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Abstract

We investigate local notions of correlated equilibria, distributions of actions for smooth games
such that players do not incur any regret against modifications of their strategies along a set
of continuous vector fields. Our analysis shows that such equilibria are intrinsically linked to
the projected gradient dynamics of the game. We identify the equivalent of coarse equilibria in
this setting when no regret is incurred against any gradient field of a differentiable function. As
a result, such equilibria are approximable when all players employ online (projected) gradient
ascent with equal step-sizes as learning algorithms, and when their compact and convex action
sets either (1) possess a smooth boundary, or (2) are polyhedra over which linear optimisation
is “trivial”. As a consequence, primal-dual proofs of performance guarantees for local coarse
equilibria take the form of a generalised Lyapunov function for the gradient dynamics of the
game. Adapting the regret matching framework to our setting, we also show that general local
correlated equilibria are approximable when the set of vector fields is finite, given access to a
fixed-point oracle for linear or conical combinations. For the class of affine-linear vector fields,
which subsumes correlated equilibria of normal form games as a special case, such a fixed-
point turns out to be the solution of a convex quadratic minimisation problem. Our results are
independent of concavity assumptions on players’ utilities.

1 Introduction

The central question we study is on notions of correlated equilibria in a smooth game; given a set
of players N , compact & convex action sets Xi and sufficiently smooth payoffs ui : ×i∈NXi → R,
a correlated equilibrium is a probability distribution σ on ×i∈NXi satisfying φ(σ) ≤ 0 ∀ φ ∈ Φ(u)
for some family of linear equilibrium constraints Φ. Our motivation is two-fold; (1) we seek an
answer to a question posed in [28] regarding what an appropriate theory of non-concave games
should be, and (2) we aim to refine the notions of (coarse) correlated equilibria of normal form
games to strengthen the analysis of their learnable outcomes via appeals to linear programming
duality. As a consequence, we demand our concept of equilibrium to be tractably computable
given access to payoff gradients independent of concavity assumptions on the payoffs, and contain
(coarse) correlated equilibria of normal form games as special cases.

∗E-mail: mete.ahunbay@cit.tum.de

1

http://arxiv.org/abs/2403.18174v1


Towards this end, we build upon the recent work of [16], who considered a local variant of
swap regret traditionally considered in literature (cf. [39]), and showed two such families of local
strategy modifications are tractably computable via online gradient ascent. Our key insight is that
the δ-strategy modifications contained within are generated by gradient fields of a suitable family
of functions. We thus take a differential perspective, and identify two notions of “first-order”
correlated equilibria with respect to a family of vector fields F . For local correlated equilibria
players do not have any incentive to modify their strategies along any vector field f ∈ F , while for
stationary correlated equilibria we demand the equilibrium satisfy the properties of a fixed point of
the gradient dynamics of the game in expectation. The main difficulty in analysis, and the necessity
of defining two distinct classes of equilibria, arises from dealing with projections onto the feasible
action set.

Contributions. We establish settings in which local or stationary equilibria are approximable.
We first observe that the approximation results of [16] for online gradient ascent are in fact for
families of gradient fields, and that such equilibria contain coarse correlated equilibria of normal
form games as a special case. We thus identify coarseness of our equilibrium notion so.

A high level argument shows that curves in the action space generated via the continuous time
projected gradient dynamics of the game universally approximates a local or stationary coarse
correlated equilibrium; the regret against ∇h for any differentiable function h vanishes linearly in
time, and is proportional to a bound on ‖∇h‖. The question is then whether discrete time projected
gradient ascent possesses similar approximation properties.

We answer in the affirmative, and show that the approximability of local correlated equilibria
follows from that of the stationary one. Our methods are based on extending the outcome of online
gradient ascent to a piecewise curve, and thus our results depend on the geometry of the action
sets Xi; (1) whenever each Xi has a smooth boundary of bounded principal curvature K, and (2)
whenever Xi is a “acute” polyhedron, taking step sizes 1/

√
τ̄ results in a O(log(τ̄ )/τ̄ ) regret bound

for each h after τ̄ iterations. For (1), the approximation bound decreases in K, while the class of
polyhedra considered in (2) contain the simplex and the hypercube as special cases.

Next, we inspect the primal-dual framework arising from stationary coarse correlated equilibria.
Here, we observe that for any function q on ×i∈NXi (say, welfare), a dual lower bound γ on the
expectation of q in equilibrium is provided by a function h such that, under the continuous gradient
dynamics of the game, h is strictly decreasing whenever q(x) < γ. We denote such a function h as
a generalised Lyapunov function; when maxx q(x) = γ and q has a unique maximiser, the function
h is then a Lyapunov function in the traditional sense. Our analysis thus sheds light on the form
of primal-dual performance bounds (as considered in the price of anarchy literature) when players
all employ online gradient ascent. We also show convergence bounds to performance guarantees for
fixed τ̄ .

We then drop the coarseness assumption. In this case, for finite |F |, we show that the usual
regret matching framework (cf. [71, 39, 40]) may be applied to obtain O(1/

√
T )-stationary corre-

lated equilibria after T iterations, given access to a fixed point oracle for every linear combination
of vector fields in F . An identical result holds for local correlated equilibria, if each f ∈ F is
everywhere tangent to ×i∈NXi. We show that when each f is also affine-linear, the associated fixed
point computation reduces to convex quadratic minimisation. This setting contains correlated equi-
libria of normal form games as a special case, but by example we show that further refinements to
correlated equilibria are possible.
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1.1 Related work

Game theoretic analysis of multi-agent systems is often based on first the assertion of a concept
of equilibrium as an expected outcome, followed by an investigation of its properties. The clas-
sical assumption is that with self-interested agents, the outcome of the game should be a Nash
equilibrium, which exists for finite normal-form games [57], or more generally, concave games [63].

Diverging from classical equilibrium theory for convex markets, the outcome of a game need not
be socially optimal. The algorithmic game theory perspective has then been to interpret the class
of equilibria in question from the lens of approximation algorithms. First proposed by Koutsoupias
& Papadimitriou [47], the price of anarchy measures the worst-case ratio between the outcome of a
Nash equilibrium and the socially optimal one. A related concept measuring the performance of the
best-case equilibrium outcome, the price of stability was first employed by [68] and named so in [6].
Since then, a wealth of results have followed, proving constant welfare approximation bounds for
e.g. selfish-routing [64], facility location [73], a variety of auction settings including single-item [46]
and simultaneous [24] first-price auctions, simultaneous second-price auctions [23], hinting at good
performance of the associated mechanisms in practice. Meanwhile, deteriorating price of anarchy
bounds, such as those for sequential first-price auctions [48], are interpreted as arguments against
the use of such mechanisms.

However, the assertion that the outcome of a game should be a Nash equilibrium is problematic
for several reasons, despite the guarantee that it exists in concave games. It is often the case
that multiple equilibria exists in a game, in which case we are faced with an equilibrium selection
problem [42]. Moreover, Nash equilibrium computation is computationally hard in general, even
in the setting of concave games where its existence is guaranteed. In general determining whether
a pure strategy NE exists in a normal-form game is NP -complete [26], and even for two player
normal form games finding an exact or approximate mixed Nash equilibrium is PPAD -complete
[19, 29, 27]. Similar results extend to auction settings; for instance, (1) finding a Bayes-Nash
equilibrium in a simultaneous second-price auction is PP -hard [17], even when buyers’ valuations
are restricted to be either additive or unit-demand, and (2) with subjective priors computing an
approximate equilibrium of a single-item first-price auction is PPAD -hard [36], a result that holds
also with common priors when tie-breaking rule is also part of the input [21].

Some answers to this problem come from learning theory. First, for special classes of games,
when each agent employs a specific learning algorithm in repeated instances of the game, the
outcome converges in average play to Nash equilibria. This is true for fictitious play [15] for the
empirical distribution of players’ actions in a variety of classes of games, including zero-sum games
[62], 2×n non-degenerate normal form games [10], or potential games [53]. For the case of zero-sum
games, the same is true for a more general class of no-(internal [18] or external [74]) regret learning
algorithms, while for general normal-form games they respectively converge to correlated or coarse
correlated equilibria – convex generalisations of the set of Nash equilibria of a normal form game.
The price of anarchy / stability approach can then be extended to such coarse notions of equilibria,
with the smoothness framework of [65] for robust price of anarchy bounds being a prime example.

Unfortunately, this perspective falls short of a complete picture for several reasons. First,
learning dynamics can exhibit arbitrarily high complexity. Commonly considered learning dynamics
may cycle about equilibria, as is the case for fictitious play [70] or for multiplicative weights update
[7]. Worse, learning dynamics can exhibit formally chaotic behaviour [59, 22], bimatrix games
may approximate arbitrary dynamical systems [4]. In fact, replicator dynamics on matrix games is
Turing complete [5], and reachability problems for the dynamics is in general undecideable.
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In the converse direction, the usual notion of no-regret learning can be too weak to capture
learnable behaviour. In this case, the associated price of anarchy bounds may misrepresent the
efficiency of actual learned outcomes. One motivating example here is that of auctions. For first-
price single item auctions, in the complete information setting there may exist coarse correlated
equilibria with suboptimal welfare, even though the unique equilibrium of the auction is welfare
optimal [33]. Meanwhile, in the incomplete information setting with symmetric priors, whether
coarse correlated equilibria coincide with the unique equilibrium depends on informational assump-
tions on the equilibrium structure itself [9] and on convexity of the priors [1]. This is in apparent
contradiction with recent empirical work which suggest the equilibria of an even wider class of
auctions are learnable when agents implement deep-learning or (with full feedback) gradient based
no-regret learning algorithms [11, 12, 50].

This motivates the necessity of a more general notion of equilibrium analysis, stronger than
coarse correlated equilibria for normal-form games and weaker than Nash equilibria, which never-
theless captures the guarantees of the above-mentioned settings and is tractable to approximate or
reason about. For the case of auctions, one recent proposal has been that of mean-based learning
algorithms [14], but even in that case convergence results of [31, 34] are conditional.

There are two approaches towards the resolution of this question which, while not totally di-
vorced in methodology, can be considered distinct in their philosophy. One approach has been to
consider “game dynamics as the meaning of a game” [61], inspecting the existence of dynamics
which converge to Nash equilibria, and extending price of anarchy analysis to include whether an
equilibrium is reached with high probability. The work on the former has demonstrated impossi-
bility results; there are games such that any gradient dynamics have starting points which do not
converge to a Nash equilibrium, and for a set of games of positive measure no game dynamics may
guarantee convergence to ǫ-Nash equilibria [8, 52]. Meanwhile, [60, 66] proposed the average price
of anarchy as a refined performance metric accounting for the game dynamics. The average price
of anarchy is defined as the expectation over the set of initial conditions for the welfare of reached
Nash equilibria, for a fixed gradient-based learning dynamics for the game.

Another approach has been to establish the computational complexity of local notions of equi-
libria. This has attracted attention especially in the setting non-concave games, where the existence
of Nash equilibria is no longer guaranteed, due to the success of recent practical advances in ma-
chine learning via embracing non-convexity [28]. However, approximate minmax optimisation is
yet again PPAD -complete [30]. As a consequence, unless PPAD ⊆ FP, a tractably approximable
local equilibrium concept for non-concave games with compact & convex action sets must neces-
sarily be coarser. Towards this end, [44, 41] define a notion of regret that is based on a sliding
average of players’ payoff functions. Meanwhile, a recent proposal by [16] has been to define a
local correlated equilibrium, a distribution over action profiles and a set of local deviations such
that, approximately, no player may significantly improve their payoffs when they deviate locally
pointwise in the support of the distribution. They are then able to show for two classes of local
deviations, such an approximate local correlated equilibrium is tractably computable.

Our goal in this paper is then to address the question of an equilibrium concept which is (1)
also valid for non-concave games, (2) is stronger than coarse correlated equilibria for normal form
games, (3) is tractable to approximate, and (4) admits a suitable extension of the usual primal-dual
framework for bounding the expectation of quantities over the set of coarse correlated equilibria.
The latter necessitates not only a distribution of play, but also incentive constraints which are
specified only depending on the resulting distribution and not its time-ordered history. We remark
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that framework of [44] falls short in the latter aspect when the cyclic behaviour of projected gradient
ascent results in a non-vanishing regret bound. We thus turn our attention to generalising the work
of [16].

Strikingly, in doing so, we demonstrate the intrinsic link between such local notions of coarse
equilibria and the dynamical systems perspective on learning in games. In particular, the two local
correlated notions of equilibria defined in [16] are subclasses of what we dub local coarse correlated
equilibria, distribution of plays such that agents in aggregate do not have any strict incentive for
infinitesimal changes of the support of the distribution along any gradient field over the set of action
profiles. The history of play induced by online (projected) gradient ascent then approximates such
an equilibrium, by virtue that it approximates a time-invariant distribution for the game’s gradient
dynamics. Extending the usual primal-dual scheme for price of anarchy bounds then reveals that
any dual proof of performance bounds is necessarily of the form of a “generalised” Lyapunov
function for the quantity whose expectation is to be bounded. The usual LP framework for coarse
correlated equilibria is in fact contained in this approach, its dual optimal solutions corresponding
to a “best-fit” quadratic Lyapunov function.

