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Abstract— In this work we consider the impact of information
spread in time-varying social networks, where agents request
to follow other agents with aligned opinions while dropping
ties to neighbors whose posts are too dissimilar to their own
views. Opinion control and rhetorical influence has a very
long history, employing various methods including education,
persuasion, propaganda, marketing, and manipulation through
mis-, dis-, and mal-information. The automation of opinion
controllers, however, has only recently become easily deployable
at a wide scale, with the advent of large language models
(LLMs) and generative AI that can translate the quantified
commands from opinion controllers into actual content with
the appropriate nuance. Automated agents in social networks
can be deployed for various purposes, such as breaking up echo
chambers, bridging valuable new connections between agents,
or shaping the opinions of a target population—and all of these
raise important ethical concerns that deserve serious attention
and thoughtful discussion and debate. This paper attempts to
contribute to this discussion by considering three archetypal
influencing styles observed by human drivers in these settings,
comparing and contrasting the impact of these different control
methods on the opinions of agents in the network. We will
demonstrate the efficacy of current generative AI for generating
nuanced content consistent with the command signal from
automatic opinion controllers like these, and we will report on
frameworks for approaching the relevant ethical considerations.

I. INTRODUCTION

Social media is a rich platform to share ideas and opinions,
debate, argue, and influence others. The use of automated
agents, or bots, in such environments, however, raises im-
portant ethical issues related to the morality of persuasion.

The study of social interactions and rhetoric has a long
history, dating at least as far as the ancient Greeks [1]. In the
twentieth century, quantified methods for describing social
relations were developed with the advent of sociometry [2],
leading to the concept of a social network, Social Network
Analysis (SNA) [3], [4], and network science [5], while
an emphasis on dynamics and control for these systems
began with Weiner’s Cybernetics and its specialization as
sociocybernetics [6], [7]. Nevertheless, according to [8], [9],
“The realm of social systems has remained almost untouched
by modern control theory in spite of the tremendous progress
in control of complex large-scale systems.”

Since 2017, when this observation was made, significant
advancements have been made. Leveraging diffusion and
epidemic models [10], [11], [12], [13], [14], controls re-
searchers have modeled the spread of opinions [15], [16].
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Fig. 1: The feedback control of Social Networks using
Automated Agents driven by Opinion Controllers coupled
with Large Language Models and other Generative AI.

Meanwhile, other researchers have focused on foundational
models of opinion formation over static networks [8], [17],
[18], [19], eventually leading to models of opinion dynamics
over state-dependent graphs or other time-varying network
models [9], [20], [21]. Convergence and stability proofs
have borrowed heavily from the consensus, flocking, and
multi-agent systems literature [22], [23], [24], [25], [26], and
changes in these properties in the presence of certain types
of agents, such as stubborn agents [27], [28], [29], [30], [31],
has lead to explicit work on network control [32].

This paper builds on the results of these works, as well as
many cited by these and other papers. The contributions of
this work include (see Figure 1):

1) Section II: Introduction of a novel nonlinear, stochastic
Social Network model for the co-evolution of opinion
and graph-topology dynamics,

2) Section III: Novel models of archtypical classes of
influencer dynamics observed in social networks as
Opinion Controllers (see Figure 3),

3) Section IV: Simulation studies of the archtypical con-
trollers from Section III (see Figures 4, and 5),

4) Section V: Demonstration of the use of generative
AI technologies for both a) Opinion Inference, quan-
tifying the opinion reflected by content with respect
to a list of topics and including results from as-
sociated validation studies (see Figure 6), and b)
Content Generation, converting the numerical control
signal from the opinion controller into corresponding
content that the Automated Agent can post, using
video, images, and/or text—all making the realization
and practical implementation of opinion controllers as
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Automated Agents in social networks very easy (see
Table I and Figure 7),

5) Section VI: A discussion of the ethical issues surround-
ing social control theory, including ethical frameworks
from related areas for consideration.

