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Abstract. This paper explores the extension of dimension reduction (DR) techniques to the multi-dimension
case by using the Einstein product. Our focus lies on graph-based methods, encompassing both linear and
nonlinear approaches, within both supervised and unsupervised learning paradigms. Additionally, we investigate
variants such as repulsion graphs and kernel methods for linear approaches. Furthermore, we present two
generalizations for each method, based on single or multiple weights. We demonstrate the straightforward
nature of these generalizations and provide theoretical insights. Numerical experiments are conducted, and
results are compared with original methods, highlighting the efficiency of our proposed methods, particularly in
handling high-dimensional data such as color images.
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1. Introduction. In today’s data-driven world, where amounts of information are col-
lected and analyzed, the ability to simplify and interpret data has never been more critical.
The task is particularly evident in the field of data science and machine learning [29], where
the curse of dimensionality is a major obstacle. Dimension reduction techniques aim to address
this issue by projecting high-dimensional data onto a lower-dimensional space while preserving
the underlying structure of the data. These methods have been proven to be quite efficient in
revealing hidden structures and patterns.

The landscape of DR is quite rich, with a wide range of methods, from linear to non-linear
[18], supervised to unsupervised, and versions of these methods that incorporate repulsion-
based principles, or kernels. We find as an example, Principal Component Analysis (PCA)[9],
Locality Preserving Projections (LPP)[12], Orthogonal Neighborhood Preserving Projections
(ONPP)[14, 15], Neighborhood Preserving Projections (NPP)[14], Laplacian Eigenmap (LE)[4],
Locally Linear Embedding (LLE)[23]... Each of these techniques has been subject to extensive
research and applications, offering insights into data structures that are often hidden in high-
dimensional spaces, these methods can also be seen as an optimization problem of trace, with
some constraints[24].

Current approaches often require transforming the multi-dimensional data, such as images
[13, 3, 26, 19, 30], into a matrix, into flattened (vectorized) forms before analysis. This process,
while it’s fast, however, can be problematic, as it may lead to loss of inherent structure and
relational information within the data.

This paper proposes a novel approach to generalize dimensional reduction techniques, em-
ploying the Einstein product, a tool in tensor algebra, which is the natural extension of the
usual matrix product. By reformulating the operations of both linear and non-linear methods
in the context of tensor operations, the generalization maintains the multi-dimensional integrity
of complex datasets. This approach circumvents the need for vectorization, preserving the rich
intrinsic structure of the data.
Our contribution lies in not only proposing a generalized framework for dimensional reduction,
but also in demonstrating its effectiveness through empirical studies. We show that the pro-
posed methods, outperform or at least are the same as their matrix-based counterparts, while
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preserving the integrity of the data.

This paper is organized as follows. Firstly, we will talk in Section 2 about the methods
in the matrix case, then, in Section 3, we will introduce the mathematical background of
tensors, and the Einstein product. Next, in Section 4, we will introduce the different methods,
and the generalization of these methods using the Einstein product. Following that, Section
5 is dedicated to presenting variants of these techniques. Subsequently, we will present the
numerical experiments and the results in Section 6. Lastly, we offer some concluding remarks
and suggestion of future work in 7.

2. Dimension reduction methods in matrix case. Given a set of n data points
x1, . . . ,xn P Rm and a set of n corresponding points y1, . . . ,yn P Rd, denote the data ma-
trix X “ rx1, ¨ ¨ ¨ ,xns P Rmˆn and the low-dimensional matrix Y “ ry1, ¨ ¨ ¨ ,yns P Rdˆn. The
objective is to find a mapping Φ : Rm ÝÑ Rd, ϕ pxiq “ yi, i “ 1, ¨ ¨ ¨ , n. The mapping is
either non-linear Y “ ΦpXq, or linear Y “ V TX, in the latter case, it reduces to find the
projection matrix V P Rmˆd.

We denote the similarity matrix of a graph by W P Rnˆn, the degree matrix by D, and the
Laplacian matrix by L “ D ´ W . For the sake of simplifications, we will define some new
matrices

Ln “ D´1{2LD´1{2 , Ŵ “ D´1{2WD´1{2 , M “ pIn ´ WT qpIn ´ W q ,

X̂ “ XD1{2 , Ŷ “ Y D1{2 , H “ In ´
1

n
11T ,

where H is the centering matrix, and 1 “ p1, . . . , 1q
T

P Rn.
The usual loss functions used are defined as follows

ϕ1pY q :“
1

2

n
ÿ

i,j“1

Wij }yi ´ yj}
2
2 “ Tr

“

Y LY H
‰

, (2.1)

ϕ2pY q :“
ÿ

i

›

›

›

›

›

yi ´
ÿ

j

Wijyj

›

›

›

›

›

2

2

“ Tr
“

YMY H
‰

, (2.2)

Φ3pY q :“
ÿ

i

›

›

›

›

›

yi ´
1

n

ÿ

j

yj

›

›

›

›

›

2

2

“ Tr

„

Y pI ´
1

n
11T qY H

ȷ

. (2.3)

Equations (2.1), and (2.3) preserve the locality, i.e., the point and its representation stay close,
while Equation (2.2) preserves the local geometry, i.e., the representation point can be written
as a linear combination of its neighbours.

For simplicity, we will refer to the d eigenvectors of a matrix corresponding to the largest and
smallest eigenvalues, respectively, as the largest and smallest d eigenvectors of a matrix. The
same terminology applies to the left or right singular vectors. Table 2.1 summarizes the various
dimension reduction methods, their corresponding optimization problems and the solutions.
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Method Loss
function

Constraint Solution

Linear methods
Principal component

analysis[9].
Maximize

Equation 2.3.
V V T “ I Largest d left singular vectors

of XH.
Locality Preserving
Projections. [12]

Minimize
Equation 2.1

Y DY T “ I Solution of
X̂pIn ´Ŵ qX̂Tui “ λiX̂X̂Tui.

Orthogonal Locality
Preserving

Projections.[14, 15]

Minimize
Equation 2.1

V V T “ I Smallest d eigenvectors of
XLXT .

Orthogonal
Neighborhood Preserving

Projections.[14, 15]

Minimize
Equation 2.2

V V T “ I Smallest d eigenvectors of
XMXT .

Neighborhood Preserving
Projections.[14]

Minimize
Equation 2.2

Y Y T “ I Sol of XMXTui “ λiXXTui

Non-Linear methods
Locally Linear
Embedding.[23]

Minimize
Equation 2.2

Y Y T “ I Smallest d Eigenvectors of M .

Laplacian Eigenmap.[4] Minimize
Equation 2.1

Y DY T “ I Solution of Lui “ λiDui.

Table 2.1: Objective functions and constraints employed in various dimension reduction meth-
ods along with corresponding solutions.

Notice that the smallest eigenvalue is disregarded in the solutions, thus, the second to the d`1
eigenvectors are taken. The graph based methods are quite similar, each one tries to give an
accurate representation of the data while preserving a desired property. The solution of the
optimization problem is given by the eigenvectors, or the singular vectors.

Next, we will introduce notations related to the tensor theory (Einstein product) as well as
some properties that guarantee the proposed generalization.

3. The Einstein product and its properties. Let I “ tI1, . . . , INu and J “ tJ1, . . . , JMu

be two multi-indices, and i “ ti1, . . . , iNu and j “ tj1, . . . , jMu be two indices. The index

mapping function ivecpi, Iq “ i1 `
řN

k“2 pik ´ 1q
śk´1

l“1 Il that maps the multi-index i to the
corresponding index in the vectorized form of a tensor of size I1 ˆ . . . ˆ IN . The unfolding,
also known also as flattening or matricizaion, is a function Ψ : RI1ˆI2ˆ¨¨¨ˆINˆJ1ˆJ2ˆ¨¨¨ˆJM ÝÑ

R|I|ˆ|J|, A ÞÑ A with Aij “ Ai1i2...iN j1j2...jM , that maps a tensor into a matrix, with the sub-
scripts i “ ivecpi, Iq, and j “ ivecpj,Jq. The mapping Ψ is a linear isomorphism, and its inverse
is denoted by Ψ´1. It would generalize some concepts of the matrix theory more easily.