Our approach in proving our results combines insights previously explored in two previous
works. The existence and uniqueness of solutions to projected dynamical systems over polyhedral
sets is due to [32], and in our approximation proofs we also define a history over a continuous time
interval. However, our analysis differs as we are not interested in approximating the continuous time
projected dynamical system itself over the entire time interval; an approach that would doom our
endeavour for tractable approximations in the presence of chaotic behaviour, which is not ruled out
under our assumptions [22, 4]. Instead, we are interested in showing the approximate stationarity
of expectations of quantities. Therefore, for projected gradient ascent, we suitably extrapolate
the history of play into a piecewise differentiable curve. We then identify settings in which this
curve moves approximately along the payoff gradients at each point in time via consideration of
the properties of the boundary of the action sets in question.

Meanwhile, whereas Lyapunov-function based arguments is not new in analysis of convergence
to equilibria in economic settings (e.g. [56]), in evolutionary game theory (c.f. [67] for an in-depth
discussion), and in learning in games (e.g. [51, 75]), our perspective in bounding expectations
of quantities appears to be relatively unexplored. Most Lyapunov-function based arguments in
literature are concerned with pointwise (local) convergence to a unique Nash equilibrium, and
work under the assumption of monotonicity or variational stability, or the existence of a potential
function. The former two conditions imply the existence of a quadratic Lyapunov function for
the game’s projected gradient dynamics, from which Lyapunov functions for alternate learning
processes may be constructed. One exception is [37], which deals explicitly with the problem
of bounding expectations of stable distributions of Markov processes. Continuous time gradient
dynamics is of course a Markov process, and a rather “boring” one in the sense that it is fully
deterministic. Moreover, it is there that the dual solution of the LP bounding the expectation of
some function is dubbed a “Lyapunov function”, which motivates us to denote any of our dual
solutions as a generalised Lyapunov function. However, their results do not include approximations
of the Markov process and how Lyapunov-function based dual proofs extend to such approximations.
Moreover, it is unclear how their results apply to projected gradient ascent, with polyhedral action
sets. We are able to provide positive answers on both fronts.
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In turn, our analysis of local correlated equilibria depends on the more established framework
of regret matching. Our techniques here are essentially those used in [40, 39]. One key difference
is our vector field formulation; usual swap-regret minimisation [71, 39, 40] considers mappings
of the action space onto itself, while we measure regret against its differential generators. The
consequences are reminiscent of the result of [43] on the equivalence of no regret learning and
fixed point computation, in that we require access to a fixed-point oracle for the linear (or conical)
combinations of vector fields in question to implement the regret matching algorithms. On the
other hand, our vector field formulation allows us to extend the notion of correlated equilibria to a
family of vector fields for which fixed-point computation is tractable; we are unaware of any similar
observation.

1.2 Overview

In Section 2, we introduce our notation as well as the our definitions of local and stationary
correlated equilibria, and their coarseness. In Section 3, we study the approximability of coarse
correlated equilibria; we start by showing that continuous-time projected gradient dynamics ap-
proximates both generalisations of CCE which hints that online projected gradient ascent might
provide such an approximation too. Positive results follow; in Section 3.1.1 we show that both local
and stationary CCE are approximable whenever all players have compact and convex sets with a
smooth boundary of bounded curvature, while in Section 3.1.2 we extend the approximability re-
sults to a class of polytopes which include the hypercube and the simplex. Section 3.2 considers the
form of price of anarchy bounds for stationary coarse correlated equilibria, and shows that differen-
tiable generalised Lyapunov functions provide such bounds for the outcomes of both approximate
projected gradient dynamics and for online projected gradient ascent. Next we study correlated
equilibria in Section 4; Section 4.1 contains our approximation bounds and generalisations of usual
correlated equilibria, and in Setcion 4.2 we provide a brief remark on duality. In Section 5 we
discuss further directions that remain to be investigated.

2 Preliminaries

In what follows, N denotes the set of natural numbers1, and we identify also with each N ∈ N the
set {n ∈ N|1 ≤ n ≤ N}. Following standard notation, for a given N ∈ N, and any tuple (Xj)j∈N
indexed by N2 and any i ∈ N , X−i ≡ (Xj)j∈N\{i} denotes the tuple with the i’th coordinate
dropped. Meanwhile, for a tuple x ≡ (xj)j∈N , some i ∈ N , and yi, (yi, x−i) is the tuple where xi
is replaced by yi in x. In addition, given some D ∈ N, for each i ∈ D we will denote by ei the
standard basis vector in R

D whose i’th component equals one and all others zero. Given a compact
and convex set X ∈ R

D, and some x ∈ X, we let T CX(x) and NCX(x) respectively denote the
tangent and normal cones to X at x, i.e.

T CX(x) = conv{t · (y − x) | t ≥ 0 ∧ y ∈ X},
NCX(x) = conv{z ∈ R

D | ∀y ∈ T CX(x), 〈y, z〉 ≤ 0}.

Here, conv denotes the convex closure of a set, and 〈x, y〉 is the standard inner product of x and
y in R

D. In turn, for any D ∈ N, and any y ∈ R
D, we write ‖y‖ =

√

〈y, y〉 for the standard

1Including 0.
2For instance, vectors or families of sets indexed by N .
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Euclidean norm on R
D, and PX [y] ≡ argminx∈X ‖x − y‖22 for the projection of y onto X ⊆ R

D.
Finally, given X ≡ ×i∈NXi such that each Xi ⊆ R

Di for some natural number Di, some x ∈ X,
and a differentiable function f : X → R, ∇f(x) denotes the usual gradient of f , while ∇if(x) is
the vector (∂f/∂xij)j∈Di

∈ R
Di .

Definition 1. The data of a smooth game is specified by a tuple (N, (Xi)i∈N , (ui)i∈N ), where

1. N ∈ N is the number (and by choice of notation, the set) of players.

2. For each i ∈ N , Xi is the action set of player i. We assume that Xi is a compact and convex
subset of RDi for some Di ∈ N, and denote by X ≡ ×i∈NXi the set of outcomes of the game.
We shall also write as the total dimension of the set of outcomes, D =

∑

i∈N Di.

3. For each i ∈ N , ui : X → R is the utility function of player i. Each ui is assumed to be
continuously differentiable and have Lipschitz gradients, that is to say, there exists Gi, Li ∈ R+

such that for any x, x′ ∈ X,

‖∇ui(x)‖ ≤ Gi,

‖∇ui(x)−∇ui(x′)‖ ≤ Li‖x− x′‖.

We will denote ~G ≡ (Gi)i∈N and ~L ≡ (Li)i∈N , the full vector of the bounds on players’
gradients and Lipschitz coefficients.

Theoretic analysis of a game is often done by endowing it with an equilibrium concept, which
specifies the “expected, stable outcome” of a given game. The standard equilibrium concept is that
of a Nash equilibrium (NE), an outcome x ∈ X of a game such that for any player i ∈ N ,
and any action x′i ∈ Xi, ui(x) ≥ ui(x

′
i, x−i). Whenever all ui are concave over Xi given any fixed

x−i ∈ X−i, such an equilibrium necessarily exists. However, for a generic smooth game, an NE
need not exist, which motivates the notion of a local Nash equilibrium (local NE); an outcome
x ∈ X is called a local NE if for every player i, ∇iui(x) ∈ NCXi

(xi).
By fixed point arguments, a local NE necessarily exists for a smooth game. However, the

computation of such an equilibrium is not known to be tractable as of present date. This has
lead to questions on whether there exists a correlated variant of a local NE; keeping in mind
that correlated and coarse correlated equilibria (respectively, CE and CCE) of a finite game are
computable in time polynomial in the size of its normal-form representation, one would ask whether
such a local CCE is also tractable to (at least approximately) compute. Towards this end, Cai et
al. [16] propose one definition of local CE, analogous to the definition of swap regret for finite
games; for some δ > 0, for each player i, ΦXi(δ) denotes a family of δ-local strategy modifications
φi : Xi → Xi, satisfying ‖φ(xi)− xi‖ ≤ δ for any xi ∈ Xi. Two proposals for such families are

ΦXi

Int(δ) = {xi 7→ δx∗i + (1− δ)xi | x∗i ∈ Xi},
ΦXi

Proj(δ) = {xi 7→ PXi
[xi + δv] | v ∈ R

Di , ‖v‖ ≤ 1}.

The notion of a local CE is then defined by requiring players to not increase their payoff via such
δ-local strategy modifications with respect to the support of the distribution of play:

Definition 2 ([16], Definition 2). For ǫ, δ > 0, a distribution σ over X is said to be an (ǫ,Φ(δ))-
local CE if for any i ∈ N and any φi ∈ ΦXi(δ), Ex∼σ[ui(φi(xi), x−i)− ui(x)] ≤ ǫ.
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An immediate observation is that both φXi

Int and φXi

Proj as δ-strategy modifications are provided
by families of gradient fields of functions over Xi. Specifically, we may write

ΦXi

Int(δ) = {xi 7→ xi − δ∇i‖xi − x∗i ‖2/2 | x∗i ∈ Xi}, (1)

ΦXi

Proj(δ) = {xi 7→ PXi
[xi + δ∇i 〈xi, v〉] | v ∈ R

Di , ‖v‖ ≤ 1}. (2)

In what follows, we will exploit this observation and define alternate, differential definitions of local
correlated equilibria, and its coarseness. In particular, we shall identify the appropriate notion of
coarseness when the equilibrium constraints are all provided by gradient fields – as in this case,
online gradient ascent will provide a universal approximation algorithm. To define our differential
notion of equilibria, we first modify Definition 2 to only apply to sufficiently smooth vector fields.

Definition 3. For ǫ,∆ > 0, a distribution σ over X is said to be an (ǫ,∆)-local CE with respect
to a family F of Lipschitz continuous vector fields X → R

D, if for every f ∈ F ,
∑

i∈N
Ex∼σ [ui(PXi

[xi + δfi(x)], x−i)− ui(x)] ≤ ǫδ · poly( ~G, ~L,Gf , Lf ) + o(δ) ∀ δ ∈ [0,∆]. (3)

Here, Gf and Lf are respectively bounds on the magnitude of ‖f(x)‖ and the Lipshitz coefficient of
f , analogous to Gi and Li. If ǫ = 0, σ is simply called a local CE.

Definition 4 (Coarseness). For Definition 3 and in all subsequent definitions in this section, if
the family F is given as a family of gradient fields {∇h | h ∈ H} for a subset H ⊆ C1(X) of
continuously differentiable functions, σ is said to be a coarse equilibrium.

We remark on the difference between the roles of ǫ in Definition 2 and Definition 3; in the
former, ǫ is an absolute bound on the violation of the equilibrium constraints, while in the latter
ǫ is a multiplicative bound on the expectation of sum over the set of players of the derivatives of
ui in direction (PXi

[xi + δf(xi)]− xi) /δ. Another difference between the two definitions is that
Definition 3 generalises to arbitrary suitably smooth vector fields f : X → R

D and not those defined
solely on Xi for some i ∈ N .

Dividing both sides of (3) and taking the limit δ ↓ 0 for an (ǫ,∆)-local CE gives the following
differential definition of an ǫ-local CCE.

Definition 5. For ǫ > 0, a distribution σ over X is said to be an ǫ-local CE with respect to a
family F of Lipschitz continuous vector fields X → R

D, if for every f ∈ F ,

∑

i∈N
Ex∼σ

[〈

PT CXi
(xi)[fi(x)],∇iui(x)

〉]

≤ ǫ · poly( ~G, ~L,Gf , Lf ). (4)

Via an appeal to the projected gradient dynamics of the smooth game, we will show that such
notions of local coarse correlated equilibria are in fact weakenings of the equilibrium concept we
obtain by demanding our distribution σ to be invariant under time translation for the projected
gradient dynamics of the smooth game. Such dynamics are provided by the system of differential
equations,

dxi(t)

dt
= PT CXi

(xi)[∇iui(x)] ∀ i ∈ N, (5)

with initial conditions xi(0) ∈ Xi for each player i. By [25], for any initial conditions x(0) ∈ X,
there is a unique absolutely continuous solution x(t) for t ∈ [0,∞) such that (5) holds almost
everywhere.

