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Compression of the Koopman matrix for nonlinear physical models via hierarchical clustering

Tomoya Nishikata and Jun Ohkubo
Graduate School of Science and Engineering, Saitama University, Sakura, Saitama, 338–8570 Japan

Machine learning methods allow the prediction of nonlinear dynamical systems from data alone. The Koop-

man operator is one of them, which enables us to employ linear analysis for nonlinear dynamical systems. The

linear characteristics of the Koopman operator are hopeful to understand the nonlinear dynamics and perform

rapid predictions. The extended dynamic mode decomposition (EDMD) is one of the methods to approximate

the Koopman operator as a finite-dimensional matrix. In this work, we propose a method to compress the Koop-

man matrix using hierarchical clustering. Numerical demonstrations for the cart-pole model and comparisons

with the conventional singular value decomposition (SVD) are shown; the results indicate that the hierarchical

clustering performs better than the naive SVD compressions.

I. INTRODUCTION

Physical simulation is used in many research fields, for ex-

ample, to predict natural phenomena, design industrial robots,

and simulate the behavior of objects in games. While we per-

form numerical simulations based on system equations, ma-

chine learning methods are also available for the physical sim-

ulations. The simulations based on machine learning do not

require the system equations; only a training data set is enough

to predict the system behavior. Many systems have nonlinear-

ity, and methods based on neural networks are hopeful candi-

dates for practical cases. Of course, the neural networks are

also nonlinear, and the computational cost is high.

Recently, several works focused on the analysis based on

the Koopman operator theory [1], in which we employ linear

analysis even if the underlying system is nonlinear. Instead

of the nonlinear computation for the original system equa-

tions for the state, we consider the observable space in the

Koopman operator theory. The Koopman operator acts on

the observable function linearly, and we can employ various

methods in linear algebra. However, the observable space is

a function space and infinite-dimensional. Hence, we must

approximate the infinite-dimensional Koopman operator as a

finite-dimensional Koopman matrix in practical computation.

One of the methods to construct the Koopman matrix from

data is the dynamic mode decomposition (DMD) [2]. An ex-

tension of the DMD is the extended dynamic mode decom-

position (EDMD) [3], in which we introduce a dictionary and

achieve more accurate predictions. There are some extensions

of DMD and EDMD; DMDc (DMD with control) and ED-

MDc (EDMD with control) [4] can deal with cases with ex-

ternal control inputs. Recently, the Koopman operators using

the EDMD have been extensively studied for the prediction

and control of physical models [5, 6]. Furthermore, various

applications and studies of Koopman matrices have been dis-

cussed, for example, to analyze power systems [7, 8], reduce

computational time in deriving Koopman matrices [9], add ro-

bustness against noise [10], and construct Koopman matrices

using prior knowledge of the underlying model [11, 12]. For

the Koopman operator theory, see the recent review [13].

While the Koopman operators are available for various pur-

poses, there is a problem with practical usage; the size of

the dictionary becomes large for higher-dimensional systems.

Hence, the computational complexity is enormous. Of course,

one could construct the dictionary with the aid of neural net-

works; in [12], the authors employed not only the conven-

tional basis functions but also the dictionary based on the neu-

ral networks. In [14], the dictionary learning with neural or-

dinary differential equations was discussed. However, it will

be beneficial to avoid the usage of neural networks because of

their high computational costs. In addition, robotics applica-

tions would avoid the black-box natures of neural networks.

Hence, it is preferable to employ simple dictionary functions

if possible.

Once one fixes the dictionary, we obtain the Koopman ma-

trix explicitly. Then, it is also crucial to reduce the compu-

tational costs related to the Koopman matrix. In [12], the au-

thors discussed the reduction of computational cost in the con-

struction stage of the Koopman matrix. One can combine the

prior knowledge of the underlying model with the Koopman

matrix; in [12], it is possible to reduce the learning cost by

making some elements of the Koopman matrix common. Al-

though this approach reduces the computational costs for the

learning process, the use of the Koopman matrix in the pre-

diction stage was the same as the conventional ones in [12].

