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Abstract

The values of the ordinary Green functions are known for almost

all groups of Lie type, a long term achievement by various authors.

In this note we solve the last open cases, which are for exceptional

groups of type E8(q) where q is a power of 2, 3 or 5.

1 Introduction

Let p be a prime, q some power of p and Fq the field with q elements. Let G
be a reductive algebraic group over an algebraic closure F̄p with a Frobenius
endomorphism F defining an Fq-rational structure.

We are interested in class functions of the finite group of fixed points
G(q) := G

F . Let T ⊂ G be an F -invariant maximal torus. Deligne and
Lusztig [DL76] defined for each irreducible character θ of the abelian group
T

F a generalized character RG

T,θ of G(q), using certain modules constructed

by ℓ-adic cohomology. They show that the values of RG

T,θ on unipotent ele-
ments only depend on the G(q)-conjugacy class of T and not on the character
θ, we write QG

T
for the restriction of RG

T,θ to unipotent elements, this is called
the Green function of T.

In [Lus85] Lusztig defined another set of class functions on the unipotent
elements using character sheaves, these are called generalized Green func-
tions. A subset of them is also associated to G(q)-classes of F -invariant
maximal tori, and Lusztig showed later [Lus90] that the two types of Green
functions coincide.

While from the ℓ-adic cohomology approach it is not so clear how to com-
pute the Green functions explicitly, the definition via character sheaves leads
to an algorithm to compute the (generalized) Green functions, see [Lus86].

More precisely, this algorithm determines the Green functions as linear
combination of certain functions which are supported on elements CF for a
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single unipotent class C in G. The values of these functions are clear up to
a normalization by some scalar in C of absolute value 1.

Finding these scalars is a non-trivial task. Computing the (general-
ized) Green functions for general G can be reduced to the case of simple
simply-connected groups. All cases of groups of classical types were system-
atically considered by Shoji [Sho06, Sho07, Sho22] (also generalized Green
functions), the cases of small rank exceptional groups can be read off from
the known character tables, Green functions of groups of type E6, E7 and E8

in good characteristic were considered by Beynon and Spaltenstein [BS85],
and various exceptional groups in small characteristic by Malle [Mal93],
Porsch [Por94] and more recently Geck [Gec20a]. In this paper we describe
a method that enabled us to also handle the only case which was left open
so far, that is the groups of type E8 in bad characteristic.

So, with the results of this paper the Green functions are known in all
cases. It only remains to consider the other generalized Green functions in
groups of exceptional types.

Our method is a variant of the idea in [Gec20a] where the permutation
character of the Borel subgroup in G(q) and computations in a matrix rep-
resentation where used. Here, we use more general parabolic subgroups and
compute with the Steinberg presentation of the considered groups.

2 Notations

For more details on the following basic setup we refer to the introductory
sections of the text books [Car93, DM20].

Let G be a connected reductive group over an algebraic closure k of a
finite field Fq with q elements in characteristic p. We assume that G is
defined over Fq and call F the corresponding Frobenius endomorphism of G.
We write G(q) := G

F for the finite group of F -fixed points.
Let T ⊂ G be an F -stable maximal torus of G that is contained in

an F -stable Borel subgroup B ⊆ G. The group G is determined up to
isomorphism by its root datum with respect to T. The minimal unipo-
tent subgroups Xr normalized by T are called root subgroups. There is
an isomorphism k

+ → Xr, a 7→ xr(a). The root r : T → k× is an ele-
ment of the (additive) character group X(T) and decribes the conjugation:
txr(a)t

−1 = xr(r(t)a). We write Φ for the finite set of roots, then we have
Φ = Φ+∪̇Φ− where a root r lies in Φ+ when Xr ⊆ B; these subsets are called
positive roots and negative roots, respectively, and we have Φ− = −Φ+. The
positive roots contain a unique subset ∆ such that every positive root is a
unique non-negative linear combination of the roots in ∆; the elements of
∆ are called simple roots. The height ht(r) of a positive root r ∈ Φ+ is the
sum of its coefficients when r is written as linear combination of the roots in
∆.
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The group G is generated by T and all root subgroups Xr, r ∈ Φ. The
Borel subgroup B is generated by T and the Xr with r ∈ Φ+. The group
U =

∏

r∈Φ+ Xr is a maximal unipotent subgroup and the unipotent radical
of B. We will describe U in more detail in section 3.

The group W = NG(T)/T is called the Weyl group of G, it is a Coxeter
group with Coxeter generators S := {sr | r ∈ ∆}, where sr is the unique
non-trivial coset of T in NG(T )∩ 〈Xr,X−r〉. The length l(w) of an element
w ∈ W is the smallest integer k such that w = s1 · · · sk with si ∈ S, the
sequence s1, . . . , sk is called a reduced word for w. An element w ∈ W
permutes the roots r ∈ Φ where w(r) is defined by wXrw

−1 = Xw(r). For
r ∈ ∆ we have sr(r) = −r and sr(Φ

+ \{r}) ⊂ Φ+. So, for w ∈ W and r ∈ ∆
we have l(wsr) < l(w) (and in that case l(wsr) = l(w) − 1) if and only if
w(r) ∈ Φ−.

