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HIGHER ORDER MULTI-DIMENSION REDUCTION METHODS VIA
EINSTEIN-PRODUCT

A. ZAHIR * K. JBILOU*', AND A. RATNANI*

Abstract. This paper explores the extension of dimension reduction (DR) techniques to the multi-dimension
case by using the Einstein product. Our focus lies on graph-based methods, encompassing both linear and
nonlinear approaches, within both supervised and unsupervised learning paradigms. Additionally, we investigate
variants such as repulsion graphs and kernel methods for linear approaches. Furthermore, we present two
generalizations for each method, based on single or multiple weights. We demonstrate the straightforward
nature of these generalizations and provide theoretical insights. Numerical experiments are conducted, and
results are compared with original methods, highlighting the efficiency of our proposed methods, particularly in
handling high-dimensional data such as color images.
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1. Introduction. In today’s data-driven world, where amounts of information are col-
lected and analyzed, the ability to simplify and interpret data has never been more critical.
The task is particularly evident in the field of data science and machine learning [29], where
the curse of dimensionality is a major obstacle. Dimension reduction techniques aim to address
this issue by projecting high-dimensional data onto a lower-dimensional space while preserving
the underlying structure of the data. These methods have been proven to be quite efficient in
revealing hidden structures and patterns.

The landscape of DR is quite rich, with a wide range of methods, from linear to non-linear
[18], supervised to unsupervised, and versions of these methods that incorporate repulsion-
based principles, or kernels. We find as an example, Principal Component Analysis (PCA)[9],
Locality Preserving Projections (LPP)[12], Orthogonal Neighborhood Preserving Projections
(ONPP)[14}[15], Neighborhood Preserving Projections (NPP)[14], Laplacian Eigenmap (LE)[],
Locally Linear Embedding (LLE)[23]... Each of these techniques has been subject to extensive
research and applications, offering insights into data structures that are often hidden in high-
dimensional spaces, these methods can also be seen as an optimization problem of trace, with
some constraints[24].

Current approaches often require transforming the multi-dimensional data, such as images
[13, Bl 26l 19, 30], into a matrix, into flattened (vectorized) forms before analysis. This process,
while it’s fast, however, can be problematic, as it may lead to loss of inherent structure and
relational information within the data.

This paper proposes a novel approach to generalize dimensional reduction techniques, em-
ploying the Finstein product, a tool in tensor algebra, which is the natural extension of the
usual matrix product. By reformulating the operations of both linear and non-linear methods
in the context of tensor operations, the generalization maintains the multi-dimensional integrity
of complex datasets. This approach circumvents the need for vectorization, preserving the rich
intrinsic structure of the data.

Our contribution lies in not only proposing a generalized framework for dimensional reduction,
but also in demonstrating its effectiveness through empirical studies. We show that the pro-
posed methods, outperform or at least are the same as their matrix-based counterparts, while
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preserving the integrity of the data.

This paper is organized as follows. Firstly, we will talk in Section [2] about the methods
in the matrix case, then, in Section [3] we will introduce the mathematical background of
tensors, and the Einstein product. Next, in Section [d] we will introduce the different methods,
and the generalization of these methods using the Einstein product. Following that, Section
is dedicated to presenting variants of these techniques. Subsequently, we will present the
numerical experiments and the results in Section [6} Lastly, we offer some concluding remarks
and suggestion of future work in [7]

2. Dimension reduction methods in matrix case. Given a set of n data points
X1,...,X, € R™ and a set of n corresponding points yi,...,y, € R? denote the data ma-
trix X = [Xy1, -+ ,X,] € R™*" and the low-dimensional matrix Y = [yq, - ,y,] € R¥". The
objective is to find a mapping ® : R™ — R% ¢ (x;) = y;, i = 1,---,n. The mapping is
either non-linear Y = ®(X), or linear Y = VT X, in the latter case, it reduces to find the
projection matrix V e R™*4,

We denote the similarity matrix of a graph by W € R™*™, the degree matrix by D, and the
Laplacian matrix by L = D — W. For the sake of simplifications, we will define some new
matrices

L, =D"'"2LD"V2 W =D V2WD 2 M = (I, - WT)(I, - W),
N PN 1
X=XDV"? Y=vYDY? H=1,—-11",

n

where H is the centering matrix, and 1 = (1,..., 1)T € R™.
The usual loss functions used are defined as follows

(¥) = QZW v~ vl = T [y Iy 2.
2

(V) = 2 yi—ZWijyj =Tr[YMYH], (2.2)
1 J 22

By(Y) = Z Yi — %Zyj =Tr [Y(I— ;HT)YH] : (2.3)
7 J 2

Equations ([2.1), and (2.3]) preserve the locality, i.e., the point and its representation stay close,
while Equation (2.2]) preserves the local geometry, i.e., the representation point can be written
as a linear combination of its neighbours.

For simplicity, we will refer to the d eigenvectors of a matrix corresponding to the largest and
smallest eigenvalues, respectively, as the largest and smallest d eigenvectors of a matrix. The
same terminology applies to the left or right singular vectors. Table 2.1 summarizes the various
dimension reduction methods, their corresponding optimization problems and the solutions.
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Method Loss Constraint Solution
function
Linear methods
Principal component Maximize VvT =1 Largest d left singular vectors
analysis[9]. Equation of XH.
Locality Preserving Minimize YDYT =1 _Solution of
Projections. [12] Equation 2] XL —W)XTu; = N XXTu,;.
Orthogonal Locality Minimize VvvT =T Smallest d eigenvectors of
Preserving Equation XLxT.
Projections. [14], [15]
Orthogonal Minimize vvT =1 Smallest d eigenvectors of
Neighborhood Preserving | Equation @ XMXT.
Projections. [14} [15]
Neighborhood Preserving Minimize YYT =7 Sol of XM XTu; = M XXTu,
Projections.|[14] Equation
Non-Linear methods
Locally Linear Minimize YYT =1 Smallest d Eigenvectors of M.
Embedding. [23] Equation [2.2]
Laplacian Eigenmap.[4] Minimize YDYT =1 Solution of Lu; = A\;Du,.
Equation

Table 2.1: Objective functions and constraints employed in various dimension reduction meth-
ods along with corresponding solutions.

Notice that the smallest eigenvalue is disregarded in the solutions, thus, the second to the d+1
eigenvectors are taken. The graph based methods are quite similar, each one tries to give an
accurate representation of the data while preserving a desired property. The solution of the
optimization problem is given by the eigenvectors, or the singular vectors.