Then, how about the methods to reduce computational cost in

the prediction steps?

In the present paper, we propose a method to compress the

constructed Koopman matrix. The proposed method employs

hierarchical clustering to extract similar rows and columns.

Based on the clustering results, we perform the grouping of

similar rows and columns, which compresses the Koopman

matrix and the dictionary. Since the compressed Koopman

matrix is not square, it is unavailable for calculating the time

evolution repeatedly. Then, we introduce an additional ma-

trix to recover the size. As a demonstration, we perform nu-

merical experiments on a data set generated from a cart-pole

model; we also compare the numerical results with a conven-

tional matrix compression with the singular value decomposi-

tion (SVD).

The outline of the present paper is as follows. In Sec. 2, we

briefly review the Koopman operator theory and the EDMD

algorithm. The main proposal is yielded in Sec. 3; the com-

pression method based on hierarchical clustering is explained.

In Sec. 4, we numerically demonstrate the proposed method.

As an example, a data set generated from the cart-pole model

is used. Section 5 gives some concluding remarks.

http://arxiv.org/abs/2403.18181v1
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FIG. 1. Cart-pole model. The external force u only acts on the cart

horizontally.

II. PRELIMINARIES

A. A concrete example of physical model

In this section, we briefly review the Koopman operator the-

ory, the EDMD algorithm, and hierarchical clustering meth-

ods. It would be helpful to use a concrete example for read-

ers’ understanding, and then we sometimes use the cart-pole

model as the concrete example.

Figure 1 shows the cart-pole model. The horizontal coor-

dinate of the cart is x, and the cart can move only horizon-

tally. The angle between the pole and the cart is θ. The cor-

responding velocities are denoted as (ẋ, θ̇). The state equation

for the cart-pole model is nonlinear [15]; since only a data set

is enough to apply the Koopman operator theory, we do not

need to know the state equation here. There is an external

force u that acts on the cart horizontally to control the pole

to stand. However, the force does not appear in the following

explanation because only a data set for the system states under

proper control situations is employed. As explained in Sec. 4,

we use the time-series data for the cart-pole model controlled

by a reinforcement learning model.

B. Koopman operator and the EDMD algorithm

For the details of the EDMD algorithm, see [3]. We here

only review the necessary parts of the algorithm.

Consider a nonlinear time evolution function F : RDs →

R
Ds in a Ds-dimensional state space. The state at discrete time

t is denoted as xt, and then F(xt) = xt+1. In the cart-pole

model, Ds = 4 and the state is given as xt = [xt, θt, ẋt, θ̇t].

In the Koopman operator theory, we introduce an observ-

able vector g(x) for the state x. An observable, gi(x), is a

function; for example, gi(x) = θ is a function to observe only

the angle θ. As depicted in Fig. 2, a Koopman operator K is

a linear operator that performs discrete-time evolution for the

observable vector by linear computation. The discrete-time

evolution equation using the Koopman operator is defined as

follows:

K g(xt) = g ◦ F(xt) = g(xt+1), (1)

where ◦ means the composition of functions. The Koopman

operator allows linear computation for the nonlinear time evo-

FIG. 2. Linear computation via the Koopman operator. Instead of

the original nonlinear dynamics, we employ the linear operator K in

the observable space. In practice, we estimate a finite-dimensional

matrix to approximate the linear operator.

lution of the original system. Note that the observables are

functions; hence, the Koopman operator acts on the corre-

sponding function space. Since the function space is infinite-

dimensional, we practically approximate the Koopman opera-

torK as a finite-dimensional matrix, called a Koopman matrix

K.