8



Now, suppose that a distribution σ is invariant under time translation, that is to say, for any
measurable set A ⊆ X and any t > 0, the set A−1(t) = {x(0) ∈ X | x(t) ∈ A} is measurable, and
moreover, σ(A−1(t)) = σ(A). In this case, for any continuously differentiable function h : X → R,
d
dtEx(0)∼σ[h(x(t))] = 0 at t = 0. In particular, whenever the expectation and the time derivative
commute,

∑

i∈N
Ex∼σ

[〈

∇ih(x),PT CXi
(xi)[∇iui(x)]

〉]

=
∑

i∈N
Ex(0)∼σ

[

〈∇ih(x), dxi(t)/dt〉
∣
∣
∣
∣
∣
t=0

]

= 0.

In particular, distributions which are stationary under gradient dynamics satisfy a different regret
property, in which the expected value of a function may not be modified via time translation.

In turn, if x ∈ X is a fixed-point of the gradient dynamics of the game, then PT CXi
(xi)[∇iui(x)] =

0 for every player i. Therefore, for any vector v ∈ R
D, 〈v,PT CXi

(xi)[∇iui(x)]〉 = 0. Together, these
observations motivate our notion of stationary correlated equilibria.

Definition 6. For ǫ > 0, a distribution σ is said to be an ǫ-stationary CE with respect to a
family F of Lipschitz continuous vector fields X → R

D, if for every f ∈ F ,

∣
∣
∣
∣
∣

∑

i∈N
Ex∼σ

[〈

PT CXi
(xi)[∇iui(x)], fi(x)

〉]
∣
∣
∣
∣
∣
≤ ǫ · poly( ~G, ~L,Gf , Lf ). (6)

3 On Local Coarse Correlated Equilibria

A primary objective of our work is to show that the above notions of ǫ-local or ǫ-stationary CCE
are universally approximable in some “game theoretically relevant” settings. Here, by universal we
mean that in Definition 4 we may take H be the set of all differentiable functions h : X → R with
Lipschitz gradients and nevertheless tractably compute approximate local or stationary equilibria.
We shall establish this by showing that projected gradient dynamics obtains an approximate sta-
tionary CCE, and such stationary CCE are necessarily also local CCE. Whereas for the purposes
of practical algorithms we will need to investigate when all players take discrete steps in time, the
form of analysis is motivated by how projected gradient dynamics yields our desired approximation.

To wit, let h ∈ H be given, and consider sampling uniformly from the trajectory of the projected
gradient dynamics given initial conditions x(0). That is, we consider the distribution σ on X by
drawing t ∈ [0, T ] and sampling x(t). In this case,

Ex∼σ

[
∑

i∈N

〈

PT CXi
(xi)[∇iui(x)],∇ih(x)

〉
]

= Et∼U [0,T ]

[
∑

i∈N
〈dxi(t)/dt,∇ih(x(t))〉

]

=

∫ T

0

1

T

dh(x(t))

dt
· dt

=
h(x(T )) − h(x(0))

T
.

Now, let C ≡ maxx,x′ ‖x−x′‖. Then |h(x(T ))−h(x(0))| ≤ C ·Gh, which immediately shows that we

obtain an ǫ-stationary CCE with ǫ = C/T and poly( ~G, ~L,Gh, Lh) = Gh. Interestingly, we do not
yet need to invoke any bounds on the magnitude of the utility gradients nor the Lipschitz moduli.
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Now, suppose for a simple example that each Xi is the Di-dimensional [0, 1]-hypercube. In this
case, we will argue that

Ex∼σ

[
∑

i∈N

〈

PT CXi
(xi)[∇ih(x)],∇iui(x)

〉
]

≤ Ex∼σ

[
∑

i∈N

〈

PT CXi
(xi)[∇iui(x)],∇ih(x)

〉
]

,

which implies that the given distribution is an ǫ-local CCE with respect to H with the very same
ǫ. We shall do so by showing that, for each i ∈ N and each t ∈ [0, T ],

〈

PT CXi
(xi)[∇ih(x)],∇iui(x)

〉

≤
〈

PT CXi
(xi)[∇iui(x)],∇ih(x)

〉

(7)

except on a subset of measure zero of [0, T ]. Here, we supress the time-dependence for the purpose
of parenthesis economy. In this case, first note that

∇ih(x) = PT CXi
(xi)[∇ih(x)] + PNCXi

(xi)[∇ih(x)], and

∇iui(x) = PT CXi
(xi)[∇iui(x)] + PNCXi

(xi)[∇iui(x)].

As a consequence,

〈

PT CXi
(xi)[∇ih(x)],∇iui(x)

〉

≤
〈

PT CXi
(xi)[∇iui(x)],∇ih(x)

〉

⇔
〈

PT CXi
(xi)[∇ih(x)],PNCXi

(xi)[∇iui(x)]
〉

≤
〈

PT CXi
(xi)[∇iui(x)],PNCXi

(xi)[∇ih(x)]
〉

.

Notice that, by the definition of the tangent and normal cones, both the left-hand side and the
right-hand side specify quantities which are non-positive. Therefore, it is sufficient to show that
the right-hand side equals 0 for almost every t ∈ [0, T ].

For the case of the hypercube, we may compute projections coordinate-wise. So suppose that at
time t, PT CXi

(xi)[∇iui(x)]j ·PNCXi
(xi)[∇ih(x)]j < 0. This can only be when |PT CXi

(xi)[∇iui(x)]j | > 0,

hence for some γ(t) > 0, on the interval t′ ∈ (t, t + γ(t)), no hypercube constraint for coordinate
j binds. As a consequence, for t′ ∈ (t, t + γ(t)), PNCXi

(xi)[∇ih(x)]j = 0. Now, denote by T ij the

set of t ∈ [0, T ] such that PT CXi
(xi)[∇iui(x)]j · PNCXi

(xi)[∇ih(x)]j < 0. Then
∑

t∈T ij
γ(t) < T , as

each interval (t, t+ γ(t)) is disjoint. This in turn implies that T ij is countable, as the sum of a set
of strictly positive numbers of uncountable cardinality is unbounded. Therefore, ∪i∈N,j∈Di

T ij is
countable. This is a superset (with potential equality) of t ∈ [0, T ] for which (7) fails to hold for
some player i, which implies our desired result.

These arguments form the basis of the proof methods by which we shall show that projected
online gradient ascent (with discrete steps) can be used to find an ǫ-local or stationary CCE. In
particular, we will first show the approximability of ǫ-stationary CCE by working with a piecewise-
linear approximation of the underlying projected dynamical system; such an approximation will
require invocation of the Lipschitz coefficients of utility gradients. That ǫ-local CCE itself is ap-
proximable will then follow, by arguing that the zero-measure property above is maintained for the
analogue of (7).
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3.1 Tractable approximations via projected gradient ascent

3.1.1 Compact & convex sets of smooth boundary

The first question we answer is that concerning approximability. We will approach the problem for
classes of compact and convex action sets for two classes of action sets for which the problem is
straightforward. The first case concerns the setting in which each Xi possesses a smooth boundary,
of curvature bounded by some K > 0. Dealing with this setting will necessitate the definition of
our online learning algorithms, as well as the use of the local quadratic approximation for surfaces
of bounded curvature in Euclidean space.

We define our approximate projected gradient dynamics first. Given a sequence of decreasing

step sizes ητ > 0 such that
∑∞

τ=0 ητ = ∞ and
∑τ

τ=0 η
2
τ = o

(
∑τ

τ=0 ητ

)

, projected gradient

ascent with equal learning rates has each player i ∈ N play x0i at time τ = 0, and update their
strategies

xτ+1
i = PXi

[xτi + ητ∇iui(x
τ )].

After τ > 0 time steps, the learning dynamics outputs a history (xτ )ττ=0 of play. We proceed
by defining via this history an approximate projected gradient dynamics for the game, via
extending this distribution in a piecewise fashion to a curve x(t) : [0, T ]→ X where T =

∑τ−1
τ=0 ητ .

Towards this end, if there exists τ ′ ∈ N such that t =
∑τ ′−1

τ=0 ητ , then x(t) = xτ
′

. Otherwise, for

t ∈ [0, T ], let t = max
{
∑τ ′−1

τ=0 ητ |τ ′ ∈ N,
∑τ ′−1

τ=0 ητ ≤ t
}

, and fix

x(t) = PXi
[xi + (t− t) · ∇iui(x(t))].

We will then denote ηt ≡ ητ ′ for the τ ′ which determines t.
The first step of the analysis comprises of bounding the difference between dxi(t)

dt and the tangent
cone projection PT CXi

(xi(t))[∇iui(x(t))]. This turns out to be a straightforward matter in this
setting, thanks to the following observation.

Proposition 3.1. Let Xi be a compact and convex set of smooth boundary, and its boundary δXi

has non-negative principal curvature at most K. Then for any t ∈ [0, T ],
∥
∥
∥
∥

dxi(t)

dt
− PT CXi

(xi(t))[∇iui(x(t))]

∥
∥
∥
∥
≤ KGi · (t− t)

1 +KGi · (t− t)
·
∥
∥
∥PT CXi

(xi(t))[∇iui(x(t))]
∥
∥
∥ .

Proof. We shall work in coordinates where xi(t) is at the origin, and ∆xi(t) = xi(t) + (t − t) ·
∇iui(x(t)) = h · e1 for some h ≥ 0, where each e2, e3, ..., edi are principal directions of curvature
for δXi at xi(t). In this case, note that the smoothness of the boundary implies that, for a small
neighbourhood about xi(t), Xi is well-approximated (up to second order in (wℓ)

di
ℓ=2) by the convex

body,

X̃i =

{

w ∈ R
di | w1 ≤

di∑

ℓ=2

−kℓw2
ℓ

}

,

where kℓ is the (principal) curvature in direction eℓ for the surface δXi at point xi(t). Note that by
assumption, kℓ ≤ K for every 2 ≤ ℓ ≤ di. As a consequence, at time t+ ǫ for small ǫ > 0, xi(t+ ǫ)
and the solution to the projection problem

min
w

(w1 − h− ǫg1)
2 +

di∑

ℓ=2

(wℓ − ǫgℓ)
2 subject to w1 ≤

di∑

ℓ=2

−kℓw2
ℓ

11



agree up to first-order terms in ǫ. At any solution, the constraint will bind, leading us to the
unconstrained optimisation problem

min
w

(

−h− ǫg1 −
di∑

ℓ=2

kℓw
2
ℓ

)2

+

di∑

ℓ=2

(wℓ − ǫgℓ)
2.

Now, the first-order optimality conditions are

∀ 2 ≤ ℓ ≤ di, kℓwℓ

(

−h− ǫg1 −
di∑

ℓ=2

kℓw
2
ℓ

)

+ wℓ − ǫgℓ = 0.

For sufficiently small ǫ > 0, at an optimal solution wℓ = O(ǫ) for each ℓ ≥ 2 and
∑di

ℓ=2 kℓw
2
ℓ = O(ǫ2).

Therefore, up to first-order in ǫ, for each ℓ ≥ 2,

wℓ =
ǫgℓ

1 + kℓh
.

This in turn implies that

dxiℓ(t)

dt
=

{

0 ℓ = 1,
gℓ

1+kℓh
ℓ 6= 1.

Therefore, the difference between the velocity of motion and the projection to the tangent cone of
the utility gradient is, for any principal direction ℓ,

(
dxi(t)

dt
− PT CXi

(xi(t))[∇iui(x(t))]

)

ℓ

= −gℓ ·
(

kℓh

1 + kℓh

)

.

By the bound on the magnitude of ∇iui(x(t)) and the feasibility of xi(t), h ≤ Gi · (t− t). In turn,
kℓh

1+kℓh
≤ Kh

1+Kh , by which we have the desired result.

The Lipschitz continuity of ui along with Proposition 3.1 then yields proof of approximation
for an ǫ-stationary CCE.

Theorem 3.2. Whenever all Xi are compact and convex sets with smooth boundary of bounded
principal curvature K, the outcome of approximate projected gradient dynamics satisfies for every
player i,

1

T
·
∫ T

0
dt ·

∣
∣
∣
∣

〈

∇ih(x(t)),PT CXi
(xi(t))[∇iui(x(t))]−

dxi(t)

dt

〉∣
∣
∣
∣
≤ 1

T
· 1
2

(
τ−1∑

τ=0

η2τ

)

·Gh

(

KG2
i + Li

∑

i∈N
Gi

)

.

Then by choice of step-size ητ = 1√
τ+1

, after τ time steps approximate projected gradient dynamics

yields a
(
2d(X)+log(τ)

2
√
τ

)

-stationary CCE with respect to the set of all functions h : X → R with

Lipschitz gradients, where d(X) = maxx,x′∈X ‖x− x′‖ is the diameter of X.

