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Abstract

We develop a novel framework of bounded rationality under cognitive frictions that

studies learning over optimal behavior through both deliberative reasoning and ac-

cumulated experiences. Using both types of information, agents engage in Bayesian

non-parametric estimation of the unknown action value function. Reasoning signals

are produced internally through mental deliberation, subject to a cognitive cost. Expe-

rience signals are the observed utility outcomes at previous actions. Agents’ subjective

estimation uncertainty, which evolves through information accumulation, modulates

the two modes of learning in a state- and history-dependent way. We discuss how the

model draws on and bridges conceptual, methodological and empirical insights from

both economics and the cognitive sciences literature on reinforcement learning.
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1 Introduction

There is a deep, interdisciplinary interest in understanding and modeling cognitive limitations

in decision making. Across both economics and cognitive sciences, the literature recognizes

two broad ways in which people learn about and deduce what is the best course of action

in a given situation. The first is cognition and reasoning : through introspective, abstract

deliberations, humans can get a better grasp of what is their optimal action in the situation

at hand. The second is accumulated experiences : by observing realized outcomes of past

decisions, agents update their views on the respective benefits of taking those actions in

these circumstances. These two sources of information are conceptually distinct and are

both limited: experiences are observed only along the realized path of situations the agent

actually faced in the past, and while abstract thinking could help the agent deduce outcomes

in counterfactual actions and situations, such deliberations are cognitively costly.

This paper develops a novel framework of constrained-optimal behavior under cognitive

frictions that studies jointly learning through reasoning and accumulated experiences. To

do so, the paper draws on conceptual, methodological and empirical insights from both eco-

nomics and the cognitive sciences literature on reinforcement learning (RL) (Kaelbling et al.

(1996), Sutton and Barto (2018)).

In our framework, agents are uncertain about optimal behavior in the sense of facing

subjective uncertainty over the optimal policy and value functions that characterize their

decision problem. In particular, we follow the RL approach of letting agents learn about

the action value function Qπ(a, s), which gives the expected discounted sum of utility when

taking action a in state s and following a given policy π(a|s) thereafter.1 While the standard

approach in economics is to endow the agents with perfect knowledge about the optimal

policy function π∗(a|s) and therefore the action value function Qπ∗(a, s), in our model agents

perceive Qπ∗(a, s) as uncertain ex-ante, and gradually learn about it over time.

Learning can occur through cognition, which is costly, but beneficial in reducing agents’

uncertainty about the best course of action. Agents trade off that benefit and cost of engaging

cognitive resources, giving rise to a state- and history- dependent choice of reasoning and

thus exhibit constrained-optimal, or “resource-rational” behavior. Agents also update beliefs

about optimal behavior based on the experienced flow utility each period. Critically, the

effective precision of both reasoning and experiences in informing behavior is endogenous,

as a function of the agent’s beginning of period prior beliefs and uncertainty which evolve

dynamically and endogenously.

1In the language of RL, this “action” value function is closely related and derived from the “state” value
function V (s) which is perhaps more familiar to economists.
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Elements of framework. There are four key specific features of our learning framework.

First, we model agents’ beliefs over the unknown function Qπ∗(a, s) as a Gaussian Pro-

cess (GP) distribution.2 On the one hand, the GP distribution is methodologically appealing

as a prior over the space of functions, as it is very flexible, and also tractable in recursively

characterizing the conditional moments of the unknown function.3 On the other hand, cog-

nitive sciences increasingly emphasizes a Bayesian approach and in particular the appeal of

GP distributions, both for conceptual and descriptive reasons.4

Second, given an estimate of the action value function Q̂t(a, s), agents take constrained

optimal actions trading off exploitation and experimentation incentives. On the one hand,

the agent has incentives to choose the action with the highest estimated value Q̂t(a, st) at

the current state st (exploitation). On the other hand, the agent recognizes that Q̂t(a, st) is

just an uncertain estimate so there is a benefit to exploration and learning more about the

unknown Qπ∗(a, s). We model this desire for experimentation following the concept of maxi-

mum entropy reinforcement learning, which essentially the entropy of the action distribution

to be bigger than some minimum threshold, thus ensuring randomization.5 In contrast to

the standard approach that sets this minimum threshold as an exogenous time-invariant

parameter, we let the entropy lower bound be proportional to the remaining subjective un-

certainty over Qπ∗(a, st). This captures the intuition that experimentation is valuable only

to the extent that the Q-function is uncertain. Putting it all together, the resulting optimal

action policy function takes the form of the softmax function widely used in statistics and

machine learning (see eg. Sutton and Barto (2018)).

Turning to the learning modes and the dynamic evolution of the estimates of the action

value function, our third modeling feature is learning from experienced utility. Because it

is derived from actual observed outcomes, this learning follows the so-called “model-free”

or “Q-learning” dynamic programming solution techniques used in machine learning and

cognitive sciences (e.g. Dearden et al. (1998)). In particular, at the beginning of the period,

the agent observes the realization of the new state st and also the realized utility u(st−1, at−1)

that she experienced based on last period’s choice of action at−1. Knowing the flow utility

yesterday and the realized state today implies an experience-based informative signal that

updates beliefs about Qπ∗(a, s). The key intuition behind this update, is that the flow

utility u(at−1, st−1) reveals the “temporal difference” in the Q-function, i.e. u(at−1, st−1) =

2The GP distribution can be derived from first principles as the limiting case of Bayesian Gaussian kernel
regression (eg. Rasmussen and Williams (2006), Liu et al. (2011)).

