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Abstract

In this paper, we introduce a density-based topology optimization framework to design porous
electrodes for maximum energy storage. We simulate the full cell with a model that incorporates
electronic potential, ionic potential, and electrolyte concentration. The system consists of three mate-
rials, namely pure liquid electrolyte and the porous solids of the anode and cathode, for which
we determine the optimal placement. We use separate electronic potentials to model each elec-
trode, which allow interdigitated designs. As the result, a penalization is required to ensure that
the anode and cathode do not touch, i.e. causing a short circuit. We compare multiple 2D designs
generated for different fixed conditions, e.g. material properties. A 3D design with complex channel
and interlocking structure is also created. All optimized designs are far superior to the tradi-
tional monolithic electrode design with respect to energy storage metrics. We observe up to 750%
increase in energy storage for cases with slow effective ionic diffusion within the porous electrode.

Keywords: Topology optimization, Electrochemistry, batteries, supercapacitors

1 Introduction

Electrochemical energy storage devices provide a shift
away from fossil fuels by enabling electric vehicles
and supporting the adoption of intermittent renewable
energy sources (Chu and Majumdar, 2012; Chu et al,
2016; Gür, 2018). Batteries and capacitors are exam-
ples of such devices that are ubiquitous in modern
technologies. And thus improving their performance is
crucial for the green energy transition.

The electrochemical charge storage mechanisms
can be broadly grouped into two types: charge sepa-
ration and Faradaic charge-transfer reactions (Simon
et al, 2014). In the former, electrostatic double-layer
capacitors (EDLCs) store energy by forming an elec-
tric double layer at the interface between the elec-
trodes and electrolyte. This is different from the latter

wherein electrons are transferred via reduction and
oxidation (i.e. redox ) reactions. Such reactions are the
principal energy storage mechanism of batteries, which
utilize slow kinetics and therefore lower power density
but enable much higher energy density than EDLCs.
As a middle ground, pseudocapacitors use fast redox
kinetics, resulting in smaller energy density than bat-
teries but larger than EDLCs while also demonstrating
high power density (Simon et al, 2014).

Batteries and capacitors share a common design:
two porous electrodes, namely the anode and the cath-
ode, are immersed in a liquid electrolyte and separated
by a membrane or simply an electrolyte-filled gap.
The traditional monolithic porous electrode cell illus-
trated in Fig. 1 consists of two slabs described by a
uniform porosity and surface area to volume ratio.
The electrodes are typically assemblies of micron-scale
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conductive particles. Electrochemical reactions occur
over the interface between the electrode-particles and
the electrolyte. As such, cell-design criteria primarily
focus on maximizing the surface area to volume ratio
while minimizing resistances related to electron or ion
transport (Wang et al, 2008), as these criteria enable
higher currents, power outputs, and energy storage.

Current collector (positive)

Current collector (negative)

Cathode

Electrolyte/separator

Anode

Power

source /

load

e−

e−

Fig. 1: Diagram of a traditional monolithic elec-
trochemical energy storage device.

Simply maximizing electrochemical surface area,
in the attempt to increase energy density, often
deteriorates ionic transport within the electrode by
replacing the pore network for ion transport with
an extremely tortuous path (Wang et al, 2008).
Such paths restrict ionic penetration into the mono-
lithic electrodes and thus reduce their effectiveness.
Fortunately, promising alternatives to these mono-
lithic designs are emerging; e.g. electrode designs
with geometric features, multiple lengthscales and/or
materials, and spatially varying porosity (Beck et al,
2021a; Trembacki et al, 2019; Zekoll et al, 2018; Gao
et al, 2023; Yang et al, 2022). These new designs are
made possible thanks to new advanced manufactur-
ing processes (Chu et al, 2021; Soares et al, 2021;
Chandrasekaran et al, 2023). It is this nearly com-
plete control over the electrode design that raises the
question of what these designs should be.

One approach to increase the energy density con-
sists in increasing the thickness of conventional slab
electrodes and reducing the number of cells needed in
a stack. This approach allows to reduce the weight
associated with non-active materials such as current
collectors, foils and separators (Heubner et al, 2021).
However, the electrode areal capacity is limited by the
ion transport within the tortuous electrode structure,
and typical commercial-electrodes have a thickness in
the range of 100-150 µm. (Heubner et al, 2021; Xu
et al, 2019; Kuang et al, 2019). Further increasing the
electrode thickness (and the areal capacity) leads to
a point of diminishing returns in volumetric energy

density for charge/discharge rates relevant to electric-
vehicle applications (Singh et al, 2015; Zheng et al,
2012; Gallagher et al, 2015).

Thicker electrodes with three-dimensional fea-
tures, in contrast to conventional slabs, have been
previously fabricated and tested (Long et al, 2004,
2020), demonstrating the importance of providing
structure and low-tortuosity transport pathways that
facilitate ion transport in the electrolyte. A cate-
gorization of the various three-dimensional designs
has been proposed by Hung et al (2022): the elec-
trodes may be individually shaped and separated by
a planar separator, which is either solid or porous,
or completely intertwined with one another. In par-
ticular, an interdigitated design, where alternating
planar fins or rods protruding from the cathode and
anode separated by the electrolyte, has demonstrated
increased power and energy performance (Hung et al,
2021; Zadin et al, 2011). Similar three-dimensional
interpenetrating structures have been investigated for
microbatteries and wearable devices applications (Lyu
et al, 2021; Zeng et al, 2014; Wang et al, 2017).
The non-planar structures improve performance via
increased surface area to volume ratios to promote
reaction and increased ionic diffusion through complex
pathways to promote mass transport (Trembacki et al,
2019; Chen et al, 2020), therefore enabling high power
and fast charging lithium-ion batteries (Chen et al,
2020; Zekoll et al, 2018). However, because the current
distribution and concentration profiles in these inter-
digitated and interpenetrating electrodes are highly
non-uniform (Hart et al, 2003; Trembacki et al, 2019),
their performance becomes strongly dependent on the
electrode and electrolyte properties, e.g. specific sur-
face area and conductivity, thus motivating the need
for a systematic design optimization paradigm.

Computational techniques such as topology opti-
mization offer a promising opportunity to design
optimal porous electrodes. Density-based topology
optimization was initially formulated as a mass distri-
bution problem in which the volume fraction field is
optimized to maximize the stiffness of a linear elastic
structure subject to a mass constraint Bendsøe (1989).
Topology optimization has since been adapted to
design electrochemical devices. Yaji et al (2018); Chen
et al (2019); Lin et al (2022) design the channels that
transport the electrolyte fluid to the porous electrodes
in redox flow batteries. Behrou et al (2019); Wang et al
(2023); Qu et al (2023) similarly design channels in
fuel cells to minimize electrical and pumping power
losses while maximizing power density. Heterogeneous
porosity fields have been designed for lithium-ion bat-
teries (Ramadesigan et al, 2010; Golmon et al, 2012;
Xue et al, 2015), and redox flow batteries (Beck et al,
2021b).
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Topology optimization has been used in Roy et al
(2022) to design redox porous electrodes and EDLC
electrodes. This study, which only considers a half
cell, i.e. a single electrode, generates designs for a
wide range of fixed dimensionless groups encapsulat-
ing material parameters, electrode length scale, and
operating conditions. The best performance improve-
ment over monolithic designs was achieved when ionic
transport within the porous material is slow. Batista
et al (2023) used a similar optimization framework
to design a supercapacitor electrode, which was then
fabricated using additive manufacturing. The opti-
mized electrode exhibited nearly twice the volumetric
capacitance over a lattice structured electrode. The
models used to predict the response in these previ-
ous studies assumed no concentration gradients; the
model in a more recent optimization study by Alizadeh
et al (2023) included mass accumulation and entropy
effects. In this work, we optimize both electrodes
simultaneously using a full-cell model that includes
mass transport.

A fundamental flaw with density-based topology
optimization is the use of the material volume fraction
field as the control. As such, regions in the opti-
mized designs contain mixtures of materials, which
is not possible, i.e. we must have so-called 0 − 1
designs in which a distinct material resides at each
location. The size of these mixed “intermediate” mate-
rial regions is minimized by using clever penalization
schemes in the topology optimization problem formu-
lation. For structural optimization, the penalization
is relatively straightforward because of the explicit
trade-off between the structural stiffness and mass cf.
e.g. the Simple Isotropic Material with Penalization
(SIMP) (Bendsøe, 1989). For electrochemical energy
storage systems, the trade-off between ion/electron
transport and chemical activity is less obvious, thus
special care is required when devising penalization
schemes. Schemes that concurrently increase ohmic
loss and reduce energy storage in intermediate mate-
rial regions have proven effective (Roy et al, 2022;
Batista et al, 2023). Developing effective penalization
schemes for topology optimization can be very tedious.
However those that conquer this battle are rewarded
with a very effective design tool.

In this manuscript, we use topology optimiza-
tion to design full-cell electrochemical energy storage
devices. In Sect. 2, we review topology optimiza-
tion concepts, and describe the boundary propagation
method required for the two-electrode optimization.
Next, in Sect. 3, we introduce the simulation model,
i.e. the Nernst-Planck equation for a binary elec-
trolyte with redox reactions and electrostatic double
layer capacitance. Implementation and solver details
are provided in Sect. 4. Following that, in Sect. 5,

the optimization problem is formulated and solved to
generate designs for various key dimensionless groups
encapsulating device length scale and material param-
eters such as conductivity and reaction rate. We also
compare the performances of two optimized designs
against traditional monolithic electrodes to demon-
strate effectiveness of the optimization. Next, we
showcase a 3D design, possessing complex channels
and interlocking features. We conclude in Sect. 6 with
some final discussion.

2 Topology optimization

Current collector Γa

Current collector Γc

Cathode (χ = 1)

Electrolyte/

Separator
(χ = 0)

Anode (χ = 1)

Fig. 2: Two-dimensional design space of a full cell
with porous electrodes.

Our topology optimization problem concerns the
material indicator field χ in cell domain Ω defined such
that χ(x) = 1 indicates that the solid porous electrode
material occupies x, whereas χ(x) = 0 indicates that
the separator or pure liquid electrolyte occupies x, cf.
Fig. 2. Over this domain we solve the model equations
F (χ,Φ1,Φ2, c) = 0 to be introduced in Sect. 3, for the
electronic potential Φ1, ionic potential Φ2, and salt
concentration c. These pieces are used to define the
porous electrodes topology optimization problem, i.e.

min
χ : Ω→{0,1}

θ0(χ) =

∫
Ω
π(χ,Φ1,Φ2, c) dV,

s.t. θi(χ) =

∫
Ω
gi(χ,Φ1,Φ2, c) dV ≤ 0, i = 1, . . . ,m,

and F (χ,Φ1,Φ2, c) = 0.
(1)

Here, θ0 is the cost function to be minimized and θi are
the m design constraint functions, with local functions
π and gi to be defined in Sect. 5.1.

Since the electrode phase is comprised of sep-
arate anode and cathode materials, a three-phase
(three-material) optimization formulation would be
natural (Sigmund and Torquato, 1997; Watts and Tor-
torelli, 2016). This three-phase approach requires a
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second material indicator field that would delineate
the anode and cathode phases. However, since cathode
and anode are in contact with different boundaries Γc

and Γa (see Fig. 2), we instead use a boundary propa-
gation method (Sá et al, 2022) for this delineation, cf.
Sect. 2.2. Thus, we optimize with respect to a single
field χ.