The Frobenius endomorphism F restricts to Frobenius endomorphisms
of B, T and U and induces a natural map on X(T) and an automorphism
of W which permutes the set S of generators. We will write F also for the
induced maps, and H(q) = H

F for F -stable subgroups H.
For w ∈ W let ẇ ∈ NG(T) be a representative. Using the Lang-Steinberg

theorem we can find a g ∈ G with gF (g−1) = ẇ. Then Tw := T
g is also

an F -stable maximal torus of G (well defined up to G(q)-conjugacy). Let
M = {w1, . . . , wk} be a set of representatives for the F -conjugacy classes
of W (where w,w′ ∈ W are F -conjugate if there is a z ∈ W such that
w′ = zwF (z−1)), then {Tw1

, . . . ,Twk
} is a set of representatives for the

G(q)-conjugacy classes of F -stable maximal tori.
We will consider the Bruhat decomposition of G as union of disjoint

double cosets with respect to the Borel subgroup B:

G =
˙⋃

w∈W

BẇB,

where ẇ ∈ NG(T) is again a representative of w. We will use a stronger
form of this Bruhat decomposition that says, that an element g ∈ BẇB can
be uniquely written as product g = utẇu′ with u ∈ U, t ∈ T, u′ ∈ Uw =
∏

r∈Φ+,w(r)∈Φ− Xr.

When F acts trivially on Φ and W we can choose the ẇ ∈ NG(T)F and
have the same decomposition for the corresponding finite groups:

G(q) =
˙⋃

w∈W

U(q)T (q)ẇUw(q).

We will need one basic property of groups with a BN -pair which have
such a Bruhat decomposition: For w ∈ W and s ∈ S we have

(BsB)(BwB)

{

= B(sw)B, if l(sw) > l(w)
⊆ (BwB) ∪ (B(sw)B), else.
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3 Computing in the unipotent subgroup

We want to do certain computations with elements in G or G(q) where the
elements are represented in the strong form of the Bruhat decomposition.
For this one first needs to fix the isomorphisms k+ → Xr, t 7→ xr(t) and
the representatives ẇ of Weyl group elements. And for the multiplication
one needs to know commutator rules for the factors appearing in Bruhat
expressions of the form g = utẇu′. These are provided by the relations in
the Steinberg presentation of the group G or G(q), see for example [Spr98,
Ch.9].

It turns out that for our present applications we only need detailed com-
putations in the unipotent subgroup U. This needs the most complicated
part of the Steinberg presentation and depends on certain choices (leading to
isomorphic groups). We follow the construction of G as a Chevalley group
by Carter in [Car72, Ch.4-8]. This construction starts with a semisimple Lie
algebra L over C which has the same type of root system as G. It uses a
Chevalley basis of L consisting of elements hr, r ∈ ∆, spanning a Cartan
subalgebra, and of root vectors er, r ∈ Φ. The er are acting as nilpotent
linear maps on L and can be used to construct the elements in the root
subgroups:

xr(a) := exp(a · er) for r ∈ Φ, a ∈ C.

The Chevalley bases have the property that all its structure constants (and
so the entries of matrices of er acting on L with respect to the Chevalley
basis) are in Z. So, for each p (prime or 0) we can reduce the matrix entries
modulo p and use the definition of xr(a) for any element a in a field of
characteristic p.

3.1 Different Chevalley bases

We use Carter’s description in [Car72, 4.2]. Let B = {hs, er | s ∈ ∆, r ∈ Φ}
and B′ = {h′s, e

′
r | s ∈ ∆, r ∈ Φ} be two Chevalley bases. Then there is a

unique automorphism of L with hs 7→ h′s for s ∈ ∆, er 7→ λre
′
r for r ∈ Φ

with λr = 1 for r ∈ ∆, λ−r = λr ∈ {±1} for all r ∈ Φ.
The possibilities for the signs can be described as follows, relative to

an enumeration ∆ = {r1, . . . , rl} of the simple roots. Assign to each root
r ∈ Φ+ \∆ a sign ǫr by writing r = r̃ + ri with r̃ ∈ Φ+ and ri ∈ ∆ for the
largest possible i (Carter calls (r̃, ri) an extraspecial pair), then [er̃, eri ] =
Nr̃,rier 6= 0 and ǫr is the sign of Nr̃,ri (this is up to sign the same number
for any Chevalley basis). If we also know the signs ǫ′r for r ∈ Φ+, defined in
the same way with respect to the basis B′, we can consider all roots r ∈ Φ+

by increasing height and determine if the isomorphism above maps er to e′r
or −e′r: We have for r ∈ Φ+ \∆, r = r̃ + ri as above,

λr = λr̃ǫrǫ
′
r.
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This describes the diagonal transition matrix between the two Chevalley
bases and also determines an isomorphism between the groups generated by
the root subgroups Xr or X ′

r, constructed with respect to the different bases.
It maps xr(a) 7→ x′r(λra) for all r ∈ Φ.

For any choice of signs for the extraspecial pairs there exists a corre-
sponding Chevalley basis.

We mention that Geck [Gec17] described an (up to a global sign) canon-
ical choice of a Chevalley basis that does not depend on certain choices of
signs.