3In economics, these properties have also recently gathered attention to GP, including work like Callander
(2011), Bardhi (2022), Dew-Becker and Nathanson (2019), Ilut et al. (2020) and Ilut and Valchev (2023).

4See for example Griffiths et al. (2008), Griffiths et al. (2010) and Gershman et al. (2015).
5See for example Mnih et al. (2016), Haarnoja et al. (2017), Eysenbach and Levine (2019)).
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Qπ∗(at−1, st−1)− βEt−1(Qπ∗(at, st)).

Finally, but importantly, within the same objective function that determines optimal

actions, we model the benefit and cost of abstract reasoning. By reasoning we mean the

internal deliberation process through which the agent produces information and learns about

Qπ∗(a, s) generally. Intuitively, this is akin to an economist trying to solve for the value

function globally. As such, our terminology of reasoning is similar to the notion model-based

learning in the RL literature (Sutton and Barto (2018)). The benefit of reasoning works

through the resulting reduction of uncertainty over Qπ∗(a, st). We allow this reduction to

impact the objective function in two ways. One is direct utility cost of higher uncertainty

(like a cognitive dissonance cost, eg. Aronson (1969)).

The second emerges indirectly and endogenously, through an interaction between ac-

tions and reasoning. In particular, since reasoning decreases current conditional uncertainty,

it also weakens the incentive to experiment, by formally lowering the threshold on the action

distribution entropy. Intuitively, the agent values the reduction in uncertainty from reason-

ing because it allows her to select an action closer to the one with the currently highest

value estimate, not having to worry about experimentation. In turn, the cost of reasoning

is also in utility terms, quantified as the reduction in entropy achieved by acquiring these

deliberation signals, as in information theory (e.g. Sims (2003a)), capturing effort as in the

cognitive control literature (e.g. Botvinick et al. (2004), Kool et al. (2017)).

We show how both reasoning and experience signals can be incorporated in revising

beliefs over the unknown Q-function using formal non-parametric Bayesian updating formu-

las.6 Put together, these two sources of information update agents’ conditional mean and

uncertainty over the whole function Qπ∗(a, s), providing a recursive structure to the GP

distribution entering next period.

Key contributions. Our framework connects to several literature strands.

In terms of the economics literature, we use insights from the RL literature to inte-

grate learning about optimal behavior from experiences into models of resource-rationality

that emphasize a cost-benefit tradeoff of reasoning. This tradeoff is shared with various

such approaches in economics (including Ilut and Valchev (2023), Sims (2003b), Gabaix

(2014), Woodford (2020), Alaoui and Penta (2022) and others) and cognitive sciences (e.g.

Gershman et al. (2015), Griffiths et al. (2015), Shenhav et al. (2017)). In turn, we con-

nect to a growing interest and evidence in economics on experience-based learning, as in

Malmendier and Nagel (2016), Malmendier (2021). We differ from this latter approach by

studying experiences jointly with reasoning, as well as by modeling experiences as informa-

6These updates resemble temporal difference solution techniques, used extensively in RL (Sutton (1988)),
and in particular their Bayesian, GP-based version, connecting to the approach in Engel et al. (2003, 2005).
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tive not about the state law of motion, but instead about the perceived value of taking

specific actions, as in RL.

Our framework innovates within RL modeling itself as well, by building a dynamic

cognitive model with several key features emerging endogenously, as follows. 7

First, we obtain and characterize an endogenous arbitration between learning from

reasoning and experiences. We use the terminology of “arbitration” as in RL, meaning the

characterization of the different weights put on the two modes of learning (“model-based”

vs “model-free” learning, in the language of RL). Our framework produces an internally

consistent, endogenous arbitration in the form of the state- and history-dependent Bayesian

updating weights our agents put on their reasoning and experience signals. The property that

arbitration is based on uncertainty is shared with cognitive and neuroscience work arguing

that the brain puts more weight on the learning mode that it deems more reliable (as in

Daw et al. (2005), Lee et al. (2014)). Our key contribution here is to incorporate everything

in a unified Bayesian framework with GP priors, which allows (i) prior uncertainty to account

for correlation between Q-values at different state/action pairs, (ii) non-parametric cognitive

learning, and (iii) delivers a tractable and parsimonious unified conditional belief process, as

opposed to having to keep track and arbitrarily tie together two separate model-based and

model-free estimates.

Second, the framework is characterized by an endogenous decision to engage reasoning.

The model lets agents treat cognition as an accessible, but costly resource. Thus, it is not just

that, given some model-based and model-free estimates, there is endogenous arbitration, but

the intensity of the model-based learning and the associated precision of its reasoning signal

is time-varying, conditional on states and choices. This implication of adjusting cognition in

a state-dependent way is desirable for both empirical and conceptual reasons. Empirically,

it is consistent with evidence and a general desired approach (see eg. Kool et al. (2017)) in

the neuroscience and RL literatures emphasizing the cognitive cost of mental simulations

versus their benefit. The latter is here modulated through reduction of uncertainty, where

the value of reducing that uncertainty is (partly) state-dependent. In addition, when the

agent values the reduction in uncertainty due to a direct, cognitive dissonance utility cost,

this latter mechanism can capture evidence that active deliberation is indeed engaged only

when there is sufficient “conflict” or uncertainty in prior beliefs (see eg. Thompson et al.

