𝑚𝑖𝑛𝐶 | has to be met

to ensure our problem is feasible, we define the budget for our

problem as 𝑏 = 𝑏 𝑓 ∗ |𝑚𝑖𝑛𝐶 | where 𝑏 𝑓 > 1 is the budget factor.

We set the budget factor to 𝑏 𝑓 = 1.5 for every experiment. We

define that only 90 percent of nodes in the graph is blockable. To

construct the HasSession edges, we captured snapshots of the au-

thentication dataset every 1 hour. In the experiment, we considered

a total of 1000 snapshots in each setting (about 40 days). To avoid

confusion in metrics, we will use "time unit" as the metric for the

response time. We generate a population of 10 defensive blocking

plans. The termination condition for the evolution algorithms was

set at 2,000,000 iterations or 24 hours, whichever came first.

In our experiment, we adopt specific denotation for clarity: the In-

teger Linear Programming approach is denoted as ILP, the surrogate-

assisted approach as EST, and the vanilla EDO algorithm as VIN.

Additionally, we introduce a Value-based Evolutionary Com-
putation (VEC) which greedily rejects the worst individual from

the population instead of rejecting individuals based on diversity

measure. In total, we will have 6 sets of algorithm includes: Vanilla

EDO algorithm (VAN-D), Vanilla VEC algorithm (VAN-V), ILP-
repair approach with EDO framework (ILP-D), ILP-repair approach
with VEC framework (ILP-V), Surrogate-assisted approach with

EDO framework (EST-D), Surrogate-assisted approach with VEC

framework (EST-V). Note that our vanilla EDO algorithm’s fitness

function is implemented with our Dijkstra-based algorithm for com-

puting the earliest-arrival path. Results would significantly degrade

if Wu’s algorithm were employed.

5.2 Result Interpretation

Figure 2: Performance comparison of all 6 algorithms. The
EST approaches exhibit significantly faster convergence to
the best result compared to the other methods.

From Figure 2, the EST approach significantly improves the con-

vergence speed of the Evolutionary Algorithm, allowing it to reach

the best result much faster than ILP and VAN. Notably, ILP approach

can find feasible solution from the early iteration since the repair

operator will guarantee the mutation/crossover yields a feasible

defensive solution. However, solving Integer Linear Programming

itself is highly resource-intensive and is the bottleneck for this

technique. Unfortunately, ILP failed to run in 5 out of 12 graphs

due to Out-of-Memory errors.

Among the graphs, R2000+C and R4000+C are the only two

where VAN can find any feasible solution. When we record the

time to find the feasible solution (R2000+C and R4000+C), while

vanilla takes about 21,728 seconds to find the feasible solution, EST

takes on average 201 seconds which is about 108 times faster. For

our setting, the EST method performs, on average, about 23% better

than the ILP. The convergence speed of EST is also superior to ILP.

To compare the performance of EDO-based algorithms (ended

with D) with VEC-based algorithms (ended with V), we conducted a

head-to-head comparison between these two approaches. Out of 21

comparable settings (excluding those with OOM errors and infeasi-

ble solutions), EDO outperformed VEC in 12 settings, while VEC

performed better in only 9 cases (in instances where the response

times were equal, we compared the average last improvement time).

Overall, EDO outperformed VEC when applied to our problem.

6 CONCLUSION
This paper investigated a Stackelberg game model between an at-

tacker and a defender in temporal Active Directory attack graphs.

Optimizing Cyber Response Time on Temporal Active Directory Networks Using Decoys (Extended Version) Conference’17, July 2017, Washington, DC, USA

Table 2: Comparison all algorithms with ADsimulator’s graph. No feasible result found by VIN so we did not include it here.
OOM is stand for Out-of-Memory. All notion in Table 1 will be also applied here.