Proof. To see the result, we shall write
〈

∇ih(x(t)),PT CXi
(xi(t))[∇iui(x(t))] −

dxi(t)

dt

〉

=
〈

∇ih(x(t)),PT CXi
(xi(t))[∇iui(x(t))] − PT CXi

(xi(t))[∇iui(x(t))]
〉

(8)

+

〈

∇ih(x(t)),PT CXi
(xi(t))[∇iui(x(t))] −

dxi(t)

dt

〉

. (9)
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We then proceed by taking the absolute value of both sides and applying the triangle inequality.
The magnitude of (8) is bounded, by the Cauchy-Schwarz inequality,

∣
∣
∣

〈

∇ih(x(t)),PT CXi
(xi(t))[∇iui(x(t))]− PT CXi

(xi(t))[∇iui(x(t))]
〉∣
∣
∣

≤ ‖∇ih(x(t))‖‖PT CXi
(xi(t))[∇iui(x(t))] − PT CXi

(xi(t))[∇iui(x(t))]‖
≤ ‖∇ih(x(t))‖‖∇iui(x(t))−∇iui(x(t))‖ ≤ (t− t)GhLi

∑

j∈N
Gj .

Here, the very last inequality uses the bounds on the magnitude of the gradients and the Lipschitz
coefficient of ui, that ‖x(t) − x(t)‖ ≤ (t − t) ·∑j∈N Gj , and that the projection operators onto
closed convex sets in Euclidean space are non-expansive. Meanwhile, the second term (9) satisfies

∣
∣
∣
∣

〈

∇ih(x(t)),PT CXi
(xi(t))[∇iui(x(t))]−

dxi(t)

dt

〉∣
∣
∣
∣

≤ ‖∇ih(x(t))‖‖∇iui(x(t))‖ ·
KGi(t− t)

1 +KGi(t− t)

≤ GhKG2
i (t− t).

Combining the above bounds, we have

1

T
·
∫ T

0
dt ·

∣
∣
∣
∣

〈

∇ih(x(t)),PT CXi
(xi(t))[∇iui(x(t))] −

dxi(t)

dt

〉∣
∣
∣
∣

≤ 1

T
·
∫ T

0
dt · (t− t) ·Gh



KG2
i + Li

∑

j∈N
Gj





=
1

T
·
τ−1∑

τ=0

∫ ητ

0
dt · t ·Gh



KG2
i + Li

∑

j∈N
Gj





=
1

T
· 1
2

(
τ−1∑

τ=0

η2τ

)

·Gh



KG2
i + Li

∑

j∈N
Gj



 .

Then the final approximation bound is obtained,

∣
∣
∣
∣
∣

1

T

∫ T

0
dt ·

∑

i∈N

〈

∇ih(x(t)),PT CXi
(xi(t))[∇iui(x(t))]

〉
∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣

1

T

∑

i∈N

∫ T

0
dt ·

〈

∇ih(x(t)),
dxi(t)

dt

〉
∣
∣
∣
∣
∣

+
1

T

∑

i∈N

∫ T

0
dt ·

∣
∣
∣
∣

〈

∇ih(x(t)),PT CXi
(xi(t))[∇iui(x(t))] −

dxi(t)

dt

〉∣
∣
∣
∣

≤ 1

T
|h(x(T )) − h(x(0))| + 1

T
· 1
2

(
τ−1∑

τ=0

η2τ

)
∑

i∈N
Gh



KG2
i + Li

∑

j∈N
Gj



 .
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Of course, |h(T )−h(0)| ≤ Ghd(X), so setting poly( ~G, ~L,Gh, Lh) = Gh

∑

i∈N
(

1 +KG2
i + Li

∑

j∈N Gj

)

for Definition 6 yields the desired result.

It remains to show the approximability of an ǫ-local CCE with respect to the set of all dif-
ferentiable functions h : X → R with Lipschitz gradients. This, again, follows from a tangency
argument.

Theorem 3.3. Whenever all Xi are compact and convex sets with smooth boundary of bounded
principal curvature K, the outcome of approximate projected gradient dynamics satisfies for every
player i,

1

T
·
∫ T

0
dt ·

〈

∇iui(x(t))−
dxi(t)

dt
,PT CXi

(xi(t))[∇ih(x(t))]

〉

≤ 1

T
· 1
2

(
τ−1∑

τ=0

η2τ

)

·Gh



KG2
i + Li

∑

j∈N
Gj



 .

Then by choice of step-size ητ = 1√
τ+1

, after τ time steps approximate projected gradient dynamics

yields a
(
2d(X)+log(τ )

2
√
τ

)

-local CCE with respect to the set of all functions h : X → R with Lipschitz

gradients, where d(X) = maxx,x′∈X ‖x− x′‖ is the diameter of X.

Proof. Note that for any t ∈ [0, T ] and for every player i,
〈

PT CXi
(xi(t))[∇ih(x)],∇iui(x(t))

〉

≤
〈

PT CXi
(xi(t))[∇ih(x)],∇iui(x(t)) −∇iui(x(t))

〉

(10)

+
〈

PT CXi
(xi(t))[∇ih(x)],PNCXi

(xi(t))[∇iui(x(t))]
〉

(11)

+

〈

PT CXi
(xi(t))[∇ih(x)],PT CXi

(xi(t))[∇iui(x(t))]−
dxi(t)

dt

〉

(12)

+

〈

PT CXi
(xi(t))[∇ih(x)],

dxi(t)

dt

〉

. (13)

The terms (10) and (12) yield the very same bounds as in the proof of Theorem 3.2. Meanwhile,
(11) is ≤ 0 by definition of the tangent and the normal cones. As for (13), the normal vector

component of dxi(t)
dt equals 0 except potentially on a set of measure zero by an argument analogous

to the one made for hypercubes in Section 3. As a consequence, for almost every t ∈ [0, T ],
〈

PT CXi
(xi(t))[∇ih(x)],

dxi(t)

dt

〉

=

〈

∇ih(x),
dxi(t)

dt

〉

.

The discussion in this section demonstrates common themes regarding the connection between
local CCE, stationary CCE, and the projected gradient dynamics of the underlying smooth game.
Approximate projected gradient dynamics provides an approximate stationary CCE, and simul-
taneously an approximate local CCE, as the tangency of the motion through the strategy space
implies that as far as the gradient dynamics are concerned, a local CCE is a relaxation of a sta-
tionary CCE. Meanwhile, the complexity of approximation is determined via the properties of
the boundary of the strategy space, with approximation guarantees deteriorating linearly with the
maximum curvature. All these features will be reobserved in the discussion that follows, where we
turn our attention to polyhedral action sets.
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3.1.2 On polyhedral sets

In this section, we will discuss the approximability of stationary and local CCE for smooth games,
when the action set Xi of each player i is polyhedral; that is to say, for each player i, there
exists Ai ∈ R

mi×di and bi ∈ R
mi such that Xi = {x ∈ R

di | Aix ≤ bi}. We shall assume,
without loss of generality, that all involved polyhedra have volume in R

d
i , and each Aix ≤ bi has

no redundant inequalities. Moreover, the rows aij of each Ai will be assumed to be normalised,
‖aij‖ = 1 ∀ i ∈ N, j ∈ mi. With that in mind, we begin by defining the class of polyhedra of
interest, over which approximation of stationary or local CCE is “easy”.

Definition 7. A polyhedron {x ∈ R
d | 〈aj , x〉 ≤ bj ∀ j ∈ m} is said to be acute if for every

distinct j, j′ ∈ m,
〈
aj , aj′

〉
≤ 0.

Examples of acute polyhedra include potentially the most “game-theoretically relevant” polyhe-
dra, the hypercube and the simplex. That the hypercube is acute in this sense is straightforward:
for each ℓ ∈ di, the constraints −xiℓ ≤ 0 and xiℓ ≤ 1 have negative inner product for the corre-
sponding rows of A, while any other distinct pairs of rows of A are orthogonal. In turn for the
simplex, factoring out the constraint

∑di
ℓ=1 xi = 1, we are left with the set of inequalities,

∀ ℓ ∈ di, xiℓ −
di∑

ℓ′=1

1

n
xiℓ′ ≥ −

1

n
.

For any distinct ℓ, ℓ′′, the inner product of the vectors associated with the left-hand side of these
constraints is then

〈

eiℓ −
di∑

ℓ′=1

1

n
eiℓ′ , eiℓ′′ −

di∑

ℓ′=1

1

n
eiℓ′

〉

= − 1

n
− 1

n
+

1

n
< 0.

As mentioned, the importance of acute polyhedra is that linear optimisation over them is trivial;
a greedy algorithm suffices. Moreover, over such polyhedra xi(t) always follows the tangent cone
projection of ∇iui(x(t)), rendering the approximate projected gradient dynamics faithful. The
latter statement is the one we need for the desired approximation bounds, which is proven in the
following lemma.

Lemma 3.4. Suppose that X = {x ∈ R
d | 〈aj, x〉 ≤ bj ∀ j ∈ m} is an acute polyhedron in R

d,
x∗ ∈ X, and g ∈ R

d. Then for x(t) = PX [x∗ + t · g],

dx(t)

dt
= PT CX(x(t))[g].

Proof. Without loss of generality, we will work in coordinates such that x∗ = 0. Consider the
projection problem for any t′ ≥ 0,

min
x

1

2
‖x− t′ · g‖2 subject to Ax ≤ b.

Its dual problem is given,

max
µ≥0
−1

2
‖ATµ‖2 +

〈
µ, t′ · Ag − b

〉
.
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Now, given a sequence t′ > t decreasing to t′ ↓ t, there is an infinitely repeated set of active rows
J = {j ∈ m | µj(t

′) > 0} for the optimal solutions µ(t′) to the dual projection problem. This is
necessarily the set of active and relevant constraints at time t, and for the corresponding |J | × d
submatrix B of A,

µj(t
′) = ((BBT )−1[t′ ·Bg − b])j ,

for t′ ≥ t sufficiently close to t. In particular, dµ(t)j/dt = [(BBT )−1Bg]j whenever j ∈ J and zero
otherwise, while dx(t)/dt = g −BT (BBT )−1Bg.

Now, the acuteness condition implies that the off-diagonal elements of BBT are non-positive,
whereas it is both positive semi-definite and invertible; implying it is positive definite. Therefore,
by [35] (Theorem 4.3, 9◦ and 11◦), (BBT )−1 has all of its entries non-negative. Meanwhile, by
feasibility of x∗, b has all of its entries non-negative, which implies that (BBT )−1b also has only
non-negative entries. Therefore, dµj(t)/dt = (µj(t) + [(BBT )−1b]j)/t > 0 for every row j which is
active, and zero otherwise.

Thus all that remains to show is that PT CX(x)[g] = g − BT (BBT )−1Bg. Let I ⊆ m be the set
of constraints which bind at x(t) (but potentially, for j ∈ I, dµ(t)j/dt = 0), and C the associated
|I| ×m submatrix of A. Then consider the tangent cone projection problem

min
x

1

2
‖x− g‖2 subject to Cx ≤ 0.

The dual projection problem is then,

max
ν≥0
−1

2
‖CT ν‖2 + 〈ν,Cg〉 .

We need to show that ν = (BBT )−1Bg is an optimal solution. But this is immediate now, as the
feasibility of x(t)+∆t · (g−BT (BBT )−1Bg) for small ∆t implies that x = g−BT (BBT )−1Bg is a
feasible solution to the tangent cone projection problem, with solution value gTBT (BBT )−1Bg/2.
Meanwhile, the given ν = dµ(t)/dt is dual feasible, with the same solution value. By weak duality,
both solutions are necessarily optimal.

Remark. The implications of Lemma 3.4 were already proven for the hypercube and the simplex
in [54], in which the authors study approximations of projected gradient dynamics. Indeed, the
analysis here is in a similar vein in that we track the time evolution of the projection curve, though
we identify and exploit features of the polyhedron which makes linear optimisation over it trivial.

It turns out that for acute polyhedra, it is possible to prove stronger approximation guarantees
than the general case. Intuitively, that the approximate motion never fails to move along the
tangent of utility gradients results in well-approximability of the projected gradient dynamics of
the smooth game.

Theorem 3.5. Whenever all Xi are acute polyhedra, the outcome of the approximate gradient
dynamics satisfies

1

T
·
∫ T

0
dt ·

∣
∣
∣
∣

〈

∇ih(x(t)),PT CXi
(xi(t))[∇iui(x(t))] −

dxi(t)

dt

〉∣
∣
∣
∣
≤ 1

T
· 1
2

(
τ−1∑

τ=0

η2τ

)

·GhLi

∑

i∈N
Gi.

As a consequence, by choice of step-size ητ = 1/
√
1 + τ , approximate projected gradient dynamics

yields a
(
2d(X)+log(τ)

2
√
τ

)

-stationary CCE with respect to the set of all functions h : X → R with

Lipschitz gradients. The same bound also holds for the approximability of local CCE.
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Proof. Near identical to the proof of Theorem 3.2 and Theorem 3.3, except by Lemma 3.4

PT CXi
(xi(t))[∇iui(x(t))]−

dxi(t)

dt
= 0,

implying that there are no projection losses. However, we nevertheless need an alternative argument
that for almost every t ∈ [0, T ],

〈

PNCXi
(xi(t))[∇ih(x(t))],

dxi(t)

dt

〉

= 0.