(2011)).

Third, the framework describes jointly the evolution of beliefs and the constrained

optimal policy function which agents follow in selecting their actions. We endogenously de-

7In this sense, we also differ from recent work by Barberis and Jin (2023), whose main objective is to
show how to import typical RL frameworks into a specific economic environment - there of asset pricing.
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rive a constrained optimal action policy that takes the form of a softmax function, which is

otherwise exogenously postulated in RL. A key input in that function is the ‘temperature’

parameter, which the existing literate treats as an exogenous parameter – the lower the tem-

perature, the more the action policy leans away from “exploration” and exploits the action

with the current highest estimated payoff. In our model, the temperature parameter is en-

dogenous and is state- and history-dependent, since it depends on the conditional subjective

uncertainty the agent still perceives in his estimate of Qπ∗(a, s). As such, this “tempera-

ture” of the softmax action policy endogenously evolves as the agent learns. The study of

exogenous adjustments of this parameter along the sample path has been of large interest

in RL, machine learning and constrained optimization literatures.8 In that literature, a ro-

bustly successful time-varying temperature (i.e. maximizing reward along simulated paths)

is found to be decreasing through time, since later along the path there is typically less rea-

son to explore (Sutton and Barto (2018)). Our framework delivers endogenously that result,

as uncertainty over Qπ∗(a, st) estimates naturally declines over time, as well as adds novel

state-dependencies in that logic.

Overall, the framework thus results in a dual-learning system, with two components

akin to the “model-based” and the “model-free” modes of learning discussed in the RL

literature. Crucially, the paper also extends this literature in providing a unified, formal way

of modulating these two modes of learning via subjective uncertainty, which evolves through

information accumulation. Thus, the paper extends both (i) the economics literature, by

providing a conceptually new bounded rationality model deeply rooted in cognitive science

insights and empirical results, and (ii) the RL literature, by bringing in constrained-optimal

maximization approaches and tools typical to information economics.

2 Framework

We aim to model the process of economic agents figuring out optimal behavior using both

their abstract thinking abilities, i.e. cognition, and their accumulated experience with past

actions.

2.1 A generic recursive problem

To fix ideas, consider a generic recursive problem with discrete time indexed by t, where

an agent chooses an action at (potentially a vector of actions) and is perfectly aware of

8Typical approaches use pre-designed strategies tune temperature manually (eg. Kirkpatrick et al. (1983),
Ackley et al. (1985)) or adaptively, in deep learning models (eg. Lin et al. (2018), Wang and Ni (2020)).

5



all payoff-relevant details of the environment. The problem can be expressed as a Bellman

equation

V ∗(st) = max
at∈B(st)

u(at, st) + βEtV
∗(st+1), (1)

where st collects all the relevant state variables, both exogenous and endogenous. The state

follows the known law of motion F (st+1|st, at), giving the conditional expectation Et in (1).

The primitives of the environment are the per-period utility function u(at, st), the time

discount factor β, the budget B(st) defining the set of currently feasible actions at, and

the law of motion of the state F . The value function V ∗(s) encodes the continuation value

attached to starting in any particular realization of s, when following the optimal policy

function π∗(a|s). The latter is the optimally selected mapping from any given state s to

probabilities over feasible actions a from equation (1).9

Such dynamic problems are at the core of modern economics. And as economists we

understand that since dynamic problems require evaluating whole infinite paths of actions,

or in recursive terms, an action plan with all possible future contingencies, characterizing

V ∗(s) is generally a challenging functional problem (see e.g., Judd et al. (1998) or Bertsekas

(2019)). This is often not fully tractable even to highly trained economists, and state-of-the-

art approximate solution techniques require a lot of sophistication and effort to implement.

At the same time, in standard economic models is taken as given that the agents them-

selves always know the optimal policy π∗(a|s) and value V ∗(s) functions. The difficulty

economists face in actually computing the optimal objects π∗(a|s) and V ∗(s) is simply ab-

stracted away. We aim to address this apparent paradox, by developing a framework which

puts the economic agents on a similar footing as economists, by requiring agents to invest

cognitive effort in figuring out V ∗(s), and thus π∗(a|s) and modeling their gradual learning

process.

In particular our starting point is that in real life people would typically have two

sources of information about optimal behavior. The first source is experiences : by observing

the per-period utility outcomes of different actions taken at various states in the past, the

agent learns about V ∗(s). The second source is cognition and reasoning : a unique human

characteristic is the ability to think abstractly about the problem at hand. Through such

internal deliberations, agents can learn about the implied value of taking different courses

of action – for example, this could take the form of mentally simulating paths forward of

possible behavior and comparing expected utility. These two sources of information are

conceptually distinct and are both limited: experiences are realized only along the actual

9Stating policies in terms of probabilities of taking actions is useful in developing the framework later.
Under full information, the optimal π∗(a|s) is naturally degenerate, with probability π∗(a∗t |st) = 1 for
a∗
t
= argmaxat∈B(st) u(at, st) + βEtV

∗(st+1), and zero for all other actions at 6= a∗
t
.
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path taken by the agent, while abstract thinking is a scarce cognitive resource.