Next, we will introduce notations related to the tensor theory (Einstein product) as well as
some properties that guarantee the proposed generalization.

3. The Einstein product and its properties. LetI = {I;,..., Iy} and J = {J1,..., Ju}l}
be two multi-indices, and i = {i1,...,ix} and j = {j1,...,jm} be two indices. The index
mapping function ivec(i,I) = 41 + Z;CV:Q (ix — 1) f:ll I; that maps the multi-index i to the
corresponding index in the vectorized form of a tensor of size Iy x ... x Iy. The unfolding,
also known also as flattening or matricizaion, is a function W : RItX 72X XInXJixJox-XJar
RII*II A — A with Aij = Aivis...injrjs...jn» that maps a tensor into a matrix, with the sub-
scripts ¢ = ivec(i,I), and j = ivec(j,J). The mapping ¥ is a linear isomorphism, and its inverse
is denoted by W1, It would generalize some concepts of the matrix theory more easily.

(the last mode is fixed to i). A tensor A € RI1X--xInxJix..xJar jg called even if N = M and
square if I; = J; for all i =1,..., N [2]].

DEFINITION 3.1 (m-mode product). [I7/Let X € RIv>->In qnd U € R7*Im | the m-mode
(matriz) product of X and U is a tensor of size Iy X ... Lyy—1 X J X Iyy1 ... x Ipg, with element-
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wise

L,
(X X Uiy iy s gimnoine = 0y Ujina Xy ing- (3.1)

im=1

DEFINITION 3.2 (Einstein product). [6/Let X € RIv<--xIaxKix.xEn gpng
Ve REvGxENxJix.x v the Finstein product of the tensors X and ) is the tensor of size
RIvxexIux Jix..XJIm yhose elements are defined by

(X *N y)iln-iMjl'njlw = Z Xil..AiMkl...kNyklu.kle...jM- (32)
kl...kN

Next, we have some definitions related to the Einstein product.
DEFINITION 3.3.
o Let Ae RIv<xInxJixexIu then the transpose tensor [21)] of A denoted by AT is the
tensor of size Jy x ... x Jyy x Iy x ... x Iy whose entries defined by (AT)jl,,,jMil,,,iN

A ingredne -

e A is a diagonal tensor if all of its entries are zero except for those on its diagonal,
denoted as (A)iy. iniy..in for all 1 < i, <min(l,, J,), 1 <r < N.

o The identity tensor denoted by Iy € RIvX--xInxIix..xIN 45 o diggonal tensor with only
ones on its diagonal.

o A square tensor A e RIv> - xInxIix..xIN g cqlled symmetric if AT = A.

REMARK 1. In case of no confusion, The identity tensor will be denoted simply T.
DEFINITION 3.4. The inner product of tensors X,) € RIt1X-xIN js defined by
(X, )= Z Xivig..in Xivin.in- (3.3)
D14yt N

The inner product induces The Frobenius norm as follows
1X] P = /KX, X). (34)

DEFINITION 3.5. A square 2N-order tensor A in invertible (non-singular) if there is a tensor
denoted by A~ of same size such that Axxy A1 = A~ sy A = Iy. It is unitary if AT sy A =
Asxny AT = In. It is positive semi-definite if (X, Axy X) = 0 for all non-zero X € RI1x--xIn,
It is positive definite if the inequality is strict.

An important relationship that is easy to prove is the stability of the Frobenius norm under
the Einstein product with a unitary tensor.

PROPOSITION 3.6. Let X € RIv¥ XTI xJixe XN gnd if @ RIvX - xIuxDix.XIv pe g ynitary
tensor, then

Wt sar X p =X - (3.5)

The proof is straightforward using the inner product definition.
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PROPOSITION 3.7. [27] For even order tensors X,) € RIvX<xIn>xJixexXIu ype hape

(X, Yy =Tr (X" xy V)

= Tr(Y #a X7T). (3:6)

PROPOSITION 3.8. [20] Given tensors X € RI1x-xInxKix..xKn 3 ¢ RE1x ) KnxJux.x I
we have

(X sy V)T = YTy &7 (3.7)
The isomorphism ¢ has some properties that would be useful in the following.

PROPOSITION 3.9. [27] Given the tensors X and Y of appropriate size then, we have ¢ is a
multiplicative morphism with respect the Finstein product, i.e., U(X xn V) = U(X)U (D).

It allows us to prove the Einstein Tensor Spectral Theorem.

THEOREM 3.10 (Einstein Tensor Spectral Theorem). A symmetric tensor is diagonalizable
via the Finstein product.

Proof. The proof is using the isomorphism and its properties

Let X be a symmetric tensor of size Rt X *InxIix..xIn “then ¥(X) is symmetric, and by the
spectral theorem, there exists an orthogonal matrix U such that U7 ¥ (X)U = A, where A is a
diagonal matrix.

Then, U(X) = UAUT, and X = ¢ Y (UAUT) = U1 U) x5 U HA) x5 U HUT) = UHU) x5
U LA) «y U~HU)T, with U~1(U) is a unitary, and W~!(A) is diagonal tensor.

|

The cyclic property of the trace with Einstein product is also verified, which would be needed
in the sequel.

PROPOSITION 3.11 (Cyclic property of the trace). Given tensors X € RIV< X IaxEix..x Ky
K% XKy I % xT K1 % X Ky x K1 X XK
Y e Rfr X xinxhix.xda 72 g RE1X-XBNXBLXC XN pe have

THEOREM 3.12. [20] Let X € RIvx--xIuxKix..xEn “the Binstein singular value decomposi-
tion (E-SVD) of X is defined by

X =Usxy Sy VT, (3.9)

where U € Rllx..‘xIMxllxmxIM,S e Rllx‘..xIMxle...xKN’V e RE1 X . XxKNXEK1 X . XxKN it the

following properties

respectively. If N < M, then

S B iy kn U (G1yeoyin) = (K1, .. kn) and (ing1,---y00) = (1,...,1)
0 otherwise.



dklkN if(il,...7iM): (kl,...,kM)
0 otherwise.
The numbers di, ..k, are the singular values of X with the decreasing order

If N =M, then Siy iy kny =

di1zdoy 1= 2dg = dip

yhyeeny

1=2...= dl,l?g,..i,l = ... = dfﬁ,mJ?P =0,

~

with P = min(N, L), K, = min([,., K,.), r=1,...,P.
We define the eigenvalues and eigen-tensors of a tensor with the following.