Now, by [54] (Lemma 2), the curve xi(t) is piecewise linear whenever Xi is polyhedral. Then, a

constraint 〈aij , xj〉 ≤ bij binds over an interval (t, t+ǫ) only if
〈

aij ,
dxi(t)
dt

〉

= 0 for such t. However,

PNCXi
(xi(t))[∇ih(x(t))] =

∑

j µj(t)aij for such binding constraints aij and some µj(t) ≥ 0, which
implies the desired result.

The interesting case is thus when the polyhedra we consider are not acute. This is counter-
intuitive; acuteness in a sense implies that smooth boundary approximations of the convex body
would have very high curvature, a condition under which the differential regret guarantees of
approximate projected gradient dynamics deteriorates. However, acute polyhedra in turn enjoy
even better convergence guarantees. Meanwhile, the case for general polyhedra remains open.

3.2 Duality and Lyapunov arguments

After our proofs of approximability, we proceed by discussing the appropriate primal-dual frame-
work for ǫ-stationary CCE. Our approach is motivated by the possibility of strengthening primal-
dual efficiency analysis for the outcomes of learning algorithms. Often, in the analysis of games, the
object of interest is performance guarantees attached to an equilibrium concept and not necessarily
the exact form of equilibrium. That is to say, given an equilibrium concept E ⊆ 2∆(X), and a
continuous “welfare” function q : X → R, one may consider a bound on the worst case performance

infσ∈E Ex∼σ[q(x)]

maxx∈X q(x)
.

This quantity is often referred to as the price of anarchy of the game, while the related notion of
price of stability bounds the best case performance in equilibria,

supσ∈E Ex∼σ[q(x)]

maxx∈X q(x)
.

Most methods of bounding such expectations fall under two classes of a so-called primal-dual
method. One class of such methods argues the bounds via the lens of primal-dual approximation
algorithms, writing a primal LP (“configuration LP”) coresponding to performance (e.g. welfare)
maximisation, and obtaining via the equilibrium conditions a solution for its dual minimisation
LP. If the equilibrium is good, the constructed dual solution has value a constant factor of the
performance of the equilibrium, which provides the desired result. An in-depth discussion on this
approach might be found in [58]; we remark that this is not the primal-dual framework of interest
here.
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Another class of primal-dual methods argue directly via a primal problem over the set of equi-
libria. Here, the primal LP has as its variables probability distributions over X, and is subject to
equilibrium constraints. The objective is to minimise or maximise q(x), corresponding respectively
to computing the price of anarchy or stability up to a factor of maxx∈X q(x). For instance, (by
the arguments in [55]) the smoothness framework of [65] as well as the price of anarchy bounds for
congestion games by [13] both fall under this umbrella. The question is whether such arguments
may be extended for the outcomes of gradient ascent.

The answer, of course, is yes; and for the concept of equilibrium of choice it is more enlightening
to invoke ǫ-stationary CCE constraints rather than ǫ-local CCE constraints. To wit, given the
function q, consider the following measure valued (infinite dimensional) LP,

inf
σ≥0

∫

X
dσ(x) · q(x) subject to (14)

∫

X
dσ(x) = 1 (γ)

∀ h ∈ H,
∑

i∈N

∫

X
dσ(x) ·

〈

∇ih(x),PT CXi
(xi)[∇iui(x)]

〉

= 0. (µ(h))

The Lagrangian dual of (14) may then be naively written,

sup
γ,µ

γ subject to (15)

∀ x ∈ X, γ +

∫

H
dµ(h) ·

∑

i∈N

〈

∇ih(x),PT CXi
(xi)[∇iui(x)]

〉

≤ q(x). (σ(x))

Here, γ is some real number, while µ is assumed to be “some measure” on H. Of course, we may
simply pick a dual solution µ which places probability 1 on some element h ∈ H. Under such a
restriction, the dual problem is then

sup
γ∈R,h∈H

γ subject to (16)

∀ x ∈ X, γ +
∑

i∈N

〈

∇ih(x),PT CXi
(xi)[∇iui(x)]

〉

≤ q(x). (σ(x))

Note that the dual is always feasible. Whether weak duality between the primal LP (14) and
either one of the dual problems (15) or (16) depends on the specification of the vector spaces the
primal and dual variables live in, and as a consequence whether they form a dual pair in the sense
of [3, 69].

However, given a differentiable h : X → R with Lipschitz gradients, and the outcome of ap-
proximate gradient dynamics x : [0, T ]→ X, such dual arguments are always valid, as the integral
along the curve x exists. In particular, if

γ = min
x∈X

q(x)−
∑

i∈N

〈

∇ih(x),PT CXi
(xi)[∇iui(x)]

〉

,
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then the time expectation of q(x(t)) satisfies

1

T

∫ T

0
dt · q(x(t)) ≥ 1

T

∫ T

0
dt ·

(

γ +
∑

i∈N

〈

∇ih(x(t)),PT CXi
(xi(t))[∇iui(x(t))]

〉
)

≥ γ − 1

T

∫ T

0

∣
∣
∣
∣
∣

∑

i∈N

〈

∇ih(x(t)),PT CXi
(xi(t))[∇iui(x(t))]

〉
∣
∣
∣
∣
∣

≥ γ − poly( ~G, ~L,Gh, Lh) ·
(
2d(X) + log(τ)

2
√
τ

)

for step-sizes ητ = 1
√
τ + 1. Moreover, whenever q(x) is also differentiable with Lipschitz gradients,

the order of the dependence of the convergence rate on τ is maintained also for projected gradient
ascent. This can be shown via the trivial bound on the difference between the expectations of q(x)
for the two resulting distributions; note that for each t ∈ [0, T ],

|q(x(t)) − q(x(t))| ≤
∣
∣
∣
∣
〈x(t)− x(t),∇q(x)〉 + 1

2
Lq‖x(t)− x(t)‖2

∣
∣
∣
∣

≤ (t− t) ·



Gq

∑

i∈N
Gi +

1

2
Lq

∑

i,j∈N
GiGj



 ,

where we use the fact that by our choice of step-sizes, t− t ≤ 1 for every t ∈ [0, T ]. Therefore,

1

T

∣
∣
∣
∣
∣

τ−1∑

τ=0

ητq(x
τ )−

∫ T

0
dt · q(x(t))

∣
∣
∣
∣
∣
=

1

T
·
τ−1∑

τ=0

∫ ητ

0
dt · t ·



Gq

∑

i∈N
Gi +

1

2
Lq

∑

i,j∈N
GiGj





≤ 1

T

(
τ−1∑

τ=0

η2τ

)

· (Gq + Lq)poly( ~G, ~L,Gh, Lh).

Theorem 3.6. Suppose that q(x) is a continuous function, and γ, h are solutions to (16). Then
with step-sizes ητ = 1/(

√
τ + 1), after τ steps, the outcome of approximate projected gradient

dynamics x(t) : [0, T ]→ X satisfies,

1

T

∫ T

0
dt · q(x(t)) ≥ γ − poly( ~G, ~L,Gh, Lh) ·

(
2d(X) + log(τ)

2
√
τ

)

.

If also q(x) is differentiable with Lipschitz gradients, then the outcome of projected gradient ascent
(xτ )ττ=0 satisfies

1

T

τ−1∑

τ=0

ητq(x
τ ) ≥ γ − poly( ~G, ~L,Gh, Lh) ·

(
2d(X) + log(τ ) +Gq + Lq

2
√
τ

)

.

We shall call a dual solution h a (generalised) Lyapunov functions, following the nomenclature
in [37]. The insight is that not only such functions can describe worst- and best- case behaviour
of approximate or exact gradient dynamics of the game as far as bounding the performance of
ǫ-stationary CCE is concerned, they are necessarily the form of dual solutions in the primal-dual
framework one may consider constructing from such CCE. Moreover, whenever a dual solution
certifies uniqueness of equilibrium it is necessarily a Lyapunov function in the traditional sense, as
the following example demonstrates.
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Example 1. Here, we shall show that the CCE of finite normal-form games and an (0,ΦProj(δ))-
local CE (in the sense of Definition 2) are equivalent3. Inspection of a optimal dual proof of
uniqueness of equilibrium will then take the form of a quadratic Lyapunov function.

Consider a finite normal-form game, with a set of players N , players’ pure action sets (Ai)i∈N ,
and utilities (Ui : ×i∈NAi → R)i∈N . The continous extension of the game has action sets Xi =
∆(Ai), the probability simplex over Ai, and utilities ui(x) =

∑

a∈A
(∏

i∈N xi(ai)
)
ui(a) are given

via expectations. Then, for an arbitrary δ ∈ (0, 1), a (0,ΦProj(δ))-local CE is a distribution σ which
satisfies

∀i ∈ N,∀x∗i ∈ Xi,Ex∼σ[ui((1 − δ)xi + δx∗i , x−i)− ui(x)] ≤ 0.

Expanding the left-hand side, we have

Ex∼σ[ui((1− δ)xi + δx∗i , x−i)− ui(x)]

=

∫

X
dσ(x) ·

∑

a∈A




∏

j∈N\{i}
xj(aj)



 · ((1− δ)xi(ai) + δx∗i (ai)− xi(ai)) · ui(a)

= δ ·
∑

a∈A





∫

X
dσ(x) · (x∗i (ai)− xi(ai)) ·




∏

j∈N\{i}
xj(aj)







 · ui(a)

= δ ·
∑

a∈A





∫

X
dσ(x) ·




∑

a′i∈Ai

x∗(a′i) · (δ(a′i, ai)− xi(ai))



 ·




∏

j∈N\{i}
xj(aj)







 · ui(a)

= δ ·
∑

a′i∈Ai

x∗(a′i) ·
∑

a∈A





∫

X
dσ(x) · (δ(a′i, ai)− xi(ai)) ·




∏

j∈N\{i}
xj(aj)







 · ui(a)

= δ ·
∑

a′i∈Ai

x∗(a′i) ·
∑

a∈A
σ′(a) · (ui(a′i, a−i)− ui(a)),

where we write δ(a′i, ai) for the Kronecker delta and define σ′(a) =
∫

X dσ(x) ·
(
∏

j∈N xj(aj)
)

. Also,

to improve readability we denote
∫

X dµ(x) · f(x) as
∫

X f(x)dµ(x). Finally, the last equality follows
since

∑

a∈A

∫

X
dσ(x) · δ(a′i, ai) · ui(a) ·




∏

j∈N\{i}
xj(aj)





=
∑

a−i∈A−i

∫

X
dσ(x) · ui(a′i, a−i) ·




∏

j∈N\{i}
xj(aj)





=
∑

a−i∈A−i

∫

X
dσ(x) · ui(a′i, a−i) ·




∏

j∈N\{i}
xj(aj)



 ·




∑

ai∈Ai

xi(ai)





︸ ︷︷ ︸

=1

=
∑

a∈A
σ′(a) · ui(a′i, ai).

3This was remarked by Constatinos Daskalakis in a private correspondence.
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Then as a consequence, for each player i and each x∗i ∈ ∆(Ai), the associated local CCE
constraint is simply a convex combination of constraints

∀a′i ∈ Ai,
∑

a∈A
σ′(a) · (ui(a′i, a−i)− ui(a)) ≤ 0.