In the context of density-based topology optimiza-
tion (Bendsøe, 1989), the discrete nature of the design
field χ prevents the application of gradient-based opti-
mization algorithms. Because of this, and at the risk of
not obtaining 0− 1 designs, we replace χ : Ω → {0, 1}
with a continuous volume fraction variable ρ : Ω →
[0, 1]. Additionally, special care is required to ensure
that optimization problem is well-posed. These con-
cerns are remedied using filtering detailed in Sect. 2.1
and material penalization described in Sect. 5.1.

2.1 Filtering

Topology optimization problems are often ill-posed.
Their “solutions” are characterized by non-converging
sequences of structures with highly oscillatory mate-
rial distributions. One option to obtain a well-posed
problem imposes a feature length scale on the design
by filtering ρ to obtain the smoothed field ρ̃, which
is used to define the structures of material distribu-
tion (Bruns and Tortorelli, 2001; Bourdin, 2001). In
our problem, we use the diffusion-reaction PDE filter
described in Lazarov and Sigmund (2011) wherein ρ̃
solves

−r2∇2ρ̃+ ρ̃ = ρ in Ω,

r2∇ρ̃ · n = 0 on ∂Ω,
(2)

for the given design ρ. Fine scale oscillations in ρ are
mollified in ρ̃; more mollification occurs as the filter
radius r increases.

Unfortunately, the filtered design ρ̃ contains large
transitional regions where ρ̃ ̸= {0, 1} and our original
design problem only allows for χ(x) ∈ {0, 1} regions,
i.e. 0 − 1 designs. To remedy this, the filtered distri-
bution ρ̃ is thresholded to define the field ρ̄ such that
ρ̄(x) = {0, 1} throughout Ω. We can do this by equat-
ing ρ̄ = H(ρ̃ − 0.5) where H is the unit Heaviside
function. However, the lack of differentiability of H is
not conducive to our gradient-based optimization. As
such, we replace H with a smoothed approximation so
that

ρ̄ = Hb,k(ρ̃) =
tanh(bk) + tanh (b(ρ̃− k))

tanh(bk) + tanh (b(1− k))
. (3)

Here, b controls the sharpness of the 0 − 1 transition
and k controls the cutoff such that

lim
b→∞

Hb,k(ρ̃) = H(ρ̃− k)

(Guest et al, 2004; Sigmund, 2007; Sigmund and
Maute, 2013; Xu et al, 2010). In this way, we obtain

“nearly” 0−1 designs such that ρ̄(x) ≈ {0, 1} through-
out Ω. Here, we use b = 4 and k = 0.5 for a mild
transition. Although mild, it combines well with the
continuous boundary propagation method to identify
the extent of the cathode and anode regions. Aggres-
sive thresholding, i.e. larger b values, leads to prema-
ture convergence to poor local optima. Because of this,
continuation techniques on b are often employed to
improve optimization convergence and obtain nearly
0−1 designs. In this work, we do not use continuation
approaches, since the combination of mild threshold-
ing and the interpolation described in 5.1 lead to
nearly 0− 1 designs.

2.2 Continuous boundary
propagation

Initial design Optimized design

Fig. 3: Physical density ρ̄ (top) with its cor-
responding β (middle) and anode indicator Ia
(bottom) for the initial design (left) and optimized
design (right).

We can use ρ̄(x) = {0, 1} to determine if electrolyte
or electrode resides at x, but we do not know if the
electrode is the anode or cathode. This is important
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because the anode and cathode may be manufactured
with different materials and because we need to sep-
arate the anode and cathode regions to avoid a short
circuit. Both of these concerns are resolved by using
the continuous boundary propagation approach (Sá
et al, 2022).

The boundary propagation approach consists of
solving the following diffusion-reaction problem cf.
Fig. 3 for β:

ρ̄∇ · ∇β − (1− ρ̄)β = 0 in Ω,

β = 1 on Γa,

β = −1 on Γc,

∇β · n = 0 on ∂Ω/Γc ∪ Γa.

(4)

In electrode regions (ρ̄ = 1), the equation reduces to
∇ · ∇β = 0, and in electrolyte regions (ρ̄ = 0), it
reduces to β = 0. By prescribing β = 1 and β = −1
on anode and cathode current collector boundaries,
namely Γa and Γc, we are assured that 0 ≤ β ≤ 1
in the anode and −1 ≤ β ≤ 0 in the cathode. The
resulting β is transformed into differentiable indicator
functions for the anode and cathode regions such that

Ia(β) =Hb,k

(
β + 1

2

)
,

Ic(β) =Hb,k

(
−β + 1

2

)
,

(5)

with k = 0.5.
Examples of ρ̄ distributions, their corresponding

β propagation, and anode indicator computed with
b = 100 are illustrated in Fig. 3. To summarize, ρ̄
distinguishes between solid electrode and liquid elec-
trolyte regions, and β produces the indicator fields
Ia and Ic to distinguish between anode and cathode
regions. The indicator fields are also used to ensure
model consistency as discussed in Sect. 3.3.

3 Governing equations

In this section, we introduce the governing equations
to model electrochemical energy storage devices with
both redox and capacitive charging effects (John-
son and Newman, 1971; Doyle et al, 1993; Newman
and Tobias, 1962; Newman and Tiedemann, 1975).
Extending the two-potential system described in our
previous study (Roy et al, 2022), we solve the Nernst–
Planck equation for the ion concentration fields, which
affect the charge-transfer and adsorption kinetics,
and the electrolyte conductivity. Therefore, account-
ing for its mass transport improves the predictability
of our designs. Battery models may also include ionic
diffusion in the solid particles (Doyle et al, 1993;
Brosa Planella et al, 2022), however, for simplicity we
ignore solid diffusion, which is a reasonable assump-
tion when the electrode particles are of the order of

1 µm in size. Additionally, we assume that the anode
and cathode have identical material properties.

3.1 Physical model

We consider a binary electrolyte in which the cation
participates in the redox reaction that produces cur-
rent density in. In the battery, this reaction has the
form

s+Az+ + ne− ⇌ s+A, (6)

where n is the number of electrons transferred, z+
is the cation charge number, and s+ = n/z+ is the
cation stoichiometric number. Both cations and anions
are adsorbed by double-layer charging, which produces
current density ic. The Nernst–Planck equation for
the positive (c+) and negative (c−) charged species
concentrations are as follows:

∂ (ϵc+)

∂t
=−∇ ·N+ +

dq+
dq

1

z+F
aic +

s+
nF

ain in Ω,

∂ (ϵc−)

∂t
=−∇ ·N− +

dq−
dq

1

z−F
aic in Ω,

(7)
where Ni is the ionic flux for species i = ±, ϵ is poros-
ity, F is the Faraday constant (96 485Cmol−1), and a
is the specific surface area, which equates zero in the
liquid electrolyte region. The variation in the amount

of adsorbed cations/anions is captured by
dqi
dq

, where

qi is the adsorbed cation/anion surface charge density
in the double layer, and q is the total surface charge
density in the double layer. Assuming the absence of

cosorption of anions and cations,
dq+
dq = 1 and

dq−
dq =

0 for a cation responsive electrode, and
dq+
dq = 0 and

dq−
dq = 1 for an anion responsive electrode (Johnson

and Newman, 1971).
We now define constitutive equations for in, ic,

and Ni. The redox and capacitive current densities are
defined as

in = i0

[
exp

(
αaF

RT
η

)
− exp

(
−αcF

RT
η

)]
,

ic = Cd
∂ (Φ1 − Φ2)

∂t
,

(8)

where αa and αc are the anodic and cathodic charge
transfer coefficients, respectively. For simplicity, we
assume α = αa = αc. Here, the exchange current
density is i0 = Fkrxnc

α, where krxn is the reaction
rate and c is the salt concentration defined below. The
overpotential η = Φ1 − Φ2 − U0 is obtained from the
electronic potential Φ1, the ionic potential Φ2, and the
equilibrium potential U0. R (8.3145 JK−1 mol−1) is
the ideal gas constant, T is the temperature, and Cd

is the specific capacitance. Note that battery models
typically treat U0 as a function of solid surface concen-
tration (Doyle et al, 1993); for simplicity, we assume
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U0 to be constant. Therefore, the Nernstian loss, which
is defined by the change in the equilibrium potential
as a function of the concentration, is not modeled. To
account for the effect of concentration on ion adsorp-

tion, we define Cd = C0

(
c
c0

)α
. This nonstandard

addition to the model prevents nonphysical extreme
capacitive current density in the designs where high
reaction rates could lead to ion depletion.

The ionic flux for an individual species is calcu-
lated by

Ni = −ziuiFci∇Φ2 −Di∇ci. (9)

In the above, ui is the effective ion mobility and Di

is the effective molecular diffusion coefficient of the
species, which satisfy the Nernst-Einstein relationship
as

Di = RTui. (10)

The stoichiometric coefficient and ion charge number
are related by

zi =
n

si
. (11)

Both relations are useful for nondimensionalization of
the governing system. Assuming electroneutrality, we
have the constraint ∑

i

zici = 0, (12)

which is also equivalent to∑
i

ziνi = 0, (13)

where νi is the number of moles of cations or anions
per mole of electrolyte. For a binary electrolyte, we
can then define the salt concentration as

c =
c+
ν+

=
c−
ν−

. (14)

Considering electroneutrality, equations (7) are
combined into one conservation equation for the salt
concentration (see Newman and Thomas-Alyea (2012)
for the derivation of the salt concentration equation).
Combining that with the charge conservation in the
electronic and ionic potentials, we obtain the gov-
erning field equations that solve for Φ1, Φ2, and c
(Newman and Tiedemann, 1975):

−∇ · (σ∇Φ1) = −a (in + ic) in Ω,

(15a)

−∇ · (κ∇Φ2)− z+ν+F∇ · ((D+ −D−)∇c)

= a (in + ic) in Ω,
(15b)

∂(ϵc)

∂t
−∇ · (D∇c) =

s+
Fnν+

t−ain

+
1

Fz+ν+

(
t−

dq+
dq

− t+
dq−
dq

)
aic in Ω,

(15c)

subject to the boundary and initial conditions:

Φ1 = 0 on Γa, (15d)

Φ1 = ζt on Γc, (15e)

∇Φ1 · n = 0 on ∂Ω \ (Γa ∪ Γc), (15f)

∇Φ2 · n = 0 on ∂Ω, (15g)

∇c · n = 0 on ∂Ω, (15h)

Φ1(x, t = 0) = 0 in Ω, (15i)

Φ2(x, t = 0) = 0 in Ω, (15j)

c(x, t = 0) = c0 in Ω, (15k)

for t ∈ (0, T ], where σ is the effective electronic con-
ductivity, κ is the effective ionic conductivity, and c0
is the initial concentration. The dimensionless quan-
tity t+ denotes the transference number of the cation;
the transference number of the anion is related by
t− = 1 − t+. The boundary conditions describe a
linearly increasing potential in time on the cathode
current collector, with scan rate ζ.