The EDMD algorithm is one of the algorithms to derive

the finite-dimensional approximation of the Koopman oper-

ator from data [3]. The EDMD algorithm requires snap-

shot pairs of time series data and a dictionary. The snapshot

pairs are s pairs of data before and after time evolution, i.e.,

(X1 = [x1, x2, · · · , xs] and X2 = [x2, x3, · · · , xs+1]); we here

simply make the snapshot pairs from a single time-series data.

The dictionary is a vector of functions. Let D be the size of

the dictionary, i.e., the number of dictionary functions. Then,

the dictionary ψ(x) is expressed as follows:

ψ(x) = [ψ1(x), ψ2(x), · · · , ψD(x)]⊤. (2)

For example, monomial dictionary functions for the cart-pole

model is written as

ψ1(x) = 1, ψ2(x) = x, ψ3(x) = θ, ψ4(x) = ẋ, ψ5(x) = θ̇,

ψ6(x) = x2, ψ7(x) = xθ, ψ8(x) = xẋ, ψ9(x) = xθ̇, . . . .

It is easy to see that the dictionary size D becomes large for

high-dimensional systems. There are other dictionary func-

tions, such as radial basis functions and neural network-based

functions. However, the monomial dictionary functions are

sometimes beneficial because of their simplicity and under-

standability. In the present paper, we employ the monomial

dictionary functions.

An observable function gi(x) is expressed in terms of the

dictionary ψ(x):

gi(x) =

D∑

d=1

ai,dψd(x), (3)

where {ai,d} are the expansion coefficients. Then, the action of
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the Koopman operator on the observable function yields

K ◦ gi(x) =

D∑

d=1

ai,d(K ◦ ψd(x)). (4)

The action of K on the observable vector g is defined as the

element-by-element action. Then, Eq. (4) allows us to derive

the time evolution of the observable vector g(x) by apply-

ing the Koopman operator to the dictionary ψ(x). Note that

Eqs. (3) and (4) yield only approximations if the number of

dictionary function is not enough.

The action of the Koopman operatorK is approximated via

the corresponding Koopman matrix K as follows:

K ◦ ψ(x) ≃ Kψ(x). (5)

To obtain the Koopman matrix, the conventional least-squares

method is available. From the snapshot pairs X1, X2 and the

dictionary ψ(x), we construct the data matrix Ψ(X1) ∈ RD×s

and Ψ(X2) ∈ RD×s. Then, the Koopman matrix is estimated

via

K = arg min
K̃

‖Ψ(X2) − K̃Ψ(X1)‖2. (6)

As derived in [3], the solution is given as

K = AG+, (7)

where

A =
1

s

s∑

i=1

ψ(xi)ψ(xi+1)⊤, G =
1

s

s∑

i=1

ψ(xi)ψ(xi)
⊤, (8)

and G+ is the pseudo-inverse matrix of G.

C. Hierarchical clustering

Hierarchical clustering [16, 17] is one of the well-known

clustering methods for unsupervised learning. To seek a hi-

erarchy of clusters, we employ a bottom-up approach in this

work. We merge the clusters with the smallest distance from

each other and repeat this process. The stepwise classification

yields a dichotomous tree called a dendrogram. An example

of the dendrogram is shown in Fig. 3; there are five elements

(or clusters) [A, B,C,D, E] initially. The vertical axis in Fig. 3

represents the distance between clusters.

In hierarchical clustering, we first define a distance func-

tion, and all distances between clusters are evaluated. Then,

we merge two clusters with the smallest distance. In this pa-

per, we employ the Euclidean distance between a vector y and

z:

LE =

√∑

i=1

(yi − zi)2. (9)

After merging the clusters with the smallest distance, we

update the distance between the merged cluster and the other

FIG. 3. An example of a dendrogram constructed from hierarchical

clustering. Here, the five elements are clustered hierarchically ac-

cording to distance.

clusters. There are several updating methods, and in this work,

we employ the shortest distance method. For example, after

merging clusters A and B, the updated formula for the distance

to cluster C is defined as follows:

d[AB]C = min(dAC, dBC), (10)

where dAC and dBC are the distances between clusters A and

C, and that between clusters B and C, respectively. We update

the distance between the merged cluster and other clusters for

each merging process.