DEFINITION 3.13. [28] Let a square 2-N order tensors A, B € RIv - xInxTixe.xIn thep
e Tensor Eigenvalue problem: If there is a non null X € Rl *IN and A e R such
that Ay X = AX, then X is called an eigen-tensor of A, and X is the corresponding
etgenvalue.
e Tensor generalized Eigenvalue problem: If there is a non null X € Rl <
and X € R such that Axny X = AB «ny X, then X is called an eigen-tensor of the pair
{A, B}, and X is the corresponding eigenvalue.

><IN
’

REMARK 2. If N =1, the two definitions above coincide with the eigenvalue and generalized
eigenvalue problems, respectively.

We can also show a relationship between the singular values and the eigenvalues of a tensor.

PROPOSITION 3.14. Let the E-SVD of X € RIvxx I x Kyx.. xKn defined as X = U #p; S *n
T
vV, then
o The eigenvalues of X #x XT and XT x 3 X are the squared singular values of X .
o The eigen-tensors of X =y XT are the left singular tensors of X.
o The eigen-tensors of XT x5 X are the right singular tensors of X.

The proof is straightforward.

To simplify matters, we’ll denote the d eigen-tensors of a tensor, associated with the smallest
eigenvalues, as the smallest d eigen-tensors. Similarly, we will apply the same principle to the
largest d eigen-tensors. This terminology also extends to the left or right singular tensors.

REMARK 3. To generalize the notion of left and right inverse for a mon-square tensors. It
is called left or right VU-invertible if V(A) is left or right invertible, respectively. In case of
confusion, we will denote W by ¥; to represent the transformation of tensor A € RI*--xIn o
a matriz RTh=1 Te)x (TR0 Te)

ProPOSITION 3.15.

1. A square 2-N order symmetric X is positive semi-definite tensor, definite tensor, re-
spectively, if and only if there is a tensor, an invertible tensor, respectively, B of same
size such that X = By BT.

2. Let a tensor X € RIV<XIN of order N, with its transpose in RIN=i+1X- X InxTix..In—;
then X #; XT is semi-definite positive for any 1 < j < N.

Let a tensor X € RIV-XIN of order N, let 1 < j < N such that the tensor is W;—
invertible, with its transpose in RIN=i+1x-xInxDixeIn—i = ghen X «; X1 is definite
positive.

3. The eigenvalues of a square symmetric tensor are real.

4. Let a symmetric matric M € REXEK gnd X e RIV<*XINXE ith its transpose in
REXIxXIN then X x ni1 M %1 X7 is a symmetric.
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5. If M is positive semi-definite, then X x n1 M %1 X7 is positive semi-definite.
6. If M is positive definite, and X is W—invertible, then X xny1 M %1 X7 is positive
definite.

Proof. The proof of the first one is straightforward using
Let Y € Rf-Iv=i, then YT wy_j X wj X sy ¥ = [XT sy V[T = 0
The proof of the third is similar to the second one.
Let A € RO xInxlix..xIN he a symmetric tensor and non-zero tensor X' € R < *IN with
Asxy X = AX, then ATXT = DX = (Asny X)T = 2T sy AT = X7 55y A = ATXT, then
A = AT, which completes the proof.
We have (X x yi1 M # XT)T = (M x1 XT)T 4, XT = (X xn1 MT) %1 X7, then conclude by
the symmetry of M.
Let M be a positive semi-definite matrix, then there exist a matrix B such that M = BB7,
then

X xny1 M s XT = X xngp1 BBT 5 &7 = X 5 X7,

with X = X x ny+1 B, then the result follows.
The last has a similar proof; Using the fact that M is positive definite, then B is invertible,
and X is invertible, then X' is ¥ —invertible, and the result follows. O

We also have a property that relates the tensor generalized eigenvalue problem with the tensor
eigenvalue problem.

PROPOSITION 3.16. Let the generalized eigenvalue problem Asn X = AM sy X, with A, M
are a square 2-N order tensor, with M being invertible, then X = My X is a solution of the
tensor eigen-problem A *N X =)\ with A=A sy ML

THEOREM 3.17. Let a symmetric X € RIv<>xIuxhixexIm = and B g positive definite tensor
of same size, then
min Te(PT 0 X 0 P),
PeRI X xIppxd
PTan Bxny P=T
18 equivalent to solve the generalized eigenvalue problem X =p; P = AB s P.

Proof. Since W is an isomorphism, the problem is equivalent to minimize Tr(PX PT) with
PTBP =1,¥(P) = P,¥(X) = X,¥(B) = B. We have X symmetric and B is definite positive.
The solution of the equivalent problem is the d smallest eigenvalues of X, using the fact ¥—1
is an isomorphism, we obtain the result.

A second proof without using the isomorphism property is the following.
Let the Lagrangian of the problem be

LP,A) :=Tr(PT spr X spr P) — Tr(AT 5y (PT #ps By P — 1)),
with A € R¥*? the Lagrange multiplier. Using KKT conditions, we have
oL

= Pl sy Bxy P—T=0.

To compute the partial derivative with respect to P, we introduce the functions fi(P) and
f2(P), defined as follows

fl(P) = TI"(PT * N X*M P),
7



fQ(P) =Tr (AT * N (PT 0\ B*M P *I)) .
Subsequently, we aim to determine the partial derivative.

fP+eH)=Tr ((P+eH)" #m X #a (P +eH))
=Tr (PTsp X sar P+ eMT wpg Xoag P+ Pl X sy H)
+ Tr(e?HT #pr X wpr H)
= Tr(PT #pr X %20 P) + e Te(HT 531 X 524 P)
+eTr(PT wpy X xpr H) + 2 Tr(HT 500 X 530 H)
= f1(P) +€[Tr('HT w0 Xowpg P) +Tr(73T w00 X o#p ’H)] + o(e)
= f1(P) +eTr (HT #a (X + XT) 501 P) + 0(e).

Then, as X is symmetric, the partial derivative in the direction H is

oft oy _ o J1I(P+eH) — f1(P)
ﬁ(H) = I €
= 2Tr(HT w01 X 500 P).

It gives us the partial derivative of f; with respect to P as

0
T];ZQX*MP'

For the second function, we have

fo(P 4 €M) = Tr (AT wr (P +eH)" war B (P +eH) ~ T))
=Tr (AT spr (PT spr Brag P —I)) + +2 Te(AT spr (HT 501 Brar H))
+eTr (AT spy (HT w01 Boag P+ P ospg By H))
= fo(P) + e Tr (AT wpr (HT 5ps By P+ PP wps Brar H)) + O(e)
= fo(P) +eTr (HT s [Boas Par AT + BT 5as P s A]) + O(e).

