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Tagged particles and size-biased dynamics

in mean-field interacting particle systems

Angeliki Koutsimpela* Stefan Grosskinsky†

Abstract

We establish a connection between tagged particles and size-biased empirical pro-

cesses in interacting particle systems, in analogy to classical results on the propaga-

tion of chaos. In a mean-field scaling limit, the evolution of the occupation number

on the tagged particle site converges to a time-inhomogeneous Markov process with

non-linear master equation given by the law of large numbers of size-biased empiri-

cal measures. The latter are important in recent efforts to understand the dynamics

of condensation in interacting particle systems.

Keywords: interacting particle system ; tagged particle ; size-biased empirical process ; mean-

field scaling limit.
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1 Introduction

Based on classical results in [23], propagation of chaos and laws of large numbers for

empirical processes have recently attracted significant attention mostly for mean-field

interacting diffusion models (see e.g. [18, 8] and references therein). In the context

of interacting particle systems (IPS), propagation of chaos has been studied for the

evolution of tagged particle locations on regular lattices [21, 20] and for single-site

dynamics in mean-field models [11], with recent results also for sparse random graphs

[19]. This note is based on results in [11] which provides a law of large numbers for

empirical processes with a connection to rate equations studied in the context of cluster

aggregation models [6, 22].

We consider the evolution of size-biased empirical measures, which is a useful tool

to study the dynamics of condensing IPS with unbounded occupation numbers, such

as zero-range [13, 10] or inclusion processes [9]. The dynamics of cluster formation

in condensing IPS has attracted significant recent research interest [5, 2], also in the

context of metastability (see e.g. [17, 14] and references therein). We show that the

occupation number on a tagged particle location in the mean-field limit converges to

a time-inhomogeneous Markov process with non-linear master equation given by the

law of large numbers for size-biased empirical processes. Our main assumption is a

bound on the jump rates by a bi-linear function of departure and target site occupation,

which includes the above mentioned examples of condensing systems. In such models,

higher order correlation functions diverge with time, so in contrast to recent results

with uniform-in-time estimates [15] our results can be only local in time.
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2 Notation and main result

2.1 Mathematical setting

We consider stochastic particle systems (η(t) : t > 0) on finite lattices Λ of size

|Λ| = L. Configurations are denoted by η = (ηx : x ∈ Λ) where ηx ∈ N0 is the number of

particles on site x. We consider systems with a fixed number of particles N =
∑

x∈Λ ηx
and the state space of all such configurations is denoted by EL,N ⊂ NΛ

0 . The dynamics

of the process is defined by the infinitesimal generator

(Lg)(η) =
∑

x,y∈Λ

q(x, y)c(ηx, ηy)(g(η
x→y)− g(η)) , g ∈ Cb(EL,N ) . (2.1)

Here the usual notation ηx→y indicates a configuration where one particle has moved

from site x to y, i.e. ηx→y
z = ηz − δz,x + δz,y, and δ is the Kronecker delta. Since

EL,N is finite, the generator (2.1) is defined for all bounded, continuous test functions

g ∈ Cb(EL,N). For a general discussion and the construction of the dynamics on infinite

lattices see e.g. [4, 1].

To ensure that the process is non-degenerate, the jump rates satisfy

{
c(0, l) = 0 for all l ≥ 0

c(k, l) > 0 for all k > 0 and l ≥ 0.
(2.2)

Our main further assumption on the dynamics is that the rates grow sublinearly, in the

sense that they are bounded by a bilinear function

c(k, l) ≤ C1k(l + C2) for constants C1, C2 > 0 . (2.3)

We focus on complete graph dynamics, i.e. q(x, y) = 1/(L − 1) for all x 6= y, and under

the above conditions the process is irreducible on EL,N and

∑

x∈Λ

ηx(t) ≡ N is the only conserved quantity . (2.4)

To follow the location (X(t) : t ≥ 0) of a tagged particle, we extend the state space to

E := EL,N × Λ and states (η, x) ∈ E describe the particle configuration η ∈ EL,N and

location x ∈ Λ of the tagged particle. In the following, we denote by PL and EL the law

and expectation on the path space Ω = D[0,∞)(E) of the joint process
(
(η(t), X(t)) : t ≥