The frontal slice of the N-order tensor A P RI1ˆ...ˆIN , denoted by Apiq is the tensor A:,...,:i

(the last mode is fixed to i). A tensor A P RI1ˆ...ˆINˆJ1ˆ...ˆJM is called even if N “ M and
square if Ii “ Ji for all i “ 1, . . . , N [21].

Definition 3.1 (m-mode product). [17]Let X P RI1ˆ...ˆIM , and U P RJˆIm , the m-mode
(matrix) product of X and U is a tensor of size I1 ˆ . . . Im´1 ˆJ ˆIm`1 . . .ˆIM , with element-
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wise

pX ˆm Uqi1...im´1jim`1...iM “

Im
ÿ

im“1

UjimXi1...iM . (3.1)

Definition 3.2 (Einstein product). [6]Let X P RI1ˆ...ˆIMˆK1ˆ...ˆKN and
Y P RK1ˆ...ˆKNˆJ1ˆ...ˆJM , the Einstein product of the tensors X and Y is the tensor of size
RI1ˆ...ˆIMˆJ1ˆ...ˆJM whose elements are defined by

pX ˚N Yqi1...iM j1...jM
“

ÿ

k1...kN

Xi1...iMk1...kN
Yk1...kN j1...jM . (3.2)

Next, we have some definitions related to the Einstein product.
Definition 3.3.

‚ Let A P RI1ˆ...ˆINˆJ1ˆ...ˆJM , then the transpose tensor [21] of A denoted by AT is the
tensor of size J1 ˆ . . .ˆJM ˆ I1 ˆ . . .ˆ IN whose entries defined by pAT qj1...jM i1...iN “

Ai1...iN j1...jM .
‚ A is a diagonal tensor if all of its entries are zero except for those on its diagonal,
denoted as pAqi1...iN i1...iN , for all 1 ď ir ď minpIr, Jrq, 1 ď r ď N .

‚ The identity tensor denoted by IN P RI1ˆ...ˆINˆI1ˆ...ˆIN is a diagonal tensor with only
ones on its diagonal.

‚ A square tensor A P RI1ˆ...ˆINˆI1ˆ...ˆIN is called symmetric if AT “ A.

Remark 1. In case of no confusion, The identity tensor will be denoted simply I.

Definition 3.4. The inner product of tensors X ,Y P RI1ˆ...ˆIN is defined by

xX ,Yy “
ÿ

i1,...,iN

Xi1i2...iNXi1i2...iN . (3.3)

The inner product induces The Frobenius norm as follows

}X }F “
a

xX ,X y. (3.4)

Definition 3.5. A square 2N-order tensor A in invertible (non-singular) if there is a tensor
denoted by A´1 of same size such that A˚N A´1 “ A´1 ˚N A “ IN . It is unitary if AT ˚N A “

A ˚N AT “ IN . It is positive semi-definite if xX ,A ˚N X y ě 0 for all non-zero X P RI1ˆ...ˆIN .
It is positive definite if the inequality is strict.

An important relationship that is easy to prove is the stability of the Frobenius norm under
the Einstein product with a unitary tensor.

Proposition 3.6. Let X P RI1ˆ...ˆIMˆJ1ˆ...ˆJN and U P RI1ˆ...ˆIMˆI1ˆ...ˆIM be a unitary
tensor, then

}U ˚M X }F “ }X }F . (3.5)

The proof is straightforward using the inner product definition.
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Proposition 3.7. [27] For even order tensors X ,Y P RI1ˆ...ˆINˆJ1ˆ...ˆJM , we have

xX ,Yy “ Tr
`

X T ˚N Y
˘

“ TrpY ˚M X T q.
(3.6)

Proposition 3.8. [20] Given tensors X P RI1ˆ...ˆINˆK1ˆ...ˆKN , Y P RK1ˆ...ˆKNˆJ1ˆ...ˆJM ,
we have

pX ˚N Yq
T

“ YT ˚N X T . (3.7)

The isomorphism ϕ has some properties that would be useful in the following.

Proposition 3.9. [27] Given the tensors X and Y of appropriate size then, we have ϕ is a
multiplicative morphism with respect the Einstein product, i.e., ΨpX ˚N Yq “ ΨpX qΨpYq.

It allows us to prove the Einstein Tensor Spectral Theorem.

Theorem 3.10 (Einstein Tensor Spectral Theorem). A symmetric tensor is diagonalizable
via the Einstein product.

Proof. The proof is using the isomorphism and its properties 3.9.

Let X be a symmetric tensor of size RI1ˆ...ˆINˆI1ˆ...ˆIN , then ΨpX q is symmetric, and by the
spectral theorem, there exists an orthogonal matrix U such that UTΨpX qU “ Λ, where Λ is a
diagonal matrix.
Then, ΨpX q “ UΛUT , and X “ ϕ´1pUΛUT q “ Ψ´1pUq ˚N Ψ´1pΛq ˚N Ψ´1pUT q “ Ψ´1pUq ˚N

Ψ´1pΛq ˚N Ψ´1pUqT , with Ψ´1pUq is a unitary, and Ψ´1pΛq is diagonal tensor.

The cyclic property of the trace with Einstein product is also verified, which would be needed
in the sequel.

Proposition 3.11 (Cyclic property of the trace). Given tensors X P RI1ˆ...ˆIMˆK1ˆ...ˆKN ,
Y P RK1ˆ...ˆKNˆI1ˆ...ˆIM ,Z P RK1ˆ...ˆKNˆK1ˆ...ˆKN , we have

Tr pX ˚N Z ˚N Yq “ Tr pY ˚M X ˚N Zq . (3.8)

Theorem 3.12. [20] Let X P RI1ˆ...ˆIMˆK1ˆ...ˆKN , the Einstein singular value decomposi-
tion (E-SVD) of X is defined by

X “ U ˚M S ˚N VT , (3.9)

where U P RI1ˆ...ˆIMˆI1ˆ...ˆIM ,S P RI1ˆ...ˆIMˆK1ˆ...ˆKN ,V P RK1ˆ...ˆKNˆK1ˆ...ˆKN with the
following properties
U and V are unitary, where U:...:i1...iM ,V:...:j1...jN are the left and right singular tensors of X ,
respectively. If N ă M , then

Si1...iMk1...kN
“

#

dk1...kN
if pi1, . . . , iN q “ pk1, . . . , kN q and piN`1, . . . , iM q “ p1, . . . , 1q

0 otherwise.
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.

If N “ M , then Si1...iMk1...kN
“

#

dk1...kN
if pi1, . . . , iM q “ pk1, . . . , kM q

0 otherwise.

The numbers dk1...kN
are the singular values of X with the decreasing order

d1,...,1 ě d2,1,...,1 ě . . . ě dK̂1,1,...,1
ě d1,2,...,1 ě . . . ě d1,K̂2,...,1

ě . . . ě dK̂1,...,K̂P
ě 0,

with P “ minpN,Lq, K̂r “ minpIr,Krq, r “ 1, . . . , P .

We define the eigenvalues and eigen-tensors of a tensor with the following.

Definition 3.13. [28] Let a square 2-N order tensors A,B P RI1ˆ...ˆINˆI1ˆ...ˆIN , then
‚ Tensor Eigenvalue problem: If there is a non null X P RI1ˆ...ˆIN , and λ P R such
that A ˚N X “ λX , then X is called an eigen-tensor of A, and λ is the corresponding
eigenvalue.