II. NETWORK MODEL

The social network is represented as graph, G = (V,E)
with a set of n vertices, V , that represent agents (users
on the network) and a set, E, of ordered pairs of vertices
representing directed edges, E = {(vi,v j)| vi,v j ∈V}. This
structure can be effectively represented by an adjacency
matrix A, where entry ai j = 1 if (v j,vi) ∈ E and ai j = 0
otherwise.

We will consider time-varying networks, with a fixed
number of vertices, representing agents or users of the social
media platform, but where edges may appear or disappear as
represented by A[k], k = 0,1,2, .... Moreover, we will assume
A[k] is symmetric for all k, suggesting that if one agent
“follows” another on the social media platform, then the
second agent will reciprocate by also following the first;
edges thus denote a “connection” between vertices. Because
of this symmetry, G will always be undirected, as in Figure 4.

Associated with each agent (i.e. vertex) is a vector of
opinions on m distinct topics, represented by an opinion
matrix X[k] ∈ Rn×m with entries 0 ≤ xi j[k] ≤ 1 indicating the
degree of support agent i feels towards topic j at time k. The
ith row of X[k] is indicated by x⊤i[k], where xi[k] ∈ Rm, and the
jth column of X[k] is indicated by x j[k] ∈ Rn.

To model opinion dynamics on the network, we will use a
variation of the state-dependent French-DeGroot model [8],
[9] given by:

X[k+1] =W (X[k],A[k])X[k] (1)

where W (X[k],A[k]) ∈ Rn×m is a row-stochastic weighting
matrix that depends on both the evolving network opinions,
X[k], and the evolving topology of the social network, A[k].

The novelty of this model comes from the way W is cal-
culated and the way the graph topology, A[k] co-evolves with
agent opinions, X[k]. We will first describe the calculation of
W , and then give the update equation for A[k+1].

Definition 1: Let ε > 0 be a vanishingly small number;
diag(v) be a square, diagonal matrix with the entries of the
vector v on the diagonal; and 1 be the (appropriately sized)
vector of ones. Then the row-normalization operator of a
matrix M, R(M), is given by:

R(M) := diag(M1+ ε1))−1M
Definition 2: The row-wise difference matrix of a ma-

trix M is a square, symmetric, non-negative, hollow, row-
stochastic matrix DN characterized by:

DN(M) := R(D(M)),

where D(M) is a matrix with entries given by:

di j(M) = ∥m⊤
i −m⊤

j ∥1.
Definition 3: With 1 and I being the appropriately sized

matrix of ones and identity matrix, respectively, the row-wise

Natural Formation of Echo Chambers

Fig. 2: The nonlinear, stochastic Social Network Model in (1)
and (4) results in strong homophily, where agents congregate
with those of similar opinions and reject differing opinions.

similarity matrix of a matrix M is a square, symmetric, non-
negative, hollow, row-stochastic matrix SN characterized by:

SN(M) := R(1− (I +DN(M)))
With these definitions, and noting that here 1 and I are

the appropriately sized vector of ones and identity matrix,
respectively, and M1 ◦M2 is the element-wise, or Hadamard,
multiplication of two appropriately sized matrices, W can
now be characterized:

W (X[k],A[k]) := SN(X[k])◦A[k]+
(
I −diag([SN(X[k])◦A[k]]1)

)
.

(2)
This expression can be understood as zeroing out the entries
in the similarity matrix SN(X[k]) by element-wise multipli-
cation with A[k], and then adding the appropriate value to
the diagonal (the new vector of row-sums is now given by
[SN(X[k])◦A[k]]1), so the result becomes row-stochastic.

With W defined, the meaning of the dynamics in (1) can
be better understood. The ith agent’s new opinion on topic j
is the convex combination of agent i’s neighbors’ opinions
on the topic, and its own, where more weight is given to
neighbors with opinions that align better with those of agent i
over all topics. That is to say, in this model, agents are
more receptive to the opinions of those who’s overall opinion
profile mirrors their own, reinforcing each other’s point of
view. Also, agents with lots of connections will tend to be
more influenced by their (many) friends, while those with
fewer connections will put more stock in their own ideas.