0
)
. As usual, we use the Borel σ-algebra for the discrete product topology on E, and the

smallest σ-algebra on Ω such that ω 7→ (ηt(ω), Xt(ω)) is measurable for all t ≥ 0. The

joint process is Markov and its evolution is described by the infinitesimal generator

L̃G(η, x) =
∑

y,z∈Λ

1

L− 1
c(ηy, ηz)(G(ηy→z , x)−G(η, x))(1 − δxy)

+
∑

z∈Λ

1

L− 1
c(ηx, ηz)

[
1

ηx
(G(ηx→z , z)−G(η, x)) +

ηx − 1

ηx
(G(ηx→z , x)−G(η, x))

]

(2.5)

for all bounded continuous functions G ∈ Cb(E). We consider the empirical processes

t 7→ FL
k (η(t)) with

FL
k (η) :=

1

L

∑

x∈Λ

δηx,k ∈ [0, 1] , k ≥ 0 , (2.6)

counting the fraction of lattice sites for each occupation number k ≥ 0.

For our main result we will consider the thermodynamic limit with density ρ, i.e.

L → ∞, N = NL → ∞ such that N/L → ρ ≥ 0 . (2.7)
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For the sequence (in L) of initial conditions (η(0), X(0)) we first require the minimal con-

dition that there exists a fixed probability distribution f(0) on N0 with finite moments

m1(0) :=
∑

k

kfk(0) = ρ < ∞ and m2(0) :=
∑

k≥1

k2fk(0) < ∞, (2.8)

such that we have a weak law of large numbers

FL
k (η(0))

d
−→ fk(0) as L → ∞, for all k ≥ 0. (2.9)

We need further regularity assumptions on the initial conditions, namely a uniform

bound of first, second and third moments,

η(0) ∈ Eα
L,N :=

{

η :
1

L

∑

x∈Λ

ηx ≤ α1,
1

L

∑

x∈Λ

η2x ≤ α2,
1

L

∑

x∈Λ

η3x ≤ α3

}

⊂ EL,N for all L ≥ 1 ,

(2.10)

for some fixed α1, α2, α3 > 0. Note that (2.10) and conservation of mass (2.4) imply that

1

L

∑

x∈Λ

ηx(t) =
∑

k≥0

kFL
k (η(t)) ≤ α1 , PL − a.s. for all t ≥ 0 and L ≥ 1 . (2.11)

We assume that N − 1 particles are distributed on the lattice according to some initial

conditions satisfying (2.8), (2.9), (2.10) and the N -th particle (the tagged one) is located

on position X(0), increasing the value of ηX(0)(0) by 1 such that

EL
[

η2X(0)(0)
]

< a4 holds for some fixed α4 > 0 and all L ≥ 1 . (2.12)

For example, if we distribute N − 1 particles uniformly, independently on Λ, (2.8)

and (2.9) are satisfied with Poisson distribution f(0), and PL
[
η(0) ∈ Eα

L,N

]
→ 1 in the

limit (2.7), so condition (2.10) is asymptotically no restriction. There are various ways

to then choose the initial position of the tagged particle such that (2.12) is satisfied. For

example, we could pick a fixed site (e.g. X(0) = 1) or select one uniformly at random.

On the other hand, selecting for example a site with the maximum occupation number

would lead to logarithmic growth with respect to L of ηX(0)(0), violating (2.12).

2.2 A law of large numbers for empirical processes

Under the above assumptions the following law of large numbers for the empirical

process (2.6) was established in [11].

Theorem 2.1. Consider a process with generator (2.1) on the complete graph with

sublinear rates (2.3) and initial conditions satisfying (2.8), (2.9) and (2.10). Then we

have in the thermodynamic limit (2.7) for any ρ > 0 and all functions h : N0 → R with

|h(k)| ≤ c1(k + c2),
(∑

k≥0

FL
k (η(t))h(k) : t ≥ 0

)

→
(∑

k≥0

fk(t)h(k) : t ≥ 0
)

weakly on path space as L → ∞ ,

(2.13)

where t 7→ f(t) = (fk(t) : k ∈ N0) is the unique global solution of the mean-field

equation

dfk(t)

dt
=
∑

l≥0

c(k + 1, l)fl(t)fk+1(t) +
∑

l≥1

c(l, k − 1)fl(t)fk−1(t)

−

(
∑

l≥0

c(k, l)fl(t) +
∑

l≥0

c(l, k)fl(t)

)

fk(t) for all k ≥ 0, (2.14)
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with initial condition f(0) given by (2.9). Here we use the convention f−1(t) ≡ 0 for all

t ≥ 0 and recall that c(0, l) = 0 for all l ≥ 0.