We used the cyclic property and the transpose with trace property in the last equality.
Then, as B is symmetric, the partial derivative in the direction H is

o an v f2o(P+eH) = fo(P)
ﬁ(ﬂ) B il—{r(l) £
= Tr (M7 #pr Boag Poar (A+ A7)

This yields the partial derivative of £ with respect to P as follows

0
%:B*MP*M(AJFAT)_
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Subsequently,

oL

ﬁ=0 — 2X*M’P—A*M’P—AT*M7>=0

— Xy P =By Py (A+AT)

— Xy P=BryPryA

— X*M'P:B*MP*MQT*MD*MQ
— Xy Py QF = Bspy Popy QF #30 D
— Xy P=BxyPsyD.

The third line utilizes the property that A=A+ AT, which is symmetric, thus diagonalizable
7 ie., A= OT «); D *M Q. The last two lines are justified by the fact that P="P xp7 Q
also satlsﬁes PT o« M B s P = Z, concluding the proof. O

A corollary of this theorem can be deduced.

COROLLARY 3.18. Let X € RIv > xInmx K. xEn “yhe solution of

Pl sy X
arg min - [PT e A
PlxyP=T

is the d smallest left singular tensors of X.

Proof. We have |[PT sy X[3 = Tr (PT #pr X x5 XT x5, P) . Theorem tells that the
solution is equivalent to solve X #x X7 #p; P = AP, i.e, the d smallest tensors of X =y X7,
which corresponds exactly to the d smallest left singular tensors of X. O

4. Multidimensional reduction. In this section, we present a generalized approach to
DR methods using the Einstein product.
Given a tensor X € RI1X--xImxn our gbjective is to derive a low-dimensional representation
Y € R¥" of X. This involves defining a mapping function W : R71*-->*/a _ R4,
First, we discuss the determination of the weight matrix, which can be computed in various
ways, one common method is using the Gaussian kernel

. 12
LB

W'L’,j = exp (— 5

g

Additionally, introducing a threshold can yield a sparse matrix (Gaussian-threshold). We also
explore another method later in this section, which utilizes the reconstruction error.
Next, we introduce our proposed methods.

Linear methods: The linear methods can be written as ) = PT #,; X. It is sufficient to
find the projection matrix P € R >X--x1arxd,
Higher order PCA based on Einstein [II] is the natural extension of PCA to higher order
tensors. It extends the PCA applied to images, using the notion of eigenfaces to colored images
that are modeled by a fourth-order tensor, using the Einstein product. It vectorizes pixels
(height and width) for each color (RGB) to get a third-order tensor, then it computes E-SVD
of this tensor centered, to get the eigenfaces.
The vectorization is not natural, since we omit the spatial information. The proposed work
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hides the vectorization in the first step by using the tensor directly, and seeks to find a solution
of the following problem

2
arg max  Ppoa(Y) = >

PERIIX...XIMX Z

) 1 .
@ _ )
y - Ej Yy

PlsyP=T F

y:PT*IuX

The objective function can be written as

2

pca(Y) =]

(2

-l - )

1 4
T x@ — 2N x0)
P ( nzjl )

F
2

F

= [PTr (X = Q)%

with Q € RIvxxIuxn where Q) = %Zj XU) represents the mean, the solution of (4.1)) is
the largest d left singular tensors of the centered tensor X — Q = X x ;41 H.

Since the feature dimension is typically larger than the number of data points n, computing the
E-SVD of X X ;.1 H can be computationally expensive. It’s preferable to have a runtime that
depends on n instead. To achieve this, we transform the equation X' x pr1 H %1 XT 53, P = AP
to (XT %y X x5 H) %1 2 = Az, with z = X7 ), P. This allows us to find the eigenvectors
of a square matrix of size n. The projected data ) would be these vectors reshaped to the
appropriate size.

The algorithm bellow, shows the steps of PCA via Einstein product.

Algorithm 1 PCA-Einstein
Input: X (Data) d(dimension output).
Output: P (Projection space).

1: Compute Q. > The mean tensor
2: Compute the largest d eigen-tensors of Z = X — Q.
3: Combine these tensors to get P.

4.1. Generalization of ONPP. Given a weight matrix W € R™*", the objective function
is to resolve

arg min Ponpp(Y) = Z

PERIIX...XIA{Xd 2

y(i) _ Z wi,jy(j)
J

2
/PT*]VI’P:I '
V=P xpX
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The objective function can be written as

2
Qonpp(V) = Z Z(Si,jy(j) - Zwiyjy(j)
i 15 ; »
2
= Z(‘Si,j — w; ;)Y
i |5 -
2
= Z(In - W)i,jy(j)
i 15 »
2
= 2| xarer @ =)

=¥ x a1 (I = W3
= H(’PT sar X) Xarq1 (In — W)Hi“
- H’PT #ar (X Xargr (In — W))Hi“

Using corollary [3.18] the solution of[4.2]is the smallest d left singular tensors of X' x pr41 (I, —W).
The algorithm bellow, shows the steps of ONPP via Einstein product.

Algorithm 2 ONPP-Einstein
Input: X (Data) d (subspace dimension).
Output: P (Projection space).

1: Compute W. > Using the appropriate method
2: Compute the smallest d left singular tensors of Z = X x 41 (I — W).
3: Combine these tensors to get P.

4.1.1. Multi-weight ONPP. In this section, we propose a generalization of ONPP, where
multiple weights matrices are employed on the Ip; mode. We denote by W € R"*"*In the
weight tensor. Let yﬁ” denotes the tensor Y, by fixing its last two indices to (r,4), i.e., V. .. ris
similarly XT(Z) denotes X. _,;. We assume that the r-th frontal slice of the weight tensor is
constructed only from the r-th frontal slice of the data tensor.

The objective function is

2
: . (1) _ (M y()
arg ’PGRIIIF}'% Ipgxd (I)ONPPMW (y) T Z y’“ Z WZ’J yT (43)
PlapyP=T LT J F
V=PTxyX

For each i, utilizing the independence of the frontal slices yﬁ”, we can divide the objective
function into Ips independent objective functions. The solution is obtained by concatenating
the solutions of each objective function. The r-th objective function can be written as

arg min Z

P rﬁ;ERIIX'”XIMXd p

2

(4.4)

yr(i) _ Z Wi(j;') yﬁj)
J

F



The solution of this objective function is the smallest d left singular tensors of
X X (In — W(’")). The solution of the original problem is obtained by concatenating

s

the solutions of each objective function.