III. PROPOSED METHOD

As mentioned in Sec. 1, since the dictionary size is gener-

ally large, the Koopman matrix will also be huge. Therefore,

it is desirable to compress the Koopman matrix. Here, we pro-

pose a compression method based on hierarchical clustering,

which consists of four steps.

A. Step 1: Compress the Koopman matrix via hierarchical

clustering

We consider the reduction of the Koopman matrix of Fig. 4

as an example. Hierarchical clustering of this matrix using

the shortest distance method with Euclidean distance yields

the dendrogram depicted in Fig. 5. We denote the N clusters

in the row direction as Cr
= [Cr

1
, · · · ,Cr

N
] and M clusters in

the column direction as Cc
= [Cc

1
, · · · ,Cc

M
]. A cluster consists

of some rows or columns; Cr
ik

and Cc
jk

are the k-th components

of clusters in Cr
i

and Cc
j
, respectively. The clustering results in

Fig. 5 are used to compress the Koopman matrix.

Figure 6 shows an example of a matrix in which we sort

the rows and columns so that elements in the same clusters

are adjacent to each other. The green block in the rows and

the red one in the columns in Fig. 6 are examples of rows and

columns belonging to the same cluster, respectively. The re-

sults of hierarchical clustering yield similar rows or columns.

Hence, we assume that the rows or columns in the same clus-
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FIG. 4. An example of the original matrix for the clustering. Since

the Koopman matrix is square, we start from this square matrix in the

following explanation.

FIG. 5. Hierarchical clustering for the matrix. Rows and columns

are hierarchically clustered separately.

ter have the same values. From this assumption, we set

KCr
i1
, j = KCr

i2
, j = · · · = KCr

i|Cr
i
|
, j, (11)

K j,Cc
i1
= K j,Cc

i2
= · · · = K j,Cc

i|Cc
j
|
. (12)

From this assumption, we construct a compressed Koopman

matrix by grouping the row-by-row and column-by-column

elements in the same cluster. After the grouping procedure,

we take the average of elements in the same cluster and set

it as the compressed element. That is, the i j element of the

FIG. 6. An example of rearranged Koopman matrix by the hierarchi-

cal clustering results. The columns surrounded by the red block and

the rows surrounded by the green block belong to the same cluster,

respectively.

FIG. 7. An example of the compressed Koopman matrix based on

the proposed method.

compressed Koopman matrix K′ ∈ RN×M is evaluated as

K′i j =

∑|Cr
i
|

k=1

∑|Cc
j
|

l=1
KCr

ik
,Cc

jl

|Cr
i
||Cc

j
|

. (13)

As an example, let us consider the case with N = 6 clus-

ters in the row direction and M = 8 clusters in the column

direction. Then, the original Koopman matrix K ∈ R15×15 is

compressed as a matrix K′ ∈ R6×8. Figure 7 shows the com-

pressed Koopman matrix. The green and red blocks in Fig. 6

correspond to them in Fig. 7, respectively.

Although the compressed Koopman matrix is derived, we

should pay attention to the matrix size. The original Koopman

matrix is square. Hence, it is possible to apply the Koopman

matrix repeatedly:

ψ(xt+2) = Kψ(xt+1) = K2ψ(xt) (14)

However, the compressed Koopman matrix K′ is not square.

Hence, we need different dictionaries for the compressed
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Koopman matrix. To construct them, we here distinguish dic-

tionaries before and after the matrix acts on them. Let ψB(xt)

and ψA(xt) be the dictionaries before and after the action, re-

spectively. Then,

KψB(xt) = ψA(xt). (15)

Note that ψ(xt+1) = ψB(xt+1) = ψA(xt). In the following two

steps, we construct two compressed dictionaries, respectively.