The nonlinear equations (2.14) can be written as

dfk(t)

dt
= µk+1(t) fk+1(t) + βk−1(t) fk−1(t)−

(

βk(t) + µk(t)
)

fk(t) , k ≥ 0,

and thus identified as the master equation of a non-linear birth-death chain on N0 with

time-dependent birth and death rate

βk(t) =
∑

n≥1

c(n, k)fn(t) and µk(t) =
∑

n≥0

c(k, n)fn(t) , (2.15)

respectively. Here we use again the convention β−1(t) ≡ µ0(t) ≡ 0. This corresponds to

the limiting dynamics of the occupation number of a fixed site, where any finite set of

those evolves as independent birth-death chains according to the propagation of chaos

(see [11] and references therein for details).

The solutions t 7→ (fk(t) : k ≥ 0) to this system of equations has been studied in

[13, 11] and in detail in [22, 16]. In condensing systems solutions show a bump at occu-

pation numbers increasing with time corresponding to the emergence of cluster sites

in the condensed phase. The volume fraction of the latter vanishes in time and corre-

sponds to the integral of the bump. To study the asymptotics of the condensed phase, it

is therefore advantageous to consider a size-biased empirical distribution, as has been

done for zero-range [13] and inclusion processes [12, 9]. Since (2.14) conserves the to-

tal mass ρ ≡ m1(t) =
∑

k≥1 kfk(t) for all t ≥ 0, the corresponding size-biased quantities

pk(t) :=
1

ρ
kfk(t) , k ≥ 1 are normalized with

∑

k≥1

pk(t) ≡ 1 , (2.16)

and describe the fraction of mass in clusters of size k. From (2.14) and (2.16) it is easy

to see that they solve

dpk(t)

dt
=

k

k + 1
µk+1(t) pk+1(t) +

k

k − 1
βk−1(t) pk−1(t)−

(

βk(t) + µk(t)
)

pk(t) , k ≥ 1,

dp1(t)

dt
=

1

2
µ2(t) p2(t) +

1

ρ
β0(t) f0(t)−

(

β1(t) + µ1(t)
)

p1(t) (2.17)

with initial condition pk(0) = kfk(0)/ρ, k ≥ 1. Here

f0(t) = 1−
∑

k≥1

fk(t) = 1− ρ
∑

k≥1

pk(t)

k

denotes the volume fraction of empty sites, which can also be expressed in terms of

pk(t), k ≥ 1. Completely analogously to Theorem 2.1 one can show that the empirical

mass processes

t 7→ PL
k (η(t)) :=

1

N

∑

x∈Λ

kδηx(t),k ∈ [0, 1] , k ≥ 1

converge to solutions of (2.17). Following our main result, we will see that the latter

can be interpreted as the master equation for a process on N, describing the mass on

the site of a tagged particle.
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2.3 Main result

The evolution of the occupation number on the tagged particle site is denoted by

NL(t) := ηX(t)(t). To study its dynamics we apply the generator (2.5) to a test function

G(η, x) = g(ηx) and find

L̂L
η g(ηx) =

∑

y∈Λ

1

L− 1
c(ηy, ηx)(g(ηx + 1)− g(ηx))(1 − δxy)

+
∑

y∈Λ

1

L− 1
c(ηx, ηy)

[
1

ηx
(g(ηy + 1)− g(ηx)) +

ηx − 1

ηx
(g(ηx − 1)− g(ηx))

]

(1− δxy) .