3.2 Commutator formula

In [Car72, 4.2.2] there is a detailed description of how to compute for a given
root system and given signs for extraspecial pairs all (uniquely determined)
structure constants of the corresponding Chevalley basis of the Lie algebra
L.

Furthermore, using the formulae in [Car72, 4.3.1,5.2.2] we can compute
for any two different roots r1, r2 ∈ Φ+ and any i, j ∈ Z>0 such that ir1+jr2 ∈
Φ+ an integer Cijr1r2 . These enable us to compute with elements in the group
U = 〈Xr | r ∈ Φ+〉 using the following commutator formula [Car72, 5.2.3]:

xr2(a2)xr1(a1) = xr1(a1)xr2(a2)
∏

i,j

xir1+jr2(Cijr1r2(−a1)
iaj2),

where the product is over all i, j ∈ Z>0 with ir1+jr2 ∈ Φ sorted by increasing
i+ j (factors with the same i+ j always commute).

Proposition 3.1. Let r1, r2, . . . rN be the positive roots of G in any fixed
order, we write xi(a) := xri(a) for the corresponding root elements.

(a) Any element of U can be uniquely written in the form

x1(a1)x2(a2) · · · xN (aN ).

(b) Any product of root elements xt1(b1) · · · xtk(bk) for positive roots rt1 , . . . , rtk
can be rewritten to the form in (a) (where some factors xi(0) = 1 may
be omitted) by applying a finite number of the following steps to any
pair of consecutive factors xti(bi)xti+1

(bi+1) with ti+1 ≤ ti:

– If ti = ti+1 simplify to one factor xti(bi + bi+1).

– Otherwise substitute the two factors according to the commutator
formula.

In practice it works best to handle pairs with commuting factors first.
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(c) Let ≺ be the partial ordering on the set of positive roots with ri ≺ rj
if and only if rj − ri is a non-zero non-negative linear combination of
positive roots. Let ri be a positive root, and

u = x1(a1)x2(a2) · · · xN (aN )xi(a).

After reordering factors as in (b) we get a product

u = x1(b1)x2(b2) · · · xN (bN ).

Then we have bi = ai + a and bj = aj whenever ri 6≺ rj.

Proof. To show (b) we have to show that the process terminates. For
this we count for each positive integer m the number of pairs (ti, tj) with
i < j, ti > tj and ht(rt1) + ht(rtj ) = m. It is clear that after the first
type of substitution in (b) none of these counts will be larger than before.
The substitution using the commutator formula will reduce the count for
m = ht(rti)+ ht(rti+1

) by one and maybe enlarge the counts for some larger
m. Since there is an upper bound for the height of all roots, all counts will
be zero after a finite number of steps, so the factors are sorted.

Statement (c) follows by applying (b) to the given u and noticing that
the commutator formula applied to xr(a)xr′(a

′) only introduces new factors
xr′′(a

′′) with r ≺ r′′ and r′ ≺ r′′.
Part (b) yields a constructive proof of the existence of the form in (a).

The uniqueness of the factorization is shown in [Car72, 5.3.3] in the case
that the ordering of the roots refines the ordering by height. The general
case follows by induction over the lowest height of roots ri with non-trivial
factor xi(bi); as in (c) those factors will not change when moved to the left.
�

4 Green functions by the Lusztig-Shoji algorithm

Deligne and Lusztig [DL76] defined for each F -stable maximal torus T and
each irreducible character θ of the abelian group T (q) a generalized character
RG

T,θ of G(q). Their values on unipotent elements depend only on the G(q)-

conjugacy class of T and not on θ. The restrictions QG

T
to unipotent elements

are called the (ordinary) Green functions of G(q).
As in section 2 let {Tw1

, . . . ,Twk
} be a set of representatives of the

G(q)-conjugacy classes of maximal tori, where {w1, . . . , wk} ⊂ W are repre-
sentatives of the F -conjugacy classes of W . We write Qwi

:= QG

Twi
.

Let χ ∈ Irr(W ) be an F -stable irreducible character of W . Writing F
also for the automorphism of W induced by the Frobenius endomorphism,
we consider the semidirect product W ⋊ 〈F 〉; the W -conjugacy classes in
the coset WF are in bijection with the F -conjugacy classes of W . The
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character χ can be extended to an irreducible character χ̃ of W ⋊ 〈F 〉. For
any character χ̃ of W ⋊ 〈F 〉 we will consider the linear combination

Qχ̃ :=

k
∑

i=1

1

|CW (wiF )|
χ̃(wiF )Qwi

.

Let C be an F -stable unipotent class of G and u ∈ CF . The Lang-
Steinberg theorem shows that the G(q)-conjugacy classes in CF are pa-
rameterized by the F -conjugacy classes of the component group A(u) =
CG(u)/C0

G
(u) (the centralizer of u in G modulo its connected component),

or the A(u)-conjugacy classes in the coset A(u)F ⊆ A(u) ⋊ 〈F 〉 where now
F denotes the automorphism on A(u) induced by the Frobenius endomor-
phism. We write ua for an element in the G(q)-class of CF corresponding to
a ∈ A(u). An F -stable irreducible character ρ ∈ Irr(A(u)) can be extended
to an irreducible character ρ̃ of A(u)⋊ 〈F 〉. We consider the following class
function on G(q):

Yu,ρ̃(g) :=

{

ρ̃(aF ), if g is conjugate to ua
0, else.