4.2. Generalization of OLPP. Given a weight matrix W € R"*"  the optimization
problem to solve is

: (4) _ ()
arg _wom, L, ®orpp(Y wa o - H (4.5)
PT*MP:I

The objective function can be written as

Porpp(Y) = *Zwm Hy(Z
— ,Ed

:Zd
:Zdi,j<y ),yj)>*2wi,j<y D, yu)y
1,5 ,J

+w”H)} H — YW, YOy
Zd Hy(])
Zw WY (4) y(])>

‘ Zw <y (1) y(])>

y“

— ZLi’j<y(i)7y(j)>
2]
=V*m1L,Y)
= TI‘ (PT *Nr (X XM+1 L *1 XT) LIV P) s
where L is the Laplacian matrix corresponding to W.
The solution using Theorem [3.18] is the smallest d eigen-tensors of the symmetric tensor (Prop.

' X X M+1 L*l XT.
The algorithm bellow, shows the steps of OLPP via Einstein product.

Algorithm 3 OLPP-Einstein
Input: X (Data) d (subspace dimension).
Output: P (Projection space).

1: Compute L. > Using the appropriate method
2: Compute the smallest d eigen-tensors of X X pri1 L # XT.
3: Combine these tensors to get P.

4.2.1. Multi-weight OLPP. In this section, we propose a generalization of OLPP, where
multiple weights are utilized on the In; mode. The objective function is to solve

I 1 (r) 14(3) G)
e PERIIIEF-%IM xd PorLPPyw (V) = 5 Z Wz‘,j Y =
PTsyP=T Q4,7

V=P sy X

(4.6)

Here, we have I; independent objective functions, and the solution is obtained by concate-
nating the solutions of each objective function.
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4.3. Generalization of LPP. LPP is akin to the Laplacian Eigenmap, serving as its
linear counterpart. The objective function of LPP solves

PERle...xIMXd
’PT*]\4X><M+1D*1XT*A1P=I

arg min rpp(Y) = %Z Wi,j Hy(i) -y Hi : (4.7)
1,7

The solution involves finding the smallest d eigen-tensor of the generalized eigen-problem
X xXarp1 Ly X1 spyp V = AX sp41 D osg X1 sy V. (4.8)

Using we deduce that the tensors X' x p;41 L#g XTspr, X Xare1 D#q X7y, are symmetric
semi-definite positive. Here, we assume definiteness (although generally not true, especially if
the number of sample points is less than the product of the feature dimensions). The projection
tensor is obtained by adding these eigen-tensors and reshaping it to the desired dimension.
The algorithm bellow, shows the steps of LPP via Einstein product.

Algorithm 4 LPP-Einstein
Input: X (Data) d (subspace dimension).
Output: P (Projection space).
1: Compute L. > Using the appropriate method
2: Compute the smallest d eigen-tensors of X' x ar11 L1 XT w3,V = AXT spp 01 D XT3 V.
3: Combine these tensors to get P.

Similarly, the multi-weight LPP can be proposed.

4.4. Generalization of NPP. The generalization of NPP resembles that of ONPP, under
the constraint of LLE, it aims to find

arg min Oypp(Y) :=Tr(’PT s X Xpre1 (L = W) (I, — W) < &7 *MP)-
»PERIIX...XIIWXd
'PT*ju.X*lXT*I\/[P:I
(4.9)

The solution entails finding the smallest d eigenvectors of the generalized eigen-problem
X a1 (L = W)Ly = W)T xq X V = AX 5 X7 5 V.

The projection tensor is obtained by concatenating these eigenvectors into a matrix and then
reshaping it to the desired dimension.
The algorithm bellow, shows the steps of NPP via Einstein product.

Algorithm 5 NPP-Einstein
Input: X (Data) d (subspace dimension).
Output: P (Projection space).
1: Compute W. > Using the appropriate method
2: Compute the smallest d eigenvectors of X x pry1 (In — W) (I, — W)T x1 XT %3, V = AX %y
XT * 7 V.
3: Combine these tensors to get P.

13



Similarly, the multi-weight NPP can be proposed, and the solution is similar.

Nonlinear methods: Nonlinear DR methods are potent tools for uncovering the nonlinear
structure within data. However, they present their own challenges, such as the absence of an
inverse mapping, which is essential for data reconstruction. Another difficulty encountered is
the out-of-sample extension, which involves extending the method to new data. While a variant
of these methods utilizing multiple weights could be proposed, it would resemble the approach
of linear methods, and thus we will not delve into them here.

4.5. Generalization of Laplacian Eigenmap. Given a weight matrix W € R™*" the
objective function is to solve

2
yX]v[JrlD*lyT:I F (410)

. 1 ) .
arg min Srp(Y) = 3 Zwi,j Hy(z) _ y(J)H
i,J

The objective function can be written as
Prp(V) =Tr (¥ xpg1 L V7).

For Y =) X 141 DY2, the constraint becomes Y YT = Z, using Y = y X141 D7V2) the
objective function becomes

-~

®rp(Y) =Tr <J7 X a1 L %1 ?T) : (4.11)

Using the isomorphism W and its properties, the problem is equivalent to Equation [2.1] under
the constraint W())) x; ¥(Y)? = I. Since the solution is the smallest d eigenvectors of L,,, the
solution of the original problem would be ) = \Il_l(\Il(ji\)) Xare1 D72,

The algorithm bellow, shows the steps of LE via Einstein product.

Algorithm 6 LE-Einstein

Input: X (Data) d (subspace dimension).

Output: Y (Projection data).

Compute L,. > Using the appropriate method
Compute the smallest d vectors of L,,.

Combine these vectors and reshape them to get ¥(J).

Compute Y = U—1(U(Y)) x p41 D~Y2.