(2.18)

Plugging in the process, this can be written for each n ≥ 1 as

L̂L
η(t)g(n) =

L

L− 1

∑

k≥1

c(k, n)FL
k (η(t))

(
g(n+ 1)− g(n)

)
+

L

L−1

(
1

n

∑

k≥0

c(n, k)FL
k (η(t)) (g(k+1)− g(n)) +

n−1

n

∑

k≥0

c(n, k)FL
k (η(t))

(
g(n−1)− g(n)

)
)

−
1

L− 1
c(n, n)

(
n+ 1

n
(g(n+1)− g(n)) +

n− 1

n

(
g(n−1)− g(n)

)
)

. (2.19)

Note that the process (NL(t), t ≥ 0) is itself not a Markov process, since its generator

depends also on the state of the configuration η(t). Based on Theorem 2.1, we have that

for each n ∈ N in the limit L → ∞ (2.19) converges to a time-inhomogeneous generator

L̂tg(n) = βn(t)
(
g(n+1)−g(n)

)
+
n−1

n
µn(t)

(
g(n−1)−g(n)

)
+
1

n

∑

k≥1

c(n, k−1)fk−1(t) (g(k)−g(n)) .

(2.20)

This generator describes a birth-death process with time-dependent birth and death

rates βn(t) and µn(t) as given in (2.15), and with additional long-range jumps when the

tagged particle changes position. Here is our main result.

Theorem 2.2. Consider a tagged particle process with generator (2.5) on the complete

graph with sublinear rates (2.3) and initial conditions satisfying (2.8), (2.9), (2.10) and

(2.12). In the thermodynamic limit (2.7) for any ρ > 0

(
NL(t), t ≥ 0

)
→
(
N̂(t), t ≥ 0

)
weakly on path space as L → ∞ ,

where
(
N̂(t), t ≥ 0

)
is a time-inhomogeneous Markov process on N with generator L̂t

(2.20) and corresponding master equation (2.17).

Therefore, in a mean-field scaling limit, the evolution of the occupation number on

the tagged particle site ηX(t)(t) converges to a time-inhomogeneous process on N with

(non-linear) master equation (2.17) given by the law of large numbers of size-biased

empirical measures. As was demonstrated in [13] for the example of a condensing

zero-range process, this can be used to devise efficient numerical schemes to study the

coarsening dynamics of the condensed phase emerging from a supercritical homoge-

neous initial condition. In particular, the expectation

E[N̂(t)] =
∑

k≥1

kpk(t) =
1

ρ

∑

k≥1

k2fk(t)

describes the second moment of the particle system which is increasing with t following

a coarsening scaling law for condensing systems (see e.g. [13, 10, 22] for details).
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3 Proof of the main result

The master equation corresponding to the limiting generator L̂t (2.20) is for n ≥ 2

dqn(t)

dt
=−

(

βn(t) +
n− 1

n
µn(t) +

1

n

∑

k≥1

c(n, k − 1)fk−1(t)

︸ ︷︷ ︸

=µn(t)

)

qn(t)

+ βn−1(t)qn−1(t) +
n

n+ 1
µn+1(t)qn+1(t) +

∑

k≥1

1

k
c(k, n− 1)fn−1(t)qk(t)

︸ ︷︷ ︸

= 1
n−1

βn−1(t)qn−1(t)

=−
(

βn(t) + µn(t)
)

qn(t) +
n

n−1
βn−1(t)qn−1(t) +

n

n+1
µn+1(t)qn+1(t) (3.1)

and for n = 1 we have
dq1(t)

dt
= −

(

β1(t)+µ1(t)
)

q1(t)+
1

2
µ2(t)q2(t)+

∑

k≥1

c(k, 0)

k
f0(t)qk(t)

︸ ︷︷ ︸

=β0(t)f0(t)/ρ.

This coincides with (2.17) and the rest of this section is used to prove convergence of

the process t 7→ NL(t).

3.1 Moment bounds

As a first step we collect some useful results on moments and establish a time-

dependent bound on the moments of the processes NL(t) and ηx(t) for x ∈ Λ. For

any integer n ≥ 0 denote the n-th moment by

mL
n(t) := EL

[ 1

L

∑

x∈Λ

(
ηx(t)

)n
]

= EL
[∑

k≥0

knFL
k (η(t))

]

. (3.2)

We have mL
0 (t) ≡ 1 and with (2.9), mL

1 (0) → ρ and mL
2 (0) → m2(0) < ∞. The uniform

conditions (2.10) on the moments further imply for all L ≥ 1 that mL
2 (0) ≤ α2, and with

conservation of mass (2.11) we have mL
1 (t) ≤ α1 for all t ≥ 0, while higher moments

typically grow in time for condensing systems (see e.g. [10, 13, 22]). The following

result gives a general (but very rough) upper bound.