Using the theory of character sheaves Lusztig [Lus86, 24.] described an
algorithm to write another set of class functions, also denoted Qχ̃, as linear
combinations of the functions ζu,ρ̃Yu,ρ̃, where ζu,ρ̃ ∈ C are scalars of absolute
value 1 which are not determined by the algorithm. The main input of
the algorithm is the Springer correspondence which is an injective map from
Irr(W ) to the set of pairs (u, ρ) modulo G-conjugacy. Further data which are
needed are the dimensions of the unipotent classes of G and the F -character
table of the Weyl group.

Later, Lusztig showed in [Lus90] that the two types of class functions
denoted Qχ̃ coincide under some conditions on q, and Shoji showed in [Sho95]
that the same holds without restrictions on q.

For much more detailed descriptions of this setup we refer to [Lus86,
Sho06, Gec20b, Gec20a].

The following proposition reduces the determination of the ζu,ρ for un-
twisted groups to the special case q = p, that is the groups G(p) defined over
the prime field. It is a special case of [Gec20b, Thm. 3.7].

Proposition 4.1. Assume that the action of F on Φ is trivial. Let C be an
F-stable unipotent class with representative u ∈ CF = C∩G(q). Assume that
F acts trivially on A(u) (so that we have ρ̃ = ρ in the discussion above).
Let ρ ∈ Irr(A(u)) appear in the Springer correspondence and ζu,ρ be the
associated scalar. Then we have for any positive integer m that u is also

stable under Fm. Write ζ
(m)
u,ρ for the scalar associated to (u, ρ) when u is

considered as element of GFm

= G(qm). Then we have ζ
(m)
u,ρ = (ζu,ρ)

m.

7



What remains to find the Green functions Qw (or equivalently the Qχ̃

for F -stable irreducible χ) as class functions is to choose representatives u
of unipotent classes and the characters ρ̃ and then to determine the scalars
ζu,ρ̃. As mentioned in Section 1 this task has been done in almost all cases.
We describe a method which enabled us to handle the remaining cases of
groups of type E8(q) in bad characteristic 2, 3 and 5.

For computations we used our own implementation of the Springer cor-
respondence and the Lusztig-Shoji algorithm, but all that is needed is also
available in Michel’s version of CHEVIE [Mic15].

The following additional information is also useful, see [Lus86, 24.].

Remark 4.2. The Lusztig-Shoji algorithm also returns the matrix Λ whose
rows and columns are labeled by the pairs (u, ρ̃) as above and the entry in
position (u, ρ̃), (u′, ρ̃′) is

∑

v∈G(q) unipotent

ζu,ρ̃Yu,ρ̃(v)ζu′,ρ̃′Yu′,ρ̃′(v).

This matrix is block diagonal (one block for each unipotent F -stable class in
G), it is symmetric and has values in the rational numbers.

From this we can always determine the sizes of the G(q)-classes in CF

for each class: If for a class C there are k classes in CF and we write YC for
the k× k matrix of the values of the ζu,ρ̃Yu,ρ̃, and if ΛC is the corresponding

diagonal block of Λ, then YCΛC ȲC
t
is a diagonal matrix where the diagonal

entries are the class lengths.
These properties sometimes yield restrictions on the values of the scalars

ζu,ρ̃.

5 Permutation characters of parabolic subgroups

For background about parabolic subgroups we refer to [DM20, Ch.3].
We want to consider standard parabolic subgroups of G(q). These are

parameterized by F -stable subsets J ⊆ ∆ of the simple roots. The subgroup
WJ ≤ W generated by the set SJ := {sr | r ∈ J} is also a Coxeter
group with SJ as set of Coxeter generators. The set PJ =

⋃

w∈WJ
BẇB

is a subgroup of G and is called a standard parabolic subgroup of G, and
similarly for the finite groups, that is PJ(q) =

⋃

w∈WJ
B(q)ẇUw(q) ≤ G(q).

The subset ΦJ := WJ(J) ≤ Φ is also a root system and the parabolic
subgroup has a Levi decomposition PJ = LJUJ , where UJ is the unipotent
radical, generated by the Xr with r ∈ Φ+\ΦJ , and LJ is a Levi complement,
it is generated by T and the root subgroups Xr with r ∈ ΦJ .
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5.1 Permutation characters by Deligne-Lusztig characters

We show how to find the values of permutation characters of parabolic sub-
groups as linear combinations of Deligne-Lusztig characters RG

Tw,1.
Recall that we have a set of representatives {w1, . . . , wk} of the F -

conjugacy classes of W and that the Qwi
are the corresponding Green func-

tions.
First we mention that the trivial character 1G(q) ∈ Irr(G(q)) is a linear

combination of Deligne-Lusztig characters [DM20, 10.2.5]:

1G(q) =

k
∑

i=1

1

|CW (wiF )|
RTwi

,1.

So, its restriction to unipotent elements is Qχ̄ for the trivial character χ̄ on
WF .