‚ Tensor generalized Eigenvalue problem: If there is a non null X P RI1ˆ...ˆIN ,
and λ P R such that A ˚N X “ λB ˚N X , then X is called an eigen-tensor of the pair
tA,Bu, and λ is the corresponding eigenvalue.

Remark 2. If N “ 1, the two definitions above coincide with the eigenvalue and generalized
eigenvalue problems, respectively.

We can also show a relationship between the singular values and the eigenvalues of a tensor.

Proposition 3.14. Let the E-SVD of X P RI1ˆ...ˆIMˆK1ˆ...ˆKN , defined as X “ U ˚M S ˚N

VT , then
‚ The eigenvalues of X ˚N X T and X T ˆM X are the squared singular values of X .
‚ The eigen-tensors of X ˚N X T are the left singular tensors of X .
‚ The eigen-tensors of X T ˚M X are the right singular tensors of X .

The proof is straightforward.
To simplify matters, we’ll denote the d eigen-tensors of a tensor, associated with the smallest

eigenvalues, as the smallest d eigen-tensors. Similarly, we will apply the same principle to the
largest d eigen-tensors. This terminology also extends to the left or right singular tensors.
Remark 3. To generalize the notion of left and right inverse for a non-square tensors. It

is called left or right Ψ-invertible if ΨpAq is left or right invertible, respectively. In case of
confusion, we will denote Ψ by Ψj to represent the transformation of tensor A P RI1ˆ...ˆIN to

a matrix Rp
śj

k“1 Ikqˆpp
śN

k“j`1 Ikq.

Proposition 3.15.
1. A square 2-N order symmetric X is positive semi-definite tensor, definite tensor, re-

spectively, if and only if there is a tensor, an invertible tensor, respectively, B of same
size such that X “ B ˚N BT .

2. Let a tensor X P RI1ˆ...ˆIN of order N, with its transpose in RIN´j`1ˆ...ˆINˆI1ˆ...IN´j

then X ˚j X T is semi-definite positive for any 1 ď j ď N .
Let a tensor X P RI1ˆ...ˆIN of order N, let 1 ď j ď N such that the tensor is Ψj´

invertible, with its transpose in RIN´j`1ˆ...ˆINˆI1ˆ...IN´j , then X ˚j X T is definite
positive.

3. The eigenvalues of a square symmetric tensor are real.
4. Let a symmetric matrix M P RKˆK and X P RI1ˆ...ˆINˆK , with its transpose in

RKˆI1ˆ...ˆIN then X ˆN`1 M ˚1 X T is a symmetric.

6



5. If M is positive semi-definite, then X ˆN`1 M ˚1 X T is positive semi-definite.
6. If M is positive definite, and X is Ψ´invertible, then X ˆN`1 M ˚1 X T is positive

definite.

Proof. The proof of the first one is straightforward using 3.9.
Let Y P RI1ˆ...IN´j , then YT ˚N´j X ˚j X T ˚N´j Y “ }X T ˚N´j Y}2F ě 0.
The proof of the third is similar to the second one.
Let A P RI1ˆ...ˆINˆI1ˆ...ˆIN be a symmetric tensor and non-zero tensor X P RI1ˆ...ˆIN with
A ˚N X “ λX , then λTX T “ pλX qT “ pA ˚N X qT “ X T ˚N AT “ X T ˚N A “ λTX T , then
λ “ λT , which completes the proof.

We have
`

X ˆN`1 M ˚1 X T
˘T

“ pM ˆ1 X T qT ˚1 X T “ pX ˆN`1 M
T q ˚1 X T , then conclude by

the symmetry of M .
Let M be a positive semi-definite matrix, then there exist a matrix B such that M “ BBT ,
then

X ˆN`1 M ˚1 X T “ X ˆN`1 BBT ˚1 X T “ X̂ ˚1 X̂ T ,

with X̂ “ X ˆN`1 B, then the result follows.
The last has a similar proof; Using the fact that M is positive definite, then B is invertible,
and X is invertible, then X̂ is Ψ´invertible, and the result follows.
We also have a property that relates the tensor generalized eigenvalue problem with the tensor

eigenvalue problem.

Proposition 3.16. Let the generalized eigenvalue problem A ˚N X “ λM ˚N X , with A,M
are a square 2-N order tensor, with M being invertible, then X̂ “ M ˚N X is a solution of the
tensor eigen-problem Â ˚N X̂ “ λX̂ with Â “ A ˚N M´1.

Theorem 3.17. Let a symmetric X P RI1ˆ...ˆIMˆI1ˆ...ˆIM , and B a positive definite tensor
of same size, then

min
PPRI1ˆ...ˆIM ˆd

PT
˚MB˚MP“I

TrpPT ˚M X ˚M Pq,

is equivalent to solve the generalized eigenvalue problem X ˚M P “ λB ˚M P.
Proof. Since Ψ is an isomorphism, the problem is equivalent to minimize TrpPXPT q with

PTBP “ I, ΨpPq “ P,ΨpX q “ X,ΨpBq “ B. We have X symmetric and B is definite positive.
The solution of the equivalent problem is the d smallest eigenvalues of X, using the fact Ψ´1

is an isomorphism, we obtain the result.
A second proof without using the isomorphism property is the following.
Let the Lagrangian of the problem be

LpP,Λq :“ TrpPT ˚M X ˚M Pq ´ TrpΛT ˚M pPT ˚M B ˚M P ´ Iqq,

with Λ P Rdˆd the Lagrange multiplier. Using KKT conditions, we have

BL
BP

“ 2X ˚M P ` 2Λ ˚M P “ 0

ùñ PT ˚M B ˚M P ´ I “ 0.

To compute the partial derivative with respect to P, we introduce the functions f1pPq and
f2pPq, defined as follows

f1pPq “ TrpPT ˚M X ˚M Pq,

7



f2pPq “ Tr
`

ΛT ˚M pPT ˚M B ˚M P ´ Iq
˘

.

Subsequently, we aim to determine the partial derivative.

f1pP ` εHq “ Tr
``

P ` εHqT ˚M X ˚M pP ` εH
˘˘

“ Tr
`

PT ˚M X ˚M P ` εHT ˚M X ˚M P ` εPT ˚M X ˚M H
˘

` Trpε2HT ˚M X ˚M Hq

“ TrpPT ˚M X ˚M Pq ` εTrpHT ˚M X ˚M Pq

` εTrpPT ˚M X ˚M Hq ` ε2 TrpHT ˚M X ˚M Hq

“ f1pPq ` ε
“

TrpHT ˚M X ˚M Pq ` TrpPT ˚M X ˚M Hq
‰

` opεq

“ f1pPq ` εTr
`

HT ˚M pX ` X T q ˚M P
˘

` opεq.

Then, as X is symmetric, the partial derivative in the direction H is

Bf1
BP

pHq “ lim
εÑ0

f1pP ` εHq ´ f1pPq

ε

“ 2TrpHT ˚M X ˚M Pq.

It gives us the partial derivative of f1 with respect to P as

Bf1
BP

“ 2X ˚M P.

For the second function, we have

f2pP ` εHq “ Tr
`

ΛT ˚M
`

pP ` εHqT ˚M B ˚M pP ` εHq ´ I
˘˘

“ Tr
`

ΛT ˚M pPT ˚M B ˚M P ´ Iqq ` `ε2 TrpΛT ˚M pHT ˚M B ˚M Hq
˘

`εTr
`

ΛT ˚M pHT ˚M B ˚M P ` PT ˚M B ˚M Hq
˘

“ f2pPq ` εTr
`

ΛT ˚M pHT ˚M B ˚M P ` PT ˚M B ˚M Hq
˘

` Opεq

“ f2pPq ` εTr
`

HT ˚M
“

B ˚M P ˚M ΛT ` BT ˚M P ˚M Λ
‰˘

` Opεq.