Proposition 3.1. Assume that the sequence
(
mL

n(0)
)

L≥1
is bounded uniformly in L for

some integer n ∈ N. Then there exists a constant Cn > 0 independent of L such that

mL
n(t) ≤

(
mL

n(0) + Cnt
)
eCnt for all t ≥ 0 and L ≥ 1 . (3.3)

Proof. Applying the generator (2.1) to the function g(η) = ηkx for k ∈ N, we get

Lηkx =
1

L− 1

∑

y 6=x



c(ηx, ηy)
(
(ηx + 1)k − ηkx

)
+
∑

y 6=x

c(ηy , ηx)
(
(ηx − 1)k − ηkx

)



 (3.4)

Note that (x ± 1)n − xn = p±n−1(x) is a polynomial of degree n − 1, which implies with
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(3.4) and sublinear rates (2.3) that

d

dt
mL

n(t) =
1

L

∑

x∈Λ

EL [Lηnx (t)] =
1

L− 1
EL

[
∑

k,l≥0

c(k, l)p+n−1(k)
(

Fk(η(t))L − δk,l)Fl(η(t))
)

+
∑

k,l≥0

c(l, k)p−n−1(k)
(

Fk(η(t))L − δk,l)
)

Fl(η(t))

]

=
L

L− 1
EL

[
∑

k,l≥0

(

c(k, l)p+n−1(k) + c(l, k)p−n−1(k)
)

Fk(η(t))Fl(η(t))

]

−
1

L− 1
EL

[
∑

k≥1

c(k, k)
(

p+n−1(k) + p−n−1(k)
)

Fk(η(t))

]

≤ EL

[
∑

k,l≥0

(

2C1kl + C1C2(k + l)
)

p+n−1(k)Fk(η(t))Fl(η(t))

]

≤ CEL

[
∑

k≥0

pn(k)Fk(η(t))

]

(3.5)

for some constant C > 0 which does not depend on L. Here we used that p+n−1(k) ≥

p−n−1(k) and p+n−1(k)+p−n−1(k) ≥ 0 in the first inequality, and conservation of mass (2.11)

in the second inequality with a polynomial pn(k) of degree n. Since mL
n(t) ≤ mL

n+1(t) for

all n ≥ 1, this implies for some constant Cn > 0

d

dt
mL

n(t) ≤ Cn

(
1 +mL

n(t)
)
.

The result then follows by Gronwall’s Lemma.

In the following, we denote the n-th moment of the process NL(t) by

m̂L
n(t) := EL

[
(NL(t))n

]
= EL[ηnX(t)(t)] (3.6)

and we have the following exponential bound:

Proposition 3.2. Assume that the sequence
(
mL

n+1(0)
)

L≥1
is bounded for some integer

n ∈ N+. Then, there exist constants An, Bn, Cn > 0 independent of L such that

m̂L
n(t) ≤

(
An +Bnt+ Cnm̂

L
n(0)

)
eCnt for all t ≥ 0 and L ≥ 1 . (3.7)

Proof. Applying the generator (2.19) to the function g(x) = xn, we get (writing N(t) =

NL(t) for simplicity of notation)

dm̂L
n(t)

dt
= EL

[

L̂L
η(t)N

n(t)
]

= EL




L

L− 1

∑

k≥1

c(k,N(t))FL
k (η(t))p+n−1(N(t))





+
L

L− 1
EL




1

N(t)

∑

k≥0

c(N(t), k)FL
k (η(t))

(

(k + 1)n −Nn(t)
)





−
L

L− 1
EL




N(t)− 1

N(t)

∑

k≥0

c(N(t), k)FL
k (η(t))p+n−1(N(t)− 1))





− EL

(
1

L− 1
c(N(t), N(t))

1

N(t)

[
(N(t) + 1)p+n−1(N(t))− (N(t) − 1)p+n−1(N(t)− 1)

]
)

(3.8)
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where we used p−n−1(k) = −p+n−1(k − 1). Since the functions x 7→ (x + 1)p+n−1(x) for all

n ∈ N, n 7→ mn(t) for all t ≥ 0 and n 7→ m̂n(t) for all t ≥ 0 are non-decreasing, we have

that for a certain polynomial pn of degree n:

dm̂L
n(t)

dt
≤

L

L− 1
C1a1E

L [pn(N(t))] +
L

L− 1
C1E

L




∑

k≥0

pn+1(k)F
L
k (η(t))





≤ Dn(m̂
L
n(t) +mL

n+1(t)) ≤ Ĉn

(

m̂L
n(t) +

(
mL

n+1(0) + Ĉnt
)
eĈnt

)

,

where in the last line we used relation (3.7) and Dn, Ĉn are positive constants. The

result then follows by Gronwall’s Lemma.