This is precisely the usual coarse correlated equilibrium constraint for the finite normal-form game.
Now we consider what a primal-dual proof of uniqueness of such a local CCE looks like. Suppose

that the probability distribution which places probability 1 on x∗ ∈ X is the unique local CCE of the
game, then the measure valued primal problem

max
σ≥0

∫

X
dσ(x) · ‖x− x∗‖2 subject to (17)

∀i ∈ N,∀a′i ∈ Ai,
∑

a∈A
σ′(a) · (ui(a′i, a−i)− ui(a)) ≤ 0 (d(i, a′i))

∫

X
dσ(x) = 1 (ω)

has value 0. First, note that by the convexity of the objective in x and the form of constraints
d(i, a′i), we may assume that the optimal solution σ concentrates all probability on pure action
profiles. But that implies that we simply have the standard LP over the set of CCE (in the usual
sense) of the normal-form game,

max
σ′≥0

∑

a∈A
σ′(a) ·

∑

i∈N
‖xi(ai)− x∗i (ai)‖2 subject to (18)

∀i ∈ N,∀a′i ∈ Ai,
∑

a∈A
σ′(a) · (ui(a′i, a−i)− ui(a)) ≤ 0 (d(i, a′i))

∑

a∈A
σ′(a) = 1 (ω)

For this LP to have value 0, x∗i (ai) must necessarily be {0, 1}-valued; otherwise, the objective is
strictly positive for the LP. So we have that x∗i (ai) = δ(a∗i , ai) for each player i, and some action
profile a∗. The associated dual LP is given, after scaling the primal objective by 1/2,

min
ω∈R,d≥0

ω subject to (19)

∀ a ∈ A,ω +
∑

i∈N,a′i∈Ai

d(i, a′i) · (ui(a′i, a−i)− ui(a)) ≥
∑

i∈N
1− δ(ai, a

∗
i ). (σ′(a))

By [1] (Proposition 3.1), any tight dual solution d∗ necessarily has d∗(i, a′i) > 0⇔ a′i = a∗i , and this
condition is in fact equivalent to a unique CCE of the finite normal-form game in pure strategies.
Letting hi(xi|a′i) = −1

2‖xi − eia′i‖
2 and noting that

∑

a∈A
σ′(a) · (ui(a′i, a−i)− ui(a)) =

∫

X
dσ(x) ·

〈
∇ihi(xi|a′i),∇iui(x)

〉
,
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a tight solution to the dual problem of (17)4,

min
ω∈R,µ≥0

ω subject to (20)

∀ x ∈ X,ω +
∑

i∈N,a′i∈Ai

µ(i, a′i) ·
〈

∇i[−‖xi − eia′i‖
2/2],∇iui(x)

〉

≥ 1

2
‖x− x∗‖2, (σ′(a))

is given by µ(i, a′i) = d∗(i, a′i) and ω = 0. Finally, note that

〈
∇ihi(xi|a′i),∇iui(x)

〉
≤
〈

∇ihi(xi|a′i),PT CXi
(xi)[∇iui(x)]

〉

,

since ∇ihi(xi|a′i) ∈ T CXi
(xi) and hence

〈

∇ihi(xi|a′i),PNCXi
(xi)[∇iui(x)]

〉

≤ 0. As a consequence,

we have

∑

i∈N
d∗(i, a∗i )

〈

∇ihi(xi|a∗i ),PT CXi
(xi)[∇iui(x)]

〉

≥ 1

2
‖x− x∗‖2 > 0 ∀ x ∈ X,x 6= x∗, and

∑

i∈N
d∗(i, a∗i )

〈

∇ihi(xi|a∗i ),PT CXi
(x∗

i )
[∇iui(x

∗)]
〉

= 0,

where the first inequality is by dual optimality and the second inequality is because ∇ihi(x
∗
i |a∗i ) = 0

for any i ∈ N .

Example 1 shows that, as PT CXi
(xi)[∇iui(x)] =

dxi(t)
dt for the projected gradient dynamics of the

smooth game,
∑

i∈N d∗(i, a∗i ) · hi(xi|a∗i ) is necessarily a Lyapunov function in the usual sense.

Proposition 3.7. A finite normal-form game has a unique local CCE which assigns probability
1 to a mixed-strategy profile x∗ if and only if x∗ is a Nash equilibrium in pure strategies and the
convergence of the game’s projected gradient dynamics to x∗ may be proven via a Lyapunov function
of the form h(x) =

∑

i∈N −Ci · ‖xi − x∗i ‖2 for some constants Ci > 0.

This motivates the use of the notions of stationary and local CCEs as refinements of the classical
notion of a CCE, and then employ the resulting incentive constraints in primal-dual arguments.
We conclude the section with an example on how the primal-dual framework may be used to argue
about performance bounds or qualitative exact or approximate dynamics for standard normal form
games. The main takeaway is, to put it lightly, that constructing and checking the validity of dual
solutions can be rather laborious.

Example 2 (Matching Pennies). Consider the canonical example for a game in which the gradient
dynamics necessarily cycle, matching pennies. Up to reparametrisation of the strategy space, there
are two players, whose utility functions [−1, 1]2 → R are given

u1(x1, x2) = −x1x2,
u2(x1, x2) = x1x2.

The unconstrained projected gradient dynamics then satisfy, if r(0)2 = x21(0) + x22(0) ≤ 1, x1(t) =
r · cos(t + φ), x2(t) = r · sin(t + φ) for some “phase angle” φ. If r(0) > 1, however, projections

4Recall, after scaling the objective by a factor 1/2.
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at the edge of a box suppresses the radius of motion down to 1 by some time t′ > 0, and for each
t ≥ t′, (x1(t), x2(t)) = (cos(t + φ), sin(t + φ)). Therefore, any stationary probability distribution
σ ∈ ∆([−1, 1]2) must be rotationally symmetric, with support on the disc D = {(x1, x2) |x21 + x22 ≤
1}. The goal here is to present the form of generalised Lyapunov functions h which certify these
bounds, at least approximately, such that they provide convergence guarantees also for approximate
projected gradient dynamics.

For the bound on the radius, by the LP based arguments in this section, we seek a suitable
function h : [−1, 1]2 → R and a small δ > 0 such that

min
x1,x2∈[−1,1]

x21 + x22 −
(

∇1h(x)PT C[−1,1](x1)[−x2] +∇2h(x)PT C[−1,1](x2)[x1]
)

︸ ︷︷ ︸

“dh(x)/dt′′

≤ 1 + δ.

Here, we abuse notation by considering time dependent quantities given suitable initial conditions
for the projected gradient dynamics. Now, consider setting,

h(x) =







0 x21 + x22 ≤ 1

− M1(r−1)2

1+M1(r−1) ·M2 · arctan(x1/x2) x21 + x22 > 1, x1x2 > 0

− M1(r−1)2

1+M1(r−1) ·M2 · arctan(−x2/x1) x21 + x22 > 1, x1x2 ≤ 0

for some constants M1,M2 > 0 to be determined later. By construction, h is continuously differ-
entiable with Lipschitz gradients. On the disc D, ∇h(x) = (0, 0), whereas for any x21 + x22 > 1,
by symmetry of the dynamics under rotations by π/2, it is sufficient to consider the case when
x1, x2 > 0. In this case, if x2 < 1, then no projections occur, and

dh(x)

dt
=

d

dt

[

− M1(r − 1)2

1 +M1(r − 1)
·M2 · arctan(x1/x2)

]

=
M1M2(r − 1)2

1 +M1(r − 1)
,

in which case we have

r2 − dh(x)/dt = r2 − M2M1(r − 1)2

1 +M1(r − 1)
.

We would like to bound this quantity. Denote x = r − 1, and suppose that x ≤ 1/M1. Then

(1 + x)2 − M1M2x
2

1 +M1x
≤ (1 + x)2 − M1M2x

2

2
=

(

1− M1M2

2

)

x2 + 2x+ 1.

This bound is maximised, when M1M2/2 > 1, whenever x = 1/(−1 + M1M2/2), with value 1 +
2/(M1M2 − 2). Meanwhile, if x > 1/M1, then 1 < M1x, and

(1 + x)2 − M1M2x
2

1 +M1x
≤ (1 + x)2 − M1M2x

2

2M1x
= x2 +

(

2− M2

2

)

x+ 1.

This function is convex, so it attains its maximum over the feasible interval for x ∈ [0,
√
2 − 1].

When x = 0 the bound equals 1, whereas if x =
√
2− 1, whenever

(
√
2− 1)2 + (

√
2− 1)

(

2− M2

2

)

+ 1 ≤ 1⇔M2 ≥ 2(
√
2 + 1)
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the bound is ≤ 1. As the bounds will generally improve in M1, we will also fix M2 = 10 at this
point for convenience.

If instead x2 = 1 then “dx2/dt
′′ = PT C[−1,1](x2)[x1] = 0, and we have

h(x) = −
M1

(√

1 + x21 − 1
)2

1 +M1(
√

1 + x21 − 1)
· 10 arctan(x1),

dh(x)

dt
= −10M1 ·

(
dx1
dt

)

︸ ︷︷ ︸

=−1

· d

dx1

[

arctan(x1)(
√

1 + x21 − 1)2

1 +M1(
√

1 + x21 − 1)

]

=
10M1(

√

1 + x21 − 1)
√

1 + x21(1 +M1(
√

1 + x21 − 1))

·
[√

1 + x21 − 1
√

1 + x21
+

2arctan(x1)x1 +M1x1 arctan(x1)(
√

1 + x21 − 1)

1 +M1(
√

1 + x21 − 1)

]

≥ 10M1(r − 1)

r(1 +M1(r − 1))

[

1− 1

r

]

≥ 5M1(r − 1)2

(1 +M1(r − 1))
,

where as r ≤
√
2, 1− 1/r ≥ (r− 1)/

√
2. To bound r2− dh(x)/dt, we again consider the cases when

r − 1 < 1/M and r − 1 ≥ 1/M . In the former case,

r2 − 5M1(r − 1)2

(1 +M1(r − 1))
≤ r2 − 5M1(r − 1)2

2
,

which is maximised for r = 1 + 2
5M1−2 with the same value. Meanwhile, if r − 1 ≥ 1/M , then

r2 − 5M1(r − 1)2

1 +M1(r − 1)
≤ r2 − 5(r − 1)

2
= (1 + x)2 − 5x

2
,

defining x = r − 1 ∈ [0,
√
2 − 1]. Again by the convexity of the expression, it is sufficient to check

its values at its endpoints; setting x = 0 results in a bound of 1, while setting x =
√
2− 1 results in

a bound 2− 5(
√
2− 1)/2 < 1. As a consequence, h proves a bound of

δ = min

{
2

10M1 − 2
,

2

5M1 − 2

}

=
2

5M1 − 2
.

Now, note that the convergence bound for approximate projected gradient dynamics proven in The-
orem 3.5 depend linearly in Gh. However, Gh admits a constant bound independent of choice of
M1 in this setting. As a consequence, h can be chosen as an arbitrarily tight dual solution for the
gradient dynamics of the matching pennies game by letting M1 → ∞, and approximate projected
gradient dynamics after τ time steps and step sizes ητ ∼ 1√

τ+1
results in a distribution with expected

square radius at most 1 +O(log(τ )/
√
τ).

Finally, we would like to provide an approximate dual proof that any stable distribution is
approximately rotationally invariant. Towards this end, consider a function q : [−1, 1] → R which
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is rotationally symmetric, i.e. q(x1, x2) = p(r) · sin(k · θ + φ) for some function p : [0,
√
2] → R

differentiable with p(0) = 0, θ is the angle in polar coordinates corresponding to x1 and x2, k ∈ Z

is the associated frequency, and φ ∈ R is again some phase angle. For any rotationally symmetric
stationary distribution σ ∈ ∆([−1, 1]2), via Fourier decomposition-based arguments, it must be the
case that Ex∼σ[q(x)] = 0.

Towards this end, let ℓ(x1, x2) = p(r) · cos(kθ + φ)/k. In the region without projections,
dℓ(x)/dt = q(x), and therefore ℓ forms an exact Lyapunov function for q whenever projections
are not needed. To handle the region where projections are needed, consider ℓ + A · h for the h
previously defined for some choice of M1 ← M > 0 and some A > 0, and by the symmetry of the
problem without loss of generality restrict attention to the case when x2 = 1, x1 > 0. In this case,

dr

dt
=

d

dt

√

1 + x21 =
−x1
r

,
dθ

dt
=

d

dt
[π/2− arctan(x1)] =

1

1 + x21
.

Therefore,
d(ℓ+Ah)(x)

dt
= −x1p

′(r) sin(kθ + φ)

k
√

1 + x21
+

q(x)

1 + x21
︸ ︷︷ ︸

(∗)

+A
dh(x)

dt
.

Note that by a similar treatment as the previous setting, via considering M → ∞ and picking A
sufficiently large, we may acquire a family of dual solutions which prove convergence. In the interest
of brevity, we shall argue about the asymptotic case. In the large M limit, dh(x)/dt ≥ 5 whenever
1 ≥ x1 > 0, x2 = 1, while (∗) is bounded on that set by Cx1 for some constant x1. Therefore, a
fixed choice of constant A is sufficient to provide a family of increasingly tighter dual solutions for
bounds on the expected value of |q(x)|. In particular, we again conclude that approximate projected
gradient dynamics, after τ time steps and step sizes ητ ∼ 1√

τ+1
, provides a probability distribution

for which |q(x)| ≤ O(log(τ)/
√
τ) in expectation.

4 On Local Correlated Equilibria

We now turn our attention to when local or stationary correlated equilibria are approximable.
Unlike the case for local coarse correlated equilibria, here we do not expect a tractable “universal
approximation scheme”. Indeed, if F contains all vector fields which have Lipschitz modulus ≤ L,
for any smooth game F contains the vector field (L/Li) ·(∇iui) for each player i. As a consequence,
any such ǫ-local (or stationary) CE σ satisfies the inequalities

Ex∼σ

〈

PT CXi
(xi)[∇iui(x)],∇iui(x)

〉

≤ ǫ · poly( ~G, ~L,G,L) ∀ i ∈ N.

For small enough ǫ, the support of the approximate local CE contains an approximate local Nash
equilibrium, for which no polynomial time algorithm is known.