ADX5+C ADX10+C ADX20+C ADU5+C ADX5+L ADX10+L ADX20+L ADU5+L
ILP-V 3.21 (31362s) OOM OOM OOM 3.50 (26796s) 0.83 (78836s) OOM OOM

ILP-D 3.30 (25250s) OOM OOM OOM 3.40 (25228s) 0.60 (73151s) OOM OOM

EST-V 3.30 (10517s) 3.50 (20498s) 2.50 (34762s) 1.60 (67432s) 5.27 (1965s) 1.05 (38057s) 1.4 (68776s) 1.8 (70165s)

EST-D 3.40 (2415s) 3.30 (14839s) 2.50 (34365s) 1.70 (65532s) 4.77 (3175s) 1.75 (23709s) 1.90 (74284s) 1.40 (73482s)

We propose the use of Evolutionary Diversity Optimization algo-

rithms to address this problem. However, the vanilla EDO encoun-

ters challenges when scaling to larger graphs and struggling to

find feasible solutions. To improve our solution, we first improve

the computation of the attacker’s optimal path (fitness function)

by refining the calculation of the earliest-arrival path. Our novel

Dijkstra-based algorithm for computing the earliest-arrival path,

based on the observation that a significant portion of the AD infras-

tructure remains static. Experimentally, our algorithm is approxi-

mately 5 times faster than the SOTA algorithm when running on

AD-specific graphs. Next, we introduce two constraint-handling

techniques: a repair mechanism using Integer Linear Program (ILP)

and a surrogate-assisted model with a penalty fitness function (EST).

While ILP guarantees to find a feasible solution in early iterations,

the EST method achieves this approximately 108 times faster than

the vanilla approach. Moreover, EST outperforms ILP, demonstrat-

ing approximately a 23% improvement in our specific setting.

ACKNOWLEDGMENTS
REFERENCES
[1] Massimiliano Albanese, Karin L Johnsgard, and Vipin Swarup. 2022. A Formal

Model for Credential Hopping Attacks. In European Symposium on Research in
Computer Security. Springer, 367–386.

[2] Evgeny Bogokovsky and Andrey Karpovsky. 2022. Detecting ma-

licious key extractions by compromised identities for Azure Cosmos

DB. https://www.microsoft.com/en-us/security/blog/2022/06/23/detecting-

malicious-key-extractions-by-compromised-identities-for-azure-cosmos-db/.

[3] Jakob Bossek, Pascal Kerschke, Aneta Neumann, Markus Wagner, Frank Neu-

mann, and Heike Trautmann. 2019. Evolving diverse TSP instances by means of

novel and creative mutation operators. In Proceedings of the 15th ACM/SIGEVO
conference on foundations of genetic algorithms. 58–71.

[4] Jakob Bossek, Aneta Neumann, and Frank Neumann. 2021. Breeding diverse

packings for the knapsack problem by means of diversity-tailored evolutionary

algorithms. In Proceedings of the Genetic and Evolutionary Computation Conference.
556–564.

[5] Jakob Bossek and Frank Neumann. 2021. Evolutionary diversity optimization

and the minimum spanning tree problem. In Proceedings of the Genetic and
Evolutionary Computation Conference. 198–206.

[6] Yoav Daniely. 2021. What’s new: Microsoft Sentinel Deception Solu-

tion. https://techcommunity.microsoft.com/t5/microsoft-sentinel-blog/what-

s-new-microsoft-sentinel-deception-solution/ba-p/2904945.

[7] Anh Do, Mingyu Guo, Aneta Neumann, and Frank Neumann. 2022. Analysis of

evolutionary diversity optimization for permutation problems. ACM Transactions
on Evolutionary Learning 2, 3 (2022), 1–27.

[8] John Dunagan, Alice X Zheng, and Daniel R Simon. 2009. Heat-ray: combating

identity snowball attacks using machinelearning, combinatorial optimization and

attack graphs. In Proceedings of the ACM SIGOPS 22nd symposium on Operating
systems principles. 305–320.

[9] Diksha Goel, Aneta Neumann, Frank Neumann, Hung Nguyen, and Mingyu Guo.

2023. Evolving Reinforcement Learning Environment to Minimize Learner’s

Achievable Reward: An Application on Hardening Active Directory Systems.

GECCO ’23: Genetic and Evolutionary Computation Conference, 2023, 2023 (2023).
[10] Diksha Goel, MaxHectorWard-Graham, Aneta Neumann, Frank Neumann, Hung

Nguyen, and Mingyu Guo. 2022. Defending active directory by combining neural

network based dynamic program and evolutionary diversity optimisation. In

Proceedings of the Genetic and Evolutionary Computation Conference. 1191–1199.
[11] Mingyu Guo, Jialiang Li, Aneta Neumann, Frank Neumann, and Hung Nguyen.

2022. Practical fixed-parameter algorithms for defending active directory style

attack graphs. In Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 36. 9360–9367.