Based on Proposition 3.2 and assumptions (2.10)-(2.12), we have the following corol-

lary:

Corollary 3.3. There exist constants A2, B2, C2 > 0 independent of L such that

m̂L
2 (t) ≤

(
A2 + B2t+ C2a4

)
eC2t for all t ≥ 0 , L ≥ 1 . (3.9)

3.2 Existence of limit processes

Lemma 3.4. Consider the process with generator (2.19) and conditions as in Theorem

2.2. Denote by QL the measure of the process t 7→ NL(t) on path space D[0,∞)(N),

which is the image measure of PL under the mapping (η, x) 7→ ηx. Then QL is tight as

L → ∞.

Proof. Using a version of Aldous’ criterion to establish tightness for QL (cf. Theorem

16.10 in [7]), it suffices to show that for all t ≥ 0

lim
a→∞

lim sup
L→∞

sup
(ζ,x)∈Eα

L,N
×Λ

PL
(ζ,x)

[
N(t) ≥ a

]
= 0, (3.10)

(writing again N(t) = NL(t)) and that for any ǫ > 0

lim
δ→0+

lim sup
L→∞

sup
t<δ

sup
(ζ,x)∈Eα

L,N
×Λ

PL
(ζ,x)

[
|N(t)− ζx| > ǫ

]
= 0. (3.11)

Here (ζ, x) ∈ Eα
L,N × Λ denotes a fixed initial condition of the full process (2.5) with ζ

satisfying (2.10), and PL
(ζ,x) the corresponding path measure of the process.

Since by Proposition 3.2 and assumption (2.12) the first moment ofNL(t) is bounded

(uniformly in L), (3.10) follows directly from Markov’s inequality.

PL
(ζ,x)

[
N(t) ≥ a

]
≤

(
A1 +B1t+ C1a4

)
eC1t

a
for all L ≥ 1 and (ζ, x) ∈ Eα

L,N × Λ .

Now fix δ > 0 and consider t < δ. By Itô’s formula, we have

N(t)− ζx =

∫ t

0

L̂L
η(s)N(s) ds+M(t) , (3.12)

where (M(t) : t > 0) is a martingale with predictable quadratic variation given by

integrating the ’carré du champ’ operator

[M ](t) =

∫ t

0

(

L̂L
η(s)N

2(s)− 2N(s)L̂L
η(s)N(s)

)

ds . (3.13)
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Using again Markov’s inequality in (3.11) we have to bound

EL
(ζ,x)

[∣
∣N(t)− ζx

∣
∣

]

≤

∫ t

0

EL
(ζ,x)

[
|L̂L

η(s)N(s)|
]
ds+ EL

(ζ,x)

[
[M ](t)

]1/2
, (3.14)

where we used Hölder’s inequality and EL
(ζ,x)

[
M2(t)

]
= EL

(ζ,x)

[
[M ](t)

]
for the martin-

gale.

Regarding the first term on the right of (3.14), we have

EL
(ζ,x)

[∣
∣L̂L

η(t)N(t)
∣
∣

]

≤
L

L− 1
EL

(ζ,x)




∑

k≥1

c(k,N(t))FL
k (η(t))



+

L

L− 1
EL

(ζ,x)




1

N(t)

∑

k≥0

c(N(t), k)FL
k (η(t))

∣
∣k + 1−N(t)

∣
∣+

N(t)− 1

N(t)

∑

k≥0

c(N(t), k)FL
k (η(t))





+ EL
(ζ,x)

[
1

L− 1
c(N(t), N(t))

2

N(t)

]

(3.15)

and therefore

EL
(ζ,x)

[∣
∣L̂L

η(t)N(t)
∣
∣

]

≤ C1a1
(
m̂L

1 (t) + C2

) (
1 + 1

L

)