Besides the dynamics in (1), which describe the evolu-
tion of a vector of opinions associated with each vertex,
or agent, in the social network, our network model also
considers the co-evolution of edges, or connections, among
agents in the social network graph. Like other bounded
confidence models [8], [9], we describe a situation where
agents are insensitive to the opinions of other agents with
sufficiently different opinion profiles. While other models
explicitly define a threshold characterizing the degree to
which opinions between agents can differ while remaining
connected, our notion is stochastic, where connections are
randomly sampled from an evolving probability distribution.

In particular, we consider the matrix:

Ŝ[k] := R(S◦θ
N (X[k])) (3)



Fig. 3: Tree showing the relationships between the three
controller archetypes: Popular, Stubborn, and Strategic. The
Hadamard power value, ρ , creates a spectrum of behaviors
for the popular and strategic agent archetypes.

where θ ∈ Z+ is a positive integer modeling parameter, and
the notation M◦θ describes the operation of raising each
element of a matrix M to the θ th power (or Hadamard
multiplying the matix M θ times, M ◦M ◦ · · · ◦M). Raising
the entries in a stochastic matrix to a positive power θ and
then renormalizing has the effect of driving the larger entries
closer to 1 and zeroing out the smaller entries, making the
distinctions between values more extreme. A then evolves as:

ai j[k+1] = a ji[k+1] =


1, if γ ∼U{0,1} < max(ŝi j[k],ε)

and i ̸= j
0, otherwise

(4)

where γ is a sample from U{0,1}, the uniform distribution
on the unit interval, and ε << 1 is a modeling parameter
establishing the minimum probability for edge formation.
Note that because Ŝ[k] is a stochastic matrix, its entries are
non-negative and bounded by 1, so edge formation occurs by
randomly sampling the uniform distribution and checking to
see if the sample is less than the associated entry in Ŝ[k]—
or ε (in case the associated entry in Ŝ[k] has become very
small or zero, ε ensures that there is always some chance of
edge formation, as occasionally agents may form connections
in spite of strong differences of opinion). The dynamics in
(1) and (4) thus describe our nonlinear, stochastic model of
opinion formation and connection co-evolution, respectively.

III. THREE CONTROLLER ARCHETYPES

The model illustrated in Section II provides a network
composed of one specific type of a user on social media
(i.e. the standard agent), one who desires to connect with
those agents who are most similar. To better understand
how influential bodies drive opinions in social networks,
we present three controller archetypes modeled off inluencer
behaviors seen in real life social networks that attempt to
drive opinions of the network agents in different ways:

• Stubborn Agent: Attempts to move the distribution of
opinions towards its own opinion value by refusing to
alter its opinion.

• Popular Agent: Attempts to shape the distribution of
opinions, choosing what opinions should become pop-
ular.

• Strategic Agent: Attempts to move the distribution of
opinions towards a goal opinion by persuading those
furthest from the goal towards the goal.

The stubborn agent is included as a standard controller for
comparison due to its use in many opinion spread studies.
Our strategic and popular agents make use of Hadamard
powers in determining where to set their opinions each time-
step (see Sections III-B and III-C). The selection of the
Hadamard power value, ρ , creates a spectrum of behaviors
for those two archetypes. Figure 3 shows a tree representing
the relationships between the three controller archetypes. The
following subsections provide detailed explanations of each.

Within the subsections for each controller, we do not pro-
vide proofs of stability or convergence. As A. Proskurnikov
and R. Tempo explain in section 5.3 of [9] when talking
about HK and DW models (of which ours can be seen as a
relative):

“In spite of many numerical results and experi-
mental observations, dealing with the behavior of
the... model and its modifications over complex
networks, the compound of randomness and non-
linear dynamics makes these models very hard for
mathematical investigation.”