B. Step 2: Construct the dictionary after the action

As an example, we consider a 3×3 Koopman matrix. Then,


K11 K12 K13

K21 K22 K23

K31 K32 K33




ψB1(xt)

ψB2(xt)

ψB3(xt)



=


K11ψB1(xt) + K12ψB2(xt) + K13ψB3(xt)

K21ψB1(xt) + K22ψB2(xt) + K23ψB3(xt)

K31ψB1(xt) + K32ψB2(xt) + K33ψB3(xt)

 (16)

=


ψA1(xt)

ψA2(xt)

ψA3(xt)

 . (17)

Let us consider the case where the second and third rows

are within the same group, i.e. Cr
= [[1], [2, 3]]. Then, we

construct the matrix elements K′
2i

from K2i and K3i. Hence,

we have

[
ψ′

A1
(xt)

ψ′
A2

(xt)

]
=

[
K11 K12 K13

K′
21

K′
22

K′
23

] 
ψB1(xt)

ψB2(xt)

ψB3(xt)

 . (18)

We want to construct a compressed dictionary ψ′
A

(x) from

ψA(x). Note that the second row in Eq. (16) is a linear com-

bination of {K2i} and {ψBi}. From the relation in Eq. (11), we

have K2i = K3i. Hence, the second and third rows in Eq. (16)

should also be equal. This fact leads to

ψ′A2(xt) = ψA2(xt) = ψA3(xt). (19)

Of course, the grouping procedure based on the clustering re-

sults does not give an exact equality. Hence, we approximate

ψ′
A2

(xt) with the average:

ψ′A2(xt) =
1

2
(ψA2(xt) + ψA3(xt)) . (20)

In summary, we define the compressed dictionary after the

action as follows:

ψ′Ai(xt) =
1

|Cr
j
|

|Cr
j
|∑

k=1

ψAk(xt). (21)

C. Step 3: Construct the dictionary before the action

Again, we consider the example in Eq. (16) and Eq. (17).

When we consider the case with Cc
= [[1], [2, 3]], the follow-

ing equation should be treated:


K11 K′

12

K21 K′
22

K31 K′
32



[
ψB1(xt)

ψ′
B2

(xt)

]
=


ψA1(xt)

ψA2(xt)

ψA3(xt)

 . (22)

Here, we want to construct ψ′
B2

(xt) from ψB2(xt) and ψB3(xt).

The left-hand side of Eq. (22) is calculated as


K11 K′

12

K21 K′
22

K31 K′
32



[
ψB1(xt)

ψ′
B2

(xt)

]
=


K11ψB1(xt) + K′

12
ψ′

B2
(xt)

K21ψB1(xt) + K′
22
ψ′

B2
(xt)

K31ψB1(xt) + K′
32
ψ′

B2
(xt)

 , (23)

and the comparison of the right-hand side of Eq. (23) and

Eq. (16) leads to the following equations:

K j1ψB1(xt) + K′j2ψ
′
B2(xt)

= K j1ψB1(xt) + K j2ψB2(xt) + K j3ψB3(xt). (24)

Hence, we have

K′j2ψ
′
B2(xt) = K j2ψB2(xt) + K j3ψB3(xt). (25)

Using Eq. (12) and Eq. (13), we have K′
j2
= K j2 = K j3. Then,

we derive the following relationship:

ψ′B2(xt) = ψB2(xt) + ψB3(xt). (26)

In summary, we define the compressed dictionary before

the action as follows:

ψ′B j(xt) =

|Cc
j
|∑

k=1

ψCc
jk
(xt). (27)

D. Step 4: Recover the suitable dictionary for the compressed

Koopman matrix

The above two steps (Step 2 and Step 3) allow us to apply

the compressed Koopman matrix to the compressed dictionar-

ies:

K′ψ′B(xt) = ψ
′
A(xt). (28)

Note that the two dictionariesψ′
B

(xt) and ψ′
A

(xt) have different

sizes. Then, we cannot apply K′ repeatedly. Hence, we intro-

duce an additional matrix R, which recovers the suitable size

for the dictionary. Figure 8 shows an image of the procedure.