[12] Mingyu Guo, Jialiang Li, Aneta Neumann, Frank Neumann, and Hung Nguyen.

2024. Limited Query Graph Connectivity Test. Proceedings of the AAAI Conference
on Artificial Intelligence (2024).

[13] Mingyu Guo, Max Ward, Aneta Neumann, Frank Neumann, and Hung Nguyen.

2023. Scalable edge blocking algorithms for defending active directory style

attack graphs. In Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 37. 5649–5656.

[14] Evald Markinzon. 2023. Ignite News: Augment your EDR with deception tactics

to catch adversaries early. https://techcommunity.microsoft.com/t5/microsoft-

defender-for-endpoint/ignite-news-augment-your-edr-with-deception-

tactics-to-catch/ba-p/3982253.

[15] Microsoft. 2023. Microsoft Digital Defense Report. https://www.microsoft.com/

en/security/security-insider/microsoft-digital-defense-report-2023/.

[16] Huy Quang Ngo, Mingyu Guo, and Hung Nguyen. 2024. Catch Me if You Can:

Effective Honeypot Placement in Dynamic AD Attack Graphs. IEEE International
Conference on Computer Communications (IEEE INFOCOM) (2024).

[17] Adel Nikfarjam, Jakob Bossek, Aneta Neumann, and Frank Neumann. 2021.

Entropy-based evolutionary diversity optimisation for the traveling salesperson

problem. In Proceedings of the Genetic and Evolutionary Computation Conference.
600–608.

[18] Aaron Scott Pope, Robert Morning, Daniel R Tauritz, and Alexander D Kent. 2018.

Automated design of network security metrics. In Proceedings of the Genetic and
Evolutionary Computation Conference Companion. 1680–1687.

[19] Tamara Ulrich, Johannes Bader, and Eckart Zitzler. 2010. Integrating decision

space diversity into hypervolume-based multiobjective search. In Proceedings of
the 12th annual conference on Genetic and evolutionary computation. 455–462.

[20] Huanhuan Wu, James Cheng, Silu Huang, Yiping Ke, Yi Lu, and Yanyan Xu. 2014.

Path problems in temporal graphs. Proceedings of the VLDB Endowment 7, 9
(2014), 721–732.

[21] B Bui Xuan, Afonso Ferreira, and Aubin Jarry. 2003. Computing shortest, fastest,

and foremost journeys in dynamic networks. International Journal of Foundations
of Computer Science 14, 02 (2003), 267–285.

[22] Yumeng Zhang, Max Ward, Mingyu Guo, and Hung Nguyen. 2023. A Scalable

Double Oracle Algorithm for Hardening Large Active Directory Systems. The
18th ACM ASIA Conference on Computer and Communications Security (ACM
ASIACCS) (2023).

[23] Philipp Zschoche, Till Fluschnik, Hendrik Molter, and Rolf Niedermeier. 2020.

The complexity of finding small separators in temporal graphs. J. Comput. System
Sci. 107 (2020), 72–92.

A APPENDIX
A.1 Proof for Theorem 1

Proof. The proof is based on a reduction from the strict tempo-

ral (𝑠, 𝑑)-seperator (strict-TS) problem which is NP-complete [23]

for graph of lifetime ≥ 5.

PROBLEM: Strict-TS

• Input: A temporal graph 𝐺 = (𝑉 , 𝐸1, · · · , 𝐸𝑡𝑚𝑎𝑥
), source

node 𝑠 ∈ 𝑉 , destination 𝑑 ∈ 𝑉 and 𝑘 ∈ N
• Question: Does 𝐺 admit a temporal (𝑠, 𝑑)-seperator of size
at most 𝑘

The proof gadget for the strict-TS is illustrated in Figure 3.a and

the complete proof is provided in [23].