We used the cyclic property 3.11 and the transpose with trace property 3.6 in the last equality.
Then, as B is symmetric, the partial derivative in the direction H is

Bf2
BP

pHq “ lim
εÑ0

f2pP ` εHq ´ f2pPq

ε

“ Tr
`

HT ˚M B ˚M P ˚M pΛ ` ΛT q
˘

.

This yields the partial derivative of L with respect to P as follows

Bf2
BP

“ B ˚M P ˚M pΛ ` ΛT q.

8



Subsequently,

BL
BP

“ 0 ðñ 2X ˚M P ´ Λ ˚M P ´ ΛT ˚M P “ 0

ðñ X ˚M P “ B ˚M P ˚M pΛ ` ΛT q

ðñ X ˚M P “ B ˚M P ˚M Λ̂

ðñ X ˚M P “ B ˚M P ˚M QT ˚M D ˚M Q
ðñ X ˚M P ˚M QT “ B ˚M P ˚M QT ˚M D

ðñ X ˚M P̂ “ B ˚M P̂ ˚M D.

The third line utilizes the property that Λ̂ “ Λ ` ΛT , which is symmetric, thus diagonalizable
(3.10), i.e., Λ̂ “ QT ˚M D ˚M Q. The last two lines are justified by the fact that P̂ “ P ˚M Q
also satisfies P̂T ˚M B ˚M P̂ “ I, concluding the proof.

A corollary of this theorem can be deduced.

Corollary 3.18. Let X P RI1ˆ...ˆIMˆK1ˆ...ˆKN , the solution of

arg min
PPRI1ˆ...ˆIM ˆd

PT
˚MP“I

}PT ˚M X }2F .

is the d smallest left singular tensors of X .
Proof. We have }PT ˚M X }2F “ Tr

`

PT ˚M X ˚N X T ˚M P
˘

. Theorem 3.17 tells that the
solution is equivalent to solve X ˚N X T ˚M P “ λP, i.e, the d smallest tensors of X ˚N X T ,
which corresponds exactly to the d smallest left singular tensors of X .

4. Multidimensional reduction. In this section, we present a generalized approach to
DR methods using the Einstein product.
Given a tensor X P RI1ˆ...ˆIMˆn, our objective is to derive a low-dimensional representation

Y P Rdˆn of X . This involves defining a mapping function Ψ : RI1ˆ...ˆIM ÝÑ Rd.
First, we discuss the determination of the weight matrix, which can be computed in various

ways, one common method is using the Gaussian kernel

Wi,j “ exp

˜

´

›

›X piq ´ X pjq
›

›

2

F

σ2

¸

.

Additionally, introducing a threshold can yield a sparse matrix (Gaussian-threshold). We also
explore another method later in this section, which utilizes the reconstruction error.
Next, we introduce our proposed methods.

Linear methods: The linear methods can be written as Y “ PT ˚M X . It is sufficient to
find the projection matrix P P RI1ˆ...ˆIMˆd.
Higher order PCA based on Einstein [11] is the natural extension of PCA to higher order
tensors. It extends the PCA applied to images, using the notion of eigenfaces to colored images
that are modeled by a fourth-order tensor, using the Einstein product. It vectorizes pixels
(height and width) for each color (RGB) to get a third-order tensor, then it computes E-SVD
of this tensor centered, to get the eigenfaces.
The vectorization is not natural, since we omit the spatial information. The proposed work
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hides the vectorization in the first step by using the tensor directly, and seeks to find a solution
of the following problem

arg max
PPRI1ˆ...ˆIM ˆd

PT
˚MP“I

Y“PT
˚MX

ΦPCApYq :“
ÿ

i

›

›

›

›

›

Ypiq ´
1

n

ÿ

j

Ypjq

›

›

›

›

›

2

F

.
(4.1)

The objective function can be written as

ΦPCApYq “
ÿ

i

›

›

›

›

›

PT ˚M pX piq ´
1

n

ÿ

j

X pjqq

›

›

›

›

›

2

F

“
ÿ

i

›

›

›
PT ˚M pX piq ´ Qpiqq

›

›

›

2

F

“
›

›PT ˚M pX ´ Qq
›

›

2

F
,

with Q P RI1ˆ...ˆIMˆn, where Qpiq “ 1
n

ř

j X pjq represents the mean, the solution of (4.1) is
the largest d left singular tensors of the centered tensor X ´ Q “ X ˆM`1 H.

Since the feature dimension is typically larger than the number of data points n, computing the
E-SVD of X ˆM`1 H can be computationally expensive. It’s preferable to have a runtime that
depends on n instead. To achieve this, we transform the equation X ˆM`1H ˚1X T ˚M P “ λP
to pX T ˚M X ˆM Hq ˚1 z “ λz, with z “ X T ˚M P. This allows us to find the eigenvectors
of a square matrix of size n. The projected data Y would be these vectors reshaped to the
appropriate size.
The algorithm bellow, shows the steps of PCA via Einstein product.

Algorithm 1 PCA-Einstein

Input: X (Data) d(dimension output).
Output: P (Projection space).

1: Compute Q. Ź The mean tensor
2: Compute the largest d eigen-tensors of Z “ X ´ Q.
3: Combine these tensors to get P.

4.1. Generalization of ONPP. Given a weight matrixW P Rnˆn, the objective function
is to resolve

arg min
PPRI1ˆ...ˆIM ˆd

PT
˚MP“I

Y“PT
˚MX

ΦONPP pYq :“
ÿ

i

›

›

›

›

›

Ypiq ´
ÿ

j

wi,jYpjq

›

›

›

›

›

2

F

.
(4.2)
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The objective function can be written as

ΦONPP pYq “
ÿ

i

›

›

›

›

›

ÿ

j

δi,jYpjq ´
ÿ

j

wi,jYpjq

›

›

›

›

›

2

F

“
ÿ

i

›

›

›

›

›

ÿ

j

pδi,j ´ wi,jqYpjq

›

›

›

›

›

2

F

“
ÿ

i

›

›

›

›

›

ÿ

j

pIn ´ W qi,jYpjq

›

›

›

›

›

2

F

“
ÿ

i

›

›

›
pY ˆM`1 pIn ´ W qq

piq
›

›

›

2

F

“ }Y ˆM`1 pIn ´ W q}
2
F

“
›

›pPT ˚M X q ˆM`1 pIn ´ W q
›

›

2

F

“
›

›PT ˚M pX ˆM`1 pIn ´ W qq
›

›

2

F
.

Using corollary 3.18, the solution of 4.2 is the smallest d left singular tensors of XˆM`1pIn´W q.
The algorithm bellow, shows the steps of ONPP via Einstein product.

Algorithm 2 ONPP-Einstein

Input: X (Data) d (subspace dimension).
Output: P (Projection space).

1: Compute W . Ź Using the appropriate method
2: Compute the smallest d left singular tensors of Z “ X ˆM`1 pI ´ W q.
3: Combine these tensors to get P.