The matrix R acts on Ψ′
A

(x) as follows:

Rψ′A(xt) = ψ
′
B(xt+1). (29)

To explain the matrix R, we here use a 5×5 matrix as an ex-

ample. Assume that Cr
= [[1, 5], [3], [2, 4]] in the row direc-

tion and Cc
= [[1, 2], [3, 4, 5]] in the column direction. Hence,

we have


K′

11
K′

12

K′
21

K′
22

K′
31

K′
32



[
ψ′

B1
(xt)

ψ′
B2

(xt)

]
=


ψ′

A1
(xt)

ψ′
A2

(xt)

ψ′
A3

(xt)

 . (30)
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FIG. 8. Recovering step. The matrix R recovers the dictionary before

the action, ψB(x), from the dictionary after the action, ψA(x).

Equation (27) leads to

ψ′B1(xt) = ψ1(xt) + ψ2(xt), (31)

ψ′B2(xt) = ψ3(xt) + ψ4(xt) + ψ5(xt). (32)

In addition, we here employ the simple equalities as in

Eq. (19);

ψ′A1(xt) = ψ1(xt+1) = ψ5(xt+1), (33)

ψ′A2(xt) = ψ3(xt+1), (34)

ψ′A3(xt) = ψ2(xt+1) = ψ4(xt+1). (35)

Since we want to satisfy Eq. (29), ψB(xt+1) must be connected

to ψA(xt). Then, we derive the following equations from the

above relationships:

ψ′B1(xt+1) = ψ′A1(xt) + ψ
′
A3(xt), (36)

ψ′B2(xt+1) = ψ′A2(xt) + ψ
′
A3(xt) + ψ

′
A1(xt), (37)

which leads to

R =

[
1 0 1

1 1 1

]
. (38)

In summary, the matrix for the recovering step, R, is con-

structed as follows:

R ji =

|Cr
i
|∑

k=1

|Cc
j
|∑

l=1

1l[Cr
ik = Cc

jl] (39)

where 1l is the indicator function, which returns 1 when the

condition is satisfied and 0 if not.

E. Remark on the procedure

There are two ways for the usage of the matrix R;

RK′ψB(xt) = K′BψB(xt) = ψB(xt+1), (40)

K′RψA(xt) = K′AψA(xt) = ψA(xt+1). (41)

Equation (40) is a time evolution using the dictionary be-

fore the action, ψB(xt); Eq. (41) is that for ψA(xt). Note that

these two procedures employ matrices with different size, i.e.,

RK′ = K′
B
∈ RM×M and K′R = K′

A
∈ RN×N .

IV. NUMERICAL EXPERIMENTS

In this section, we demonstrate the proposed method us-

ing the concrete physical model. We here use a little diffi-

cult model for the prediction tasks, i.e., the cart-pole model

controlled by a reinforcement learning model. The cart-pole

model aims to stand the pole only with force on the cart. The

underlying system equations of the cart-pole model are non-

linear. Of course, there is no need to know the underlying

system equations; we only use a data set for the dynamics.

Here, we construct the Koopman matrix by the EDMD algo-

rithm and evaluate the features of the compressed Koopman

matrix.

A. Data generation

We artificially generate the data for the cart-pole model.

The cart-pole model is denoted in Sec. 2.1 and Fig. 1.

The details of the data generation is as follows. The initial

state is set as x0 = [0, 0, 0, 0]. The time-evolution is simulated

with ∆t = 0.05, and the final time is set as T = 5. Hence, we

obtain a data set with 100 snapshot pairs from a single trajec-

tory data. In the numerical experiments, we apply the control

inputs obtained from the pre-trained Q-learning model so that

the pole stands. This procedure is repeated 100 times to gen-

erate the training data set; we finally obtain a training data set

with 10, 000 snapshot pairs. Furthermore, we employ further

100 repeated simulations with the same settings to obtain the

evaluation data set.