The trivial character on a parabolic subgroup PJ(q) is the inflation of the
trivial character of LJ(q) to PJ (q) via the canonical map PJ (q) → LJ(q).
Therefore, the permutation character of PJ (q) ≤ G(q) is the Harish-Chandra
induction of the trivial character on LJ(q) which is a special case of Lusztig
induction RG

LJ
, see [DM20, 5.]. Let {v1, . . . , vm} be representatives of the F -

conjugacy classes in WJ . Then we have 1LJ (q) =
∑m

j=1(1/|CWJ
(vjF )|)RLJ

Tvj
,1.

Using the transitivity of Lusztig induction [DM20, 9.1.8] we get

1PJ (q)
G(q) = RG

LJ
(

m
∑

j=1

1

|CWJ
(vjF )|

RLJ

Tvj
,1) =

m
∑

j=1

(
1

|CWJ
(vjF )|

RG

Tvj
,1).

This shows that the restriction to unipotent elements is Qχ̄ where χ̄ is the
permutation character of WF on WJF ⊆ WF .

Given all Qwi
, where the values are written with the so far unknown

scalars ζu,ρ̃ as independent indeterminates, we can now compute the permu-
tation characters of G(q) on PJ(q) for various J .

Remark 5.1. We get constraints on the possible values of the scalars ζu,ρ̃
from general facts about permutation characters. More precisely:

(a) The case of the trivial character of G(q) (the special case J = ∆,
P (q) = G(q)) yields all ζu,1̃.

(b) The values of permutation characters are non-negative rational inte-
gers. From this we often see that ζu,ρ̃ ∈ Q, and so ζu,ρ̃ ∈ {±1}.

(c) If only one of the remaining possibilities for one or several ζu,ρ̃ leads
to non-negative values then the scalars are determined.

(d) The Green function Qw for the maximally split torus is the permuta-
tion character 1B(q)

G(q). From its values we can find the sizes of the

9



intersections of the unipotent classes in G(q) with B(q) or U(q): For
u ∈ G(q) unipotent we have

1B(q)
G(q)(u) = 1

|B(q)| |{g ∈ G(q) | ug ∈ U(q)}|

= |uG(q) ∩B(q)| |CG(q)(u)| / |B(q)|.

All these values must be positive integers.

We can also use the general facts about Green functions given in [Car93,
7.6]:

(e) The values of the Green function Qwi
are rational integers.

(f) We have
∑

u∈G(q) unipotent

Qwi
(u) = G(q)

Twi
(q) .

We could also mention the orthogonality relations for Green functions, but
in our applications they never provided useful information.

5.2 Permutation characters by counting fixed points

To find additional equations for the scalars ζu,ρ̃ we compute some values of
permutation characters by counting fixed points. Note that for any finite
group G and subgroup H ≤ G the value of the permutation character on the
right cosets of H for g ∈ G is equal to

1H
G(g) = |{Hx| x ∈ G,Hx = Hxg}|.

To apply this to parabolic subgroups we need a set of representatives of
the right cosets of PJ (q) ≤ G(q).

Proposition 5.2. Let J ⊆ ∆ be a subset of the simple roots of G and
PJ be the corresponding standard parabolic subgroup and WJ the parabolic
subgroup of the Weyl group generated by J . We say that w ∈ W is J-reduced
if l(srw) > l(w) for all r ∈ J (that is w is the shortest possible representative
of the coset WJw ⊆ W ).

(a) A set of right coset representatives of PJ \G is given by

{ẇ
∏

r∈Φ+, w(r)∈Φ−

xr(ar)| w is J-reduced, ar ∈ k}.

(b) When F acts trivially on Φ and W , then a set of right coset represen-
tatives of PJ(q) \G(q) is given by

{ẇ
∏

r∈Φ+, w(r)∈Φ−

xr(ar)| w is J-reduced, ar ∈ Fq}.

10



The factors in the products are taken in any fixed order.
Part (b) can be generalized to twisted groups, but the statement becomes

more technical. We do not need this in the remainder of this article and omit
it.

Proof. Note that for J = {}, PJ = B the Borel subgroup, this is just a
reinterpretation of the strong form of the Bruhat decomposition. We consider
general J .

Recall that PJ is generated by the BṡrB with r ∈ J . Let g′ ∈ G and
w′ ∈ W such that g′ ∈ Bẇ′

B. When w′ is not J-reduced, there is r ∈ J
with l(srw) < l(w) (⇔ w′−1(r) ∈ Φ− by [Car72, 2.2.1]). We set w = srw

′

and have (BṡrB)(BẇB) = Bẇ′
B. This shows that the coset Pg′ = Pg for

some g ∈ BẇB. Since the length of w is smaller than the length of w′ we
will find after a finite number of applications of this step g and w such that
w is J-reduced. Since B ≤ PJ we see from the strong form of the Bruhat
decomposition that the elements given in (a) contain representatives of all
right cosets in PJ \G.

The multiplication rule for (BṡrB)(BẇB) shows that for g ∈ (BẇB),
g′ ∈ (Bẇ′

B) with (PJ)g = (PJ )g
′ we have (WJ)w = (WJ)w

′. Furthermore,
for any w′ ∈ W there is exactly one J-reduced w ∈ W with (WJ)w = (WJ )w

′

(the J-reduced w maps Φ+
J to itself and only the trivial element of WJ has

this property). This shows that any g′ ∈ G determines a unique J-reduced w
such that (PJ )g = (PJ )g

′ for some g of the form g = ẇ
∏

r∈Φ+, w(r)∈Φ−

xr(ar).