4.5.1. Projection on out of Sample Data. The out of sample extension is the problem

of extending the method to new data. Many approaches were proposed to solve this problem,
such as the Nystrom method, kernel mapping, eigenfunctions [5] [5l 25], etc. We will propose a
method that is based on the eigenfunctions.
In matrix case, the out of sample extension is done simply computing the components explicitly
as Yy, = )\%_kgfvj, Jj = 1,...,d, where k; is the kernel matrix of the new data, and (\;,v;)
is eigentuple of the kernel matrix L,, k; = (K(x¢,%1),...,K(x¢,%,))7 is the kernel vector
of the test data x;. It can be written as y; = diag(\i,..., \q) ' [v1,...,v4]Tk; Thus, the
generalization is straightforward.
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4.6. Generalization of LLE. LLE is a nonlinear method that aims to preserve the local
structure of the data. After finding the k-nearest neighbors, it determines the weights that
minimize the reconstruction error. In other words, it seeks to solve the following objective
function

Re(W) := )"

7

, (4.12)

x® Zme(]

subject to two constraints: a sparse one (the weights are zero if a point is not in the neighborhood
of another point), ensuring the locality of the reconstruction weight, and an invariance constraint
(the row sum of the weight matrix is 1). Finally, the projected data is obtained by solving the
following objective function

arg y*n;lni Oppp =y, | Y0 |V xarg1 (In = W) (4.13)

Z/y(ﬂ o)

2
_ Z wm.y(j) -
J F

%

4.6.1. Computing the weights. Equation[4.12]can be decomposed to finding the weights
w;,. of a point X (*) independently. For simplicity, we will refer to the neighbors of X as
N3 and the weights of its neighbors as w; € R¥, with k the number of neighbors, which
plays the rule of the sparseness constraint. Denote the local Grammian matrix G(?) € RF** ag

GY) = (X0 - NG O — Nk,

The invariance constraint can be written as 17w; = 1, thus, we can write the problem as
2
> =S @ = 3w
i F i j P
i
= 2 wi,jwi,kG_g?])f
i,5,k
= Z wlGOw
i
This constrained problem can be solved using the Lagrangian

L{w;i}i,A) = ZWTG Dw; —Z)\ Tw; —1).

2

x® _ Z wi’jx(j)
J

2

Z wi (X — NG
J

F

We compute the partial derivative with respect to w; and setting it to zero

Wi \ (4.14)
— W; = JG(Z)711

We utilize the fact that the Grammian matrix is symmetric, assuming that G is full rank,
which is typically the case. However, if G(*) is not full rank, a small value can be added to its
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diagonal to ensure full rank.

The partial derivative with respect to \;, set to zero, yields the invariance constraint of point 4,
i.e., 1Tw; = 1. Multiplying Equation (4.14)) by 17, we can isolate A and arrive at the following
equation

O |
TGO

4.6.2. Computing the projected data. The final step resembles the previous cases,
ensuring that the mean constraint is satisfied. As I — W can be represented as a Laplacian,
we know that the number of components corresponds to the multiplicity of the eigenvalue 0.
Hence, there is at least one eigenvalue 0 with multiplicity 1, and the identity tensor serves as the
corresponding eigenvector, thereby satisfying the second constraint. For further elaboration,
interested readers can refer to [I0].

The solution is equivalent to solving the matricized version, where the solution comprises the
smallest d singular eigenvectors of the matrix (I,, — W)(I,, — WT). Consequently, the solution to
the original problem is the inverse transform, denoted as !, of the solution to the matricized
version.

The algorithm bellow, shows the steps of LLE via Einstein product.

Ww;

Algorithm 7 LLE-Einstein

Input: X (Data) d (subspace dimension).

Output: Y (Projection data).

Find the neighbors of each point.

Compute the reconstruction weight .

Compute the smallest d eigenvectors of (I, — W)(I,, — WT).

Compute the ¥~ of these vectors with the appropriate reshaping to get ).

4.6.3. Projection on out of Sample Data. To extend these methods to new data (test
data) not seen in the training set, various approaches can be employed. These include kernel
mapping, eigenfunctions (as discussed in Bengio et al. [5]), and linear reconstruction. Here, we
opt to generalize the latter approach. We can follow similar steps to those used in matrix-based
methods. Specifically, we can perform the following steps without re-running the algorithm on
the entire dataset

1 Find the neighbors in training data of each new data test.
2 Compute the reconstruction weight that best reconstruct each test point from its k
neighbours in the training data.
3 Compute the low dimensional representation of the new data using the reconstruction
weight.
More formally, after finding the neighbours N7 of a test data Xt(i), we solve the following
problem

2

w(®) ’

arg minz ”Xt(i) - Z wg}/\/(ivj)
@ J

F

with Wz(f:) is the reconstruction weight of the test data, under the same constraint, i.e., the row
sum of the weight matrix is 1, with value zero if it’s not in the neighbour of a point.
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Ol
1
The solution is wgt) = th_l

17601

Finally, the embedding of the test data yt(i) is obtained as ) wg)?)}(j), with V) = ¢ p(N(9)
are the embedding representation of the neighbours of the test data.

,with G = () — A, 1) - ARy,

5. Other variants via Einstein product.

5.1. Kernel methods. Kernels serve as powerful tools enabling linear methods to op-
erate effectively in high-dimensional spaces, allowing for the representation of nonlinear data
without explicitly computing data coordinates in this feature space. The kernel trick, a pivotal
breakthrough in machine learning, facilitates this process. Formally, instead of directly manip-
ulating the data X = {X¥(M ... X} we operate within a high-dimensional implicit feature
space using a function ®.

We denote the tensor ®(X) = {&(XM), ... &(XM)} = {(&(X)D ... &(X)™}. The mapping
need not be explicitly known; only the Gram matrix K is required. This matrix represents the
inner products of the data in the feature space, defined as K; ; = (®(X®), ®(x1))). Conse-
quently, any method expressible in terms of data inner products can be reformulated in terms
of the Gram matrix. Consequently, the kernel trick can be applied sequentially. Moreover,
extending kernel methods to multi-linear operations using the Einstein product is straight-
forward. Commonly used kernels include the Gaussian, polynomial, Laplacian, and Sigmoid
kernels, among others.

Denote Y = PT sy, (X)), with P e RIvx--xIarxd,

5.1.1. Kernel PCA via Einstein product. The kernel multi-linear PCA solves the
following problem

T 2
argpeszil%}izde HP *1 (2(X) — Q)HF’
'PT*NI'P:I

(5.1)

with @ is the mean of kernel points, the solution is the largest d left singular tensors of ®(X) —
Q = ®(X). It needs to calculate the eigen-tensors of ®(X) #; ®(X)T, which is not accessible,
however, the Grammian K = ®(X)7 %), ®(X) is available, we can transform the problem to

I?/Z\z' = )\Z/Z\, with /Z\z = ((/I;(X))T * N Z(l) € ]an

with Iz representing the Grammian of the centered data, that can easily be obtained from only
Ka K=K—-HK—-KH+ HKH, since

% 7
1 1 .
_ (T G - = (NT (k) - (O\T )
= BXO)T a0 9(AD) = T HFONT e 2(AE) = T F RN 0 H(X)
1 1 1
= K; ZKz,klk]**Zh,szj+jZKkl
% 7 e

1 1 1 1
T S R T

n n onon
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Then, the solution is the same as the matrix case, i.e., the largest d eigenvectors of K , reshaped
to the appropriate size.
The algorithm bellow, shows the steps of the kernel PCA via Einstein product.