However, by an analogue of the argument in Example 1, ǫ-correlated equilibria for normal form
games is equivalent to an ǫ-local CE with respect to the set of gradient fields,

F = {xi(ai) · (eia′i − eiai) | i ∈ N, ai, a
′
i ∈ Ai}.
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Indeed, for any player i and any x ∈ ×i∈N∆(Ai) ≡ X,

∇iui(x)ai =
∑

a−i∈A−i




∏

j 6=i

xj(aj)



 · ui(ai, a−i)

⇒ xi(ai) ·
〈

eia′i − eiai ,∇iui(x)
〉

= xi(ai) ·
∑

a−i∈A−i




∏

j 6=i

xj(aj)



 · (ui(a′i, a−i)− ui(ai, a−i))

= xi(ai) · Ea−i∼x−i
[ui(a

′
i, a−i)− ui(ai, a−i)].

Therefore, for σ ∈ ∆(X), defining σ′ to be the probability distribution on A induced by σ,

∫

X
dσ(x) · xi(ai) ·

〈

eia′i − eiai ,∇iui(x)
〉

=

∫

X
dσ(x) · xi(ai) ·

∑

a−i∈A−i




∏

j 6=i

xj(aj)



 · (ui(a′i, a−i)− ui(ai, a−i))

=
∑

a−i∈A−i





∫

X
dσ(x) · xi(ai) ·

∏

j 6=i

xj(aj)



 · (ui(a′i, a−i)− ui(ai, a−i))

=
∑

a−i∈A−i

σ′(ai, a−i) · (ui(a′i, a−i)− ui(ai, a−i)).

The final term is, of course, the left hand side of the usual (linear) correlated equilibrium constraints
for a normal form game. As efficient algorithms for computing approximate correlated equilibria
exist, we conclude that there might exist tractable algorithms to compute local or stationary CE
for appropriately chosen families of vector fields F . This is indeed the case, independent of the
(non)-convexity of the continuous game, as we will show in the following section.

4.1 Regret matching and approximability of ǫ-local and -stationary equilibria

Our promise of the approximability of local correlated equilibria in fact follows from standard regret
matching algorithms, e.g. [71, 43, 39, 40]. Whenever the family of vector fields F has finitely many
elements, we show that such algorithms are applicable to obtain O(1/

√
T )-stationary correlated

equilibria after T iterations, provided we have access to a fixed-point oracle for every linear com-
bination over F . Such guarantees are also apply to O(1/

√
T )-local correlated equilibria, provided

each f ∈ F satisfies a tangency condition. Whenever we are also guaranteed that ‖∑f∈F µff‖2 is
a convex function for every µ : F → R+, a fixed-point may be computed as the solution of a convex
problem. This setting subsumes usual correlated equilibria of normal form games as a special case,
and we demonstrate by example that such algorithms may incorporate “rotational corrections”.
Altogether, this implies that there exists a non-trivial strengthening of correlated equilibria which
is still tractably approximable.

For the proof of our bounds, we apply the framework of [40] which in turn follows from the
analysis of [38]. In our approximation results, for simplicity we restrict attention to quadratic
potential functions. Proof of convergence are then an immediate consequence of [40] (Theorem
11); we nevertheless provide the algorithms and the associated proofs for the sake of a complete
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exposition. To wit, for a fixed smooth game and a family of vector fields F , recall that an ǫ-
stationary CE is a distribution σ on X such that

∀ f ∈ F,

∣
∣
∣
∣
∣

∑

i∈N

∫

X
dσ(x) ·

〈

PT CXi
(xi)[∇iui(x)], fi(x)

〉
∣
∣
∣
∣
∣
≤ ǫ · poly( ~G, ~L,Gf , Lf ),

where the poly( ~G, ~L,Gf , Lf ) factor is fixed in advance. In our further analysis of ǫ-stationary (and
also ǫ-local) CE, we shall fix attention to finite |F |, and fix the poly-factor to 1 – absorbing the
bounds to ǫ.

We consider the history of our algorithm to be a sequence of probability distributions (σt)t∈N
on X. We then denote the differential stationarity regret with respect to f ∈ F at iteration t
as

µtf =

∫

X
dσt(x) ·

∑

i∈N

〈

fi(x),PT CXi
(xi)[∇iui(x)]

〉

.

Our first regret matching algorithm then is given:

Algorithm 1: Regret matching for ǫ-stationary CE

Input: Smooth game (N, (Xi)i∈N , (ui)i∈N ), set of vector fields F , σ1 ∈ ∆(X), ǫ
Output: σt, an approximate stationary CE

1 t← 1;

2 µ1f ←
∑

i∈N
∫

X dσt(x) ·
〈

fi(x),PT CXi
(xi)[∇iui(x)]

〉

∀ f ∈ F ;

3 while ∃ f ∈ F, |µtf | > ǫ · poly( ~G, ~L,Gf , Lf ) do
4 xt+1 ← a fixed point of

∑

f∈F µtff in X;

5 Find suitable αt ∈ (0, 1);
6 σt+1 ← (1− αt) · σt + αt · δ(xt+1);
7 t← t+ 1;

8 µtf ←
∑

i∈N
∫

X dσt(x) ·
〈

fi(x),PT CXi
(xi)[∇iui(x)]

〉

∀ f ∈ F ;

9 end while

Here, δ(xt+1) in line 6 denotes the point mass distribution on xt+1. The convergence of Algo-
rithm 1 then follows from usual arguments in the regret matching literature, adjusting for the fact
that we are dealing with equality constraints for stationarity and that our action transformations
are defined via infinitesimal translations about a vector field in a constrained set.

Theorem 4.1. Suppose that in Algorithm 1, αt = 1/(t + 1) or is chosen optimally to minimize
∑

f∈F µ2
tf at each time step. Then after t iterations,

max
f∈F
|µtf | ≤

√

|F |
t+ 1

·
(
∑

i∈N
Gi ·max

f∈F
Gf

)

.

As a consequence, an ǫ-stationary CE may be computed after O(|F |/ǫ2) iterations, given a fixed-
point oracle for

∑

f∈F µff for any real vector µ ∈ R
F .

Proof. For αt = 1/(t + 1), we shall track the time evolution of tµtf , i.e. the cumulative regret.
In this case, note that for a potential G(µ) = ‖µ‖2, link function g(µ) = 2µ and error terms
γ(µ) = ‖µ‖2, (G, g, γ) is trivially a Gordon triple (cf. [40], Definition 5) as the condition

G(µ +∆µ) ≤ G(µ) + 〈g(µ),∆µ〉 + γ(∆µ)
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holds with equality for any µ,∆µ : F → R. Now, for our choice of αt,

(t+ 1) · µ(t+1)f = t · µtf +
∑

i∈N

〈

fi(xt+1),PT CXi
(x(t+1)i)[∇iui(xt+1)]

〉

.

Therefore,

〈

g(t · µtf ),
∑

i∈N
〈fi(xt+1),∇iui(xt+1)〉

〉

= 2t ·
∑

i∈N

〈
∑

f∈F
µtffi(xt+1),PT CXi

(x(t+1)i)[∇iui(xt+1)]

〉

(21)

+
∑

f∈F

(
∑

i∈N

〈

fi(xt+1),PT CXi
(x(t+1)i)[∇iui(xt+1)]

〉
)2

≤ |F | · (max
f∈F

Gf ·
∑

i∈N
Gi)

2.

Here, the bound follows from the bounds on the magnitutes of f,∇iui, and since (21) is non-
negative. The latter is true since by the fixed point assumption,

∑

f∈F µtff(xt+1) ∈ NCX(xt+1),

which is true if and only if
∑

f∈F µtff(x(t+1)i) ∈ NCXi
(x(t+1)i) for every player i5. As a conse-

quence, by [40] (Theorem 6),

(t+ 1)2
∑

f∈F
µ2
(t+1)f ≤

∑

f∈F
µ2
1f + t · |F | · (max

f∈F
Gf ·

∑

i∈N
Gi)

2 ≤ (t+ 1) · |F |(max
f∈F

Gf ·
∑

i∈N
Gi)

2.

The result follows immediately.

Remark. We note that simply substituting the computed fixed points xt+1 with (approximately)
stationary distributions σ′

t+1 ∈ ∆(X) with respect to the vector field
∑

f∈F µtff in Algorithm
1 is insufficient for our purposes in general. This is because the “reward system” in our setting
formed by the utility gradients, which do not necessarily form a conservative vector field. In
particular, even if σ′

t+1 is induced as a measure via some closed parametrised loop c : [0, ℓ] → X
with dc(u)/dt = PT CX(c(u))[

∑

f∈F µtff(c(u))] almost everywhere, it can be the case that

∑

f∈F
µtf ·

∑

i∈N

∫

X
dσ′

t+1(x) ·
〈

fi(x),PT CXi
(xi)[∇iui(x)]

〉

> 0.

For instance, this is true when
∑

f∈F µtffi = ∇iui for each player i. It is in this sense that access
to a fixed point oracle may be considered necessary.

One exception, of course, is if we are dealing with a potential game, wherein ∇iui = ∇iV for
some smooth potential function V : X → R. In this case if X is one of the suitable convex bodies
studied in Section 3, by the discussion therein for any stationary distribution σ computed via the

5Recall that for any convex set X and any x ∈ X, if µ is an element of the normal cone to X at x and ν an

element of the tangent cone, then 〈µ, ν〉 ≤ 0.
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gradient dynamics for
∑

f∈F µfF given some µ : F → R,

∑

f∈F
µtf ·

∑

i∈N

∫

X
dσ(x) ·

〈

fi(x),PT CXi
(xi)[∇iui(x)]

〉

≤
∑

i∈N

∫

X
dσ(x) ·

〈

∇iV (x),PT CXi
(xi)[

∑

f∈F
µtffi(x)]

〉

≈ 0.

However, in this case a local correlated equilibrium may be computed by simply performing gradient
ascent on V and finding an approximate local maximum. Therefore, it is unclear whether a regret
matching algorithm would provide any advantages regarding tractable computation.

The approximation of an ǫ-local CE given access to a fixed-point oracle follows near identically.
One important point of note is that local CE involve tangent cone projections of the associated
vector fields f . In general, it is not true that PT CX(x)[

∑

f∈F µff ] =
∑

f∈F µfPT CX(x)[f ], except
when for every x ∈ X and f ∈ F , f(x) ∈ T CX(x) in which case the equality is assured by the cone
property. We shall call F tangential whenever this is the case, and denote the differential local
regret with respect to f ∈ F at iteration t as

µtf = max

{
∫

X
dσt(x) ·

∑

i∈N

〈

fi(x),PT CXi
(xi)[∇iui(x)]

〉

, 0

}

.

Adapting Algorithm 1 to differential local regret then outputs an approximate local CE:

Algorithm 2: Regret matching for ǫ-local CE

Input: Smooth game (N, (Xi)i∈N , (ui)i∈N ), tangential set of vector fields F , σ1 ∈ ∆(X), ǫ
Output: σt, an approximate local CE

1 t← 1;
2 µ1f ←

∑

i∈N
∫

X dσt(x) · 〈fi(x),∇iui(x)〉 ∀ f ∈ F ;

3 while ∃ f ∈ F, µtf > ǫ · poly( ~G, ~L,Gf , Lf ) do
4 xt+1 ← a fixed point of

∑

f∈F max{µtf , 0}f in X;

5 Find suitable αt ∈ (0, 1);
6 σt+1 ← (1− αt) · σt + αt · δ(xt+1);
7 t← t+ 1;
8 µtf ←

∑

i∈N
∫

X dσt(x) · 〈fi(x),∇iui(x)〉 ∀ f ∈ F ;

9 end while

Theorem 4.2. Suppose that in Algorithm 2, αt = 1/(t + 1) or is chosen optimally to minimize
∑

f∈F max{µtf , 0}2 at each time step. Then after t iterations,

max
f∈F

µtf ≤
√

|F |
t+ 1

·
(
∑

i∈N
Gi ·max

f∈F
Gf

)

.

As a consequence, an ǫ-local CE may be computed after O(|F |/ǫ2) iterations, given a fixed-point
oracle for

∑

f∈F µff for any non-negative vector µ ∈ R
F
+.

Proof. Identical to the proof of Theorem 4.1, by noting G(µ) =
∑

f∈F max{µf , 0}2, g(µ)f =

2max{µf , 0} and γ(∆µ) = ‖∆µ‖2 form a Gordon triple ([40], Lemma 12), and that the tan-
gentiality of F implies that at any fixed-point xt+1,

∑

f∈F max{µtf , 0}f(xt+1) = 0.
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The question that remains is, then, whether there exists a family of vector fields F such that an
ǫ-stationary or -local CE are tractably approximable. The answer is easily shown to be affirmative
for the case of ǫ-local CE when each f is affine linear in each component.

Proposition 4.3. Suppose that F is a family of tangential vector fields, such that f(x) = Pfx+ qf
for some matrix Pf ∈ R

d×d and some vector qf ∈ R
d. Then for any µ : F → R+, ‖

∑

f∈F µff(x)‖2
is a convex quadratic function. Moreover, any argminx∈X ‖

∑

f∈F µff(x)‖2 is a fixed point of
∑

f∈F µff(x).