B. Definition of compression ratio

We define the compression ratio as the ratio of the row and

column size of K′ to those of K. The size of K′ is N ×M, and

that of K is D×D. Hence, we denote the ratio as [N/D, M/D].

Note that the ratio [1.0, 1.0] corresponds to the uncompressed

case. We use the monomial dictionary functions with a total

degree of up to 10, and then D = 1, 001.
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TABLE I. Average computation time per step [ms]. The rows and

columns correspond to different row size ratios and column size ra-

tios, respectively.

Row \ Column 1.0 0.8 0.6 0.4 0.2

1.0 0.524 0.529 0.558 0.490 0.243

0.8 0.404 0.392 0.349 0.345 0.143

0.6 0.192 0.176 0.151 0.141 0.123

0.4 0.120 0.098 0.080 0.098 0.116

0.2 0.072 0.057 0.106 0.060 0.063

In Sec. III E, we mentioned two types of formulas, i.e.,

Eq. (41) and Eq. (40). In the following numerical experiments,

we employ Eq. (41). The dictionary before the action used in

Eq. (40) is constructed from the sum of the original dictionary

functions; see Eq. (26). Hence, we require accurate evalua-

tions for all these functions. By contrast, the dictionary after

the action used in Eq. (41) is based on the relation of equality;

see Eq. (19). Hence, we expect the numerical evaluation of

Eq. (41) to be more stable than that of Eq. (40). From some

preliminary numerical experiments, we determined the use of

Eq. (41).

C. Computation time

First, we compare the difference in computation time by

compression of the Koopman matrix. Here, we output the

average computation time per step for the evaluation data, i.e.,

10,000 steps. The average computation time per step is shown

in Table I. The row shows the row size ratio of the compressed

Koopman matrix, and the column corresponds to the column

size ratio.

Table I indicates that we can reduce the computation time

largely by compressing in the row direction. The reason is that

the row size ratio determines the size of the square matrix K′
A

.

Hence, the small row size ratio yields a small square matrix

K′
A

, and we achieve a large decrease in the computation time.

D. Prediction accuracy

While the computation time is reduced, we must confirm

that the compressed Koopman matrix retains accuracy even

with the reduction in dimensions. Here, we compare the dif-

ferences between the predictions and the true values in the

evaluation data set. Figure 9 shows the mean squared errors

of the cart coordinate x and the pole angle θ for the origi-

nal Koopman matrix and the compressed ones of size ratios

[0.8, 0.8], [0.6, 0.6], [0.4, 0.4], and [0.2, 0.2]. Note that the ac-

curacy for the cart position x is not good even in the uncom-

pressed original Koopman matrix. This is because the cart-

pole model aims to stand the poles, which causes the cart to

move significantly. Actually, the cart position largely varied

in the trajectory data controlled by the reinforcement learn-

ing model. Hence, it is difficult to predict the position of the

cart. By contrast, the pole angle variations are smaller due to

FIG. 9. Mean squared errors between the predictions and the true

values in the evaluation data set. (a) Results for the cart coordinate

x. (b) Results for the pole angle θ. The colored areas represent the

corresponding quartiles.

the control, which leads to better predictive accuracy. From

Fig. 9, one may consider that a long-term prediction is dif-

ficult. However, it is general to perform the control based

on short-term prediction while observing the system state.

Hence, this length of time will be sufficient. Of course, the

aim here is not to make the control inputs; we investigate

the effects of the compression of the Koopman matrix on the

prediction accuracy. Then, it is enough to compare the accu-

racy of the proposed methods with the uncompressed original

Koopman matrix.