Algorithm 8 Kernel PCA-Einstein
Input: X (Data) (d;);<n(dimension output) K (Grammian).
Output: Y (Projected data).
1: Compute K. R > The mean of the Grammian
2: Compute the largest d eigenvectors of K.
3: Combine these vectors, and reshape them to get ).

5.1.2. Kernel LPP via Einstein product. The kernel multi-linear LPP tackles the
following problem

arg min Tr (PT *07 (@(X) X a1 Lo#q <I>(X)T) 07 73) .
'PGRIIX"'XIN[Xd

(5.2)
Pl @ (X)X pry1 D1 ®(X) T ey P=T

The solution involves finding the smallest d eigen-tensors of the generalized eigen-problem
B(X) xpri1 Lag B(X)T 5pr V = AO(X) #3741 D 1 O(X)T 534 V.

®(X) is not available, the problem needs to be reformulated, Utilizing the fact that K is
invertible, we reformulate the problem as to find the vectors z, solution of the generalized
eigen-problem

Lz = A\Dz, with z = ®(X)7 %, V) e R",

This formulation reduces to the same minimization problem as in the matrix case.

5.1.3. Kernel ONPP via Einstein product. The kernel multi-linear ONPP addresses
the following optimization problem

arg min Tr (PT * N ((I)(X) X M+1 (I — W)(I - WT) *1 q)(X)T) * N P) .
'PERIlX”'XIIWXd
PT*MP:I

(5.3)

The solution involves finding the smallest d eigen-tensors of problem
B(X) X1 (I =W = W) 5 (X)) 5, V = AV,

By employing similar techniques as before, we can derive the equivalent problem that seeks to
find the vectors z, solution of of the eigen-problem

K(I-W)I-WTz =Xz, with ®X)T %y, V = z.

The problem is the same minimization problem, the solution )’ can be obtained from reshaping
the transpose of the concatenated vectors z.
The algorithm bellow, shows the steps of the kernel ONPP via Einstein product.
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Algorithm 9 Kernel ONPP-Einstein
Input: K (Grammian) d (subspace dimension).
Output: Y (Projected data).
1: Compute W. > Using the appropriate method
2: Compute the smallest d eigenvectors of K (I — W)(I — W7T).
3: Combine these vectors, and reshape them to get ).

5.1.4. Kernel OLPP via Einstein product. The kernel multi-linear OLPP tackles the
optimization problem defined as follows:
arg min Tr (PT #ar (R(X) xar41 Lxg @(X)T) 50y P) .

.PE]RIIX...XIJWXd
PTsnP=T

(5.4)

The solution of the problem involves the eigen-tensors of ®(X) x pr41 L #1 ®(X)T %1 Z = \Z,
By transforming the problem, we arrive to find the vectors z, solution of of the eigen-problem

Kz = \z, with ®(X)7 %) Z = 2,

which mirrors the matrix case. Here, the solution ) can be obtained from reshaping the
transpose of the concatenated vectors z.
The algorithm bellow, shows the steps of the kernel OLPP via Einstein product.

Algorithm 10 Kernel OLPP-Einstein
Input: K (Grammian) d (subspace dimension).
Output: Y (Projected data).

1: Compute the smallest d eigenvectors of K.
2: Combine these vectors, and reshape them to get ).

5.2. Supervised learning. In general, supervised learning differs from unsupervised
learning primarily in how the weight matrix incorporates class label information. Supervised
learning tends to outperform unsupervised learning, particularly with small datasets, due to
the utilization of additional class label information.

In supervised learning, each data point is associated with a known class label. The weight
matrix can be adapted to include this class label information. For instance, it may take the
form of a block diagonal matrix, where Wy (i) € R™*™ represents sub-weight matrices, and n;
denotes the number of data points in class i. Let ¢(i) denote the class of data point ;.

Supervised PCA: PCA is the sole linear method presented devoid of a graph matrix.
Consequently, Supervised PCA implementation is not straightforward, necessitating a detailed
explanation. Following the approach proposed in [2], we address this challenge by formulating
the problem and leveraging the empirical Hilbert-Schmidt independence criterion (HSIC):

arg max Tr(PTXHK HXTP).
PTpP=]

where K7, is the kernel of the outcome measurements Y. Thus, the generalization would be to
solve
arg max  Tr (PTwy X xppe1 HKLH %1 X7 5y P), (5.5)
’PERIlX”'XIIWXd
'PT*]\/I'P:I
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The solution of is the largest d eigen-tensors of X x 1 HKp H x; X7
Notice that when, K = I,,, we get the same problem as in the unsupervised case.
The algorithm bellow, shows the steps of the Supervised PCA via Einstein product.

Algorithm 11 Supervised PCA-Einstein

Input: X (Data) d(dimension output). Ky, (Kernel of labels)
Output: P (Projection space).

1: Compute the largest d eigen-tensors of X x ;41 HKLH x1 X7,
2: Combine these tensors to get P.

Supervised Laplacian Eigenmap: The supervised Laplacian Eigenmap is similar to the
Laplacian Eigenmap, with the difference that the weight matrix is computed using the class
label, many approaches were proposed [22] [8 25]. We choose a simple approach that changes
the weight matrix to Wy, and the rest of the algorithm is the same.

Supervised LLE: There are multiple variants of LLE that uses the class label to improve the
performance of the method, e.g., Supervised LLE (SLLE), probabilistic SLLE [33], supervised
guided LLE using HSIC [I], enhanced SLLE [31]..., the general strategy is to incorporate the
class label either in computing the distance matrix, the weight matrix, or in the objective
function [10]. We choose the simplest which is the first strategy; By changing the distance
matrix by adding term that increases the inter-class and decreases the intra-class variance. The
rest of the steps are the same as the unsupervised LLE.

