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Abstract

The increasing polarisation in our societies has been the focus of much re-
search and is a major international concern. Current approaches to defining
and detecting polarisation largely rely on finding evidence of bimodality in
social networks or voter opinion surveys. Much of this research is based on
the USA’s Republican and Democrat parties, which can be difficult to apply
to political systems with more than two parties or blocs. This approach also
makes it hard to detect temporal trends in polarization, as the results usually
fall into a binary of polarised or non-polarised; it is difficult to robustly show
that subsequent increases in the bimodality of a polarised distribution are
meaningful changes.

Our work is aligned with Baldassarri and Gelman’s theory that polari-
sation should be defined as increasing correlation between positions in the
ideological field, which reduces political pluralism. We also draw from post-
structuralist work which argues that polarisation is the process of both the
ideological fiend and the material society being segregated into two poles,
as in cases of apartheid. This means that in order to measure the polarisa-
tion occurring in a society, it would be beneficial to be able to assess social
networks directly.

To measure polarisation in the social network, we use Random Dot Prod-
uct Graphs to embed social networks in metric spaces. In the case of a social
network, the embedded dimensionality corresponds to the number of reasons
that two people may form a social connection. A decrease in the optimal
dimensionality for the embedding of the network graph, as measured using
truncated Singular Value Decomposition of the graph adjacency matrix, is
indicative of increasing polarisation in the network.
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We apply this method to the communication interactions among New
Zealand Twitter users discussing climate change issues, from 2017 to 2023.
We find that the discussion is becoming more polarised over time, as shown
by a decrease in the dimensionality of the communication network. Second,
we apply this method to discussions of the COP climate change conferences,
showing that our methods agree with other researchers’ detection of polari-
sation in this space. Finally, we use networks generated by stochastic block
models to explore how an increase of the isolation between distinct commu-
nities, or the increase of the predominance of one community over the other,
in the communication networks are identifiable as polarisation processes.
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1. Introduction

Social and political polarisation is an issue of increasing concern in the
international community, since it is associated with severe social divisions
and weakening of the democratic consensus [1]. Much of the research on
polarisation is directed at the USA, particularly in the wake of the Trump
presidency, but concern about polarisation is also present in a wide range of
countries [2] [3] [4] [5].

Data-based definitions of polarisation primarily focus on the presence
of a bimodal division in the distribution of ideological or social affiliations,
such as the spectrum of left- to right-wing politics; bimodality is assessed
by inspection (e.g. no overlap between the ideological groups)[6] or tested
for significance using tests such as Hartigan’s Dip test [7][8]. However, this
approach can struggle when assessing multi-party democracies that do not
have a clear left- and right-wing split [9]. When investigating social networks,
bimodality is expressed as strong in-group/out-group divisions [10], and is
often characterised by hostility between the two groups; it is common to
consider this hostility as a sign of polarsation, not just the differences in
policy positions between the two poles (usually the Republican and Democrat
parties in the USA) [11] [12]. On social media, these hostile divisions usually
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take the form of ”echo chambers” that focus on one set of political views and
exclude all others [13] [14].

Another common axiom in current polarisation studies is that the polar-
isation is maximised when the groups are of equal size, as well as strongly
divided [15]. This is intended to help tell polarisation conflicts apart from
other major social conflicts, such as conflicts over wealth inequality. How-
ever, a consequence of this axiom is that polarisation cannot become severe
if one of the groups is a small minority (e.g. refugees); given that some ma-
jor social divisions are based on opposition to small minority groups, we are
interested in whether there are methods for measuring polarisation that do
not require this axiom.

Computational data science approaches to measuring polarisation are
popular, especially for their speed when analysing millions of records from
social media services. There are fast and simple algorithms for detecting com-
munities that can then be investigated for polarisation, such as the Louvain
method [16]. Network data is usually processed using a dimension reduction
algorithm, such as Principal Component Analysis or Canonical Correspon-
dence Analysis, in order to create a single dimension that can be evaluated for
bimodality. Measuring latent positions empirically means projecting them in
lower dimensional spaces, and then assess the resulting first dimension for
bimodality [17] In other cases, clustering algorithms are more appropriate
than bimodality tests; there are a number of ways of measuring distances
between the clusters, which can indicate polarisation between the groups if
the clusters also have low internal variation [18].

There are criticisms of the focus on bimodality in polarisation research.
Baldassarri and Gelman [19] argue that focus on radicalisation relies on cor-
rectly selecting the ideological dimension that is the centre of the polarisation;
incorrect selection can result in failing to find polarisation when it is present.
They instead propose a definition of polarisation as increasing correlation
in the ideological space, in comparison to an integrated society which ”is
not a society in which conflict is absent, but rather one in which conflict
expresses itself through nonencompassing interests and identities”. The pro-
cess of increasing correlation between ideological positions reduces political
pluralism and restricts possible ideological opinions, until maximum correla-
tion is reached and an oppositional binary is created. They did not find that
there was increasing correlation in the ideological field of US-American vot-
ers pre-2004. However, subsequent research by Kozlowski and Murphy [20]
using the same methods found that correlation rapidly increased between
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2004 and 2016. They noted that the increase in polarisation was strongest in
the domains of economics and civil rights issues, rather than in the domain
of moral issues that the ”culture war” framing of polarisation may suggest.
Similarly, DellaPosta [21] conceptualises polarisation as similar to an oil spill,
with the increasing correlation in ideological positions spreading polarisation
to previously apolitical members of society. The article analyses how the
”belief network” of US-American politics has changed over time, concluding
that the network has developed clusters which have reduced the prevalence of
cross-cutting ideological positions; this means that pluralism has decreased
and polarisation has increased.