In the electrode region, the effective transport
properties, namely effective electronic conductivity
σ, effective ionic conductivity κ, and the effective
salt diffusion coefficient or ambipolar diffusivity D
are influenced by the tortuosity of the pores. The
Bruggeman correlation (Bruggeman, 1935) quantifies
tortuosity as a power law of porosity with exponent
3
2 for packed spheres, and thus the effective transport
properties are calculated as

σ = (1− ϵ)
3
2 σ0, κ = ϵ

3
2 κ0, D = ϵ

3
2D0, (16)

where the 0 subscript represents the bulk value. Specif-
ically, κ0 and D0 refer to the ionic conductivity and
diffusion coefficient in pure electrolyte (ϵ = 1), and
σ0 refers to the electronic conductivity in non-porous
solid (ϵ = 0). Note that D0 and κ0 are computed from
the individual ion species as

D0 = D0+D0−
z+ − z−

z+D0+ − z−D0−
, (17)

κ0 = F 2c(z2+ν+u0+ + z2−ν−u0−). (18)

The values for bulk conductivities, i.e. σ0 and κ0, and
porosity are readily available from experimental data.
The bulk diffusion coefficient, transference number,
and specific surface area are more difficult to measure.

Comparison with experimental data indicates that
the Bruggeman correlation overestimates ionic con-
ductivity in porous electrodes with certain particle
arrangements (Tjaden et al, 2016, 2018). Therefore,
we also consider a modified correlation that reduces
ionic conductivity and diffusion coefficient inside the

porous material by equating κ = fmϵ
3
2 κ0 and Di =

fmϵ
3
2D0,i, where fm is a correction coefficient that

takes values in the range [0.02, 0.79], depending on the
electrode microstructure (Madabattula and Kumar,
2020).
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3.2 Nondimensionalization

To facilitate the analysis, we nondimensionalize the
system described by (15) by defining the dimensionless
quantities:

Φ̂1 =
F

RT
Φ1, ĉ =

c

c0
, t̂ =

D0

L2
t,

Φ̂2 =
F

RT
(Φ2 + U0), x̂ =

x

L
.

(19)

The dimensionless location x̂ leads to the nondimen-
sional domain Ω̂ and boundaries Γ̂a and Γ̂c, as well
as gradient ∇̂. We also introduce the dimensionless
specific surface area â, effective diffusion coefficient
D̂, and effective electronic conductivity σ̂, which
are design-dependent quantities we will describe in
Sect. 3.4. Using (10) and (11) the dimensionless field
equations read

−∇̂ ·
(
σ̂∇̂Φ̂1

)
= −λâ

(
δr în + δc îc

)
in Ω̂,

(20a)

−∇̂ ·
(
D̂ĉ∇̂Φ̂2

)
−
(
t+
z+

+
t−
z−

)
∇̂ ·

(
D̂∇̂ĉ

)
= (1− λ)â

(
δr în + δc îc

)
in Ω̂,

(20b)

∂(ϵĉ)

∂t̂
− ∇̂ · (D̂∇̂ĉ) =

z+z−
t+t−(z− − z+)

(1− λ)

ât−

(
δr în+

(
dq+
dq

− t+
t−

dq−
dq

)
δc îc

)
in Ω̂,

(20c)

subject to the boundary and initial conditions

Φ̂1 = 0 on Γ̂a, (20d)

Φ̂1 = ξt̂ on Γ̂c, (20e)

∇̂Φ̂1 · n = 0 on ∂Ω̂ \ (Γ̂a ∪ Γ̂c), (20f)

∇̂Φ̂2 · n = 0 on ∂Ω̂, (20g)

∇̂ĉ · n = 0 on ∂Ω̂, (20h)

Φ̂1(x̂, t̂ = 0) = 0 in Ω̂, (20i)

Φ̂2(x̂, t̂ = 0) = 0 in Ω̂, (20j)

ĉ(x̂, t̂ = 0) = ĉ0 in Ω̂, (20k)

for t̂ ∈ (0, T̂ ]. In the above we introduce the dimen-
sionless current densities

în =ĉα
[
eα(Φ̂1−Φ̂2) − e−α(Φ̂1−Φ̂2)

]
,

îc =ĉα
∂
(
Φ̂1 − Φ̂2

)
∂t̂

.

(21)

and dimensionless ionic conductivity κ̂ = ĉD̂.

For future reference we also introduce the indepen-
dent dimensionless groups as

δr =
a0i0L

2F

RT

(
1

σ0
+

1

κ0

)
, t+ =

z+u+
z+u+ − z−u−

,

δc = a0CdD0

(
1

σ0
+

1

κ0

)
, λ =

κ0
σ0 + κ0

,

ξ =
ζL2F

D0RT
.

(22)
with the following meanings

• δr and δc represent the ratios between the kinetic
resistance and ohmic resistance, for redox kinetics
and capacitive charging, respectively;

• λ is the ratio between the ionic conductivity and
the total conductivity;

• t+ denotes the transference number of cation; the
anion transference number is related by t− = 1−t+;

• ξ is the scan rate to diffusion timescale ratio.

Here, the ionic conductivity κ0, the exchange current
density i0, and specific capacitance Cd are computed
with the initial concentration c0.

We also define δ = δr + δc as the ratio of total
kinetic resistance and ohmic resistance, and γ = δr/δ
as the fractional contribution from the redox reaction,
so that

δ =
a0D0F

RT

(
1

σ0
+

1

κ0

)(
i0L

2

D0
+

CdRT

F

)
,

γ =
i0L

2/D0

i0L2/D0 + CdRT/F
.

(23)

Hence, γ can be varied while keeping δ constant to
have different reaction compositions for the same total
kinetic resistance. In the literature, the Wagner num-
ber, i.e. 1/δ, is often used to analyze the limiting
kinetics and current distribution.

3.3 Electrode-specific electronic
potential

In a full-cell model, the electronic potential only exists
in the electrode regions (where ρ̄ → 1). System (20)
models Φ̂1 on the entire domain Ω, by assigning the
dimensionless electronic conductivity to a very small
positive value in the separator region (where ρ̄ →
0) so that σ̂∇̂Φ̂1 ≈ 0 in the electrolyte. However,
because of filtering, ρ̄ is not exactly zero the elec-
trolyte region and hence the interpolated conductivity
may not be negligible, which allows some electronic
current to bypass the ionic phase, creating a short
circuit between the electrodes. To minimize the short
circuit effect, the optimized designs will position the
electrodes far apart, so that ρ̄ approaches zero in
the center of the electrolyte region. Consequently, the
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optimization produces suboptimal designs, with no
possibility for creating interdigitated structures that
are known to be effective (Hung et al, 2022; Long
et al, 2004).

To prevent a short circuit and allow for interdigita-
tion, we represent Φ̂1 via two fields: Φ̂1,a in the anode

and Φ̂1,c in the cathode and use the indicator functions
from (5) to define their effective subdomains. The elec-
tronic potential equation (15a) is thus replaced by the
two equations

−∇̂ ·
(
Iaσ̂∇̂Φ̂1,a

)
= −λâ

(
δr în,a + δc îc,a

)
in Ω̂, (24a)

−∇̂ ·
(
Icσ̂∇̂Φ̂1,c

)
= −λâ

(
δr în,c + δc îc,c

)
in Ω̂, (24b)

with associated boundary conditions

Φ̂1,a = 0 on Γ̂a, (24c)

∇̂Φ̂1,a · n = 0 on ∂Ω̂ \ Γ̂a, (24d)

Φ̂1,c = ξt̂ on Γ̂c, (24e)

∇̂Φ̂1,c · n = 0 on ∂Ω̂ \ Γ̂c, (24f)

where the anodic currents are computed as

în,a =Iaĉα
[
eα(Φ̂1,a−Φ̂2) − e−α(Φ̂1,a−Φ̂2)

]
,

îc,a =Iaĉα
∂
(
Φ̂1,a − Φ̂2

)
∂t̂

,

(25)

and cathodic currents în,c and îc,c are computed simi-
larly by replacing Ia and Φ̂1,a with Ic and Φ̂1,c. For all
other terms defined above, the total current densities
are evaluated as în = în,a + în,c, and îc = îc,a + îc,c,
and the electronic potential as Φ̂1 = IaΦ̂1,a + IcΦ̂1,c.

3.4 Design-dependent material
parameters

In our topology optimization, the model parameters
such as the porosity, the dimensionless surface area,
electronic conductivity, and diffusivity, vary spatially
as a function of the material indicator field ρ̄. The
porosity and dimensionless surface area are given by
interpolations as

ϵ =ϵM + ρ̄(ϵN − ϵM ),

â =ρ̄q,
(26)

where ϵM is the porosity in the electrolyte/separa-
tor, ϵN is the porosity in the electrode, and q ≥ 1
is a penalization parameter. The porosity ϵ is volume
averaged while the specific area â is penalized. As
such, intermediate regions where ρ̄(x̂) ̸= {0, 1} have
artificially smaller â, thus reducing current densities.

Because of this, the optimized designs predominantly
have ρ̄(x̂) = {0, 1}, which approximates our original
problem in (1), i.e. χ ≈ ρ̄. Meanwhile, the dimension-
less electronic conductivity σ̂ and diffusion coefficients
D̂ are computed from the Bruggeman correlation (16)
and interpolations

σ̂ =ρ̄p(1− ϵN )
3
2 ,

D̂ =ϵ
3
2

M + ρ̄p
(
ϵ
3
2

N − ϵ
3
2

M

)
,

(27)

where the parameter p ≥ 1 is similarly used to penalize
ionic and electronic transport in intermediate material
regions. Note that ϵM is not involved in the interpola-
tion for σ̂ since the electrolyte has negligible electronic
conductivity. For the modified Bruggeman correlation,

the ϵ
3
2

N is replaced by fmϵ
3
2

N in the formula for D̂.
In this paper, we choose ϵM = 1, ϵN = 0.5, and
fm = 0.02. The choice of the penalization parameters
p and q is discussed in Sect. 5.1.

3.5 Energy metrics

We list quantities used to construct the optimization
cost and constraint functions, namely energy input,
kinetic energy, and ohmic loss,

Ein =
1

λ

∫ T̂

0

∫
∂Ω̂

σ̂∇̂Φ̂1 · nΦ̂1 dŝdt̂, (28a)

Ekin =δr

∫ T̂

0

∫
Ω̂
âîn(Φ̂1 − Φ̂2) dx̂dt̂

+δc

∫ T̂

0

∫
Ω̂
âîc(Φ̂1 − Φ̂2) dx̂ dt̂, (28b)

Eohm =
1

λ

∫ T̂

0

∫
Ω̂
σ̂∇̂Φ̂1 · ∇̂Φ̂1 dx̂dt̂

+
1

1− λ

∫ T̂

0

∫
Ω̂
D̂ĉ∇̂Φ̂2 · ∇̂Φ̂2 dx̂ dt̂

+
1

1− λ

(
t+
z+

+
t−
z−

)∫ T̂

0

∫
Ω̂
D̂∇̂ĉ · ∇̂Φ̂2 dx̂dt̂.

(28c)

The detailed derivation of these expressions is pre-
sented in Appendix A. The kinetic energy, henceforth
referred to as the stored energy, includes both the
energy stored in the chemical reaction and the dissipa-
tion due to finite charge-transfer kinetics. The energy
storage depends on the thermodynamic potential,
which is characteristic of a specific material system.
To keep the analysis general, we do not specify the
thermodynamic potential and instead infer its value
via the dimensionless ionic potential, which naturally
groups kinetic loss with kinetic storage.