https://www.microsoft.com/en-us/security/blog/2022/06/23/detecting-malicious-key-extractions-by-compromised-identities-for-azure-cosmos-db/
https://www.microsoft.com/en-us/security/blog/2022/06/23/detecting-malicious-key-extractions-by-compromised-identities-for-azure-cosmos-db/
https://techcommunity.microsoft.com/t5/microsoft-sentinel-blog/what-s-new-microsoft-sentinel-deception-solution/ba-p/2904945
https://techcommunity.microsoft.com/t5/microsoft-sentinel-blog/what-s-new-microsoft-sentinel-deception-solution/ba-p/2904945
https://techcommunity.microsoft.com/t5/microsoft-defender-for-endpoint/ignite-news-augment-your-edr-with-deception-tactics-to-catch/ba-p/3982253
https://techcommunity.microsoft.com/t5/microsoft-defender-for-endpoint/ignite-news-augment-your-edr-with-deception-tactics-to-catch/ba-p/3982253
https://techcommunity.microsoft.com/t5/microsoft-defender-for-endpoint/ignite-news-augment-your-edr-with-deception-tactics-to-catch/ba-p/3982253
https://www.microsoft.com/en/security/security-insider/microsoft-digital-defense-report-2023/
https://www.microsoft.com/en/security/security-insider/microsoft-digital-defense-report-2023/

Conference’17, July 2017, Washington, DC, USA Ngo, et al.

The high level idea for the hardness proof of max-𝑅𝑇 that the

solution for the max-𝑅𝑇 problem can be found via solving the

strict-TS problem. Let us define an instance of strictTS problem

𝐺𝑡𝑠 = (𝑉𝑡𝑠 , 𝐸𝑡𝑠,1, · · · , 𝐸𝑡𝑠,𝑡𝑚𝑎𝑥
). We define a source node 𝑠 ∈ 𝑉𝑡𝑠

and destination node 𝑑 ∈ 𝑉𝑡𝑠 . For the detailed construction of other

nodes and edges in strict-TS, we refer the reader to Theorem 3.1 of

[23]. Let𝑚𝑖𝑛𝐶𝑡𝑠 represent the solution to the strict-TS problem.

Subsequently, we construct the proof gadget for the max𝑅𝑇

problem (Figure 1.b) as follows. We introduce two entry nodes, 𝑠1
and 𝑠2. At time 𝑡𝛼 , node 𝑠1 is connected to node 𝑠 of a sub-graph

constructed following the strict-TS instance. At time 𝑡𝛼 + 6, we
also connect 𝑑 from the strict-TS subgraph to 𝑦2. We delay every

edges in the Strict-TS instance by 𝑡𝛼 . We assume that 𝑠 and 𝑑 is

not blockable. Assuming 𝑠 and 𝑑 are not blockable, we finalize the

instance by adding the following remaining edges: (𝑦2, 𝐷𝐴, 𝑡𝛼 + 7),
(𝑠2, 𝑦1, 𝑡𝛼), and (𝑦1, 𝐷𝐴, 𝑡𝜔) where 𝑡𝜔 ≥ 𝑡𝛼 +7. The full construction
for max𝑅𝑇 can be seen in Figure 1.b.

With a defensive budget of 𝑏 = |𝑚𝑖𝑛𝐶𝑡𝑠 | + 1, the optimal alloca-

tion involves locating the solution for the strict-TS instance and

blocking vertices 𝑦2. As the optimal solution of max𝑅𝑇 yield the

optimal solution for Strict-TS, this implies that max𝑅𝑇 isNP-hard.

Figure 3: Proof gadget for Theorem 1. a) Proof gadget for
Strict-TS problem. b) Proof gadget for max-𝑅𝑇 problem

□

A.2 Complete formulation for ILP repair
operator

We begin by introducing the key variables. Let 𝑅𝑖,𝑡 be a binary
variable representing the DA-reachability of node 𝑖 . A value of 1

indicates that we can reach the DA from node 𝑖 when starting the

journey at time 𝑡 , while 0 indicates otherwise. Additionally, we

define 𝐵𝑖 as a binary decision variable; a value of 1 mean we decide

to block node 𝑖 , and 0 otherwise.

The objective function of the repair process is formulated

as follows: min

∑
𝑠∈𝑆

𝑡𝜔∑
𝑡=𝑡𝛼

𝑅𝑠,𝑡 . The IP minimise number of starting

nodes that can reach DA. A resulting objective function score of

0 mean the IP have successfully patch of the solution. Conversely,

if the objective function score is greater than 0, it indicates the

infeasibility of patching the cutting solution.

The IP is subject to various constraints. Firstly, for all (𝑢, 𝑣, 𝑡) ∈
𝐸 where 𝑣 ∈ 𝑁𝑏 \𝑉 , we impose the constraint 𝑅𝑢,𝑡 ≥ 𝑅𝑣,𝑡+1. This
constraint implies that if node 𝑣 can reach the DA when starting to

traverse at time 𝑡+1, then we can reach the DA from𝑢 when starting

to traverse at time 𝑡 . The "≥" sign, rather than "=," accommodates

cases where there is an alternate edge from 𝑢 to reach the DA.