The results in Fig. 9 indicate that the accuracies for the

cases with [0.8, 0.8], [0.6, 0.6], [0.4, 0.4] are comparable to

that of the conventional method. For the case with [0.2, 0.2],

the results show different behaviors; for x, the mean squared

error is smaller than that of the conventional method in the

large time steps, while the result is worse for θ. Hence, the

ratio [0.2, 0.2] is not enough to recover the uncompressed

results. From these results, we confirm that the proposed

method works well even in large compression with [0.4, 0.4].

As we saw in Sec. 4.3, the [0.4, 0.4] case yields a speedup of

about 5 times.
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TABLE II. The number of matrix elements in the proposed method.

Row size ratio Number of matrix elements

0.8 640000

0.6 360000

0.4 160000

0.3 90000

0.2 40000

TABLE III. The total number of matrix elements for Kr
UΣ

and (Kr
V )⊤

in the SVD method.

Rank Number of matrix elements

300 600600

200 400400

100 200200

50 100100

20 40040

E. Comparison with SVD

Here, we compare the proposed method with the SVD

method, which leads to a low-rank approximation and the cor-

responding small memory size.

The usage of the SVD method for Koopman operators has

already been discussed in [18]. However, the discussion fo-

cused on the reduction of computational complexity in the

derivation of the Koopman matrix by the EDMD algorithm

and the effect of noise in the data. Here, we focus on the SVD

and the proposed method in terms of memory reduction of the

Koopman matrix. Therefore, we compare the accuracy of the

results of the SVD method with the results of the compressed

Koopman matrix with the comparable memory size.

The SVD yields the following low-rank approximation with

r ≤ D of the Koopman matrix:

K ≃ Kr
U Kr
Σ
(Kr

V )⊤ = Kr
UΣ(K

r
V )⊤, (42)

where Kr
U
∈ RD×r , Kr

Σ
∈ Rr×r, Kr

V
∈ RD×r , and Kr

U
Kr
Σ
= Kr

UΣ
∈

R
D×r . By using Kr

V
and Kr

UΣ
, it is possible to construct the cor-

responding Koopman matrix with the memory-size reduction.

Note that the condition r < D
2

is necessary to compress the

matrix size more than the original matrix size.

The number of elements in the original Koopman matrix is

1, 002, 001. Table II shows the numbers of matrix elements of

K′
A

for various settings. In Table III, we show the total number

of matrix elements for Kr
UΣ

and (Kr
V

)⊤. From these results, we

compare the results for [0.2, 0.2] with the rank = 20 case and

those for [0.3, 0.3] with the rank = 50 case.

Figure 10 shows the results. We see that the low-rank ap-

proximation via the SVD gives worse predictions than the pro-

posed method. Hence, we conclude that the proposed method

reduces the memory size while maintaining accuracy better

than the low-rank approximation of the SVD.

These result suggests that the hierarchical structure could

FIG. 10. Mean squared errors between the predictions and the true

values in the evaluation data set. The results obtained by the SVD

method are included. (a) Results for the cart coordinate x. (b) Results

for the pole angle θ. The colored areas represent the corresponding

quartiles.

extract and preserve some important structures for physical

simulation models.

V. CONCLUSION

The large dictionary size yields the large Koopman matrix,

which results in considerably high computational costs. To re-

duce the computational cost, we confirm that the compression

method based on hierarchical clustering is more effective than

the conventional SVD method. The proposed method based

on hierarchical clustering could effectively employ the infor-

mation embedded in the Koopman matrix.

Of course, the adequate size ratio of the compressed Koop-

man matrix could be different for other physical models and

settings. In practice, we should consider methods to find the

optimal size of the compressed Koopman matrices. In addi-

tion, we will pursue an interpretation of the results by hierar-

chical clustering from theoretical interests. At this stage, we

cannot find a useful interpretation, and more extensive studies

will be necessary in the future.

While the usage of the Koopman operator theory has been

actively studied recently, there is room to discuss the features

of the Koopman matrix. The present work is the first attempt
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to apply hierarchical clustering to this research topic. We be-

lieve that this idea will be helpful for future research.
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