+ C1

(

mL
2 (t) + (a1 + C2)m̂

L
1 (t)) + C2a1

)(
1 + 1

L

)
+ 2C1(a1 + C2) , (3.16)

where we used that
N(t)
L ≤ a1 and the factor (1 + 1/L) results from replacing 1/(L − 1)

by 1/L. So, based on Propositions 3.1 and 3.2, we conclude that

t∫

0

EL
(ζ,x)

[∣
∣L̂L

η(s)g(N(s))
∣
∣

]

ds ≤ δ

(

2C1a1
((
A1 +B1δ + C1a4

)
eC1δ + C2

)

+ C1((α2 + Cδ)eCδ + (a1 + C2)
(
A1 +B1δ + C1a4

)
eC1δ) + 2C2a1 + 2C1(a1 + C2)

)

→ 0

(3.17)

as δ → 0, which holds uniformly in (ζ, x) ∈ Eα
L,N × Λ and L ≥ 1.

To compute [M ](t), we notice that (suppressing the time dependence of N )

L̂L
ηN

2 − 2N L̂L
ηN =

L

L− 1

∑

k≥1

c(k,N)FL
k (η)

+
L

L− 1

(
1

N

∑

k≥0

c(N, k)FL
k (η) (k + 1−N)

2
+

N − 1

N

∑

k≥0

c(N, k)FL
k (η)

)

−
4

L− 1
c(N,N) .

Therefore, we get

EL
(ζ,x)

[

L̂L
η(s)N

2(s)− 2N(s)L̂L
η(s)N(s)

]

≤ C1a1
(
m̂L

1 (s) + C2

) (
1 + 1

L

)

+
(

mL
3 (s) + (a1 + C2)m̂

L
2 (t) + C2m

L
2 (s) + (a1 + C2)m̂

L
1 (t)

)(
1 + 1

L

)
.

Based on Assumptions (2.8)-(2.12) and Propositions 3.1 and 3.2, we conclude that

sup
t<δ

EL
(ζ,x)

[
[M ](t)

]
→ 0 as δ → 0

and this holds again uniformly in (ζ, x) ∈ Eα
L,N ×Λ and L ≥ 1, and finishes the proof.
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By Prokhorov’s theorem, the tightness result in Lemma 3.4 implies the existence of

limit points of the sequence (NL(t) : t ≥ 0) in the usual topology of weak convergence

on path space. More specifically, we have existence of sub-sequential weak limits of QL

in the Skorohod topology, and we denote any such limit by Q.

3.3 Generator of the limit process

In order to identify the limit Q we need to show that for all t ≥ 0 and g ∈ Cb

g(ω(t))− g(ω(0))−

∫ t

0

L̂sg(ω(s))ds is a martingale w.r.t. Q , (3.18)

where ω ∈ D[0,∞)(N) denotes an element in path space. Together with the uniqueness

of the martingale problem associated with L̂t, this implies convergence of QL and char-

acterizes the limit Q as the law of the Markov process (N̂(t) : t ≥ 0) with generator L̂t

(2.20). More specifically, following [3], Section 8, we need to show that

EQ

[

f ((ω(u) : 0 ≤ u ≤ s))

(

g(ω(t))− g(ω(s))−

∫ t

s

L̂sg(ω(u))du

)]

= 0 (3.19)

for all 0 ≤ s ≤ t and continuous bounded functions f : D[0,∞)(N) → R. Since L̂t (2.20)

corresponds to a birth-death process on N with additional long-range jumps which how-

ever happen at uniformly bounded rates, we have that Q[ω(t) 6= ω(t−)] = 0. Then

Lemma 8.1 in [3] implies that

EQL

[

f ((ω(u) : 0 ≤ u ≤ s))

(

g(ω(t))− g(ω(s))−

∫ t

s

L̂sg(ω(u))du

)]

→

EQ

[

f ((ω(u) : 0 ≤ u ≤ s))

(

g(ω(t))− g(ω(s))−

∫ t

s

L̂sg(ω(u))du

)]

. (3.20)

Therefore, in order to prove (3.19), it suffices to prove that

EL

[∣
∣
∣
∣
g(NL(t))− g(NL(s))−

∫ t

s

L̂sg(N
L(u))du

∣
∣
∣
∣

]

→ 0 . (3.21)

Since
(

(η(t), X(t)) : t ≥ 0
)

is a Markov process, we know that with initial condition

(ζ, x)

g(NL(t))− g(ζx)−

∫ t

0

L̂L
η(s)g(N

L(s)) ds =

= g(NL(t))− g(ζx)−

∫ t

0

L̂sg(N
L(s)) +

∫ t

0

(

L̂sg(N
L(s))− L̂η(s)g(N

L(s))
)

ds

is a martingale for all t ≥ 0 and L ∈ N. Thus, we only need to prove that for all T > 0

EL

[∣
∣
∣
∣
∣

∫ T

0

(

L̂tg(N
L(t))− L̂η(t)g(N

L(t))
)

dt

∣
∣
∣
∣
∣

]

→ 0 (3.22)

as L → ∞.