Finally, let w ∈ W be J-reduced, u, u′ ∈ Uw, and (PJ)ẇu = (PJ)ẇu
′.

The last condition is equivalent to ẇuu′−1ẇ−1 ∈ PJ . We have uu′−1 ∈ Uw

and ẇUwẇ
−1 =

∏

r∈Φ+, w(r)∈Φ−

Xw(r). Since w is J-reduced, so w(Φ+
J ) = Φ+

J ,

we see ẇUwẇ
−1 ∩ PJ = {1}. Hence uu′−1 = 1 and u = u′ and we conclude

that the set of elements in (a) contains a unique representative for each right
coset of PJ in G.

The proof of (b) is the same using the corresponding finite groups instead
of G, B, PJ and Xr. �

5.3 Computing a character value

Let
v = xj1(c1) · · · xjk(ck) ∈ U(q),

with c1, . . . , ck ∈ Fq \ {0} be a unipotent element for which we want to find
the value of the permutation character 1PJ (q)

G(q)(v).
For each J-reduced w ∈ W we fix an ordering r1, . . . , rN of the positive

roots such that for some l we have w(ri) ∈ Φ+ for 1 ≤ i ≤ l and w(ri) ∈ Φ−

for l + 1 ≤ i ≤ N . We consider all cosets represented by

ẇxl+1(al+1) · · · xN (aN ), with ai ∈ Fq
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at once. For the computation we use independent indeterminates yl+1, . . . yN
over Fq (or even over Z) instead of the ai in the expression above. We have
to count for how many specializations ai ∈ Fq of the yi the elements

g1 = ẇxl+1(al+1) · · · xN (aN ) and g2 = g1v

are in the same right coset of PJ(q). We apply the reordering algorithm in
Proposition 3.1(b) to rewrite

ẇ xl+1(yl+1) · · · xN (yN )xj1(c1) · · · xjk(ck)

in the form
ẇ x1(b1) · · · xl(bl)xl+1(bl+1) · · · xN (bN ),

where we get b1, . . . , bN as polynomials in the indeterminates yl+1, . . . , yN .
The chosen ordering of the positive roots yields that any specialization

of the indeterminates in

ẇ x1(b1) · · · xl(bl)ẇ
−1

in Fq yields an element in U(q) ⊂ PJ(q).
So, we want to count the tuples (al+1, . . . , aN ) ∈ FN−l

q such that special-
izing the yi by ai in the expressions

ẇ xl+1(yl+1) · · · xN (yN ) and ẇ xl+1(bl+1) · · · xN (bN )

yields representatives of the same right coset of PJ (q).
Using Proposition 5.2(b) this translates to counting the solutions in FN−l

q

of the system of polynomial equations

yl+1 − bl+1 = 0, . . . , yN − bN = 0.

5.4 Counting solutions

We have reduced the computation of values of permutation characters to
counting solutions over Fq of systems of multivariate polynomial equations
over Fq. In general, such counting is a difficult task. In principle one could
use Gröbner bases with respect to some elimination monomial ordering. But
computing Gröbner bases is itself a difficult problem. We mention here some
heuristics which often solve the problem for systems of equations that occur
in the context of the previous subsection.

• For small q we can reduce the degrees of the polynomials by the sub-
stitution y = yq for any indeterminate y (since aq − a = 0 for all
a ∈ Fq).

12



• It happens quite often that we have an equation of the form y = f
with f a polynomial in indeterminates different from y. We use this to
substitute y accordingly in all equations, and hence eliminate y from
the system. We prefer cases where f has few terms, and we fix an
upper bound for the amount of memory to use and stop substitutions
when the limit is reached.

• There are many examples where the previous steps lead to an equation
c = 0 for a non-zero constant c (so, there are no solutions) or that we
end up with no equation (so, the number of solutions is qk when there
are k independent variables left).

• Otherwise, we use a straight forward backtrack search: Specialize one
variable to all possible values and solve for each value recursively the
resulting system of equations in the remaining variables.

5.5 Detecting cases with no solutions

In the setup of Section 5.3 we can often detect quickly that the system of
polynomial equations we get for a J-reduced w ∈ W has no solutions.

We consider the roots Ψ′ = {rj1 , . . . , rjk} corresponding to the non-trivial
root element factors of the element v for which we want to compute the value
of a permutation character. We determine the subset Ψ ⊆ Ψ′ consisting of
r which correspond to only one factor in the given product v and such that
r′ 6≺ r for all r′ ∈ Ψ′ \ {r}.

Now let w ∈ W be J-reduced and assume that w(r) ∈ Φ− for some
r ∈ Ψ. Let ri = r for some l + 1 ≤ i ≤ N and xri(c) (with c 6= 0) be
the corresponding factor in v. Then we see from Proposition 3.1(c) that our
method leads to an equation yi = yi + c causing that there are no solutions.

So, we can skip our computation for the double coset of w whenever there
is at least one r ∈ Ψ such that w(r) is negative.