To model learning from both mental simulation and actual experiences, we connect to

the large reinforcement learning (RL) literature (Kaelbling et al. (1996), Sutton and Barto

(2018)). There an agent interacting with a dynamic and stochastic environment learns an

optimal control policy for a sequential decision problem, typically a Markov Decision Process.

Using the notation of equation (1), the key object we focus on, as in RL, is the action-

value function Qπ(a, s). This function gives the expected utility when taking action a in

state s and following a given policy π(a|s) thereafter (not necessarily the optimal π∗(a|s)).

The agent wants to know the optimal Qπ∗(a, s), defined as

Qπ∗(at, st) = u(at, st) + βEtQπ∗(π∗(at+1|st+1), st+1) (2)

where π∗(a|s) satisfies the Bellman equation (1). The functions V ∗(s) and Qπ∗(a, s) are

implicitly related, as V ∗(st) = maxat∈B(st)Qπ∗(at, st), but as we detail later, it will be useful

to work with Qπ∗(at, st).

2.2 Human learning with Gaussian Processes

We model agents’ beliefs over the unknown function Qπ∗(a, s) as Gaussian Process (GP)

distributions. In particular, at the beginning of time agents have the initial prior

Qπ∗(a, s) ∼ GP (Q̂0(a, s), Σ̂0(a, s, a
′, s′)) (3)

where the mean function is Q̂0(a, s) = E(Qπ∗(a, s)) and the variance-covariance function

is Σ̂0(a, s, a
′, s′) = Cov(Qπ∗(a, s), Qπ∗(a′, s′)). The defining feature of a Gaussian Process

distribution is that for any two action-state pairs (a, s) and (a′, s′), the values Qπ∗(a, s) and

Qπ∗(a′, s′) have a joint-Normal distribution with mean and variance-covariance given by Q̂0

and Σ̂0.

Why learning with GP? There is a variety of motivating insights and arguments to

using GP distributions and in particular so in the context of modeling human cognition.

On the one hand, GP distributions are methodologically appealing due to their flexi-

bility and tractability. In particular, GP distributions extend the familiar Kalman filter to

learning about functions and the law of motion for the conditional mean and variance can

be easily characterized recursively. As a result, the conditional beliefs in each period also

follow a GP distribution, with properly updated mean and variance functions, as detailed

below. In this formulation the resulting variance-covariance function Σ̂0(a, s, a
′, s) encodes

the agent’s prior view of how likely correlated are the function’s values at different points

7



(here pairs (a, s) and (a′, s′)), and therefore is inducing a measure of proximity, or similarity,

between those points.

On the other hand, the cognitive sciences literature increasingly emphasizes a Bayesian

approach and in particular the appeal of GP distributions. Indeed, at a broad level, cognitive

sciences emphasize that cognition is fundamentally related to forming uncertain conjectures

from partial or noisy information, and thus a probabilistic framework is particularly well

suited both conceptually and in terms of accounting for data on observed behavior (eg.

Chater et al. (2006), Griffiths et al. (2008), Griffiths et al. (2010)).

The GP distribution in particular has been increasingly used in the cognitive sciences

literature, building on connections to statistics and machine learning (on the latter see eg.

Barber (2012)). The reason is in the recent experimental and neuroscience evidence that

the human brain’s learning process is well described by GP (see for example Gershman et al.

(2015) for a survey and Schulz et al. (2018), Wu et al. (2018), Wu et al. (2021) for evidence

using bandit-like tasks).

Even more specific to RL, the Bayesian approach and the GP distribution have also

found applications in this RL literature (see eg. Engel et al. (2005)). As surveyed in

Ghavamzadeh et al. (2015), this approach can provide a tractable and coherent way to model

the exploitation-exploration tradeoff, fundamental to learning from experiences, as a func-

tion of subjective uncertainty over Qπ∗(a, s) estimates, as well as offering a formal way to

incorporate prior beliefs into the action-selection algorithms.

In building our framework, we nevertheless emphasize that these motivating insights

from cognitive science have not been connected in a single framework that interacts learning

from abstract thinking and from experiences, and have also not been previously applied to

economic models.

2.3 Learning from experienced outcomes

We start by detailing how we formalize the learning through experienced outcomes and its

connection to the concept of “model-free” learning in machine learning. We will consider this

type of learning as free of cognitive costs, as it accumulates by the agent simply experiencing

utility flows of the specific actions she has taken in the past, and not through abstractly

thinking about contingencies and counterfactuals.

Consider a typical period t. The agent enters the period with some prior beliefs,

conditional on the prior information set It−1. As anticipated earlier, given the time zero

prior in equation (3), the conditional t− 1 beliefs also have a GP distribution:

Qπ∗(a, s)|It−1 ∼ GP (Q̂t−1(a, s), Σ̂t−1(a, s, a
′, s′)) (4)

8



where Q̂t−1(a, s) = E(Qπ∗(a, s)|It−1) and Σ̂t−1(a, s, a
′, s′) = Cov(Qπ∗(a, s), Qπ∗(a′, s′)|It−1)

follow a recursive formulation detailed below.