4.1.1. Multi-weight ONPP. In this section, we propose a generalization of ONPP, where
multiple weights matrices are employed on the IM mode. We denote by W P RnˆnˆIM the

weight tensor. Let Ypiq
r denotes the tensor Y, by fixing its last two indices to pr, iq, i.e., Y:,...,r,i,

similarly X piq
r denotes X:,...,r,i. We assume that the r-th frontal slice of the weight tensor is

constructed only from the r-th frontal slice of the data tensor.
The objective function is

arg min
PPRI1ˆ...ˆIM ˆd

PT
˚MP“I

Y“PT
˚MX

ΦONPPMW
pYq :“

ÿ

i,r

›

›

›

›

›

Ypiq
r ´

ÿ

j

Wprq

i,j Y
pjq
r

›

›

›

›

›

2

F

.
(4.3)

For each i, utilizing the independence of the frontal slices Ypiq
r , we can divide the objective

function into IM independent objective functions. The solution is obtained by concatenating
the solutions of each objective function. The r-th objective function can be written as

arg min
P:,...,r,:PRI1ˆ...ˆIM ˆd

PT
:,...,r,:˚MP:,...,r,:“I

Y:,...,r,:“P:,...,r,:T ˚MX :,...,r,:

ÿ

i

›

›

›

›

›

Ypiq
r ´

ÿ

j

Wprq

i,j Y
pjq
r

›

›

›

›

›

2

F

.
(4.4)
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The solution of this objective function is the smallest d left singular tensors of
X:,...,r,: ˆM`1 pIn ´ Wprqq. The solution of the original problem is obtained by concatenating
the solutions of each objective function.

4.2. Generalization of OLPP. Given a weight matrix W P Rnˆn, the optimization
problem to solve is

arg min
PPRI1ˆ...ˆIM ˆd

PT
˚MP“I

ΦOLPP pYq :“
1

2

ÿ

i,j

wi,j

›

›

›
Ypiq ´ Ypjq

›

›

›

2

F
. (4.5)

The objective function can be written as

ΦOLPP pYq “
1

2

ÿ

i,j

wi,j

›

›

›
Ypiq

›

›

›

2

F
` wi,j

›

›

›
Ypjq

›

›

›

2

F
´ xYpiq,Ypjqy

“
1

2

ÿ

i

di

›

›

›
Ypiq

›

›

›

2

F
`

1

2

ÿ

j

dj

›

›

›
Ypjq

›

›

›

2

F
´

ÿ

i,j

wi,jxYpiq,Ypjqy

“
ÿ

i,j

di

›

›

›
Ypiq

›

›

›

2

F
´

ÿ

i,j

wi,jxYpiq,Ypjqy

“
ÿ

i,j

di,jxYpiq,Ypjqy ´
ÿ

i,j

wi,jxYpiq,Ypjqy

“
ÿ

i,j

Li,jxYpiq,Ypjqy

“ xY ˚M`1 L,Yy

“ Tr
`

PT ˚M pX ˆM`1 L ˚1 X T q ˚M P
˘

,

where L is the Laplacian matrix corresponding to W .
The solution using Theorem 3.18, is the smallest d eigen-tensors of the symmetric tensor (Prop.
3.15) X ˆM`1 L ˚1 X T .
The algorithm bellow, shows the steps of OLPP via Einstein product.

Algorithm 3 OLPP-Einstein

Input: X (Data) d (subspace dimension).
Output: P (Projection space).

1: Compute L. Ź Using the appropriate method
2: Compute the smallest d eigen-tensors of X ˆM`1 L ˚1 X T .
3: Combine these tensors to get P.

4.2.1. Multi-weight OLPP. In this section, we propose a generalization of OLPP, where
multiple weights are utilized on the IM mode. The objective function is to solve

arg min
PPRI1ˆ...ˆIM ˆd

PT
˚MP“I

Y“PT
˚MX

ΦOLPPMW
pYq :“

1

2

ÿ

i,j,r

Wprq

i,j

›

›

›
Ypiq
r ´ Ypjq

r

›

›

›

2

F
.

(4.6)

Here, we have IM independent objective functions, and the solution is obtained by concate-
nating the solutions of each objective function.
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4.3. Generalization of LPP. LPP is akin to the Laplacian Eigenmap, serving as its
linear counterpart. The objective function of LPP solves

arg min
PPRI1ˆ...ˆIM ˆd

PT
˚MXˆM`1D˚1XT

˚MP“I

ΦLPP pYq :“
1

2

ÿ

i,j

wi,j

›

›

›
Ypiq ´ Ypjq

›

›

›

2

F
. (4.7)

The solution involves finding the smallest d eigen-tensor of the generalized eigen-problem

X ˆM`1 L ˚1 X T ˚M V “ λX ˚M`1 D ˚1 X T ˚M V. (4.8)

Using 3.15, we deduce that the tensors X ˆM`1L˚1X T ˚M , X ˆM`1D˚1X T ˚M , are symmetric
semi-definite positive. Here, we assume definiteness (although generally not true, especially if
the number of sample points is less than the product of the feature dimensions). The projection
tensor is obtained by adding these eigen-tensors and reshaping it to the desired dimension.
The algorithm bellow, shows the steps of LPP via Einstein product.

Algorithm 4 LPP-Einstein

Input: X (Data) d (subspace dimension).
Output: P (Projection space).

1: Compute L. Ź Using the appropriate method
2: Compute the smallest d eigen-tensors of X ˆM`1L˚1X T ˚M V “ λX T ˚M`1D ˚1X T ˚M V.
3: Combine these tensors to get P.

Similarly, the multi-weight LPP can be proposed.

4.4. Generalization of NPP. The generalization of NPP resembles that of ONPP, under
the constraint of LLE, it aims to find

arg min
PPRI1ˆ...ˆIM ˆd

PT
˚MX˚1XT

˚MP“I

ΦNPP pYq :“ Tr
`

PT ˚M X ˆM`1 pIn ´ W qpIn ´ W qT ˆ1 X T ˚M P
˘

.

(4.9)
The solution entails finding the smallest d eigenvectors of the generalized eigen-problem

X ˆM`1 pIn ´ W qpIn ´ W qT ˆ1 X T ˚M V “ λX ˚1 X T ˚M V.

The projection tensor is obtained by concatenating these eigenvectors into a matrix and then
reshaping it to the desired dimension.
The algorithm bellow, shows the steps of NPP via Einstein product.

Algorithm 5 NPP-Einstein

Input: X (Data) d (subspace dimension).
Output: P (Projection space).

1: Compute W . Ź Using the appropriate method
2: Compute the smallest d eigenvectors of X ˆM`1 pIn ´ W qpIn ´ W qT ˆ1 X T ˚M V “ λX ˚1

X T ˚M V.
3: Combine these tensors to get P.
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Similarly, the multi-weight NPP can be proposed, and the solution is similar.

Nonlinear methods: Nonlinear DR methods are potent tools for uncovering the nonlinear
structure within data. However, they present their own challenges, such as the absence of an
inverse mapping, which is essential for data reconstruction. Another difficulty encountered is
the out-of-sample extension, which involves extending the method to new data. While a variant
of these methods utilizing multiple weights could be proposed, it would resemble the approach
of linear methods, and thus we will not delve into them here.

4.5. Generalization of Laplacian Eigenmap. Given a weight matrix W P Rnˆn, the
objective function is to solve

arg min
YˆM`1D˚1YT “I

ΦLEpYq :“
1

2

ÿ

i,j

wi,j

›

›

›
Ypiq ´ Ypjq

›

›

›

2

F
. (4.10)

The objective function can be written as

ΦLEpYq “ Tr
`

Y ˆM`1 L ˚1 YT
˘

.

For Ŷ “ Y ˆM`1 D
1{2, the constraint becomes Ŷ ˚1 ŶT “ I, using Y “ Ŷ ˆM`1 D

´1{2, the
objective function becomes

ΦLEpŶq “ Tr
´

Ŷ ˆM`1 Ln ˚1 ŶT
¯

. (4.11)

Using the isomorphism Ψ and its properties, the problem is equivalent to Equation 2.1 under
the constraint ΨpŶq ˚1 ΨpŶqT “ I. Since the solution is the smallest d eigenvectors of Ln, the

solution of the original problem would be Y “ Ψ´1pΨpŶqq ˆM`1 D
´1{2.