Similarly, for all 𝑣 ∈ 𝑉 and 𝑡 ∈ [𝑡𝛼 , 𝑡𝜔], we have the constraint
𝑅𝑢,𝑡 ≥ 𝑅𝑢,𝑡+1. This indicates that if node 𝑢 can reach the DA when

departing from this node at time 𝑡 + 1, then we can also reach the

DA when departing from this node at time 𝑡 .

Next, the blocking constraint is expressed as follows: for all

(𝑢, 𝑣, 𝑡) ∈ 𝐸 where 𝑣 ∈ 𝑁𝑏 , the constraint is 𝑅𝑢,𝑡 ≥ 𝑅𝑣,𝑡+1 −𝐵𝑣 . This
states that if node 𝑣 is decided to be blocked, then 𝑢 cannot reach

the DA via the edge (𝑢, 𝑣).
Finally, we incorporate budget constraints:

∑
𝑖∈𝑉 𝐵𝑖 ≤ 𝑏 to

conclude the formulation.

The complete formulation is presented as following:

min

∑︁
𝑠∈𝑆

𝑡𝜔∑︁
𝑡=𝑡𝛼

𝑅𝑠,𝑡

𝑅𝑢,𝑡 ≥ 𝑅𝑣,𝑡+1 − 𝐵𝑣, ∀(𝑢, 𝑣, 𝑡) ∈ 𝐸, 𝑣 ∈ 𝑁𝑏 (4a)

𝑅𝑢,𝑡 ≥ 𝑅𝑣,𝑡+1, ∀(𝑢, 𝑣, 𝑡) ∈ 𝐸, 𝑣 ∈ 𝑉 \ 𝑁𝑏 (4b)

𝑅𝑢,𝑡 ≥ 𝑅𝑢,𝑡+1, ∀𝑣 ∈ 𝑉 , 𝑡 ∈ [𝑡𝛼 , 𝑡𝜔] (4c)∑︁
𝑖∈𝑉

𝐵𝑖 ≤ 𝑏, (4d)

𝑅𝑢,𝑡 , 𝐵𝑖 ∈ {0, 1} (4e)

A.3 Proof of Theorem 2
Proof. To proof the correcness, we first provide the following

Lemma:

Lemma 5. Let a node sequence 𝑉 (𝜋) = ⟨𝑥, 𝑣1, 𝑣2, · · · , 𝑣𝑘 ⟩ be the
earliest-arrival path from vertex 𝑥 to vertex 𝑣𝑘 within some interval

[𝑡𝛼 , 𝑡𝜔]. Every prefix-subpath 𝑉 (𝜋) = ⟨𝑥, 𝑣1, 𝑣2, · · · , 𝑣𝑖 ⟩ ⊂ 𝜋 where

0 < 𝑖 < 𝑘 , is also an earliest-arrival path from 𝑥 to 𝑣𝑖 within [𝑡𝛼 , 𝑡𝜔].

Proof. Admit proof from Lemma 6 of [20] □

The classic Dijkstra’s algorithm computing single-source short-

est paths based on the observation that the prefix-subpath of the

shortest path is also a shortest path. Lemma 5 implied that the

prefix-subpath of an earliest-arrival path is also an earliest-arrival

paths. This proof the correctness of the use of Dijkstra greedy

strategy for computing earliest-arrival path.

We assume the use of a Priority Queue to identify the minimum

arrival time of unvisited nodes in the Dijkstra-based algorithm. The

algorithm grow the earliest arrival path by scan through each out-

bound underlying edges in underlying edge the from the current

Optimizing Cyber Response Time on Temporal Active Directory Networks Using Decoys (Extended Version) Conference’17, July 2017, Washington, DC, USA

node. Eventually, vertices 𝑣 ∈ 𝑉 will be added to the heap once,

hence, the worst-case heap size is |𝑉 |. Consequently, the complexity

of the extract-min operation of the priority queue is O(log (|𝑉 |)).
Iteratively popping the minimum value from the priority queue