At the beginning of the period, the agent observes the realized utility u(st−1, at−1) that

she experienced based on last period’s choice of action at−1. In addition, the time t shock also

realizes and the agent observes the realization of the new state variable st. Knowing the flow

utility yesterday and the realized state today implies an experience-based informative signal

that updates beliefs about Qπ∗(a, s). This update, along the realized path of state action pairs

(at, st), follows the so called “model-free” or “Q-learning” dynamic programming solution

techniques used in machine learning and cognitive sciences (e.g. Dearden et al. (1998)).

The key intuition behind this update, is that the flow utility u(at−1, st−1) reveals the

“temporal difference” in the Q-function, that is from the Bellman equation we can express

u(at−1, st−1) = Qπ∗(at−1, st−1)− βEt−1(Qπ∗(π∗(at|st), st))

Given beliefs Q̂t−1(a, s), one can then compute the deviation from the above equation

that any specific beliefs Q̂t−1(a, s) imply, and adjust them accordingly. To do this directly

from the above equation, this requires computing the expectation Et−1(Qπ∗(π∗(at|st), st))

which integrates over all possible states st that could have realized at time t. This integration

is computationally and conceptually a complex step, and thus, typically machine learning

applications actually use the more robust approach which utilizes instead the approximation

u(at−1, st−1) = Qπ∗(at−1, st−1)− βQπ∗(π∗(at|st), st) (5)

where the temporal difference on the right-hand side is not between the Q-function at

(at−1, st−1) and the average across all possible states st, but only the difference with the

value of the Q-function in the actually realized state st.

This approach is “robust”, in the sense that it does not need to compute the expec-

tation Et−1 and also does not need to assume full knowledge of the transition probabilities

F (st+1|st, at). The agent is simply sitting at time t and observing the actual realization of

st, and then only looks back at the old state-action pair (at−1, st−1) and the realized utility

u(at−1, st−1). Still, using this approximation to update estimates of the Q-function is asymp-

totically consistent, in that if agents visit all possible states in the support of st with positive

probability, then the update based on the approximation will eventually converge to the true

Qπ∗(a, s) as t → ∞.

Also worth stressing is that this “model-free” update is very simple to do, as it just

compares the agent’s realized utility yesterday and her current expectation of the Q-function

at the realized state today. As such, it is straightforward to model this experiential updating

9



as “cognitively free” – as something that just comes by default to the agent.

Formally, the agent perceives the following experience signal

ηEt ≡ u(at−1, st−1) ≈ Qπ∗(at−1, st−1)− βQπ∗(π∗(at|st), st)

And lastly, since our framework keeps track of beliefs about Qπ∗(a, s), but not explicitly

of beliefs over π∗(a|st), for tractability it is convenient to approximate the latter by setting

π∗(a|st) = πgreedy
t−1 (a|st).

10 Thus, we assume that the agent perceives the following structure

of the experience signal

ηEt ≡ u(at−1, st−1) ≈ Qπ∗(at−1, st−1)− βQπ∗(πgreedy
t−1 (at|st), st)

This expression for ηEt can be readily used to compute a formal Bayesian update based

on this experiential information. Specifically,

Q̂E
t (a, s) = Q̂t−1(a, s) + αE

t (a, s)
[
ηEt −

(
Q̂t−1(at−1, st−1)− βQ̂t−1(π

greedy
t−1 (at|st, st))

)]
(6)

where Q̂E
t (a, s) ≡ E(Qπ∗(a, s)|It−1, η

E
t ) is not quite the end-of-period t beliefs, as beliefs will

potentially be further updated via the abstract reasoning we describe below. Moreover, the

signal to noise ratio αE
t (a, s) can be derived in a straightforward say by evaluating

αE
t (a, s) =

Cov(ηEt , Qπ∗(a, s)|It−1)

V ar(ηEt |It−1)
(7)

The signal also reduced the conditional uncertainty facing the agent, as

ΣE
t (a, a

′; st) ≡ Cov(Qπ∗(a, st), Qπ∗(a′, st)|It−1, η
E
t )

= Σ̂t−1(a, a
′; st)− αE

t (a, s)Cov(ηEt , Qπ∗(a, s)|It−1)

2.4 Learning through abstract reasoning

After updating beliefs for free, each period t the agent decides how intensely to engage in

cognitively costly abstract reasoning, which produces further information about Qπ∗(a, s).

And then, after updating beliefs based on all sources for time t information, the agent

optimally chooses an action policy πt(a|st). To understand these choices, consider first the

reasoning process.

10This approximation can be in principle relaxed by adding a further layer of noise.
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2.4.1 Reasoning

By abstract reasoning we mean the internal deliberation process through which the agent

thinks abstractly about his decision problem, and learns about Qπ∗(a, s) generally.11 We

will remain agnostic about the specific mode of deliberation the agent engages in, but for

example they can be trying to do value function iteration or just thinking forward through

the decision tree of their problem. This kind of reasoning is deliberate and abstract, as it

tries to deduce new information about Qπ∗(a, s) over and above the simple experience of

the flow utility given past choices. It is a potentially powerful source of information for the

agent, but is mentally costly.