The algorithm bellow, shows the steps of LE via Einstein product.

Algorithm 6 LE-Einstein

Input: X (Data) d (subspace dimension).
Output: Y (Projection data).

1: Compute Ln. Ź Using the appropriate method
2: Compute the smallest d vectors of Ln.
3: Combine these vectors and reshape them to get ΨpŶq.

4: Compute Y “ Ψ´1pΨpŶqq ˆM`1 D
´1{2.

4.5.1. Projection on out of Sample Data. The out of sample extension is the problem
of extending the method to new data. Many approaches were proposed to solve this problem,
such as the Nyström method, kernel mapping, eigenfunctions [5] [5, 25], etc. We will propose a
method that is based on the eigenfunctions.
In matrix case, the out of sample extension is done simply computing the components explicitly
as ytj “ 1

λj
kT
t vj , j “ 1, . . . , d, where kt is the kernel matrix of the new data, and pλj ,vjq

is eigentuple of the kernel matrix Ln, kt “ pKpxt,x1q, . . . ,Kpxt,xnqqT is the kernel vector
of the test data xt. It can be written as yt “ diagpλ1, . . . , λdq´1rv1, . . . ,vdsTkt Thus, the
generalization is straightforward.
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4.6. Generalization of LLE. LLE is a nonlinear method that aims to preserve the local
structure of the data. After finding the k-nearest neighbors, it determines the weights that
minimize the reconstruction error. In other words, it seeks to solve the following objective
function

RepW q :“
ÿ

i

›

›

›

›

›

X piq ´
ÿ

j

wi,jX pjq

›

›

›

›

›

2

F

, (4.12)

subject to two constraints: a sparse one (the weights are zero if a point is not in the neighborhood
of another point), ensuring the locality of the reconstruction weight, and an invariance constraint
(the row sum of the weight matrix is 1). Finally, the projected data is obtained by solving the
following objective function

arg min
Y˚1YT

“I
ř

i Y
piq

“O

ΦLLE :“
ÿ

i

›

›

›

›

›

Ypiq ´
ÿ

j

wi,jYpjq

›

›

›

›

›

2

F

“ }Y ˆM`1 pIn ´ W q}
2
F . (4.13)

4.6.1. Computing the weights. Equation 4.12 can be decomposed to finding the weights
wi,: of a point X piq independently. For simplicity, we will refer to the neighbors of X piq as
N pi,jq, and the weights of its neighbors as wi P Rk, with k the number of neighbors, which
plays the rule of the sparseness constraint. Denote the local Grammian matrix Gpiq P Rkˆk as

G
piq
j,k “ xX piq ´ N pi,jq,X piq ´ N pi,kqy.

The invariance constraint can be written as 1Twi “ 1, thus, we can write the problem as

ÿ

i

›

›

›

›

›

X piq ´
ÿ

j

wi,jX pjq

›

›

›

›

›

2

F

“
ÿ

i

›

›

›

›

›

X piq ´
ÿ

j

wjN pi,jq

›

›

›

›

›

2

F

“
ÿ

i

›

›

›

›

›

ÿ

j

wi,jpX piq ´ N pi,jqq

›

›

›

›

›

2

F

“
ÿ

i,j,k

wi,jwi,kG
piq
j,k

“
ÿ

i

wT
i G

piqwi.

This constrained problem can be solved using the Lagrangian

Lptwiui, λq “
ÿ

i

wT
i G

piqwi ´
ÿ

i

λip1
Twi ´ 1q.

We compute the partial derivative with respect to wi and setting it to zero

BL
Bwi

“ 2Gpiqwi ´ λi1 “ 0

ùñ wi “
λi

2
Gpiq´1

1.

(4.14)

We utilize the fact that the Grammian matrix is symmetric, assuming that Gpiq is full rank,
which is typically the case. However, if Gpiq is not full rank, a small value can be added to its
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diagonal to ensure full rank.
The partial derivative with respect to λi, set to zero, yields the invariance constraint of point i,
i.e., 1Twi “ 1. Multiplying Equation (4.14) by 1T , we can isolate λ and arrive at the following
equation

wi “
Gpiq´1

1

1TGpiq´11
.

4.6.2. Computing the projected data. The final step resembles the previous cases,
ensuring that the mean constraint is satisfied. As I ´ W can be represented as a Laplacian,
we know that the number of components corresponds to the multiplicity of the eigenvalue 0.
Hence, there is at least one eigenvalue 0 with multiplicity 1, and the identity tensor serves as the
corresponding eigenvector, thereby satisfying the second constraint. For further elaboration,
interested readers can refer to [10].
The solution is equivalent to solving the matricized version, where the solution comprises the
smallest d singular eigenvectors of the matrix pIn´W qpIn´WT q. Consequently, the solution to
the original problem is the inverse transform, denoted as Ψ´1, of the solution to the matricized
version.
The algorithm bellow, shows the steps of LLE via Einstein product.

Algorithm 7 LLE-Einstein

Input: X (Data) d (subspace dimension).
Output: Y (Projection data).

1: Find the neighbors of each point.
2: Compute the reconstruction weight W .
3: Compute the smallest d eigenvectors of pIn ´ W qpIn ´ WT q.
4: Compute the Ψ´1 of these vectors with the appropriate reshaping to get Y.

4.6.3. Projection on out of Sample Data. To extend these methods to new data (test
data) not seen in the training set, various approaches can be employed. These include kernel
mapping, eigenfunctions (as discussed in Bengio et al. [5]), and linear reconstruction. Here, we
opt to generalize the latter approach. We can follow similar steps to those used in matrix-based
methods. Specifically, we can perform the following steps without re-running the algorithm on
the entire dataset

1 Find the neighbors in training data of each new data test.
2 Compute the reconstruction weight that best reconstruct each test point from its k
neighbours in the training data.

3 Compute the low dimensional representation of the new data using the reconstruction
weight.

More formally, after finding the neighbours N pi,jq of a test data X piq
t , we solve the following

problem

argmin
wptq

ÿ

i

›

›

›

›

›

X piq
t ´

ÿ

j

w
ptq
i,jN

pi,jq

›

›

›

›

›

2

F

,

with w
ptq
i,: is the reconstruction weight of the test data, under the same constraint, i.e., the row

sum of the weight matrix is 1, with value zero if it’s not in the neighbour of a point.
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The solution is w
ptq
i “

G
piq´1

t 1

1TG
piq´1

t 1
, with G

piq
tj,k

“ xX piq
t ´ N pi,jq,X piq

t ´ N pi,kqy.

Finally, the embedding of the test data Ypiq
t is obtained as

ř

j w
ptq
i,jYpjq, with Ypjq “ ϕLLEpN pi,jqq

are the embedding representation of the neighbours of the test data.

5. Other variants via Einstein product.

5.1. Kernel methods. Kernels serve as powerful tools enabling linear methods to op-
erate effectively in high-dimensional spaces, allowing for the representation of nonlinear data
without explicitly computing data coordinates in this feature space. The kernel trick, a pivotal
breakthrough in machine learning, facilitates this process. Formally, instead of directly manip-
ulating the data X “ tX p1q, . . . ,X pnqu, we operate within a high-dimensional implicit feature
space using a function Φ.
We denote the tensor ΦpX q “ tΦpX p1qq, . . . ,ΦpX pnqqu “ tΦpX qp1q, . . . ,ΦpX qpnqu. The mapping
need not be explicitly known; only the Gram matrix K is required. This matrix represents the
inner products of the data in the feature space, defined as Ki,j “ xΦpX piqq,ΦpX pjqqy. Conse-
quently, any method expressible in terms of data inner products can be reformulated in terms
of the Gram matrix. Consequently, the kernel trick can be applied sequentially. Moreover,
extending kernel methods to multi-linear operations using the Einstein product is straight-
forward. Commonly used kernels include the Gaussian, polynomial, Laplacian, and Sigmoid
kernels, among others.
Denote Y “ PT ˚M ΦpX q, with P P RI1ˆ...ˆIMˆd.