Proof of (3.22). Since the process t 7→ L̂tg(N
L(t)) is uniformly bounded with respect to

L on compact time intervals, it suffices to prove that for all T > 0

∫ T

0

EL

[∣
∣
∣
∣
L̂tg(N(t))−

L− 1

L
L̂η(t)g(N(t))

∣
∣
∣
∣

]

dt → 0 (3.23)
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as L → ∞. Since g ∈ Cb(N+) and because of condition (2.3), we find

∣
∣
∣
∣
L̂tg(N(t))−

L− 1

L
L̂η(t)g(N(t))

∣
∣
∣
∣
≤ 2||g||∞

(
∑

k≥1

c(k,N(t))
∣
∣FL

k (η(t)) − fk(t)
∣
∣

+C1

∑

k≥0

(k + C2)
∣
∣FL

k (η(t)) − fk(t)
∣
∣+
∑

k≥0

c(N(t), k)
∣
∣FL

k (η(t)) − fk(t)
∣
∣+

2C1(C2 + 1)N2(t)

L

)

≤ 2||g||∞

(

C1(2 + C2)N(t)
∑

k≥1

k
∣
∣FL

k (η(t)) − fk(t)
∣
∣

+C1

∑

k≥0

(C2 + (1 + C2)k)
∣
∣FL

k (η(t)) − fk(t)
∣
∣+

2C1(C2 + 1)N2(t)

L

)

Notice that for all M > 0, we have

EL

[

N(t)
∑

k≥1

k
∣
∣FL

k (η(t)) − fk(t)
∣
∣

]

= EL

[

N(t)
∑

k≥1

k
∣
∣FL

k (η(t)) − fk(t)
∣
∣
1{N(t) ≤ M}

]

+

EL

[

N(t)
∑

k≥1

k
∣
∣FL

k (η(t))− fk(t)
∣
∣
1{N(t) > M}

]

≤ MEL

[
∑

k≥1

k
∣
∣FL

k (η(t))− fk(t)
∣
∣

]

+ 2a1 sup
L∈N,t≤T

EL
[
N(t)1{N(t) > M}

]
.

Therefore, for all M > 0 and because of relation (3.9), we find:

∫ T

0

EL

[∣
∣
∣
∣
L̂g(N(s))−

L− 1

L
L̂η(s)g(N(s))

∣
∣
∣
∣

]

ds ≤

2M ||g||∞C1(2 + C2)

∫ T

0

EL

[
∑

k≥1

k
∣
∣FL

k (η(t)) − fk(t)
∣
∣

]

dt+

4a1T ||g||∞C1(2 + C2) sup
L∈N,t≤T

EL
[
N(t)1{N(t) > M}

]
+

+C1

∫ T

0

EL

[
∑

k≥0

(C2+(1+C2)k)
∣
∣FL

k (η(t)) − fk(t)
∣
∣

]

dt+
2C1(C2+1)

(
A2+B2T+C2α3

)
eC2T

L
T

In the limit L → ∞, by bounded convergence and Theorem 2.1, we have that

∫ T

0

EL

[
∑

k≥1

k
∣
∣FL

k (η(t)) − fk(t)
∣
∣

]

dt → 0

Therefore, for all M > 0,

∫ T

0

EL

[∣
∣
∣
∣
L̂g(NL(s))−

L− 1

L
L̂η(s)g(N

L(s))

∣
∣
∣
∣

]

ds ≤

4a1T ||g||∞C1(2 + C2) sup
L∈N,t≤T

EL
[
NL(t)1{NL(t) > M}

]
.

In the limit M → ∞, the uniform integrability of {NL(t)}L,t≤T due to relation (3.9),

gives (3.23).
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