Proofs of this nature for networks and controllers like what
we present in this paper are often long and complex. Due to
the limited space, we leave our proofs of convergence and
stability for subsequent work.

A. Stubborn Agent

The goal of the stubborn agent is to move the opinions
of the network towards its own opinion. It does this by
retaining its opinion each time-step. In this way, whenever
an edge is created between it and another agent, the stubborn
agent’s opinion becomes part of the convex combination
that determines that agent’s opinion in the next time-step.
The stubborn agent, however, is not influenced by that other
agent. It acts as in immutable input signal into the network.

The update steps for the stubborn agent differ slightly
from the standard agent. In Equation 2, we set its row in
W (X[k],A[k]) to zeros and its diagonal element to one. This
results in its row in the weight matrix having full weighting
to itself and none to any other agent. Or in other words, when
we calculate W[k+1] in Equation 1, x⊤stubborn[k+1] = x⊤stubborn[k].

B. Popular Agent

The popular agent does not have an opinion of its own
but instead chooses which opinions among its neighbors it
should propagate. To do this, it bases its opinion completely
on its neighbors, weighted according to the similarity of each
neighbor’s opinion to every other neighbor’s opinion.

Definition 4: Let i be the row index of the popular agent
in the adjacency matrix, A. The set of neighbor indices, N i,
is given by:

N i := { j ∈V | ai j = 1},ai j ∈ A



Definition 5: The jth element of the neighbor distance
vector, di

[k], for agent, i, at time, k, and its corresponding
neighbor weight vector, ω[k], are given by:

di
j[k] := ∑l∈N i,l ̸= j ||x⊤l − x⊤j ||, and ω[k] := R(di⊤

[k] ).

The resulting stochastic weight vector, ω[k], contains
weights for each neighbor of the popular agent based on
the difference of opinion of each neighbor from every other
neighbor. The more similar to all other neighbor opinions,
the lower the weight value. The more different, the larger
the weight value.

Definition 6: The emphasized neighbor weight vector in-
creases the popular agent’s emphasis on the level of simi-
larity of the opinions by taking the ρth Hadamard power of
ω[k] and re-normalizing:

ω̂[k] := R(ω
◦ρ

[k] ) (5)

Definition 7: X i
[k] is the sub-matrix of X[k] that only con-

tains rows corresponding to popular agent, i.
With these definitions, the opinion update of the ith row

of X[k] represented by the popular agent is given by:

xi[k+1] = ω̂[k]X
i
[k] (6)

The resulting opinion of the popular agent will not neces-
sarily be the average of the neighboring opinions, but instead
will be shifted either towards those opinions that are most
popular among its neighbors or those that are fringe opinions
among its neighbors, depending on the value of ρ in the
Hadamard power of Equation 5.

Fact 1: As ρ → −∞, x[k+1], the opinion of the popular
agent at time-step k+ 1, will become the average of those
agents with maximum opinion similarity to all other neigh-
boring agents at time k.

Fact 2: As ρ → 0, x[k+1], the opinion of the popular agent
at time-step k + 1, will become the average opinion of all
neighboring agents at time k.

Fact 3: As ρ →∞, x[k+1], the opinion of the popular agent
at time-step k+1, will become the average of those agents
with minimum opinion similarity to all other neighboring
agents at time k.

The proofs of Facts 1–3 are trivial and stem directly from
the behaviors of renormalized Hadamard powers of stochas-
tic matrices explained just before Equation 4. These three
facts mean that by selecting values for ρ , we can determine
how the popular agent views the collective opinions of its
neighbors. By having a large, positive ρ , the popular agent
attempts to drive the collective opinions of its neighbors
towards the fringe opinions, or in other words it tries to
make those fringe opinions more popular, giving it the title,
“Popularizer.” By making ρ large and negative, the popular
agent attempts to drive opinions to strengthen the collectively
most popular opinion, giving it the title, “People Pleaser.” At
zero, the popular agent tries to drive opinions towards the
average of its neighbors, giving it the title, “Conciliator.”