Proof. As
∑

f∈F µff(x) is linear in x, ‖∑f∈F µff(x)‖2 is a sum of squares. Since F is tangential,
at any fixed point x∗ ∈ X of

∑

f∈F µff ,
∑

f∈F µff(x
∗) ∈ T CX(x∗) ∩ NCX(x∗) = {0}.

Corollary 4.4. For a family of tangential affine linear vector fields F , a ǫ-local CE with respect
to F can be approximated via solving O(|F |/ǫ2) convex quadratic minimisation problems.

By the discussion at the beginning of Section 4, this subsumes the correlated equilibria of normal
form games; but such equilibria remain tractably approximable even for non-concave games. As
the following example demonstrates, for the hypercube equilibrium refinements are possible.

Example 3. Suppose in a two player game that Xi = [−1, 1] for each player i, and hence X =
[−1, 1]2. Then the usual correlated equilibrium constraints are provided by vector fields

f1+ =

(
1− x1

0

)

, f1− =

(
−1− x1

0

)

, f2+ =

(
0

1− x2

)

, and f2− =

(
0

−1− x2

)

.

Note that these vector fields are all conservative, and as a result they are gradient fields. We
therefore consider extending our set of vector fields by considering

g1− =

(
−x1 − x2

0

)

, g1+ =

(
x2 − x1

0

)

, g2− =

(
0

−x1 − x2

)

, and g2+ =

(
0

x1 − x2

)

.

The vector fields g have non-zero curl, and thus none of them arise as the gradient field of a
quadratic function; although, they are coordinate projections of suitable quadratic functions. As a
consequence, no vector field gi± may be expressed as a conical combination of the vector fields f i±.
Setting F = {f ij , gij | i ∈ {1, 2}, j ∈ {+,−}} thus provides us a refinement of the usual correlated
equilibria of 2×2 normal form games. The refinement can be strict; consider the matching pennies
game from Example 2 where ∇iui(x) = (−1)ix−i. Then

∑

i∈N

〈
g1−(x) + g2+(x),∇iui(x)

〉
= x21 + x22,

which implies that the only local CE with respect to F is the unique Nash equilibrium at x = (0, 0).

We note that when we consider linear (instead of conical) combinations of vector fields f ∈ F in
Example 3, we may obtain any arbitrary affine-linear vector field on [−1, 1]; {f i±, gi±} is a linearly
dependent set for each player i. As a consequence, for a 2 × 2 normal form game, any stationary
CE with respect to F is necessarily the convex hull of its Nash equilibria.
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4.2 Remarks on duality

We end this section with a short note on the associated primal-dual framework to local correlated
equilibria, akin to Section 3.2. Given local correlated equilibria against a finite set of vector fields
F , the analogue of (22) for stationary CE is given

inf
σ≥0

∫

X
dσ(x) · q(x) subject to (22)

∫

X
dσ(x) = 1 (γ)

∀ f ∈ F,
∑

i∈N

∫

X
dσ(x) ·

〈

fi(x),PT CXi
(xi)[∇iui(x)]

〉

= 0, (µf )

and its Lagrangian dual is simply

sup
γ,µ

γ subject to (23)

∀ x ∈ X, γ +
∑

f∈F,i∈N

〈

µff(x),PT CXi
(xi)[∇iui(x)]

〉

≤ q(x). (σ(x))

Here, an analogue of Theorem 3.6 is immediate. However, at present, we do not see a clear intuitive

interpretation of a dual solution µ : F → R. When we take q(x) = −
〈

∇iui(x),PT CXi
(xi)[∇iui(x)]

〉

,

the optimal value of (22) equals 0 if and only if the only stationary CE of the game are probability
distributions over the set of its (first-order) Nash equilibria. Then if (0, µ) is a solution of (23),

∑

f∈F,i∈N

〈

µff(x),PT CXi
(xi)[∇iui(x)]

〉

< 0 ∀ x ∈ X,∃ i ∈ N,∇iui(x) /∈ NCXi
(x).

In words, the vector field −∑f∈F µff is suitably aligned with the utility gradient at every non-
equilibrium point x, whether the gradient dynamics cycle or not. Moreover, fixed points of
−∑f∈F µff and (∇iui(x))i∈N necessarily coincide. This does not necessarily provide an obvious
computational advantage though, since whenever F is rich enough we may set −∑f∈F µffi = ∇iui
(cf. remark after Example 3).

5 Further Directions & Extensions

In this paper, we have established the question of computing an approximate local or station-
ary CCE, by identifying such outcomes as the natural property of the gradient dynamics of the
underlying game and considering the weighted history of play when all players employ projected
gradient ascent as their learning algorithm with equal learning rates. Appealing to the properties
of these dynamics and extending the usual convex optimisation based primal-dual framework for
price of anarchy / stability bounds, we were then able to argue that performance guarantees for
the resulting distribution may be proven via constructing Lyapunov functions for the quantity in
question. For the setting of finitely many vector fields, we have shown how regret matching may be
performed for stationary or local CE, and discussed tractable settings. However, our results raise
many questions yet unanswered.
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Approximability of local & stationary (C)CE

Some questions pertain directly to the computation of approximate local or stationary (C)CE.
First, we have not established how (ǫ,∆)-approximations are approximable. This is because our
approach has been to consider the tangent and normal cones pointwise at a given x ∈ X, but it
can be the case that for δ > 0, the respective projections involving a step in direction fi(x) or
∇iui(x) involve projections on constraints distinct each other, or the ones which bind at x. In fact,
this holds true even for gradient ascent when xi(t) is in the interior of Xi. How our appeals to
the gradient dynamics of the game may be extended to cover such cases thus remains open. We
remark that, unlike the approximability of ǫ-local or stationary CCE, the associated approximation
bounds of online projected gradient ascent would depend on the Lipschitz moduli of f in general.

Similarly, we do not yet know approximability of CCE in settings with general compact and
convex action sets Xi, or even in the setting where all Xi are polyhedral. We have proven our
results in settings where approximate projected gradient dynamics are faithful to the tangent cone
projection of the direction of motion for the unconstrained gradient dynamics at each point in time,
but [54] demonstrates that this need not be the case for polyhedral Xi. A deeper question, perhaps,
is “What is the correct parameter of complexity for compact and convex Xi and approximability of
local / stationary CCE via approximate projected gradient dynamics?”. As previously remarked,
when Xi has a smooth boundary, the approximation guarantee deteriorates linearly in K, the
bound on the principal curvature of the boundary δXi. However, when Xi are acute polyhedra – a
condition intuitively in contradiction to δXi having bounded curvature – projected gradient ascent
models approximate projected gradient dynamics perfectly. It is thus yet unknown how to bound
the approximation guarantees in the setting with general compact and convex action sets.

Generalisations of local / stationary CCE

Our local coarse notions of equilibria are also, in some sense, “bespoke” for projected gradient
dynamics. We note that, while we have proven our results for projected gradient dynamics of the
smooth game, we have never actually used the fact that the direction of motion is the gradient
of some utility function for each player. Therefore, our results apply for any projected gradient
dynamics of the form dxi(t)/dt = PT CXi

(xi(t))[Fi(x(t))] for each player i, with the resulting “equi-

librium constraints” obtained by swapping any expression ∇iui(x(t)) with Fi(x(t)). This implies a
different notion of local or stationary CCE for each distinct time-independent gradient based learn-
ing algorithm; time-independent in the sense that no Fi has explicit time or history dependence,
but are determined solely via x(t) at time t. How to simultaneously capture outcomes reached
via such dynamics within a class of equilibria is thus open. Such an equilibrium concept would of
course be a relaxation of equilibrium notions discussed in this paper.

We observe that mean-based learning algorithms [14] obtain a generalisation of various dual
averaging based learning algorithms, and comparing the results of [33] and [31] we know that the
outcomes of mean-based learning algorithms can be a strict subset of the (non-local) CCE of a
game. However, to our knowledge projected gradient ascent is not known to be such an algorithm.
Moreover, our Lyapunov function based primal-dual approach is ill-suited for dual averaging based
methods in the first place. The associated continuous dynamics for dual averaging may be obtained
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[51] by setting action sets Yi = R
di for each player i, and letting

xi(t) = max
xi∈Xi

〈xi, yi〉 − ri(xi), and (24)

dyi(t)/dt = ∇iui(x(t)), (25)

where ri : X → R ∪ {∞} is a lower semi-continuous and convex regulariser. In settings where
ri(xi) = ∞ if and only if xi ∈ δXi and ri is differentiable in the interior of Xi, we are effectively
faced with a smooth game where players’ actions sets are di dimensional Euclidean spaces, and their
equations of motion satisfy dxi(t)/dt→ 0 as ‖yi(t)‖ → ∞. As a consequence, our approximability
results break down completely, and how to extend our specific framework for price of anarchy /
stability bounds to such settings at present unknown. The average price of anarchy approach of
[60, 66] offers one solution, yet at present the performance metric does not come with convergence
rate guarantees, even in expectation.

Similar presently unexplored directions for notions of equilibria relate to relaxing other as-
sumptions. If we drop the previously mentioned time-independence assumption, we obtain settings
where agents may learn at asymptotically different rates as a subclass; this question was investi-
gated in [72] for monotone games. However, such games admit a Lyapunov function ‖x − x∗‖2
which proves convergence to their unique equilibrium – a strong assumption that does not hold in
many settings of interest. The time-independence assumption is also violated for any algorithm
that uses history information, such that (a weighted) average history of play. Another assumption
that may be dropped is deterministic motion, say for stochastic gradient ascent, in which case the
continuous time dynamical system would be a Markov process. While Glynn and Zeevi [37] have
already investigated Brownian motion, which can be taken as a model of SGD (cf. [45, 49]), it is
unclear how the results within apply with respect to approximation guarantees in our constrained
setting.

On tractable local CE

Whereas we have demonstrated a generalisation of correlated equilibrium is tractable, it remains
unknown how to procedurally generate a basis for such a family. Moreover, the affine-linearity of a
vector field is a rather strong condition, and such vector fields in general fail to be tangential over a
more general polytope. Finding wider settings in which fixed point computation for Algorithm 2 is
tractable and the associated choice of F is meaningful is thus an open problem. Finally, we remark
that our results are probably not necessarily optimal. Recent work [20, 2] shows that swap regret
may be minimised in O(1/T ) (up to polylog factors) iterations via more specialised algorithms, and
we suspect similar methods might apply in our setting.

Finding dual solutions

The final question pertains to how useful our primal-dual framework could be. Whereas we “have a
primal-dual framework” to prove bounds on the performance of gradient ascent, Example 2 demon-
strates that finding dual solutions and verifying their validity can be a daunting task. It is therefore
of interest whether there exist systematic ways of constructing generalised Lyapunov functions to
prove dual bounds, tight or approximate. One approach would be to consider relaxations to sub-
classes of differentiable functions with Lipschitz gradients for which the problem is tractable. As
usual CCE of normal form games are tractable in the sense that performance bounds take the form
of an LP, we infer by the discussion in Section 3.2 that there exists at least one such relaxation.
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Roughgarden. The price of stability for network design with fair cost allocation. SIAM Journal
on Computing, 38(4):1602–1623, 2008.

[7] James P. Bailey and Georgios Piliouras. Multiplicative weights update in zero-sum games.
In Proceedings of the 2018 ACM Conference on Economics and Computation, pages 321–338.
ACM, 2018.
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[71] Gilles Stoltz and Gábor Lugosi. Learning correlated equilibria in games with compact sets of
strategies. Games and Economic Behavior, 59(1):187–208, 2007.

[72] Shaolin Tan, Ye Tao, Maopeng Ran, and Hao Liu. On the convergence of distributed projected
gradient play with heterogeneous learning rates in monotone games. Systems & Control Letters,
182:105654, 2023.

[73] Adrian Vetta. Nash equilibria in competitive societies, with applications to facility location,
traffic routing and auctions. In The 43rd Annual IEEE Symposium on Foundations of Com-
puter Science, 2002. Proceedings., pages 416–425. IEEE, 2002.

[74] H. Peyton Young. Strategic learning and its limits. Oxford University Press, 2004.

[75] Zhengyuan Zhou, Panayotis Mertikopoulos, Susan Athey, Nicholas Bambos, Peter W Glynn,
and Yinyu Ye. Learning in games with lossy feedback. Advances in Neural Information
Processing Systems, 31, 2018.

39


	Introduction
	Related work
	Overview

	Preliminaries
	On Local Coarse Correlated Equilibria
	Tractable approximations via projected gradient ascent
	Compact & convex sets of smooth boundary
	On polyhedral sets

	Duality and Lyapunov arguments

	On Local Correlated Equilibria
	Regret matching and approximability of -local and -stationary equilibria
	Remarks on duality

	Further Directions & Extensions