takes O(|𝑉 | · log (|𝑉 |). Since each node is only extracted once and

not revisited, the for loop at line 10 will visit each underlying edge

𝐸↓ ∈ 𝐺↓ only once. The updated earliest arrival time for each

successor requires O(1) for static edges 𝑒𝑠 ∈ 𝐸𝑠 and O(𝑡𝑚𝑎𝑥) for
dynamic edges 𝑒𝑠 ∈ 𝐸𝑑 where 𝑡𝑚𝑎𝑥 = 𝑡𝜔 − 𝑡𝛼 . Consequently, the
overall complexity of the algorithm is O(|𝑉 | · log (|𝑉 |) + (𝜀𝑠 + 𝜀𝑑 ·
𝑡𝑚𝑎𝑥) · log (|𝑉 |)). As 𝜀↓ = 𝑉 2

and 𝜀↓ = 𝜀𝑠 +𝜀𝑑 , we can simply rewrite

as O((𝜀𝑠 + 𝜀𝑑 · 𝑡𝑚𝑎𝑥) · log (|𝑉 |)). □

A.4 Proof of theorem 3
Proof. When 𝜀𝑠 ≫ 𝜀𝑑 , we can safely assume that 𝜀𝑑 → 0

to present the complexity in term of 𝜀𝑠 . The complexity of our

Dijkstra-based algorithm can be reformulated as O(lim𝜀𝑑→0 (𝜀𝑠 +
𝜀𝑑 ·𝑡𝑚𝑎𝑥)·log (|𝑉 |), which simplifies toO(𝜀𝑠 ·log (|𝑉 |). Similarly, the

complexity of Wu’s algorithm in the same limit is O(lim𝜀𝑑→0 (𝜀𝑠 ·
𝑡𝑚𝑎𝑥 + 𝜀𝑑 · 𝑡𝑚𝑎𝑥), which simplifies to O(𝜀𝑠 · 𝑡𝑚𝑎𝑥). □

A.5 Supplement pseudocode for Algorithm 3

Algorithm 4 EDO’s Local Search

Input: Local population 𝑃𝑙𝑜𝑐𝑎𝑙 , Evaluation path set 𝜙

Output: Blocking population 𝑃

1: Randomly select one (or two) parent 𝑝1 (or and 𝑝2) from 𝑃𝑙𝑜𝑐𝑎𝑙
2: Generate a new solution 𝑝3 by either mutation or crossover.

3: 𝑃𝑙𝑜𝑐𝑎𝑙 ← 𝐸𝐷𝑂_𝑟𝑒 𝑗𝑒𝑐𝑡𝑙𝑜𝑐𝑎𝑙 (𝑃𝑙𝑜𝑐𝑎𝑙 , 𝜙, 𝑝3)
4: return 𝑃𝑙𝑜𝑐𝑎𝑙

Algorithm 5 EDO’s Global Search

Input: Global population 𝑃𝑔𝑙𝑜𝑏𝑎𝑙 , Local population 𝑃𝑙𝑜𝑐𝑎𝑙
Output: Blocking population 𝑃

1: foreach 𝑝 ∈ 𝑃𝑙𝑜𝑐𝑎𝑙 do
2: 𝑃𝑔𝑙𝑜𝑏𝑎𝑙 ← 𝐸𝐷𝑂_𝑟𝑒 𝑗𝑒𝑐𝑡𝑔𝑙𝑜𝑏𝑎𝑙 (𝑃𝑔𝑙𝑜𝑏𝑎𝑙 , 𝑝)
3: return 𝑃𝑔𝑙𝑜𝑏𝑎𝑙

A.6 Proof of Theorem 4
Proof. Let’s us denote Π(𝜋) = {𝜋 : 𝑉 (𝜋) = 𝑉 (𝜋)} is the set of

path where each of the element 𝜋 have the identical path sequence

with 𝜋 . We make a following observations regarding the first point

of contact of 𝜋 : Let’s say 𝑖 ∈ 𝑉 (𝜋) ∩𝐶 is the first point of contact

of temporal path 𝜋 , then, 𝑖 is also the first point of contact of

every temporal path 𝜋 ∈ Π(𝜋). Based on the above mentioned

observation, for each time the algorithm execute line 12 to add a

random path to 𝜙 , the algorithm will add a temporal path that will

not overlap with any node sequence of any path in 𝜙 .