5.1.1. Kernel PCA via Einstein product. The kernel multi-linear PCA solves the
following problem

arg max
PPRI1ˆ...ˆIM ˆd

PT
˚MP“I

›

›PT ˚1 pΦpX q ´ Qq
›

›

2

F
,

(5.1)

with Q is the mean of kernel points, the solution is the largest d left singular tensors of ΦpX q ´

Q “ Φ̂pX q. It needs to calculate the eigen-tensors of Φ̂pX q ˚1 Φ̂pX qT , which is not accessible,

however, the Grammian K “ Φ̂pX qT ˚M Φ̂pX q is available, we can transform the problem to

K̂ẑi “ λiẑi with ẑi “ pΦ̂pX qqT ˚M Zpiq P Rn,

with K̂ representing the Grammian of the centered data, that can easily be obtained from only
K as K̂ “ K ´ HK ´ KH ` HKH, since

K̂i,j “ Φ̂ pX q
piqT

˚1 Φ̂pX qpjq

“

˜

ΦpX piqqT ´
1

n

ÿ

k

ΦpX pkqqT

¸

˚1

˜

ΦpX pjqq ´
1

n

ÿ

l

ΦpX plqqT

¸

“ ΦpX piqqT ˚1 ΦpX pjqq ´
1

n

ÿ

k

ΦpX piqqT ˚1 ΦpX pkqq ´
1

n

ÿ

l

ΦpX plqqT ˚1 ΦpX pjqq

“ Ki,j ´
1

n

ÿ

k

Ki,k1k,j ´
1

n

ÿ

l

1i,lKl,j `
1

n2

ÿ

k,l

Kk,l

“ pK ´
1

n
K ´ K

1

n
`

1

n
K

1

n
qi,j .
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Then, the solution is the same as the matrix case, i.e., the largest d eigenvectors of K̂, reshaped
to the appropriate size.
The algorithm bellow, shows the steps of the kernel PCA via Einstein product.

Algorithm 8 Kernel PCA-Einstein

Input: X (Data) pdiqiďM (dimension output) K (Grammian).
Output: Y (Projected data).

1: Compute K̂. Ź The mean of the Grammian
2: Compute the largest d eigenvectors of K̂.
3: Combine these vectors, and reshape them to get Y.

5.1.2. Kernel LPP via Einstein product. The kernel multi-linear LPP tackles the
following problem

arg min
PPRI1ˆ...ˆIM ˆd

PT
˚MΦpX qˆM`1D˚1ΦpX q

T
˚MP“I

Tr
`

PT ˚M
`

ΦpX q ˆM`1 L ˚1 ΦpX qT
˘

˚M P
˘

.
(5.2)

The solution involves finding the smallest d eigen-tensors of the generalized eigen-problem

ΦpX q ˆM`1 L ˚1 ΦpX qT ˚M V “ λΦpX q ˚M`1 D ˚1 ΦpX qT ˚M V.

ΦpX q is not available, the problem needs to be reformulated, Utilizing the fact that K is
invertible, we reformulate the problem as to find the vectors z, solution of the generalized
eigen-problem

Lz “ λDz, with z “ ΦpX qT ˚M Vpiq P Rn,

This formulation reduces to the same minimization problem as in the matrix case.

5.1.3. Kernel ONPP via Einstein product. The kernel multi-linear ONPP addresses
the following optimization problem

arg min
PPRI1ˆ...ˆIM ˆd

PT
˚MP“I

Tr
`

PT ˚M pΦpX q ˆM`1 pI ´ W qpI ´ WT q ˚1 ΦpX qT q ˚M P
˘

.
(5.3)

The solution involves finding the smallest d eigen-tensors of problem

ΦpX q ˆM`1 pI ´ W qpI ´ WT q ˚1 ΦpX qT ˚M V “ λV.

By employing similar techniques as before, we can derive the equivalent problem that seeks to
find the vectors z, solution of of the eigen-problem

KpI ´ W qpI ´ WT qz “ λz, with ΦpX qT ˚M V “ z.

The problem is the same minimization problem, the solution Y can be obtained from reshaping
the transpose of the concatenated vectors z.
The algorithm bellow, shows the steps of the kernel ONPP via Einstein product.
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Algorithm 9 Kernel ONPP-Einstein

Input: K (Grammian) d (subspace dimension).
Output: Y (Projected data).

1: Compute W . Ź Using the appropriate method
2: Compute the smallest d eigenvectors of KpI ´ W qpI ´ WT q.
3: Combine these vectors, and reshape them to get Y.

5.1.4. Kernel OLPP via Einstein product. The kernel multi-linear OLPP tackles the
optimization problem defined as follows:

arg min
PPRI1ˆ...ˆIM ˆd

PT
˚MP“I

Tr
`

PT ˚M pΦpX q ˆM`1 L ˚1 ΦpX qT q ˚M P
˘

.
(5.4)

The solution of the problem involves the eigen-tensors of ΦpX q ˆM`1 L ˚1 ΦpX qT ˚M Z “ λZ,
By transforming the problem, we arrive to find the vectors z, solution of of the eigen-problem

Kz “ λz, with ΦpX qT ˚M Z “ z,

which mirrors the matrix case. Here, the solution Y can be obtained from reshaping the
transpose of the concatenated vectors z.
The algorithm bellow, shows the steps of the kernel OLPP via Einstein product.

Algorithm 10 Kernel OLPP-Einstein

Input: K (Grammian) d (subspace dimension).
Output: Y (Projected data).

1: Compute the smallest d eigenvectors of K.
2: Combine these vectors, and reshape them to get Y.

5.2. Supervised learning. In general, supervised learning differs from unsupervised
learning primarily in how the weight matrix incorporates class label information. Supervised
learning tends to outperform unsupervised learning, particularly with small datasets, due to
the utilization of additional class label information.
In supervised learning, each data point is associated with a known class label. The weight
matrix can be adapted to include this class label information. For instance, it may take the
form of a block diagonal matrix, where Wspiq P Rniˆni represents sub-weight matrices, and ni

denotes the number of data points in class i. Let cpiq denote the class of data point xi.
Supervised PCA: PCA is the sole linear method presented devoid of a graph matrix.

Consequently, Supervised PCA implementation is not straightforward, necessitating a detailed
explanation. Following the approach proposed in [2], we address this challenge by formulating
the problem and leveraging the empirical Hilbert-Schmidt independence criterion (HSIC):

arg max
PTP“I

TrpPTXHKLHXTP q.

where KL is the kernel of the outcome measurements Y . Thus, the generalization would be to
solve

arg max
PPRI1ˆ...ˆIM ˆd

PT
˚MP“I

Tr
`

PT ˚M X ˆM`1 HKLH ˚1 X T ˚M P
˘

, (5.5)

19



The solution of 5.5 is the largest d eigen-tensors of X ˆM`1 HKLH ˆ1 X T .
Notice that when, KL “ In, we get the same problem as in the unsupervised case.
The algorithm bellow, shows the steps of the Supervised PCA via Einstein product.

Algorithm 11 Supervised PCA-Einstein

Input: X (Data) d(dimension output). KL (Kernel of labels)
Output: P (Projection space).

1: Compute the largest d eigen-tensors of X ˆM`1 HKLH ˆ1 X T .
2: Combine these tensors to get P.