Initial Network

(a) Colored Opinions (b) Node Degree

Fig. 4: Initial random network of 50 standard agents used for
controller archetype experiments. Each agent has 3 opinions,
and θ = 7 in Equation 3 for edge connectivity. Average
opinions once stable are [0.48,0.44,0.52].

C. Strategic Agent

The purpose of the strategic agent is to direct the network
towards some goal opinion by basing its opinion off its
neighbors and coaxing them towards the goal.

Definition 8: Let i be the row index of the strategic agent
and gi be the goal opinion of the strategic agent. Using
Definition 5 Section III-B to define a neighbor set, the
neighbor distance vector for the strategic agent at time, k, is
given by:

d j[k] := ||xi⊤
j[k]−gi|| for j ∈ N i (7)

where x⊤j[k] denotes the jth row of X[k].
Since we do not know what the resulting distances will be

at any time-step, we cannot arbitrarily choose a set weighting
for the goal opinion for the convex combination. Instead, we
append to the bottom of d the minimum value of d, meaning
that the weighting of the goal opinion will be the same as
the closest of the neighbors to it after normalization. We can
now use second half of Definition 5 to normalize by the
vector sum to get the weight vector, ω[k].

Using Equation 5 from Section III-B, we can increase ρ

to further weight towards the most distant opinion and away
from the goal opinion whose weight matches the minimal
element of ω[k]. We once again defin X i

[k] as the sub-matrix
of X[k] according to Definition 7. We transpose and append
the goal opinion, gi, at the bottom row of X i

[k] so that the
matrix dimensions for both X i

[k] and ω̂[k] are compatible in
Equation 6. We can now use that same opinion matrix update
function to update the opinions of the strategic agents in
X[k+1]. So long as ρ ̸= ∞, each convex combination will
include influence from gi, nudging standard agents towards
the goal opinion.

IV. EXPERIMENTS AND RESULTS

Figure 4 shows the initial 50 agent network used for all
proceeding experiments. We set m = 3 (three opinions) so
that we can visualize opinions by assigning each opinion
to a respective RGB value. For edge connectivity, we set



Results of Controller Archetype Simulations

(a) Resulting average RGB opinion values
for different numbers of “people pleasers”
and “popularizers.”

(b) Effects of different Hadamard powers
for the strategic agent with goal opinion of
[0,0,0].

(c) The comparison between strategic
and stubborn agents with target opin-
ion of [0,0,0] given different minimum
edge probabilities.

Fig. 5: Overview of simulations demonstrating the influence of various agents in opinion dynamics. Each figure represents a
unique setup and outcome, illustrating the complex interplay between different agent strategies and their effects on opinion
distribution within a network. The results of Figure 5a are explained in Section IV-A, Section IV-B for Figure 5b, and
Section IV-C for Figure 5c.

θ = 7 in Equation 3 so that as time progresses, agents
isolate from each other into groups of similar opinions
(echo chambers). The average RGB opinions of this network
once stability is reached are [0.48,0.44,0.52]. The most
common opinions of this network are a high-blue and low-
green. The following experiments and tests are to see how
each controller archetype changes the resulting final average
opinion values of the network.

A. Popular Agent Spectrum
We envision popular agents as any number of influencer

accounts that standard agents may choose to follow. The
popular agents then base their opinions on their followers and
act as independent input signals into the system (no edges to
each other). We conduct three experiment sets. First, we run
until network stabilization without popular agent influence
as a control comparison. Next, we set the Hadamard power,
ρ = −10, in Equation 5 of Section III-B to propagate the
dominant opinions of the network (“people pleaser”). Lastly,
we set ρ = 10 to increase the influence of the fringe opinions
of the network (“popularizer”). For the second and third
experiment sets, we run simulations for 180 time-steps using
1, 2, 5, 10, and 50 popular agents with the same ρ value.