Formally, each period the agent can generate a vector of reasoning signals ηRt as unre-

stricted linear functions of Qπ∗(a, st)

ηRt = Ω′
tQπ∗(a, st) + εη,t (8)

where εη,t ∼ N(0,Ση,t) and Ωt is a Na × Na matrix. The agent optimally chooses the

structure of the matrix Ωt and the noise variance matrix Ση,t, subject to a cost-benefit

tradeoff introduced below in subsection 2.4.2.

The vector of signals ηRt then updates beliefs over Qπ∗(a, s) at all pairs (a, s):

Q̂t(a, s) = Q̂E
t (a, s) + αR

t (a, s)
(
ηRt − Ω′

tQ̂
E
t (a, st)

)
(9)

where the signal-to-noise ratio αR
t (a, s) is given by

αR
t (a, s) = Cov

(
Qπ∗(a, s),Ω′

tQπ∗(a, st)|It−1, η
E
t

) (
V ar(Ω′

tQπ∗(a, st)|It−1, η
E
t ) + Ση,t

)−1
(10)

which can be tractably computed from Σ̂t−1(a, a
′, s, s′) and the update based on ηEt described

above.

Importantly,the reasoning signals further reduce uncertainty, so that

Σ̂t(a, a
′; st) ≡ Cov(Qπ∗(a, st), Qπ∗(a′, st)|It) = ΣE

t (a, a
′; st)− αR

t (a, s)Σ
E
t (a,Ωta; st)

′ (11)

denote the posterior variance function over the vector

Interpretation. Our terminology of reasoning is similar to the notion of planning

or model-based learning in the computational and RL literature (Sutton and Barto (2018)).

Reasoning can in practice work through various specific processes. Consider for example a

11For ease of exposition, we assume that the action space is discrete with cardinality Na = |a|, but this
can be relaxed and the framework can be defined on a continuous space of actions as well.
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specific tool used in the model-based RL – the simulation of a limited number of future paths

of actions and resulting states and utility flows in the future (see for example Moerland et al.

(2023)). In our framework, this simulation is captured by the noisy signals ηRt that update the

prior beliefs of the agent. In a related way, by producing new information internally to the

agent, without being observed by an outsider, the notion of reasoning here also resembles in

economics that of ‘fact-free learning’ in Aragones et al. (2005) and Alaoui and Penta (2022).

However, our proposed framework purposefully abstracts from the specifics of the men-

tal method behind ηRt . Instead it aims to capture a key tradeoff that many different solution

methods share, namely that taking more computational steps in any given method (e.g. sim-

ulate more and further paths forward), leads to (i) higher accuracy of the resulting solution,

but (ii) is cognitively costlier, as we describe next.

Overall, by incorporating both signals ηEt and ηRt in the conditional beliefs of our agent

we are integrating, in an endogenous way, both “model-free” and “model-based” learning,

which are the two main types of learning discussed in RL.

This joint integration of both types of learning is present in both some recent treatments

of RL (see Sutton and Barto (2018)) and also in classical RL algorithms such as Dyna-Q

(Sutton (1990, 1991)).12 Nevertheless, the RL literature usually resorts to ad-hoc assump-

tions on how the two types of learning are mixed together, while our framework proposes an

endogenous arbitration between the two types of signals based on formal Bayesian updating

notions.

Furthermore, the specific formulation of belief updating for both signals in equations

(9) and (6) resembles temporal difference solution techniques, used extensively in RL (Sutton

(1988)), and in particular their Bayesian, GP-based version, connecting to the approach in

Engel et al. (2003, 2005).

2.4.2 Joint choice over reasoning and actions at time t

Equations (9) and (11) describe the updated beliefs, taking as given the structure for the

signal in equation (8). Critically, given the current state st and prior beliefs in equation (4),

we let the agent jointly choose her optimal reasoning structure (i.e. Ωt and Ση,t) and the

action policy πt(a|st) that he will follow this period.

12These algorithms include many extensions, such as Dyna-Q+ (Sutton (1990)), which like in the current
framework further stimulates exploration.
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Objective function. We let the agent maximize the following joint objective function

max
πt(a|st),Ση,t,Ωt

∑

a

Q̂t(a, st)πt(a|st)

︸ ︷︷ ︸
exploitation benefit

− w
∑

a

σ2
t (a, st)

︸ ︷︷ ︸
cognitive dissonance cost

−
κ

2
ln

[
|ΣE

t (a, st, a
′, st)|

|Σt(a, a′; st)|

]

︸ ︷︷ ︸
reasoning cost

(12)

where recall that ΣE
t (a, st, a

′, st) is the variance conditional on both the beginning-of-period

information set It−1 and the experience signal ηEt , while ΣR
t (a, a

′; st) is the end-of-period

posterior variance defined in equation (11), after also updating with the chosen reasoning

signals. Here

σ2
t (a, st) ≡ Σt(a, a; st)

denotes the diagonal entries of the posterior variance Σt(a, a
′; st).

The objective function in (12) is subject to two types of constraints on the action

distribution. First, is that of feasibility: π(a|st) = 0 for actions that do not satisfy the

budget constraint a /∈ B(st), and that the action distribution probabilities sum to one:

∑

a

πt(a|st) = 1

Second, the action distribution πt(a|st) is subject to an entropy constraint:

−
∑

a

ln(πt(a|st))πt(a|st)

︸ ︷︷ ︸
entropy of action distribution

≥ h
∑

a

σ2
t (a, st) (13)

Interpretation. The objective function in (12) and the entropy constraint in (13)

allow our framework to capture jointly a variety of forces of interest emphasized in the RL

and cognitive science literature, as follows.