Supervised Laplacian Eigenmap: The supervised Laplacian Eigenmap is similar to the
Laplacian Eigenmap, with the difference that the weight matrix is computed using the class
label, many approaches were proposed [22, 8, 25]. We choose a simple approach that changes
the weight matrix to Ws, and the rest of the algorithm is the same.
Supervised LLE: There are multiple variants of LLE that uses the class label to improve the

performance of the method, e.g., Supervised LLE (SLLE), probabilistic SLLE [33], supervised
guided LLE using HSIC [1], enhanced SLLE [31]..., the general strategy is to incorporate the
class label either in computing the distance matrix, the weight matrix, or in the objective
function [10]. We choose the simplest which is the first strategy; By changing the distance
matrix by adding term that increases the inter-class and decreases the intra-class variance. The
rest of the steps are the same as the unsupervised LLE.

5.2.1. Repulsion approaches. In the semi-supervised or the supervised learning, how
we use the class label can affect the performance, commonly, the similarity matrix, tells us only
if two points are of the same class or not, without incorporating any additional information on
data locality, e.g., the closeness of points of different classes.., thus the repulsion technique is
used to take into account the class label information, by repulsing the points of different classes,
and attracting the points of the same class. It extends the traditional graph-based methods
by incorporating repulsion or discrimination elements into the graph Laplacian, learning to
more distinct separation of different classes in the reduced-dimensional space by integrating the
class label information directly into the graph structure. The concept of repulsion has been
used in DR with different formulations [32, 7] before using the k-nn graph to derive it. [16] a
generic proposed a method that applies attraction to all points of the same class with the use of
repulsion between nearby points of different classes, which was found to be significantly better
than the previous approaches. Thus, we will use the same approach and generalize it to the
Einstein-product.
The repulsion graph Gprq “ tVprq, Eprqu is derived from k-nn Graph G “ tV, Eu based on the
class label information, the weight of the edges can be computed in the simplest form as

W
prq

i,j “

"

1 if pxi,xjq P E , i ‰ j, cpiq ‰ cpjq

0 otherwise.

Hence, in the case of fully connected graph, the repulsion weight would be of the form

W prq “ 1n ´ diagp1niq.

Other weights value can be proposed.
The new repulsion algorithms are similar to the previous ones, with the new weight matrix
Ws “ W ` βW prq with β is a parameter.
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6. Experiments. To show the effectiveness of the proposed methods, we will use datasets
that are commonly used in the literature. The experiments will be conducted on the GTDB
dataset for the facial recognition, and the MNIST dataset for the digit recognition. We note
that these datasets give the raw images instead of features. The results will be compared to the
state of art methods, by using the projected data in a classifier. The baseline is also used for
comparison, which is utilizing the raw data as the input of the classifier, and the recognition rate
will be used as the evaluation metric for all methods. Images were chosen because the proposed
methods are designed to work on multi-linear data, and the image is a typical example of such
data. The proposed methods that use the multi-weight will be denoted by adding ”´MW” to
the name of the method. It is intuitive to use multi-weight for images since the third mode
represent the RGB while the first two modes represent the location of the pixel.
The evaluation metric Recognition rate (IR) is used to evaluate the performance of the proposed
method. It is defined as the number of correct classification over the total number of testing
data. A correct classification is done by computing the minimum distance between the projected
data training and the projected testing data. The IR is computed on the testing data.

For simplicity, we used the supervised version of methods, with Gaussian weights, and the
recommended parameter in [16] (half the median of data) for the Gaussian parameter.

IR “ 100 ˆ
Number of recognized images in a data

Number of images in the data
.

All computations are carried out on a laptop computer with 2.1 GHz Intel Core 7 processors
8-th Gen and 8 GB of memory using MATLAB 2021a.

6.1. Digit recognition. The Dataset that will be used in the experiments is the MNIST
dataset 1. It contains 60,000 training images and 10,000 testing images of labeled handwritten
digits. The images are of size 28 ˆ 28, and are normalized gray images. The evaluation metric
is the same as the facial recognition. We will work with smaller subset of the data to speed up
the computation. e.g., 1000 training images and 200 testing images taking randomly from the
data. Observe that the multi-weight methods are not used in this data since it is gray data,
thus, we don’t have multiple weights.
Table 6.1 shows the performance of different approaches compared to the state-of-art based on
different subspace dimensions.

- OLPP OLPP-E ONPP ONPP-E PCA PCA-E Baseline
5 50,50 50,50 56,00 56,00 63,00 63,00 8,50
10 75,50 75,50 81,50 81,50 82,50 82,50 8,50
15 81,00 81,00 80,50 80,50 84,50 84,50 8,50
20 85,00 85,00 83,50 83,50 88,00 88,00 8,50
25 86,00 86,00 87,50 87,50 88,00 88,00 8,50
30 85,50 85,50 87,50 87,50 89,00 89,00 8,50
35 88,00 88,00 89,50 89,50 87,00 87,00 8,50
40 88,00 88,00 89,00 89,00 87,50 87,50 8,50

Table 6.1: Performance of methods per different subspace dimension.

1https://lucidar.me/en/matlab/load-mnist-database-of-handwritten-digits-in-matlab/
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The results are similar in the MNIST dataset between the method with its Multi dimensional
counterpart, we claim that it is due to the fact that the vectorization of 2 dimension to 1 does
not affect much the accuracy, which leads to similar results using the proposed parameters.

Note that the objective is to compare a method with its proposed multi dimension counterpart
via Einstein product to see if the generalization works.

6.2. Facial recognition. The dataset that will be used in the experiments is the Georgia
Tech database GTDB crop 2. It contains 750 color JPEG images of 50 person, with each
one represented by exactly 15 images that show different facial expression, scale and lighting
conditions. Figure 6.1 shows an example of 12 arbitrary images from the possible 15 of an
arbitrary person in the data set.
Our data in this case is a tensor of size height ˆ width ˆ 3 ˆ 750 when dealing with RGB, and
height ˆ width ˆ 750 when dealing with gray images. The height and width of the images are
fixed to 60 ˆ 60. The data is normalized.

Figure 6.1: Example of images of one person in the GTDB dataset.

The experiment is done using 12 images for training and 3 for testing per face. Figure 6.2
shows these results for different subspace dimension reduction

2https://www.anefian.com/research/face_reco.htm
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Figure 6.2: Performance of methods on different subspace dimension.

The results show that as the subspace dimension increases, the performance of most methods
also increases, suggesting that these methods benefit from a higher dimensional-feature space
up to a point that differ from a method to another. The generalized methods using the Ein-
stein product gives overall better result on all subspace dimension compared to its counterparts,
except for the ONPP in the small d case. The Multiple-weight methods show varying perfor-
mance. They outperform the single-weight in some cases. Future work could be considered to
enhance how the to aggregate the results of each weights in order to give a more robust results.
The objective is to compare between a method and its multi dimensional counter parts via
Einstein product, e.g., the OLPP method with the OLPP-E, and OLPP-E-MW.
The superiority of Einstein based methods can be justified by the fact that, it preserve the
multi-linear structure of the data, and the non-linear structure of the data, which is not the
case of the vectorization of the data, which is the case of the other matricized methods.

7. Conclusion. The paper advances the field of dimension reduction by introducing re-
fined graph-based methods and leveraging the Einstein product for tensor data. It extends
both the Linear and Nonlinear methods (supervised and unsupervised) to higher order tensors
as well as its variants. The methods are conducted on the GTDB and MNIST dataset, and
the results are compared to the state-of-art-methods showing the competitive results. A future
work could be conducted on generalization on trace ratio methods as Linear Discriminant Anal-
ysis. An acceleration of the computation can also be proposed using the Tensor Golub Kahan
decomposition to get an approximation of these eigen-tensors in constructing the projected
space.
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