Figure 5a shows the resulting average RGB opinion values.
As expected, the “people pleasers” increase the blue opinion
while decreasing the green opinion and eventually the red,
although the influence of the people pleasers is minimal
when there are few of them. The “popularizers,” however,
show a stronger influence on the opinions of the network
even when only one popular agent is present. With only
five popularizers, the formerly unpopular opinion of a high-
green becomes dominant over a high-blue opinion. However,
once enough popularizers are present, the high-blue opinion
eventually becomes fringe enough that some of them take
that stance and propagate it through the network, which is
why we see an increase in blue opinion at fifty popularizers.

B. Strategic Agent Spectrum

To explore the impact of the strategic agent spectrum on
network opinions, we set a strategic agent’s goal to [0,0,0]
and conducted eleven experiments with Hadamard power
values from −100 (heavy-handed) to 100 (gentle approach),
as depicted in Figure 5b. A heavy-handed strategy aligns
the strategic agent’s opinion closely with its goal, impact-
ing connectivity with distant standard agents by increasing
the likelihood of losing connections. Conversely, a gentle
approach aligns the strategic agent’s opinion more closely
with distant agents, diminishing the goal’s influence. These
experiments, after 180 iterations, reveal that a heavy-handed
approach lowers RGB values, moving them closer to zero,
but at ρ = 2 and ρ = 5, the blue opinion significantly
drops. The gentle approach balance at ρ = 2 and 5 enables
the strategic agent to maintain connections effectively while
exerting enough influence towards the goal opinion.

C. Strategic Agent Versus Stubborn Agent

Both strategic and stubborn agents move the network’s
opinion distribution toward a target opinion—stubborn
agents aim for their own opinion, while strategic agents target
a predefined goal without directly adopting it. Given the
network’s dynamic nature, an edge from a standard agent
to a strategic or stubborn agent is not always present. The
strategic agent’s tactic of adjusting its opinion based on
acquired neighbors is crucial for influencing the network’s
opinions through enhancing the likelihood of maintaining
connections once established. To compare these two agents,
we test various edge creation probabilities, ε , in Equation 4,
over 3500 time-steps with either a stubborn or strategic agent
in the network, both targeting [0,0,0]. The strategic agent’s
ρ is set to 2, following outcomes from Section IV-B.

Figure 5c shows the resulting average RGB opinion val-
ues for both stubborn and strategic agents with minimum



Experimental Results for Opinion Inference

Fig. 6: Rankings by human annotators (Orange) and GPT-
4 (Blue) of 25 social media posts about Religion, Science,
and Sports on a scale from zero (oppose) to one (support).
Variance is low when ranking opinions with strong language
supporting a topic, but both humans and GPT-4 have some
difficulty with negative language due to some posts with
sarcasm, which were included in the study. Posts with
neutral opinions or without reference to a topic were nearly
universally identifiable by both humans and GPT-4.

edge probabilities of zero, 0.001, and 0.01. At zero, the
opinion of [0,0,0] eventually becomes the furthest from
any regular agent, and after applying the Hadamard power
and normalizing before Equation 2, the weight of influence
becomes effectively zero. When a minimum edge probability
of 0.001 is used, the strategic agent can gain followers, adopt
opinions similar to theirs, and retain edges, outperforming
the stubborn agent. The stubborn agent’s opinion remains
starkly different and must rely solely on the minimum edge
probability to facilitate influence. At an edge probability of
0.01, the stubborn agent is comparable to the strategic agent,
though still at a slight disadvantage. Overall, the strategic
agent has an advantage in moving the opinions of agents in
the network towards its target when the probability is low
but not zero due to its ability to adopt opinions similar to
the standard agents in the network.