The optimization problem focuses on reducing the
ohmic losses, because this can be lowered by shaping
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the electrodes to facilitate ion and electron transport
across the cell. By reducing the ohmic losses, a larger
current output can be extracted from the cell, for
a given applied voltage. While a larger current also
causes larger kinetic losses (due to the activation bar-
rier for redox reaction) we expect the cell efficiency to
be dominated by transport losses.

4 Implementation

We resolve the governing equations (20), (24), filter-
ing equation (2), and boundary propagation equation
(4) with the finite element library Firedrake (Ham
et al, 2023), which uses PETSc (Balay et al, 2023a,b)
as the backend for the iterative solvers. The sensitivi-
ties of the optimization cost and constraint functions
are computed by pyadjoint (Mitusch et al, 2019). A
Python implementation of the MMA algorithm (Svan-
berg, 1987), pyMMAopt (Salazar de Troya, 2021) is
used to solve the optimization problem. The designs
are considered converged after 350 iterations, where
the change in the normalized objective function is
typically in the magnitude of 10−3.

Piecewise linear finite elements are used for spa-
tial discretization of the governing physics equations
(20) and (24). We use a mixed finite element method
to solve the filtering equation (2) and the continu-
ous boundary propagation problem (4), as detailed
in Appendix B. The domain is either partitioned
into triangular (2D) or tetrahedral (3D) elements.
The two-dimensional domain is a rectangle with dis-
tance between the current collectors of nondimen-
sional length 1 and the width of 2. The additional
dimension of the three-dimensional domain is a depth
of 2. We simulate half of the total domain in 2D, and
a quarter in 3D, due to the domain symmetry. The
total number of degrees of freedom (DoF) for 2D and
3D models are ∼60k and ∼4M, respectively. Back-
ward Euler is used for temporal discretization with 20
total timesteps for a dimensionless simulation time of
1, which is the smallest number of timesteps that is
stable for all studies. We parallelize the computation
via an approximately 20k DoFs/CPU load.

With a transient problem, computing sensitivities
with the adjoint method requires storing the pri-
mal response for all timesteps. In this work, we have
not encountered any memory bottleneck, but it is
an inevitability for larger simulations. In response,
checkpointing schemes such as Griewank and Walther
(2000) can be utilized.

The finite element system corresponding to (20)
with the two-electronic potential formulation (24) is
solved using Newton’s method with linesearch. The 2D
linearized systems are solved using a direct method.
For the 3D cases, however, an iterative method with
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T
im
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)

Strong scaling (3D, 4.1mio DoFs)

Total solve
Linear solve

Fig. 4: Strong scaling for the 3D solver. The tim-
ings show the total solution time and the total
linear solver time where the number of GMRES
iterations appears in the parentheses.

a scalable preconditioner is essential (Wathen, 2015).
The linearized systems have the following block form:

A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44



∆Φ1,c

∆Φ1,a

∆Φ2

∆c

 =


r1
r2
r3
r4

 , (29)

where ri, i ∈ {1, 2, 3, 4}, are the residual vectors
corresponding to Eqn. (24b), (24a), (20b), and (20c)
that are expressed in terms of the j ∈ {1, 2, 3, 4}
response vectors ∆Φ1,c, ∆Φ1,a, ∆Φ2, and c. Each
block Aij represents the linearization of the finite
element residual ri with respect to vector j.

The diagonal blocks Aii result from the dis-
cretization of elliptic or parabolic operators, for which
multigrid methods (Brandt, 1977) are often ideal pre-
conditioners. We thus use the preconditioned GMRES
(Saad and Schultz, 1986), with a block triangular
preconditioner of the form

P =


A11 0 0 0
A21 A22 0 0
A31 A32 A33 0
A41 A42 A43 A44

 . (30)

Evaluating the inverse of this matrix requires the
inverses of the diagonal blocks Aii, which is done
approximately using a single AMG V-cycle (Ruge and
Stüben, 1987) BoomerAMG (Henson and Yang, 2002)
from the hypre library (Falgout and Yang, 2002). The
PETSc options for solving the field equations, the filter
problem, and boundary propagation problem can be
found in Appendix C.

In Fig. 4, we investigate the scalability of this
preconditioning approach. For this investigation, we
simulate the first timestep for the initial uniform ρ =
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0.5 design. We observe that the linear solver of (29)
exhibits almost linear scalability, which indicates that
our preconditioning is effective.

5 Results and discussion

Herein, we introduce the optimization strategy and
optimize designs for various choices of dimension-
less parameters. The fixed dimensionless parameters
among all designs are listed in Table 1. Table 2 lists

Table 1: Dimensionless parameters that are fixed
amongst all designs.

Parameter Quantity Value

α charge transfer coefficient 0.5
t+ cation transference number 0.5
ξ potential scan rate 1.0

T̂ final time 1.0
ϵM electrolyte porosity 1.0
ϵN electrode porosity 0.5

the three dimensionless parameters that are varied
amongst the designs. The results presented in Sect. 5.2
show how different combinations of (λ, δ, γ) lead to
different optimal electrode designs.

Table 2: Dimensionless parameters that are var-
ied amongst the designs.

Parameter Quantity

λ ratio between ionic and total conductivity
δ ratio between ohmic and kinetic resistance
γ redox contribution to total reaction

5.1 Optimization problem setup

In this section, we introduce several strategies devised
to improve the convergence and effectiveness of the
optimization algorithm. Given the complexity of the
physical problem, we need to carefully define the cost
and constraint functions and the initial design in
order to effectively traverse the design space and find
optimized designs.

5.1.1 Parameter penalizations

To promote binary ρ̄(x̂) ≈ {0, 1} designs, we use differ-
ent interpolations for the design-dependent quantities
â, σ̂, and D̂ in the cost and constraint functions, as
compared to the primal model, cf. (20) and (24) in

Sect. 3.4. In the cost and constraint computations, â is

Fig. 5: Different penalization for specific surface
area and ionic conductivity for the primal anal-
ysis and cost/constraint computation to produce
binary designs.

interpolated with q = 3, whereas in the primal analy-
sis q = 1, cf. (26). Reversely, σ̂ and D̂ use p = 1 in the
cost and constraint computations and p = 1.5 in the
primal analysis. The different interpolations adopted
for the primal analysis and the cost/constraint compu-
tations are visualized in Fig. 5. The q = 3 penalization
for the specific surface area and p = 1.5 for the conduc-
tivity disproportionately reduces the energy storage
and disproportionately increases the ohmic loss in
the intermediate material regions. These penalizations
lead to inefficient use of intermediate material regions
and hence the size of such regions in the optimized
designs is small.

5.1.2 Cost and Constraint

Maximizing the kinetic energy Ekin defined in (28) is
an intuitive choice for the (negative) cost function, as
a proxy for maximizing energy stored. Unfortunately,
this choice does not consider the ohmic loss. Most
importantly, this cost function would not benefit from
the (27) diffusivity/conductivity interpolation scheme.
In response, we formulate the optimization problem as
follows

max
ρ : Ω→[0,1]

θ0 =
1

2
(Ekin + Ein − Eohm)

subject to θ1 =
Eohm

Ein
≤ ηmax, (31)

i.e. we maximize energy storage and ensure a minimum
energy efficiency of (1− ηmax). According to (31), the
design can be optimized by either increasing Ekin or
decreasing Eohm. And hence the interpolations of â,
σ̂, and D̂ produce disproportionately lower Ekin and
disproportionately higher Eohm from the intermediate
material regions for the cost and constraint functions,
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relative to the primal analysis. As such the optimizer
generates predominantly 0− 1 designs.

Fig. 6: Interdigitated electrodes with near uni-
form β ≈ ±1 distribution bounded by a thin
separator layer with large (1− |β|)3 values.

According to (24), the only relation between
the two electronic potentials is through the reaction
terms. Consequently, a physical connection between
the anode and cathode is not simulated as a short
circuit (electronic current bypassing the reaction). To
prevent such connections, we define the short circuit
intensity

ISC =

∫
Ω
(1− |β|)3 ρ̄ dx̂ (32)

The term (1 − |β|)3 takes its maximum value when
β = 0. In the absence of a short circuit, in the elec-
trodes where ρ̄ ≈ 1, we have a near uniform β = ±1
distribution. The exception occurs in the separator
layer where β experiences a sharp transition as illus-
trated in Fig. 6. A “small” short circuit intensity
requires ρ̄ ≈ 0 when β ̸= ±1, thus ensuring the elec-
trolyte fills the gap between the electrodes. We weakly
enforce this short circuit intensity constraint via the
penalty method, i.e. we now solve the optimization
problem

min
ρ : Ω→[0,1]

θ̃0 =
1

θ0
+ wSCISC

subject to θ1 =
Eohm

Ein
≤ ηmax, (33)

where wSC = 1 is the penalty weight used in our study.
Note that the minimization of −θ0, is less robust than
1
θ0

since it requires case-specific scaling values for θ0.
However, in order for (33) to work properly, Eohm <
Ein + Ekin must be satisfied at initial design, so that
the cost θ̃0 is always positive, and hence minimized
by maximizing θ0. If θ0 < 0, then θ̃0 is minimized as
θ0 → 0−, which completely changes the optimization
trajectory and hence designs.

It is well known that the optimized designs may
depend on the initial design. To this end, we solve

the optimization problem using three uniform initial
designs ρ(x) ∈ {0.45, 0.5, 0.55} and choose the best

overall design. Let θ
(0)
1 denote the ohmic loss ratio

of the initial design. We set the constraint bound

ηmax = θ
(0)
1 ∗ Σ, where Σ ∈ (0.0, 1.0]. We gener-

ate designs for different combinations of dimensionless
parameters, with both original and modified Brugge-
man correlation. Σ = 0.4 is used for all δ = 0.5,
λ = 0.1, and the three-dimensional designs; Σ = 0.5 is
used for all other designs.

A typical optimization convergence history is illus-
trated in Fig. 7. During early design iterations, the
constraint drives the optimization to satisfy the θ1 ≤
ηmax constraint by separating the electrodes. Also,
more electrode material leads to additional reaction
current and increased ohmic loss. Because of this, the
constraint limits the maximum amount of electrode
material and thus prevents short circuits from appear-
ing in the design as the optimization continues. While
eliminating short circuits is necessary, a tight con-
straint hinders the development of structures as the
optimization continues. Therefore, we deactivate this
constraint after the bulk design features have formed,
which for our study is after iteration 150. The ensu-
ing iterations refine the shape rather than the overall
layout. To summarize, Σ strongly affects the optimiza-
tion during early iterations to find the interdigitation
topology but it has no effect during later iterations.

5.1.3 Case specific treatments

Certain cases within our parameter sweep require
extra care. 1) For cases with the original Brugge-
man correlation, i.e. fm = 1, large effective ionic
conductivity/diffusivity within the porous electrode
allows ions to travel deeper into the pore network,
resulting in better material utilization as discussed in
Sect. 5.3. Accordingly, during early design iterations,
the optimizer positions a considerable amount of elec-
trode material in the middle region to benefit from
the largest potential drop. Unfortunately this causes a
strong connection between the electrodes that cannot
be removed in the later design iterations. To remedy
this, the optimization adopts a continuation strategy
wherein the initial design uses the modified Brugge-
mann correlation with fm = 0.02 which increases to
the target fm = 1 after iteration 50. 2) For cases
with large δ, we observe θ0 < 0 from the initial
design, which is undesirable as stated above. We rem-
edy this by invoking yet another continuation strategy
where the initial design uses a smaller δ such that
Eohm < Ein+Ekin is satisfied. In our study, the δ = 5
cases start with δ = 2 and increase to its target value
after iteration 50 (see Fig. 7).
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𝜂!"# = 0.353

(a) (b) (c) (d)

Fig. 7: Cost and constraint function history for δ = 2, γ = 0.5, λ = 0.01 with modified Bruggeman
correlation. The inserts are the designs at iteration (a) 8, (b) 20, (c) 50, and (d) 150. Only one symmetric
half of the design is illustrated to save space.