The first term in the objective of equation (12) reflects the agent’s benefit of exploitation,

or “greediness” in the RL language. This force incentivizes the agent to choose the action

at with the current highest estimated value Q̂t(at, st), where the latter is given in equa-

tion (9). The second term captures a possible cognitive dissonance cost (Aronson (1969),

Akerlof and Dickens (1982)). Essentially, when the primitive disutility parameter w > 0,

there is a disutility cost of uncertainty over the values associated to each action. This cost

generates a benefit of reasoning that goes purely through the reduction of that dissonance

and the disutility of facing uncertainty about the Q-function. This mechanism is qualita-

tively similar to the one used in Ilut and Valchev (2023), and is distinct from the novel

exploitation-experimentation tradeoff described below.
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The third term in the objective function measures the cognitive cost of reasoning as

proportional to the information content of signals ηRt , with information flow quantified as the

reduction in entropy achieved by acquiring these signals, following a standard information

theory approach, e.g. Sims (2003a). The reasoning cost captures the fact that increasing the

reasoning intensity (e.g. mentally simulating more paths forward) requires higher cognitive

effort. Like in the cognitive control literature (e.g. Kool et al. (2017), Botvinick et al. (2004),

Botvinick and Cohen (2014)), the constant marginal cost κ > 0 can be interpreted as the

opportunity cost of cognitive capacity, which can be otherwise employed on other, outside-

the-model tasks.13

In turn, the interpretation and aim of the constraint in (13) is to capture a desire for

experimentation. As in typical bandit problems, as long as the value function Qπ∗(a, s) is

uncertain, there is a desire to explore the function in other parts of the state space. Following

the RL literature, we parsimoniously model this desire to experiment using the idea of

“entropy regularization”, or maximum entropy RL, (eg. Mnih et al. (2016), Haarnoja et al.

(2017), Eysenbach and Levine (2019)). This regularization requires the entropy of the action

distribution (the LHS of equation (13)) to be bigger than some minimum threshold, thus

ensuring randomization. With this constraint, the chosen action distribution πt(a|st) is

not degenerate, but always puts some probability of exploring any feasible action, thus

capturing the exploration incentive inherent to dynamic learning problems. Importantly, in

our framework this entropy constraint builds in that experimentation is valuable only to the

extent to which the Q-function is uncertain – indeed, if Qπ∗(a, st) was known, there would be

no point to experiment as there is nothing further to learn. Hence, when the experimentation

parameter h > 0, in the RHS of equation (13) the entropy lower bound is set proportional

to the remaining subjective uncertainty over Qπ∗(a, st), as measured by
∑

a σ
2
t (a, st).

2.4.3 Optimal policy action

Let δt denote the Lagrange Multiplier on the constraint in equation (13). Given the set of

feasible actions in B(st), the optimal policy action is

π̂t(a|st) =





exp

(

Q̂t(a,st)
δt

)

∑

a exp

(

Q̂t(a,st)
δt

) if δt > 0

π̂greedy
t (a|st) if δt = 0

(14)

13Thus, κ will be higher if individuals have a higher opportunity cost of cognitive capacity or if their
particular deliberation process behind ηRt takes longer to produce a given amount of information. In addition,
κ will also be higher if the environment is more complex and it is thus objectively harder to come up with
insights on the unknown optimal Q-function.
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where π̂greedy
t (a|st) is the degenerate greedy policy

π̂greedy
t (a|st) =




1, for a = ãt ≡ argmaxat∈B(st) Q̂t(at, st)

0, ∀ a 6= ãt
(15)

Softmax. The optimal policy in (14) takes the form of the softmax function widely

used in statistics and machine learning. This function takes the expected rewards of following

any given action and transforms them into action probabilities (eg. Sutton and Barto (2018)).

However, in that literature δt, known as the ‘temperature’ parameter, is typically exogenous.

The lower is δt, the more the expected rewards affect the probability of taking actions. In

our model, δt is endogenous and state and time-dependent. Specifically, it will be high for

states st where the agent faces a higher uncertainty (and thus
∑

a σ
2
t (a, st) is high).

In economics, a similar softmax function describes the multinomial logic model of

choices (eg. Luce (1959)), typically micro-founded from a random utility model where val-

uations of actions are subject to additively separable and independently distributed shocks

drawn from the extreme-value distribution (eg. McFadden (1974)). Instead, the optimal

policy π̂t(a|st) proposed here does not rely on such random utility shocks.

A complementary micro-foundation for logit choice in the literature is based on rational

inattention (Sims (2003b)). In that work (eg. Matějka and McKay (2014) in economics, or

the policy compression work of Lai and Gershman (2021) in cognitive sciences), the entropy

of the actions distribution, i.e. LHS of equation (13), speaks to an information flow constraint

across actions, given signals about the rewards associated to those actions. Here instead the

entropy on actions distribution speaks to the entropy regularization logic in RL, per above.