6 Application to E8(q)

As an application we want to determine the (ordinary) Green functions for
the exceptional groups of type E8(q) in bad characteristic p = 2, 3, 5. For
good characteristic p > 5 this problem was solved by Beynon and Spal-
tenstein in [BS85]. In Section 4 we have explained that we need to find
appropriate class representatives of the unipotent classes in G and certain
associated complex scalars ζu,ρ̄ of absolute value 1. The following theorem
summarizes the result.

Theorem 6.1. With one exception we can find in each unipotent conjugacy
class C of E8(F̄q) an element u ∈ CF such that F acts trivially on A(u) and
such that we have for all associated scalars ζu,ρ = 1.
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The exception is the class C labeled D8(a3) when q ≡ −1(3) (so p 6= 3).
In this case there is a unique GF -class of u ∈ CF such that F acts trivially
on A(u) ∼= S3. Then ζu,ρ = 1 except when ρ = −1 is the sign character of
S3 where ζu,−1 = −1.

The starting point of the proof is Spaltenstein’s table in [Spa85] which
describes the generalized Springer correspondence for groups of type E8 (the
description is slightly different in the cases p = 2, 3, 5, > 5). The table
has labels for the unipotent classes in the algebraic group and also gives
the dimensions of the classes and the isomorphism types of the component
groups A(u).

The unipotent conjugacy classes were determined by Mizuno [Miz80] and
Spaltenstein used the labeling of Mizuno. We will use some explicit class
representatives found by Mizuno. Some care is needed when using Mizuno’s
tables because they contain (very few) errors. An important correction of
two A(u) in characteristic 2 is mentioned in [Spa85, 5.5]. For some explicit
computations in the groups we want to use elements given in Mizuno’s paper.
Therefore, we use the same structure constants as Mizuno and read off the
extraspecial signs he used (there are some errors in the table of structure
constants in the paper, but we recompute everything from the signs for
extraspecial pairs.)

We can conclude from Mizuno’s results that all unipotent classes contain
an F -stable element u such that F acts trivially on A(u): Otherwise there
would be a class C such that F acts on A(u) as a non-inner automorphism
for any u ∈ CF . All groups occuring as A(u) have the easy to check property
that the number of φ-conjugacy classes for any non-inner automorphism φ
is smaller than the number of conjugacy classes. So, for some power Fm

of F such that Fm acts trivially on all A(u) the group GFm

would have
more unipotent classes than GF . But Mizuno showed that the number of
unipotent classes only depends on the characteristic p.

From now on we assume that p = 2. The cases p = 3, 5 must be consid-
ered separately, but the arguments to obtain our result are the same (and
sometimes a bit easier because there are fewer unipotent classes).

Step (1). So, assuming that we choose representatives u ∈ CF with
trivial action of F on A(u) for each unipotent class C of G, we can use
the Lusztig-Shoji algorithm to compute the (generalized) Green functions
as linear combinations of the functions ζu,ρYu,ρ, see Section 4. For this we
only need the information in Spaltenstein’s table and the character tables
of (relative) Weyl groups, which are, e.g., available in GAP [GAP22] or
CHEVIE [GHL+96]. For the computations in this step we use independent
indeterminates instead of the so far unknown scalars ζu,ρ.

Up to this point we do not need to be more specific on the choice of class
representatives u ∈ CF . (But, of course, the ζu,ρ depend on the choice of u.)

We have 74 unipotent classes in G and 146 unipotent classes in G(q) =
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E8(q) (where q is any power of p = 2). We need to determine 112 scalars
ζu,ρ which so far are represented by 112 indeterminates in our table of Green
functions.

Step (2). We consider the trivial character of G(q) (the permutation
character on PJ(q) for J = ∆) and use Remark 5.1(a). This shows that the
74 scalars ζu,1 all must be 1 (independent of the choice of representatives
u). We specialize their corresponding indeterminates in our table of Green
functions such that only 38 unknown ζu,ρ remain.

From the rationality of Green functions, see Remark 5.1(e) or (b), we see
that all of these ζu,ρ ∈ {±1}.

Step (3). We determine the sizes of the unipotent classes in G(q) with
the information from Remark 4.2. In many cases they are uniquely deter-
mined from the matrix Λ, and they are the same for all possible values of the
not yet known ζu,ρ. For example this is the case for the class D8(a3) (where
A(u) ∼= S3 for u in this class).

In other cases certain possibilities for ζu,ρ do not lead to a diagonal matrix
of class length as described in 4.2. For example for the class D4(a1), also
with A(u) ∼= S3, we get that the two not yet known scalars can only be 1,
and this determines the class lengths.

An interesting case are classes C where for u ∈ C we have A(u) of order
2 and the two classes in CF have different length. There both choices in
{±1} of the scalar for the non-trivial character of A(u) lead to a diagonal
matrix with both class lengths, but in different order. So, here we can just
assume that the scalar is ζu,−1 = 1 and we get the class length of u.

Another case is the class D6(a1) with A(u) elementary abelian of order
4, where only one unknown scalar appears in the ordinary Green functions.
We get the class lengths but not the scalar. Also for the class 2A4 with
A(u) ∼= S5 we get the class lengths but not the scalars.

Now we use the property of Green functions from Remark 5.1(f) for the
split torus of order (q − 1)8. We can evaluate this sum using the lengths of
the unipotent classes.