Let’s consider an instance of temporal graph denoted as 𝐺 =

(𝑉 , 𝐸). In this graph, we have source vertices 𝑠 ∈ 𝑉 and destina-

tion vertices 𝑑 ∈ 𝑉 , forming the underlying graph 𝐺↓ = (𝑉 , 𝐸↓).
It is specified that 𝐺↓ contains O(|𝑉 | − 2) (excluding the source

and destination vertices) disjoint paths from 𝑠 to 𝑑 . Additionally, it

is assumed that there is a budget available for deploying at least

|𝑉 | − 2 honeypots. The number of budget is |𝑉 | − 2 since it is the
size of the minimal temporal cut of our instance. If 𝑏 < |𝑉 | − 2, the
response time is 0, defining the best defense. To simplify our proof,

we make the assumption that the algorithm adds only one path to

the set 𝜙 in each global iteration. If more than one path is added to

the set, the algorithm may achieve faster convergence. The algo-

rithm continues to append new temporal paths to the set 𝜙 until

no further paths remain. In the worst-case scenario, each path 𝜋

added to 𝜙 corresponds to vertices disjoint paths in the underlying

graph 𝐺↓ (every paths in 𝑝ℎ𝑖 are vertices disjoint with each other).

Consequently, all O(|𝑉 | − 2) paths must be incorporated into the

surrogate path set 𝜙 until the Local Search’s feasible solution pro-

duces a (s, d)-cut on the graph 𝐺 , meeting the feasibility condition

for Global Search. This leads to the conclusion that, at worst, we

need O(|𝑉 |) Global Search iterations until the feasible solution of

Local Search can yield a feasible solution for Global Search. It’s

worth noting that in the event of tie-breaking, where paths added

to 𝜙 aren’t disjoint, the algorithm converges faster. Blocking com-

mon vertices demands less budget, resulting in 𝜙 containing only

disjoint paths as the worst-case scenario.

□

A.7 ILP for finding minimum temporal cut
[23] provide the complexity analysis on the minimum temporal

cut problem (Strict-TS). Despite our effort in finding algorithm for

Strict-TS in the literature, we have not come across any algorithm

for this algorithm yet. Here, we proposed an ILP formulation to

optimally solve the problem. The ILP formulation based on the idea

that if node 𝑢 can reach the DA when departing from this node at

time 𝑡 + 1, then we can also reach the DA when departing from

this node at time 𝑡 . The formulation is inspired by an ILP repair

operator, with slight modifications to accommodate our problem

requirements. We remove the budget constraints, and the objective

function is tailored to minimize the number of budget allocations

for the cut. The formulation is presented as follow:

min

∑︁
𝑣∈𝑁𝑏

𝐵𝑣

𝑅𝑢,𝑡 ≥ 𝑅𝑣,𝑡+1 − 𝐵𝑣, ∀(𝑢, 𝑣, 𝑡) ∈ 𝐸, 𝑣 ∈ 𝑁𝑏 (5a)

𝑅𝑢,𝑡 ≥ 𝑅𝑣,𝑡+1, ∀(𝑢, 𝑣, 𝑡) ∈ 𝐸, 𝑣 ∈ 𝑉 \ 𝑁𝑏 (5b)

𝑅𝑢,𝑡 ≥ 𝑅𝑢,𝑡+1, ∀𝑣 ∈ 𝑉 , 𝑡 ∈ [𝑡𝛼 , 𝑡𝜔] (5c)

𝑅𝑢,𝑡 , 𝐵𝑖 ∈ {0, 1} (5d)

	Abstract
	1 Introduction
	2 Model Description
	2.1 Background
	2.2 Problem formulation

	3 Related Work
	4 Proposed methodology
	4.1 Game-theoretical rational attacker
	4.2 Faster computation for earliest-arrival path
	4.3 EDO Algorithm for max-RT
	4.4 Constraint-Handling Evolutionary Algorithm

	5 Experiment Result
	5.1 Experiment Set Up
	5.2 Result Interpretation

	6 Conclusion
	Acknowledgments
	References
	A Appendix
	A.1 Proof for Theorem 1
	A.2 Complete formulation for ILP repair operator
	A.3 Proof of Theorem 2
	A.4 Proof of theorem 3
	A.5 Supplement pseudocode for Algorithm 3
	A.6 Proof of Theorem 4
	A.7 ILP for finding minimum temporal cut