In some extreme situations, namely the δ = 5 with
modified Bruggeman correlation cases, large regions of
intermediate material appear in the optimized designs.
The small values for Ekin and Eohm in these regions
are overshadowed by the other regions where the cur-
rent density is substantial. As such, the penalization
scheme is not effective. To counter this effect, we
scale Ekin and Eohm after the bulk structures are
established (i.e. after iteration 150 when the efficiency
constraint is deactivated). To motivate our scaling
scheme, refer to the typical β distribution shown in
Fig. 3 (right-hand side) where |β| ≈ 0 around the
electrode tips and |β| ≈ 1 near the current collectors.
Accordingly, we consider three different types of scal-
ing, namely |β|, 1−|β|, and |β|(1−|β|), to scale down
the energy integrands around the electrode tip, the
current collector, and both, respectively. The scaling
is readily incorporated into our strategy with a con-
tinuation scheme. With |β| scaling as an example, the
energy storage is computed by

Ẽkin = δr

∫ T̂

0

∫
Ω̂
|β|sâîn(Φ̂1 − Φ̂2) dx̂ dt̂

+
δc
2

∫
Ω̂
|β|sâ(Φ̂1 − Φ̂2)

2 dx̂, (34)

where s = 0 for the first 150 iterations where after it is
increased to s = 1. We use the |β| scaling for Ekin and
Eohm in the γ = {0.5, 1} cases. For the γ = 0 case,
we use |β| scaling for Ekin and |β|(1− |β|) scaling for
Eohm.

For the 3D optimization case, a slight connection
of the electrodes appears near a wall. Some of the
strategies described above could be used to prevent

this short circuit design: different initial designs, scal-
ing, etc. Instead, motivated by Lazarov et al (2016), we
implement a simple dilation/erosion strategy, which
allows us to remove the short circuit. This strategy
applies a one-time adjustment to the design field ρ,
which is localized to the connection region. Namely, we
use shifted versions of the electrode indicator functions
(5) such that

Ĩa = H100,0.52

(
β + 1

2

)
,

Ĩc = H100,0.52

(
−β + 1

2

)
.

(35)

In this way, regions where Ĩa = 1 and Ĩc = 1 are
reduced in size as compared to Ia and Ic computed by
H100,0.5. Then there exist a subdomain Ωs such that

Ĩa(x) + Ĩc(x) = 0 for all x ∈ Ωs. Subsequently we
equate ρ := ρ(Ĩa+ Ĩc) to ensure ρ = 0 in Ωs. Once the
connection is removed, it is unlikely to reconnect due
to the short circuit intensity penalization. We perform
the shifted indicator adjustment after iteration 150.
Note that the remaining iterations are still completed
with the original indicator functions Ia and Ic. This
disconnection strategy is only appropriate when the
electrode connections are of a small “grazing” type,
and if so, has very little effect on the trajectory of
the optimization. Meanwhile, “head-on collision” con-
nections should be avoided earlier in the optimization
using strategies mentioned above.

5.2 Discussion of generated designs

We generate optimized designs with various combi-
nations of the dimensionless parameters δ, λ, and γ.
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We choose energy storage and ohmic loss as perfor-
mance metrics and compare the optimized designs to
a monolithic design with electrode separation distance
of 0.05, as this is the average gap among all optimized
designs. The optimized designs are shown in Fig. 8 -
12 with the percentage improvement over the mono-
lithic design. In the following subsections, we discuss
the designs corresponding to various combinations of
the three nondimensional parameters listed in Table 2,
and Bruggeman correlation functions (which approx-
imates the tortuosity of the ion-diffusion pathway
within the porous electrodes.)

Here, λ, i.e. the ratio between ionic and total con-
ductivity (defined in (22)), affects the macroscale
localization of the reaction front. In cases where
ionic conductivity is limiting (λ < 0.5), the reaction
front localizes at the electrode/separator interface.
Conversely, when the electronic conductivity is the
limiting factor, (λ > 0.5), the reaction front shifts
towards the current collector.

The parameter δ, i.e. the ratio between ohmic
and kinetic resistance (defined in (22)), controls the
electrode penetration depth. In the absence of concen-
tration gradients, the relative reaction rate between
the back and the front of electrodes can be quantified
by (Fuller and Harb, 2018)

Relative rate ≈ 1

cosh
(√

δ
) . (36)

For small δ values, the system is dominated by the
kinetic resistance, and results in a uniform or near-
uniform distribution of current density, which leads to
a uniform reaction throughout the electrode. In this
case, the macroscale geometry of the electrode has less
effect on the electrode material utilization, i.e. mono-
lithic designs perform sufficiently well. On the other
hand, for large δ values, the system is dominated by
ohmic resistance and results in a non-uniform (local-
ized) distribution of current density. As mentioned in
the introduction, thick monolothic electrodes perform
poorly due to small penetration depth. Therefore, this
case favors designs with complex electrode geometries.

5.2.1 Original Bruggeman correlation

Shown in Fig. 8 is the first series of designs gener-
ated using the original Bruggeman correlation, a fixed
λ = 0.01, and varying δ and γ. All optimized designs
possess an interdigitated structure, which was found
by the optimization algorithm thanks to the continua-
tion schemes described in Sect. 5.1. The interdigitation
allows reactions to happen closer to the current col-
lectors, boosting current density. The structure also
reduces ohmic losses by promoting more efficient ionic
transport. It is important to note that, if we sim-
ply force electrode separation by increasing the weight

wSC on the short circuit intensity penalty in (33), we
obtain near monolithic designs with a large distance
between electrodes.

The first benefit of interdigitation is a more
uniform concentration distribution. We quantify the
concentration variation by

ĉvar = |Ω̂|−
1
2 ∥ĉ− c̄∥

L2(Ω̂)
, (37)

where c̄ = 1 is the average dimensionless concentra-
tion in the system. As illustrated in Fig. 9, using the
δ = 5 and γ = 1 case as an example, the interdigi-
tated design decreases the variation in concentration
by more than 50% over the monolithic design. A more
uniform concentration distribution ensures better ion
adsorption and redox reaction, since small concentra-
tions hinder the adsorption/reaction rate, while large
localized concentrations indicate poor ion utilization.

In the case of redox-active materials (γ = 1), the
interdigitation also increases the electrode area in con-
tact with the pure electrolyte region, facilitating ion
transport between electrolyte and electrode regions.
For an applied voltage boundary condition, interdigi-
tation reduces the cell resistance and hence increases
the current output. Summarizing, by facilitating ion
transport in the electrolyte, the interdigitated design
reduces the energy dissipation and improves cell effi-
ciency.

For small λ, energy dissipation mainly results from
ion transport and is proportional to the magnitude of
the ionic-potential gradient. We compute the average
gradient magnitude of ionic potential by

|∇̂Φ̂2|avg = |Ω̂|−1∥∇̂Φ̂2∥L2(Ω̂)
. (38)

Fig. 9 shows a more uniform ionic potential distribu-
tion in the optimized design compared to that in the
monolithic design, and a 40% decrease in the average
gradient.

In kinetic resistance limited cases (δ = 0.5),
there are no notable differences between the designs
obtained with different γ values (see left column in
Fig. 8.). In other words, the bulk geometry is not
sensitive to the partitioning between capacitive and
redox reaction due to reactions being more uniform.
Indeed, the designs are driven by the heterogeneous
ohmic losses Eohm. In these cases, the interdigitated
optimized designs achieve a maximum energy storage
increase of 10%, and a maximum ohmic loss decrease
of 60% over the monolithic design.

For the ohmic resistance limited cases (δ = 5), we
notice obvious variations among the designs (see the
right column in Fig. 8). The periodicity of the designs
remains the same for varying γ values. Since the
current model does not incorporate surface concen-
tration that limits the maximum ion adsorption, the
overall concentration decreases significantly for capac-
itor electrodes. Therefore, for capacitive-dominated
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δ

0.5 5

γ

0.0

Ekin = .0427 (110%), Eohm = .0038 (39%) Ekin = .1098 (231%), Eohm = .0403 (65%)
(a) (b)

0.5

Ekin = .0383 (107%), Eohm = .0024 (41%) Ekin = .1395 (207%), Eohm = .0404 (56%)
(c) (d)

1.0

Ekin = .0334 (103%), Eohm = .0015 (42%) Ekin = .2254 (192%), Eohm = .0497 (59%)
(e) (f)

Fig. 8: Optimized porous electrode designs modeled with the original Bruggeman correlation, λ = 0.01,
and varying δ/γ. Black is ρ̄ = 1; white is ρ̄ = 0.

reactions (small γ), more electrolyte is needed to
support the reaction and prevent reactant starvation
and dramatic energy dissipation. This explains the
wider white separation region between the electrodes
in the γ = 0 design. As the charging becomes more
redox dominated (γ → 1), the designs’ interdigita-
tion depth increases, reducing the separation distance
between the electrodes. Such an effect is only obvi-
ous in these ohmic resistance limited cases. A smaller
separation distance results in a faster ion exchange
between the electrodes and hence sustains high reac-
tion rates. Additionally, more electrode material is
placed close to the current collectors to support the
reaction on the electrode tips. For these δ = 5 designs,
we observe approximately 100% increase in energy
storage and 40% reduction in ohmic loss over the
monolithic design.

Next, we study the effect of varying λ and γ for
a fixed δ = 2. A small λ indicates larger relative elec-
tronic conductivity, which benefits designs with more
intensive interdigitation. A small λ is characteristic
of Graphite-based anodes with large electronic con-
ductivity, in the order of 1000mS/cm, and in porous
cathodes that incorporate carbon additives to enhance
the average electric conductivity. On the other hand,
the average room-temperature conductivity of liquid
electrolyte materials is on the order of 10mS/cm.
Overall, it is reasonable to assume that the electronic
conductivity is at least one or two orders of magnitude
larger than the ionic conductivity. This corresponds to
λ values ranging from 0.01 to 0.1.

As shown in Fig. 10, we observe long and bulky
columns in the λ = 0.01 designs. These designs achieve
substantial current densities over the electrode tip due
to the larger over-potential. The ohmic loss associated
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Monolithic electrodes

(a) ĉ ∈ [0.7, 1.3], ĉvar = 0.2161

(b) Φ̂2 ∈ [0.15, 0.85], |∇̂Φ̂2|avg = 0.8280

Optimized electrodes

(c) ĉ ∈ [0.8, 1.2], ĉvar = 0.1015

(d) Φ̂2 ∈ [0.3, 0.7], |∇̂Φ̂2|avg = 0.4932

Fig. 9: Concentration (top) and ionic potential (bottom) distributions of monolithic and optimized
electrodes with δ = 5, γ = 1, λ = 0.01, and the original Bruggeman correlation.

with transporting the electrons to and from the cur-
rent collector is negligible, and thus results in more
efficient designs.