5.2.1. Repulsion approaches. In the semi-supervised or the supervised learning, how
we use the class label can affect the performance, commonly, the similarity matrix, tells us only
if two points are of the same class or not, without incorporating any additional information on
data locality, e.g., the closeness of points of different classes.., thus the repulsion technique is
used to take into account the class label information, by repulsing the points of different classes,
and attracting the points of the same class. It extends the traditional graph-based methods
by incorporating repulsion or discrimination elements into the graph Laplacian, learning to
more distinct separation of different classes in the reduced-dimensional space by integrating the
class label information directly into the graph structure. The concept of repulsion has been
used in DR with different formulations [32] [7] before using the k-nn graph to derive it. [16] a
generic proposed a method that applies attraction to all points of the same class with the use of
repulsion between nearby points of different classes, which was found to be significantly better
than the previous approaches. Thus, we will use the same approach and generalize it to the
Einstein-product.

The repulsion graph G = {V() €M} is derived from k-nn Graph G = {V, £} based on the
class label information, the weight of the edges can be computed in the simplest form as

{ 1 if (xi,x5) €&, i # j, (i) # ()

(r) _
Wi = 0 otherwise.

ij
Hence, in the case of fully connected graph, the repulsion weight would be of the form
W) = 1, — diag(1,,)-

Other weights value can be proposed.
The new repulsion algorithms are similar to the previous ones, with the new weight matrix

W, =W + W) with 3 is a parameter.
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6. Experiments. To show the effectiveness of the proposed methods, we will use datasets
that are commonly used in the literature. The experiments will be conducted on the GTDB
dataset for the facial recognition, and the MNIST dataset for the digit recognition. We note
that these datasets give the raw images instead of features. The results will be compared to the
state of art methods, by using the projected data in a classifier. The baseline is also used for
comparison, which is utilizing the raw data as the input of the classifier, and the recognition rate
will be used as the evaluation metric for all methods. Images were chosen because the proposed
methods are designed to work on multi-linear data, and the image is a typical example of such
data. The proposed methods that use the multi-weight will be denoted by adding ”—MW?” to
the name of the method. It is intuitive to use multi-weight for images since the third mode
represent the RGB while the first two modes represent the location of the pixel.

The evaluation metric Recognition rate (IR) is used to evaluate the performance of the proposed
method. It is defined as the number of correct classification over the total number of testing
data. A correct classification is done by computing the minimum distance between the projected
data training and the projected testing data. The IR is computed on the testing data.

For simplicity, we used the supervised version of methods, with Gaussian weights, and the
recommended parameter in [I6] (half the median of data) for the Gaussian parameter.

IR = 100 x Number of recognized images in a data

Number of images in the data

All computations are carried out on a laptop computer with 2.1 GHz Intel Core 7 processors
8-th Gen and 8 GB of memory using MATLAB 2021a.

6.1. Digit recognition. The Dataset that will be used in the experiments is the MNIST
dataset E It contains 60,000 training images and 10,000 testing images of labeled handwritten
digits. The images are of size 28 x 28, and are normalized gray images. The evaluation metric
is the same as the facial recognition. We will work with smaller subset of the data to speed up
the computation. e.g., 1000 training images and 200 testing images taking randomly from the
data. Observe that the multi-weight methods are not used in this data since it is gray data,
thus, we don’t have multiple weights.

Table shows the performance of different approaches compared to the state-of-art based on
different subspace dimensions.

- | OLPP OLPP-E ONPP ONPP-E PCA PCA-E Baseline
5 | 50,50 50,50 56,00 56,00 63,00 63,00 8,50
10 | 75,50 75,50 81,50 81,50 82,50 82,50 8,50
15 | 81,00 81,00 80,50 80,50 84,50 84,50 8,50
20 | 85,00 85,00 83,50 83,50 88,00 88,00 8,50
25 | 86,00 86,00 87,50 87,50 88,00 88,00 8,50
30 | 85,50 85,50 87,50 87,50 89,00 89,00 8,50
35 | 88,00 88,00 89,50 89,50 87,00 87,00 8,50
40 | 88,00 88,00 89,00 89,00 87,50 87,50 8,50

Table 6.1: Performance of methods per different subspace dimension.

Thttps://lucidar.me/en/matlab/load-mnist-database-of-handwritten-digits-in-matlab/
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The results are similar in the MNIST dataset between the method with its Multi dimensional
counterpart, we claim that it is due to the fact that the vectorization of 2 dimension to 1 does
not affect much the accuracy, which leads to similar results using the proposed parameters.

Note that the objective is to compare a method with its proposed multi dimension counterpart
via Einstein product to see if the generalization works.

6.2. Facial recognition. The dataset that will be used in the experiments is the Georgia
Tech database GTDB crop EI It contains 750 color JPEG images of 50 person, with each
one represented by exactly 15 images that show different facial expression, scale and lighting
conditions. Figure [6.1] shows an example of 12 arbitrary images from the possible 15 of an
arbitrary person in the data set.

Our data in this case is a tensor of size height x width x 3 x 750 when dealing with RGB, and
height x width x 750 when dealing with gray images. The height and width of the images are
fixed to 60 x 60. The data is normalized.

Figure 6.1: Example of images of one person in the GTDB dataset.

The experiment is done using 12 images for training and 3 for testing per face. Figure [6.2]
shows these results for different subspace dimension reduction

%https://www.anefian.com/research/face_reco.htm
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Performance of different methods on GTDB data-TrainPerCLass=12.
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Figure 6.2: Performance of methods on different subspace dimension.

The results show that as the subspace dimension increases, the performance of most methods
also increases, suggesting that these methods benefit from a higher dimensional-feature space
up to a point that differ from a method to another. The generalized methods using the Ein-
stein product gives overall better result on all subspace dimension compared to its counterparts,
except for the ONPP in the small d case. The Multiple-weight methods show varying perfor-
mance. They outperform the single-weight in some cases. Future work could be considered to
enhance how the to aggregate the results of each weights in order to give a more robust results.
The objective is to compare between a method and its multi dimensional counter parts via
Einstein product, e.g., the OLPP method with the OLPP-E, and OLPP-E-MW.

The superiority of Einstein based methods can be justified by the fact that, it preserve the
multi-linear structure of the data, and the non-linear structure of the data, which is not the
case of the vectorization of the data, which is the case of the other matricized methods.

7. Conclusion. The paper advances the field of dimension reduction by introducing re-
fined graph-based methods and leveraging the Einstein product for tensor data. It extends
both the Linear and Nonlinear methods (supervised and unsupervised) to higher order tensors
as well as its variants. The methods are conducted on the GTDB and MNIST dataset, and
the results are compared to the state-of-art-methods showing the competitive results. A future
work could be conducted on generalization on trace ratio methods as Linear Discriminant Anal-
ysis. An acceleration of the computation can also be proposed using the Tensor Golub Kahan
decomposition to get an approximation of these eigen-tensors in constructing the projected
space.
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