V. GENERATIVE AI MAKES IMPLEMENTATION OF
OPINION CONTROLLERS EASY

In this section, we investigate how an automated agent
can drive opinions in social networks, not as a how-to
demonstration but to emphasize that now is the time to think
of the ethics and real-life implications of opinion and social
control research in control theory. We begin by first showing
than an LLM can act as an opinion inference engine for
social media posts, and then we show that generative AI
can create content based on a provided opinion vector. The
feedback control relationship can be seen in Figure 1.

A. Opinion Inference Engine

For the first experiment, we gathered from Facebook,
Twitter, and Reddit 25 social media posts on three topics

Memes on Taking Action Against Climate Change

(a) Opinion Value 1.0 (Support) (b) Opinion Value 0.1 (Oppose)

Fig. 7: Memes generated by Dalle-3 (left) and Midjourney
V6 (right). Notice slight errors in the text spelling and
spacing, but, nevertheless, these demonstrate that there are
multiple tools available to automate effective meme genera-
tion responding to a numerical scale on an issue.

of religion, science, and sports, and included posts that were
not on any of those topics as a control. We had twelve human
volunteers annotate the opinion vectors for each individual
opinion topic. We then had six independent instances of
GPT-4 [33] output its inference on the opinion vectors in
R3. Figure 6 shows the variance for the human annotators
(orange) and GPT-4 (blue). We see a general correlation
between opinion assessments, but where the variance is low
in posts with strong supportive language on a topic, there
is some disagreement in strong negative language due to
sarcasm (some sarcastic posts were included in the data).
Neutral stances on topics and posts that were not on any of
the three topics were nearly universally identifiable by both
humans and GPT-4. After averaging the opinion rankings
for the human and GPT-4 assessments, we find that the
difference in opinions on average was 0.023 for religion,
0.177 for science, and 0.11 for sports. These results show
that the ability of GPT-4 to assess opinion vectors of social
media posts is fairly similar to human assessments, though
not equal. The capability of GPT-4 to take in image data
means these results may extend to interpretation of image
content as well. For example, GPT-4 properly identified the
opinion values of the images in Figure 7.

B. AI Generation from Opinion Vectors

To show that generative AI can create posts based on
opinion vectors, we provided GPT-4 with the topic of “taking
action on climate change” and had it create short posts
following opinion values from 0.1 to 1.0. Table I shows the
posts generated by Chat-GPT, revealing the subtle nuances in
stances toward climate change action even between similar
opinion values. Although current image generation AI do
not have the full capability of simply taking in an opinion
vector and topic, interpret it, and then generate a resulting
image following that opinion, we can use LLMs like GPT-
4 to generate an image prompt for image AI like Dalle-3
and Mdjourney V6. Figure 7 shows two examples of memes



TABLE I: Chat-GPT Generated Media Post Given Controller-Generated Opinion Value

Opinion Value Social Media Bot Posts About Taking Action on Climate Change

1.0 (Support)
I simply cannot fathom why anyone would oppose the fact that climate change is real. Ignoring this issue is not an option.

We need to come together as a global community to address this challenge head-on by reducing our carbon footprint,
investing in renewable energy, and advocating for policies that protect our planet for future generations.

0.7

We have a responsibility to take care of our planet and ensure that it remains habitable for future generations. Despite the
challenges we face, I’m optimistic about the steps we can take to address climate change. Renewable energy sources like
wind and solar power are becoming more affordable and accessible every day, and innovative technologies are helping us

to reduce our carbon footprint and conserve resources.

0.5 (Neutral)

Climate change is a complex and often controversial issue, with arguments for and against its existence and significance.
On the one hand, there is a wealth of scientific evidence that suggests that human activities are a major contributing factor.

There are those who dispute these findings and contend that efforts to address climate change may be too costly or
difficult to implement, and that more research is needed before we can take action.

0.3

I also think that some of the proposed solutions to address climate change may be unrealistic or unfeasible, particularly for
those who live in developing countries or who rely on certain industries for their livelihoods. While I believe in taking

care of our planet, I think we need to balance this with practical considerations and not make hasty decisions that could
have unintended consequences.