We get an equation of the form

z1f1(q) + . . . + z18f18(q) =
|G(q)|

(q − 1)8
.

where z1, . . . , z18 are 18 out of our 38 indeterminates remaining after step (2)
and the f1(q), . . . , f18(q) are polynomial expressions in q.

For all fi(q) it is easy to see that they evaluate to positive integers for q
any power of 2. Also, the sum of the fi(q) equals the right hand side of the
equation. So, the only way to satisfy the equation by substituting all zi by
complex numbers of absolute value 1 is to set all zi to 1.

Step (4). Let C be one of the classes (A5 + A1)
′′, A5 + 2A1, D6 + A1,

D8 where for u ∈ C we have |A(u)| = 2. In these cases the two classes in
CF have the same order and the two possibilities for ζu,−1 ∈ {±1} exchange
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all values of Green functions on these two classes. So, there is a choice of
u ∈ CF such that ζu,−1 = 1.

A similar argument works for the class C = E7+A1 where for u ∈ C the
group A(u) is elementary abelian of order 4. Setting the unknown scalar to
{±1} leads to the same permutation of the values on the four classes in CF

for all Green functions. So, there is a choice of u such that the scalar is 1.
We have 15 remaining indeterminates.
Step (5). Now we use Remark 5.1(d) and compute the intersections of

unipotent classes with the Borel subgroup B(q). Some of these expressions
are rational polynomials in q and one or several of the unknown scalars.

The expressions are big, but now we also use Proposition 4.1 and special-
ize q to q = 2 to get some rational linear combinations of unknown scalars
which must be positive integers. For example, the expressions for the class
A5 + A2 with component group S3 contain two unknown scalars. Setting
both scalars to 1 yields positive integers, but the other three possibilities
either yield a negative or a non-integer rational number. (Note that in the
case of the non-abelian A(u) ∼= S3 the G(q)-class of u is already fixed by the
condition that F acts trivially on A(u).)

With this method we find another 11 of the scalars to be 1.
Step (6). Two of the remaining four unknown scalars belong to the

class C = D8(a3). For u ∈ C we have A(u) ∼= S3, so that the G(q)-class of
u is fixed by the condition that F acts trivially on A(u). We still need to
determine ζu,−1 and ζu,ρ where we write −1 for the sign character and ρ for
the character of degree 2 of S3.

Computing values of permutation characters on unipotent elements for
various parabolic subgroups PJ (q) as in Section 5.1 we find that, e.g., for J
of type D4 the mentioned scalars appear in the values on the classes in CF .

Using Proposition 4.1 we specialize q = 2. Then the four possibilities for
the scalars would lead to different character values of 1PJ (q)

G(q) on the classes

in CF , namely the tuples: (92897, 177889, 89825), (179937, 90849, 176865),
(88801, 177889, 91873), (175841, 90849, 178913).

Now we use Section 5.3 and compute the values of this permutation
character on the elements z52, z53, z54 given in Mizuno [Miz80] and find the
first of the tuples above which corresponds to ζu,−1 = −1 and ζu,ρ = 1. This
is the exception stated in our Theorem 6.1. Note that by Proposition 4.1
this exception only occurs when q is an odd power of 2 (or q ≡ −1(3)).

Remarks: The computation of each value took about 5 seconds, there
are 3628800 J-reduced elements w, but only about 500 of them do not fulfill
the criterion in Section 5.5. Note that with our computation we can actually
show that the elements z52, z53, z54 in Mizuno’s list are indeed in the class
C = D8(a3) because the same values do not occur on other classes. In fact,
computing the value of z44 in Mizuno’s list also yields the value 177889 and
this shows that this element is conjugate to z53.
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Step (7). The last two unknown scalars correspond to the class C =
D8(a1). For u ∈ C the group A(u) is a dihedral group of order 8 which has
5 conjugacy classes and two non-trivial linear characters ǫ′, ǫ′′ which appear
in the Springer correspondence. All values of (ordinary) Green functions are
the same on the classes of u = u1 and ua where a is the non-trivial element
in the center of A(u).

As in step (6) we can use the parabolic subgroup for J of type D4.
The four possibilities for the two unknown scalars always lead to the same
four character values, but they differ in which of the four values appears
twice. For q = 2 the four values are {6785, 2625, 6401, 2241}. Using the five
representative zi, 27 ≤ i ≤ 31, in Mizuno’s list and computing the character
values for these elements we get the value 6785 twice, namely for z27 and
z31. This shows that also the scalars ζu,ǫ′ = ζu,ǫ′′ = 1.

Remarks. In our first proof of the Theorem 6.1 we used arguments as
in steps (6) and (7), that is computations as explained in Section 5.2, for
many more of the unknown scalars. Even large J for which the compu-
tations are pretty fast provide a lot of useful information. We were a bit
surprised that in the revised version presented here we could avoid almost
all of these computations. Nevertheless, as hinted in the remarks to step (6),
the computational method can be useful to obtain more detailed information
as in Theorem 6.1. For example, we have seen above that we can identify
the G(q)-class of some unipotent elements. The values of some permutation
characters are useful class invariants which often distinguish classes from all
others.
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