Comparing the λ = 0.1 cases (right column in
Fig. 10) with the λ = 0.01 cases (left column in
Fig. 10), we notice that an increase in λ favors designs
with more complexity. This can be attributed to the
fact that as λ approaches 0.5, electron and ion trans-
port become equally limiting. Consequently, smaller
electrode columns are needed to shorten electron
transport distance. This explain why the designs have
more thinner columns. And unlike the sharp teeth-like
structures observed in Roy et al (2022), the fea-
tures here have round corners since smaller curvature
enhances ion diffusion, and prevents electric field con-
gestion. Deep interdigitation provides smaller benefits
as compared to the previous cases. However, maxi-
mizing the interfacial area with the pure electrolyte
region is still desirable as it introduces additional path-
ways for ionic current to enter and leave the pure
electrolyte region. Therefore, the complex bulk geom-
etry enhances the ionic transport within the porous
electrode region, and thus reduces local ion depletion.

The optimization mainly tries to reduce energy
dissipated due to ohmic resistance in these δ =
2 designs. Therefore, the λ = 0.1 designs with
increased electronic resistance generally store less
energy. Although all optimized designs outperform the

monolithic design, the designs generated with λ = 0.01
provide an additional 40% increase in energy storage
and 30% reduction in ohmic loss, as compared to the
corresponding λ = 0.1 cases.

5.2.2 Modified Bruggeman correlation

We now compare the results generated using the mod-
ified Bruggeman correlation with fm = 0.02, which is
equivalent to reducing ionic diffusion inside the porous
electrode by 50 times. As a result, the penetration
depth of the reaction front in the monolithic design
is further diminished. We first compare the designs
from different reaction regimes. The results are shown
in Fig. 11. To compensate for extremely slow ionic
diffusion inside the electrode phase, all designs form
spikey teeth-like structures to increase the interfacial
area with the pure electrolyte.

Similar to the observations made from the original
Bruggeman cases, among the δ = 0.5 designs, chang-
ing γ does not noticeably change the design because
it does not improve the uniformity of current distri-
bution. For the δ = 5 designs, capacitor electrodes
(γ = 0) are thinner with shorter spikes as compared to
redox electrodes (γ = 1) due to the depletion of ions
in the electrolyte that causes substantial increases in
ohmic loss.

By increasing δ (see right column of Fig. 11), we
observe a marked increase in the number of spikes and
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λ

0.01 0.1

γ

0.0

Ekin = .0910 (179%), Eohm = .0189 (40%) Ekin = .0731 (136%), Eohm = .0337 (66%)
(a) (b)

0.5

Ekin = .1040 (163%), Eohm = .0153 (39%) Ekin = .0775 (118%), Eohm = .0283 (68%)
(c) (d)

1.0

Ekin = .1092 (135%), Eohm = .0145 (47%) Ekin = .0846 (106%), Eohm = .0250 (78%)
(e) (f)

Fig. 10: Optimized porous electrode designs modeled with the original Bruggeman correlation, δ = 2,
and varying λ/γ. Black is ρ̄ = 1; white is ρ̄ = 0.

the teeth features protrude deeper into the electrode
columns. The limiting kinetics of localized reactions
is compensated by the increased interfacial area with
the pure electrolyte region, allowing for better ion
transport.

Conversely, in monolithic designs, electrode uti-
lization is poor. Charging occurs only in the regions
immediately adjacent to the electrolyte interface, lead-
ing to minimal energy storage, as further discussed in
Sect. 5.3. Therefore, we observe exceptional improve-
ments on energy storage across all cases, ranging from
350% to 750%. And despite significantly larger charg-
ing currents, the ohmic loss is only increased by a
maximum of 200%. Considering that the energy input
is much larger due to a lower overall cell resistance, the
energy efficiency for the optimized designs improves
significantly.

The second group of results obtained with the
modified Bruggeman correlation is illustrated in
Fig. 12 for two values of λ. Similar to the observa-
tions made in the corresponding original Bruggeman
designs (Fig. 10), going from λ = 0.01 to λ = 0.1,
the design complexity increases. Interestingly, the fre-
quency of the microscale teeth remains roughly the
same between the λ = 0.01 and λ = 0.1 designs with
the same γ. The teeth in the λ = 0.01 designs are
enlarged proportionally with the macroscopic struc-
tures. We observe 500% to 750% improvement in
energy storage with only ∼ 50% increase in ohmic loss.

5.2.3 Summary

To summarize the effect of different dimensionless
groups on the performance and optimized design:
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δ

0.5 5

γ

0.0

Ekin = .0328 (656%), Eohm = .0101 (204%) Ekin = .0962 (786%), Eohm = .0465 (312%)
(a) (b)

0.5

Ekin = .0291 (557%), Eohm = .0069 (120%) Ekin = .1152 (855%), Eohm = .0400 (267%)
(c) (d)

1.0

Ekin = .0248 (452%), Eohm = .0048 (72%) Ekin = .1330 (851%), Eohm = .0414 (265%)
(e) (f)

Fig. 11: Optimized porous electrode designs modeled with the modified Bruggeman correlation, λ = 0.01,
and varying δ/γ. Black is ρ̄ = 1; white is ρ̄ = 0.

• The energy gain is more significant in systems lim-
ited by ohmic resistance (mainly mass transport
induced resistance), corresponding to large δ values,
with δ being the inverse Wagner number.

• Macroscale features are most effective in enhancing
overall ionic transport for porous electrodes that
have high electronic conductivity corresponding to
small λ values.

• In extreme tortuosity systems characterized by the
modified Bruggeman case, features with spikey
teeth are advantageous because they provide sec-
ondary paths for ion transport.

• Interdigitated electrodes reduce the transport dis-

tance and increase active-material utilization.

5.3 Performance improvements

In this section, we compare the energy storage and
ohmic loss between the optimized and monolithic
designs to illustrate the improved material utiliza-
tion and ionic transport of the optimized cells. The
material utilization is quantified by the normalized
variation in energy storage density

Evar =

∥∥∥∥ρ̄(E(x̂)

Ē
− 1

)∥∥∥∥
L2(Ω̂)

, (39)

where

Ē =

(∫
Ω
ρ̄ dx̂

)−1

Ekin (40)

is the average energy density. The effectiveness of ionic
transport is quantified by the average cell resistance

Ravg = T̂−1
∫ T̂

0

ξt̂∫
Γ̂c

σ̂∇̂ · Φ̂1 · ndx̂
dt̂. (41)



Springer Nature 2021 LATEX template

18 optimization

λ

0.01 0.1

γ

0.0

Ekin = .0803 (858%), Eohm = .0189 (165%) Ekin = .0601 (617%), Eohm = .0167 (136%)
(a) (b)

0.5

Ekin = .0761 (798%), Eohm = .0169 (159%) Ekin = .0592 (602%), Eohm = .0195 (173%)
(c) (d)

1.0

Ekin = .0734 (741%), Eohm = .0153 (155%) Ekin = .0572 (594%), Eohm = .0131 (160%)
(e) (f)

Fig. 12: Optimized porous electrode designs modeled with the modified Bruggeman correlation, δ = 2,
and varying λ/γ. Black is ρ̄ = 1; white is ρ̄ = 0.

With a fixed boundary potential across all designs, a
smaller cell resistance results in a stronger charging
current and thus more energy storage.

Ekin and Eohm distributions for the δ = 5, γ = 1,
and λ = 0.01 design with either the original or modi-
fied Bruggeman correlations are illustrated in Figs. 13
and 14. First, looking at the original Bruggeman cases
in Fig. 13, notably better electrode utilization is seen
in the optimized designs. Regions near the current col-
lector in the monolithic electrodes have little energy
storage, as opposed to the optimized electrodes. The
optimized designs also achieve a larger energy density
at the electrode tips due to their increased over-
potential, which improves their material utilization
by approximately 50%. The monolithic design also
exhibits significant ohmic loss, in the electrode region
near the separator, since the ionic currents must pass
these regions to cross the gap. The ohmic loss density

in the optimized electrodes is similar, however, its net
effect is less since the interdigitated structure provides
more than twice as much electrode-electrolyte inter-
face area than the monolithic design. The increased
area provides additional pathways for the currents to
cross the gap. Consequently, the ionic current is more
uniformly distributed, resulting in less ohmic loss.
This is also reflected in the 25% decrease in average
cell resistance.

Analogous Ekin and Eohm plots for designs
obtained with modified Bruggeman correlation are
provided in Fig. 14. We observe poor material utiliza-
tion by the monolithic electrodes wherein most regions
are considered “dead zones” with negligible energy
storage. On the other hand, the spikey teethed opti-
mized structures promote ion exchange, thereby the
energy density is more uniformly distributed through-
out the electrodes. Therefore, the overall storage is
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Monolithic electrodes

(a) Ekin = 1.1712× 10−1, Evar = 0.8077

(b) Eohm = 8.4885× 10−2, Ravg = 161.29

Optimized electrodes

(c) Ekin = 2.2538× 10−1, Evar = 0.3623

(d) Eohm = 4.9681× 10−2, Ravg = 121.98

Fig. 13: Energy storage density (top) and ohmic loss density (bottom) distributions of monolithic (left)
and optimized (right) electrodes with δ = 5, γ = 1, λ = 0.01, and the original Bruggeman correlation.

Monolithic electrodes

(a) Ekin = 1.5622× 10−2, Evar = 3.6411

(b) Eohm = 1.5616× 10−2, Ravg = 920.62

Optimized electrodes

(c) Ekin = 1.3296× 10−1, Evar = 0.3164

(d) Eohm = 4.1372× 10−2, Ravg = 192.77

Fig. 14: Energy storage density (top) and ohmic loss density (bottom) between monolithic (left) and
optimized (right) electrodes with δ = 5, γ = 1, λ = 0.01, and the modified Bruggeman correlation.
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Fig. 15: Optimized anode and its energy storage
distribution.

enhanced by an order of magnitude and the mate-
rial utilization is enhanced by ∼ 90%. The ohmic
loss distribution is similar to the original Bruggeman
case. Although the maximum loss per unit area is
significantly less for the optimized design, the total
ohmic loss increases by ∼ 150% due to the substantial
increase in energy input. Nevertheless, we observe 5x
reduction in average cell resistance. Also, the energy
efficiency reaches 76%, a 26% improvement over the
monolithic design.

5.4 3D example

We optimize a 3D design with δ = 2, γ = 0.5, λ =
0.01, and modified Bruggeman correlation. The two
optimized electrodes are similar and so we only illus-
trate the anode and its energy storage distribution,
cf. Fig. 15. Similar protruding features of the cathode
are interdigitated with these of the anode. Through-
out the design of both electrodes, we observe small
penetrating holes, which increase interfacial area sim-
ilar to the spikey teeth from the 2D designs. From the
cross sections of both electrodes plotted in Fig. 16, we
observe the interdigitation similar to the 2D designs.
In addition, connections between the main pillar and
the wall are observed in certain locations, resulting in
an arch shape. The space below the arch is filled with
the arch from the other electrode, creating an inter-
locking structure as illustrated by the zoomed in view
of Fig. 17. A simplified schematic summarizing the
different design features is presented in Fig. 18

Fig. 16: Cross sections of both electrodes for 3D
optimized designs. The blue (top) electrode is the
cathode, and the red/pink (bottom) electrode is
the anode.

Fig. 17: Zoomed in view of the interlocking struc-
ture formed by the electrode arches.