0.1 (Oppose)

I simply cannot stand the constant fearmongering and doom-and-gloom surrounding the topic of climate change. I think
that the push for climate change solutions often overlooks the economic and social costs of these policies. It’s not as

simple as just “going green” — there are real trade-offs and sacrifices that would need to be made, and I don’t think it’s
fair to expect everyday people to bear the brunt of these changes.

generate by Dalle-3 (left) for support and Midjourney V6
(right) for opposition against climate change action. With the
vast improvements in video generation as seen in OpenAI’s
Sora [34], it will not be long before video content can be
generated in the same manner.

VI. ETHICAL CONSIDERATIONS

Although previous work on opinion control may have
considered the idea in the abstract, this paper demonstrates
how easy it now is to implement such controllers on real
social media networks using current generative AI technolo-
gies. This widespread access to systematic methods for mass
manipulation highlights the urgent need for discussions on
the morality of applying control methods to people and the
development of corresponding ethical principles.

Certainly there are many uses for automated agents in
social media networks that would seem to contribute to the
common good, such as compensating for levels of homophily
that may appear to be unhealthy, or making introductions
between agents with common interests. Nevertheless, the
same control methods that enable these capabilities can just
as easily contribute to real social harm [35], [36], [37].

This isn’t the first time the scientific community has
conducted research or developed technologies with the po-
tential for real social harm, however, so there are frameworks
we can use for considering the ethical implications. For
example, the Belmont Report [38] offered critical guidance
for biomedical research in 1978, and the Menlo Report [39]
offered similar principles for research on information and
communications technologies in 2012:

1) Respect for Persons, including Informed Consent,
2) Beneficience,
3) Justice, and
4) Respect for Law and Public Interest, including Trans-

parency
Kevin Macnish and Jeroen van der Ham have more

recently modified the Menlo Report [40], with a special
focus on cybersecurity research that includes a section

looking beyond research activities to explore the ethics
of cybersecurity development in industrial contexts. This
application closely parallels questions surrounding the ethics
of publishing effective opinion or social control techniques
since such techniques are both research and, as demonstrated
here, nearly immediately deployable in practice using widely
available generative AI.

The Association for Computing Machinery (ACM), how-
ever, developed a framework in 2022 even more applicable
to social control than cybersecurity in their “Statement on
Principles for Responsible Algorithmic Systems” [41]:

1) Legitimacy and Competency,
2) Minimizing Harm,
3) Security and Privacy,
4) Transparency,
5) Interpretability and Explainability,
6) Maintainability,
7) Contestability and Auditability,
8) Accountability and Responsibility,
9) Limiting Environmental Impacts

These principles correspond strongly to those from [39] and
refined in [40], but add new refinements such as interpretabil-
ity/explainability and contestability/auditability.

Since then, various organizations have worked on further
refinements in the context of ethical AI systems, resulting
in guidelines for Trustworthy and Responsible AI from the
National Institute of Standards and Technology (NIST) [42],
that added fairness to its list of principles for ethical systems,
and various other guidelines, of which the list from Intel is
typical [43]. These criteria, however, continue to evolve and
could benefit from input from the controls community.

VII. CONCLUSION

Automatic methods designed to change people’s minds
have reached a new level of expertise. This paper presented a
new model of Social Media Networks along with algorithms
for three opinion controllers. Results from a simulation study
were then described, and details for using generative AI



to deploy such controllers were illustrated–including exper-
imental results demonstrating the efficacy of using Large
Language Models for quantifying the opinion characteristics
of social media posts. Ethical concerns and frameworks from
related fields were then presented with an invitation for more
work understanding the morality of using automatic control
methods for persuasion.

Organizations like the NSF and DARPA have long rec-
ognized the risks of powerful techniques developed for
feedback control, including jobs lost to automation [44]
and, specifically, the need for cognitive security to protect
populations from influence operations and mass manipulation
[45]. Future work could explore how to accomplish these
goals.
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