To see that comparison, consider setting h = 0 in constraint (13). In that case, the

constraint would not be binding and the optimal action becomes π̂greedy
t (a|st). Critically, even

without a role for the entropy on actions distributions, when κ > 0 there is still an entropy

informational cost on reasoning signals in objective (12). So, when h = 0 reasoning is here

still imperfect, but given imperfect posterior Bayesian estimates Q̂t(a, st), the agent would

take the greedy perceived action with probability one. The extreme case of h = 0 would

thus have no role for exploration, a fundamental feature to dynamic learning problems.14

At another extreme, consider the limit of costless reasoning, i.e. κ = 0. In that case,

σ2
t (a, st) = 0 as cognitive effort is chosen to be infinitely high, and agents learn Qπ∗(a, s)

14This discussion also implies that the framework could extend the RHS of constraint (13) to be c +

h
∑

a
σ̃2
t
(a, st). Even if uncertainty over Q̂t(a, st) would disappear, when the new parameter c > 0, it would

still difficult for the agent to compare all the Q̂t(a, st) at current state st for all possible actions, generating
stochastic choice like in the policy compression logic. That integrated softmax could then nest both policy
compression and experimentation sources.
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perfectly. As there is no remaining uncertainty, the entropy regularization constraint (13)

would not bind, δt = 0, and the optimal action follows the greedy policy. The objective

in equation (12) would then recover exactly the problem solved under full rationality (see

equations (1) and (2)) since Q̂t(a, s) = Qπ∗(a, s).

2.4.4 Optimal reasoning signal structure

The optimal reasoning choice consists of the agent deciding on the matrix Ωt and signal noise

variance matrix Ση,t. To solve this problem, we use insights from rate-distortion theory.

Let λ
(i)
t denote the eigenvalues of posterior variance Σ̂t(a, a

′; st). Using the standard

property that a matrix determinant equals the product of its eigenvalues, ln(|Σ̂t(a, a
′; st)|) =∑

i ln(λ
(i)
t ), it follows that optimal reasoning can be expressed as choosing the resulting

eigenvalues λ
(i)
t optimally.

For notational convenience, it is useful to sort the eigenvalues in descending order so

λ
(1)
t ≥ λ

(2)
t ≥ ... ≥ λ

(N)
t

By standard properties of variance matrices Ση,t is positive definite, and thus the (sorted)

eigenvalues of the posterior variance Σ̂t(a, a
′; st) must be weakly smaller than those of the

“prior” variance Σ̂E
t (a, a

′; st), hence λ
(i)
t ≤ λ

(i)
E,t (where λ

(i)
Et denote the sorted eigenvalues of

Σ̂E
t (a, a

′; st)). Taking this constraint into account and optimizing the objective function over

λ
(i)
t , the optimal reasoning choice implies

λ
(i)
t = min

{
κ

w + δth
, λ

(i)
E,t

}
(16)

Hence, the agent has an optimal target level for uncertainty and wants to only reduce

eigenvalues that currently bigger than that threshold κ
w+δth

– a property known as reverse

‘water filling’ in rate-distortion theory (see Cover and Thomas (1999), chapter 13). Thus,

we can show that the optimal signal structure is for Ωt to be the matrix of eigenvectors of

Σ̂E
t (a, a

′; st), and Ση,t be a diagonal matrix with entries15

σ2
i,t =





κλ
(i)
E,t

λ
(i)
E,t(w+δth)−κ

when λ
(i)
E,t >

κ
w+δth

∞ when λ
(i)
E,t ≤

κ
w+δth

(17)

Put together, equations (14) and (16) uncover a tight intuitive interaction between

15In practice, the eigenvalues are likely to decline in value quickly, so only a few of these signals will
typically have non-infinite noise variance making the solution very tractable and easy to implement.
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actions and reasoning intensity. For example, take states st where uncertainty is high and

thus the endogenous δt is larger. By (14), a tighter constraint induces the agent to explore

more and thus deviate from the action with the currently highest perceived Q̂t(a, st). On

the other hand, reasoning lowers uncertainty and thus relaxes this constraint, lowering δt

and leads to a policy function πt(a|st) that selects actions a with a higher expected payoff

Q̂t(a, st).

Looping back to the choice of how much cognitive effort to invest in reasoning, from

(16) we see that when δt is larger, the agent employs more cognition to achieve a greater

reduction in uncertainty (the optimal target for λ
(i)
t is lower). Intuitively, she values that

reduction in uncertainty precisely because it allows her to select an action closer to the

currently perceived greedy policy, not having to worry about experimentation.

Overall, the framework is well suited to apply to a range of concrete economic environ-

ments, some of which we actively investigate in our own work in progress. For example, a

standard consumption-savings problem in a simple Aiyagari (1994) framework is a transpar-

ent and widely-studied setting in economics. Indeed, the consumption-saving decision is a

fundamental mechanism in a number of different economic settings, and has been used as a

laboratory for other recent bounded rationality and behavioral papers, such as for example

Ilut and Valchev (2023) and Lian (2023). Due to its core elements, the bounded rationality

framework proposed here appears promising in delivering endogenously empirically docu-

mented properties for consumption that are puzzling for standard fully-rational models: (a)

experience effects of past income shocks on future consumption choices, (b) high sensitivity

of consumption to income shocks; (c) large heterogeneity in consumption responses, through

stochastic signals and choice.
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