We also compare the performance between the
optimized and monolithic electrodes. The energy stor-
age density distribution over a cross section is pre-
sented in Fig. 19 to demonstrate superior material
utilization of the optimized design. Similar to the 2D
observations, only the regions neighboring the separa-
tor have noticeable energy storage in the monolithic
design. Better material utilization is observed in the
optimized design, wherein the stored energy is more
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Interdigitated

(2D + 3D)

Interlocking

(3D only)

Fig. 18: Schematic of electrode structures. Both
2D and 3D cases form interdigitated columns.
In addition, 3D designs also possess interlocked
structure.

(a) Monolithic design

(b) Optimized design

Fig. 19: Cross sections of the energy storage dis-
tribution in the 3D monolithic (a) and optimized
(b) designs.

uniformly distributed. The total energy storage and
ohmic loss is 814% and 145% to the ones from the
monolith, which is slightly better than the correspond-
ing 2D case, possibly due to three-dimensional effects
such as interlocking.

6 Conclusion

In this work, we present a density-based topology opti-
mization strategy for the design of porous electrodes in
electrochemical energy storage devices with Faradaic
reactions and capacitive storage. A full-cell model is
utilized to simultaneously optimize the cathode and
anode.

We present various 2D optimized designs to ana-
lyze the changes in their features as we vary the value
of dimensionless groups. Interdigitation is observed in
all optimized designs, which unlocks additional energy
storage by allowing reactions to occur closer to the
opposite current collectors and by enhancing ionic
transport between the electrodes. In general, more
energy storage is acquired through electrode structure
for δ = 5 cases where reactions are localized near the
separator interface. Among these cases, the designs
also vary noticeably when changing between Faradaic
(γ = 1) and capacitive storage-mechanisms (γ = 0).
λ, i.e. the ratio between ionic and total conductiv-
ity, controls the interdigitation depth. We observe
more shorter protrusions in designs with lower elec-
tronic conduction, i.e. as λ → 0.1. Designs generated
using the standard Bruggeman correlation for effective
transport possess smooth surfaces. The designs gen-
erated with modified Bruggeman correlation, where
effective ionic transport is much slower, possess spiky
teeth cutting into the main pillars to further boost
the ion exchange between the electrode and the pure
electrolyte.

The key performance metrics of the optimized
designs are compared against the ones from mono-
lithic electrodes to quantify the improvements. We
observe increased energy storage for all cases with the
best improvement exceeding 700% from the modified
Bruggeman correlation cases. Comparisons of energy
storage and ohmic loss distributions suggest superior
material utilization in the optimized designs. In addi-
tion, the ohmic loss is more evenly distributed and
thus does not grow significantly even when the total
charging current increases by an order of magnitude.

Finally, a 3D design is generated to further demon-
strate the utility of the proposed optimization strat-
egy. More complex features, such as channels, holes,
and interlocking arches between the electrodes are
observed in this design.

As mentioned above, our current work does not
track surface or solid concentrations. To address this,
our future work may incorporate diffusion in the
solid particles as in the Doyle-Fuller-Newman model
(Doyle et al, 1993). Typically used for a 1D geometry,
this model includes diffusion inside spherical particles,
making it a pseudo-2D model. For 3D geometries, this
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becomes a pseudo-4D model, further exacerbating the
computational effort.
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A Energy balance derivation

We derive the energy balance for the dimensionless
system with energy input, energy storage, and ohmic
loss. We first scale the electric and ionic potential
equation such that the source terms are the same:

− 1

λ
∇̂ ·

(
σ̂∇̂Φ̂1

)
=− δrâîn − δcâîc,

− 1

1− λ
∇̂ · (D̂ĉ∇̂Φ̂2)−

1

1− λ

(
t0,+
z+

+
t0,−
z−

)
∇̂ · (D̂∇̂ĉ) =δrâîn + δcâîc.

(42)

Since Φ̂1 = 0 on Γ̂a and ∇Φ̂1 ·n = 0 on ∂Ω̂\ (Γ̂a
⋃

Γ̂c)
the dimensionless energy input can be expressed as

Ein =
1

λ

∫ T̂

0

∫
Γ̂c

σ̂∇̂Φ̂1 · nΦ̂1 dŝdt̂

=
1

λ

∫ T̂

0

∫
∂Ω̂

σ̂∇̂Φ̂1 · nΦ̂1 dŝdt̂,

(43)

which extends integral from the cathode current col-
lector Γ̂c to the entire boundary ∂Ω̂. With ∇̂Φ̂2 ·n = 0
and ∇̂ĉ · n = 0 on ∂Ω̂, the dimensionless energy input
can be further extended as

Ein =
1

λ

∫ T̂

0

∫
∂Ω̂

σ̂∇̂Φ̂1 · nΦ̂1 dŝdt̂

+
1

1− λ

∫ T̂

0

∫
∂Ω̂

D̂ĉ∇̂Φ̂2 · nΦ̂2 dŝdt̂

+
1

1− λ

(
t0,+
z+

+
t0,−
z−

)∫ T̂

0

∫
∂Ω̂

D̂∇̂ĉ · nΦ̂2 dŝdt̂,

(44)
Applying the divergence theorem we obtain

Ein =
1

λ

∫ T̂

0

∫
Ω̂
∇̂ ·

(
σ̂∇̂Φ̂1Φ̂1

)
dx̂ dt̂

+
1
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0

∫
Ω̂
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+
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+
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)∫ T̂

0

∫
Ω̂
∇̂ ·

(
D̂∇̂ĉΦ̂2

)
dx̂dt̂.

(45)

An application of the product rule subsequently gives

Ein =
1

λ

∫ T̂

0
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Ω̂
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(46)
Combining (42) and (46) yields

Ein =
1

λ

∫ T̂

0

∫
Ω̂
σ̂∇̂Φ̂1 · ∇̂Φ̂1 dx̂dt̂

+
1
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0
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+
1
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)∫ T̂

0

∫
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D̂∇̂ĉ · ∇̂Φ̂2 dx̂dt̂

+ δr

∫ T̂

0

∫
Ω̂
âîn(Φ̂1 − Φ̂2) dx̂ dt̂

+ δc

∫ T̂

0

∫
Ω̂
âîc(Φ̂1 − Φ̂2) dx̂dt̂,

(47)

which is equivalent to Ein = Ekin + Eohm.

B Mixed discretizations

A mixed formulation is utilized to solve the filter prob-
lem (2) to obtain piecewise constant ρ̃ over triangular
and tetrahedral meshes. In this way, we are sure that
ρ̃(x) ∈ [0, 1]. Indeed, the mixed method enforces flux
continuity across the element interfaces, which pre-
vents oscillations in the filtered field as the control
field goes to {0, 1} (Salazar de Troya and Tortorelli,
2020). As opposed to the two-point flux approxima-
tion scheme from Roy et al (2022), no orthogonality
condition is required on the mesh regularity.

With r2 > 0, we define the auxiliary flux term as

r−2uf = −∇ρ̃. (48)

Then the filter problem is rewritten as

r−2uf +∇ρ̃ = 0 in Ω,

−∇ · uf − ρ̃ = −ρ in Ω,

uf · n = 0 on ∂Ω.

(49)
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The function spaces for the mixed weak variational
form are

V = {v ∈ H(div,Ω) | v · n = 0 on ∂Ω} , W = L2(Ω),
(50)

where the Neumann flux boundary condition are
imposed strongly. We seek to find

(
uf , ρ̃

)
∈ V × W

such that

(r−2uf , v)Ω − (ρ̃,∇ · v)Ω = 0,

−(∇ · uf , w)Ω − (ρ̃, w)Ω = −(ρ,w)Ω,
(51)

∀ (v, w) ∈ V ×W .
A similar mixed formulation is used for solving the

boundary propagation PDE (4). From (4), since ρ̄ is
strictly positive, we define the auxiliary flux term as

ρ̄−1ub = −∇β. (52)

Then the continuous boundary propagation problem
can be reformulated as

ρ̄−1ub +∇β = 0 in Ω,

−∇ · ub − (1− ρ̄)β = 0 in Ω,

β = 1 on Γa,

β = −1 on Γc,

ub · n = 0 on ∂Ω/Γc ∪ Γa.

(53)

Let ΓD = Γa ∪ Γc. We introduce the function space

VD = {v ∈ H(div,Ω)|v · n = 0 on ΓD} . (54)

We seek to find (ub, β) ∈ VD ×W such that

(ρ̄−1ub, v)Ω − (β,∇ · v)Ω =

−⟨1, v · n⟩Γa
−⟨−1, v · n⟩Γc

,

−(∇ · ub, w)Ω − ((1− ρ̄)β,w)Ω = 0,

(55)

∀ (v, w) ∈ VD × W . Both problems use Raviart-
Thomas basis functions with the lowest order to obtain
the discretized solution, which results in piecewise con-
stant ρ̃/β and piecewise linear uf/ub with continuous
normal flux across the element interfaces.

For the three-dimensional case, we use an iterative
method to solve the linear systems resulting from the
weak forms described by (51) and (55). These systems
have symmetric block matrices of the form[

A B

B⊤ D

]
(56)

where A represents a weighted mass matrix for the
flux, D is a weighted mass matrix for ρ̃ or β, and B
is the coupling term. The approach introduced in Sil-
vester and Wathen (1994) is used to solve the block
system efficiently. The block matrix (56) admits a
factorization of the type[

A B

B⊤ D

]
=

[
I 0

B⊤A−1 I

] [
A 0
0 S

] [
I A−1B
0 I

]
, (57)

where S = D − CA−1B is called the Schur comple-
ment. The inverse of the block matrix is

[
A B

B⊤ D

]−1

=

[
I −A−1B
0 I

] [
A−1 0

0 S−1

] [
I 0

−B⊤A−1 I

]
, (58)

which requires inverting the blocks A and S. Our
preconditioner approximates the blocks of this fac-
torization. We approximate the Schur complements
using the diagonal of A, i.e. we use the sparse S̃ =
D − Cdiag(A)−1B. The inverse of S̃ is approximated
by Algebraic Multigrid (Ruge and Stüben, 1987), and
the inverse of A is approximated by a block incom-
plete LU factorization with 0 fill (ILU0) (Meijerink
and Van Der Vorst, 1977). The PETSc solver options
used for the three-dimensional simulations are given
in Appendix C.

C PETSc solver options

Here we provide he PETSc solver options used for the
three-dimensional case. The options for solving the
governing physical system are:

1 "snes_rtol ": 0,
2 "snes_atol ": 1e-4,
3 "mat_type ": "aij",
4 "ksp_type ": "gmres",
5 "ksp_rtol ": 1e-4,
6 "ksp_gmres_restart ": 30,
7 "pc_type ": "fieldsplit",
8 "pc_fieldsplit_type ": "multiplicative",
9 "fieldsplit_pc_type ": "hypre",

10 "fieldsplit_pc_hypre_boomeramg ": {
11 "strong_threshold ": 0.7,
12 "coarsen_type ": "HMIS",
13 "agg_nl ": 3,
14 "interp_type ": "ext+i",
15 "agg_num_paths ": 5,
16 },

The options for the mixed formulation used for the
filtering and boundary propagation problems are:

1 "mat_type ": "nest",
2 "ksp_type ": "gmres",
3 "ksp_rtol ": 1e-4,
4 "pc_type ": "fieldsplit",
5 "pc_fieldsplit_type ": "schur",
6 "pc_fieldsplit_schur_fact_type ": "full",
7 "fieldsplit_0_ksp_type ": "preonly",
8 "fieldsplit_0_pc_type ": "bjacobi",
9 "fieldsplit_0_sub_pc_type ": "ilu",

10 "fieldsplit_1_ksp_type ": "preonly",
11 "pc_fieldsplit_schur_precondition ": "selfp",
12 "fieldsplit_1_pc_type ": "hypre",
13 "fieldsplit_1_pc_hypre_boomeramg ": {
14 "strong_threshold ": 0.7,
15 "coarsen_type ": "HMIS",
16 "agg_nl ": 3,
17 "interp_type ": "ext+i",
18 "agg_num_paths ": 5,
19 }.
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trizitätskonstanten und leitfähigkeiten der
mischkörper aus isotropen substanzen.
Annalen der physik 416(7):636–664.
https://doi.org/10.1002/andp.19374210205

Bruns TE, Tortorelli DA (2001) Topology opti-
mization of non-linear elastic structures and
compliant mechanisms. Computer Methods in
Applied Mechanics and Engineering 190(26-
27):3443–3459

Chandrasekaran S, Lin D, Li Y, et al (2023)
Aerogels, additive manufacturing, and energy
storage. Joule 7(5):866–883

Chen CH, Yaji K, Yamasaki S, et al (2019) Com-
putational design of flow fields for vanadium
redox flow batteries via topology optimization.
Journal of Energy Storage 26:100,990. https:
//doi.org/10.1016/j.est.2019.100990

Chen KH, Namkoong MJ, Goel V, et al (2020)
Efficient fast-charging of lithium-ion batteries
enabled by laser-patterned three-dimensional
graphite anode architectures. Journal of Power
Sources 471:228,475

Chu S, Majumdar A (2012) Opportunities and
challenges for a sustainable energy future.
Nature 488(7411):294–303. https://doi.org/10.
1038/nature11475

https://doi.org/10.1149/1945-7111/ad0a7c
https://doi.org/10.1149/1945-7111/ad0a7c
http://iopscience.iop.org/article/10.1149/1945-7111/ad0a7c
http://iopscience.iop.org/article/10.1149/1945-7111/ad0a7c
https://doi.org/10.2172/1968587
https://petsc.org/
https://petsc.org/
https://doi.org/10.1016/j.carbon.2023.01.044
https://doi.org/10.1016/j.carbon.2023.01.044
https://doi.org/10.1073/pnas.2025562118
https://doi.org/10.1073/pnas.2025562118
https://doi.org/10.1016/j.jpowsour.2021.230453
https://doi.org/10.1016/j.jpowsour.2021.230453
https://doi.org/10.1016/j.ijheatmasstransfer.2019.01.050
https://doi.org/10.1016/j.ijheatmasstransfer.2019.01.050
https://doi.org/10.1007/bf01650949
https://doi.org/10.1007/bf01650949
https://doi.org/10.1090/s0025-5718-1977-0431719-x
https://doi.org/10.1090/s0025-5718-1977-0431719-x
https://doi.org/10.1088/2516-1083/ac7d31
https://doi.org/10.1088/2516-1083/ac7d31
https://doi.org/10.1002/andp.19374210205
https://doi.org/10.1016/j.est.2019.100990
https://doi.org/10.1016/j.est.2019.100990
https://doi.org/10.1038/nature11475
https://doi.org/10.1038/nature11475


Springer Nature 2021 LATEX template

optimization 25

Chu S, Cui Y, Liu N (2016) The path towards
sustainable energy. Nature Materials 16(1):16–
22. https://doi.org/10.1038/nmat4834

Chu T, Park S, Fu KK (2021) 3D printing-enabled
advanced electrode architecture design. Carbon
Energy 3(3):424–439

Doyle M, Fuller TF, Newman J (1993) Model-
ing of galvanostatic charge and discharge of
the lithium/polymer/insertion cell. Journal of
The Electrochemical Society 140(6):1526. https:
//doi.org/10.1149/1.2221597

Falgout RD, Yang UM (2002) hypre: A library
of high performance preconditioners. In: Inter-
national Conference on Computational Science,
Springer, pp 632–641, https://doi.org/10.1007/
3-540-47789-6 66

Fuller TF, Harb JN (2018) Electrochemical Engi-
neering. John Wiley & Sons, Hoboken, NJ
USA

Gallagher KG, Trask SE, Bauer C, et al (2015)
Optimizing areal capacities through under-
standing the limitations of lithium-ion elec-
trodes. Journal of The Electrochemical Society
163(2):A138

Gao Y, Cao Q, Pu J, et al (2023) Stable Zn
anodes with triple gradients. Advanced Materi-
als 35(6):2207,573

Golmon S, Maute K, Dunn ML (2012) Multi-
scale design optimization of lithium ion bat-
teries using adjoint sensitivity analysis. Inter-
national Journal for Numerical Methods in
Engineering 92(5):475–494. https://doi.org/10.
1002/nme.4347

Griewank A, Walther A (2000) Algorithm 799:
Revolve: An implementation of checkpoint-
ing for the reverse or adjoint mode of com-
putational differentiation. ACM Trans Math
Softw 26(1):19–45. https://doi.org/10.1145/
347837.347846

Guest JK, Prévost JH, Belytschko T (2004)
Achieving minimum length scale in topology
optimization using nodal design variables and
projection functions. International journal for

numerical methods in engineering 61(2):238–
254. https://doi.org/10.1002/nme.1064

Gür TM (2018) Review of electrical energy stor-
age technologies, materials and systems: chal-
lenges and prospects for large-scale grid storage.
Energy & Environmental Science 11(10):2696–
2767. https://doi.org/10.1039/c8ee01419a

Ham DA, Kelly PHJ, Mitchell L, et al (2023) Fire-
drake User Manual. Imperial College London
and University of Oxford and Baylor Univer-
sity and University of Washington, first edition
edn., https://doi.org/10.25561/104839

Hart RW, White HS, Dunn B, et al (2003) 3-D
microbatteries. Electrochemistry Communica-
tions 5(2):120–123

Henson VE, Yang UM (2002) BoomerAMG:
A parallel algebraic multigrid solver and
preconditioner. Applied Numerical Mathe-
matics 41(1):155–177. https://doi.org/10.1016/
s0168-9274(01)00115-5

Heubner C, Voigt K, Marcinkowski P, et al
(2021) From active materials to battery cells:
A straightforward tool to determine perfor-
mance metrics and support developments at
an application-relevant level. Advanced Energy
Materials 11(46):2102,647

Hung CH, Allu S, Cobb CL (2021) Model-
ing current density non-uniformities to under-
stand high-rate limitations in 3D interdigitated
lithium-ion batteries. Journal of the Electro-
chemical Society 168(10):100,512

Hung CH, Huynh P, Teo K, et al (2022) Are
three-dimensional batteries beneficial? analyz-
ing historical data to elucidate performance
advantages. ACS Energy Letters 8(1):296–305

Johnson A, Newman J (1971) Desalting by means
of porous carbon electrodes. Journal of The
Electrochemical Society 118(3):150. https://
doi.org/10.1149/1.2408094

Kuang Y, Chen C, Kirsch D, et al (2019) Thick
electrode batteries: Principles, opportunities,
and challenges. Advanced Energy Materi-
als 9(33):1901,457. https://doi.org/https:

https://doi.org/10.1038/nmat4834
https://doi.org/10.1149/1.2221597
https://doi.org/10.1149/1.2221597
https://doi.org/10.1007/3-540-47789-6_66
https://doi.org/10.1007/3-540-47789-6_66
https://doi.org/10.1002/nme.4347
https://doi.org/10.1002/nme.4347
https://doi.org/10.1145/347837.347846
https://doi.org/10.1145/347837.347846
https://doi.org/10.1002/nme.1064
https://doi.org/10.1039/c8ee01419a
https://doi.org/10.25561/104839
https://doi.org/10.1016/s0168-9274(01)00115-5
https://doi.org/10.1016/s0168-9274(01)00115-5
https://doi.org/10.1149/1.2408094
https://doi.org/10.1149/1.2408094
https://doi.org/https://doi.org/10.1002/aenm.201901457


Springer Nature 2021 LATEX template

26 optimization

//doi.org/10.1002/aenm.201901457, URL
https://onlinelibrary.wiley.com/doi/abs/10.
1002/aenm.201901457

Lazarov BS, Sigmund O (2011) Filters in topol-
ogy optimization based on Helmholtz-type dif-
ferential equations. International Journal for
Numerical Methods in Engineering 86(6):765–
781. https://doi.org/10.1002/nme.3072

Lazarov BS, Wang F, Sigmund O (2016)
Length scale and manufacturability in
density-based topology optimization.
Archive of Applied Mechanics 86:189–218.
https://doi.org/10.1007/s00419-015-1106-4

Lin TY, Baker SE, Duoss EB, et al (2022)
Topology optimization of 3D flow fields for
flow batteries. Journal of The Electrochemi-
cal Society 169(5):050,540. https://doi.org/10.
1149/1945-7111/ac716d

Long JW, Dunn B, Rolison DR, et al (2004)
Three-dimensional battery architectures.
Chemical Reviews 104(10):4463–4492

Long JW, Dunn B, Rolison DR, et al (2020)
3D architectures for batteries and electrodes.
Advanced Energy Materials 10(46):2002,457

Lyu Z, Lim G, Koh JJ, et al (2021) Design
and manufacture of 3D-printed batteries. Joule
5:89–114

Madabattula G, Kumar S (2020) Model and
measurement based insights into double layer
capacitors: Voltage-dependent capacitance and
low ionic conductivity in pores. Journal of The
Electrochemical Society 167(8):080,535. https:
//doi.org/10.1149/1945-7111/ab90aa

Meijerink JA, Van Der Vorst HA (1977) An itera-
tive solution method for linear systems of which
the coefficient matrix is a symmetric M -matrix.
Mathematics of computation 31(137):148–162.
https://doi.org/10.2307/2005786

Mitusch SK, Funke SW, Dokken JS (2019) dolfin-
adjoint 2018.1: automated adjoints for FEniCS
and Firedrake. Journal of Open Source Soft-
ware 4(38):1292. https://doi.org/10.21105/joss.
01292

Newman J, Thomas-Alyea KE (2012) Electro-
chemical systems. John Wiley & Sons

Newman J, Tiedemann W (1975) Porous-
electrode theory with battery applications.
AlChE Journal 21(1):25–41. https://doi.org/
10.1002/aic.690210103

Newman JS, Tobias CW (1962) Theoretical anal-
ysis of current distribution in porous elec-
trodes. Journal of The Electrochemical Soci-
ety 109(12):1183. https://doi.org/10.1149/1.
2425269

Qu C, Zhang Y, Zhang Z, et al (2023) Design
of radial flow channel proton exchange mem-
brane fuel cell based on topology optimization.
Processes 11(8):2482. https://doi.org/10.3390/
pr11082482

Ramadesigan V, Methekar RN, Latinwo F, et al
(2010) Optimal porosity distribution for min-
imized ohmic drop across a porous elec-
trode. Journal of The Electrochemical Soci-
ety 157(12):A1328. https://doi.org/10.1149/1.
3495992

Roy T, Salazar de Troya MA, Worsley MA, et al
(2022) Topology optimization for the design of
porous electrodes. Structural and Multidisci-
plinary Optimization 65(171). https://doi.org/
10.1007/s00158-022-03249-2
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