Incorporating post-structuralist political theory allows us to expand on
this understanding of polarisation as correlation. Ernesto Laclau & Chantal
Mouffe [22] begin from the same understanding of pluralism and polarisation
as scholars such as Baldassarri and Gelman, but they develop this concept
beyond just they ideological field. They argue that ”In a colonized country,
the presence of the dominant power is every day made evident through a
variety of contents: differences of dress, of language, of skin colour, of customs
[...] the colonizer is discursively constructed as the anti-colonized.” (p. 128).
Two poles are constructed that are mutually exclusive and have nothing in
common, sustained by segregation in all layers of society (e.g. the South
African regime of racial apartheid). Notably, the polarisations that they
examine do not occur primarily in the division between political parties, but
along fault lines such as race and ethnicity, economic class, the urban-rural
divide, and the division between coloniser and colonised.

In this paper we present a novel method of measuring polarisation that
follows from both Laclau & Mouffe and Baldassarri & Gelman, namely us-
ing Singular Value Decomposition to determine the correlation structure of
social networks. Using social networks allows us to capture interactions be-
tween people that are not explicitly political — being neighbours, sharing
a workplace, etc — but which become politicised and segregated during ex-
treme polarisation. As such, we are able to determine whether correlation is
increasing not just among possible political positions, but whether it is in-
creasing among social determinants of interaction as well. Our method gives
a value that corresponds to the network’s capacity for complexity. Incorpo-
rating these additional layers of a society into the analysis should make it
easier to detect whether polarisation is occurring.
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2. Methods

We represent the conversation happening on a social platform (Twitter,
Facebook, Instagram, etc.) as a network. Each user that took part in the
conversation is mapped to a node. We add an edge between two nodes if the
two respective users have communicated in the time window of the observa-
tion. Depending on the chosen social platform considered and the specific
research question, a communication can be given by a reply, a mention, a
quote, a repost/retweet/share, or a set of these. These networks can be di-
rected (as is more common) or undirected. Here, we consider communication
networks only as unweighted graphs, although the generalization to weighted
graphs doesn’t present fundamental challenges.

2.1. Network modelling

Having established these networks, we model them as Random Dot Prod-
uct Graphs (RDPGs) [23]. RDPGs are used instead of other graph em-
beddings because their optimal dimensionality is established a priori to the
analysis, so it is independent of the network’s size.

In the most general, directed, case under the RDPG model, each node
i ∈ {1, ..., N} in a graph G is associated with two vectors of traits, Li and
Ri, that give the node position in a pair of metric spaces, L and R. Li and
Ri are in general not directly observable. Then, the probability that an edge
from node i to node j exists is given by the proximity of Li and Rj, namely
by the dot product

Li ·Rj = P(i → j) .

In other words, the position of a node in L describe its outgoing edge topol-
ogy, and the position of a node in R describe its incoming edge topology.
In general, given the two matrices L and R, the edges are drawn with in-
dependent probabilities given by LR. We call the couple (L,R) the RDPG
embedding of G.

In inference tasks, starting from an observed graph, the goal is to estimate
the position of the nodes in the latent spaces, given the interaction structure
of the network. We do not parametrise the network for this analysis. For a
fixed dimension d of the two latent spaces, this is achieved by a d-truncated
Singular Value Decomposition as follows.

Let A be the adjacency matrix of G. Let A = UΣV ′ be a singular value
decomposition of A, so that U and V ′ are orthogonal matrices, and Σ is
the diagonal matrix which i-th entry is the i-th singular value of A (sorted
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in decreasing order). Notice that in general U and V ′ are only identifiable
up to orthogonal transformations (any rotation of them would keep the dot
product constant, so they would determine the same graph). Denoting M |k
the truncation of a matrix M to its first k columns, for any d, the two matrices
L̂ = U |d

√
Σ and R̂ =

√
Σ (V |d)′ determine a rank-d optimal approximations

of A. That is, L̂R̂ = Â minimizes the Frobenius distance to A between all
the rank-d matrices.

In the undirected case, L̂ = R̂ so that L̂i ·R̂j = R̂i ·L̂j and the probabilities
of interaction are symmetric.

Embedding dimension

We define the dimension of a communication network as the optimal
choice of d for the RDPG embedding of the network and denote it d̂.

An a-priori optimal choice for d̂ can be obtained from, Σ, the sorted
sequence of singular values of the network’s adjacency matrix A. Various
methods exist. Here we adopt the elbow method presented in [24]. The elbow
method identifies the most likely change point in the sequence of values of
Σ by sequentially fitting two Gaussian distributions with independent mean,
and equal variance. One Gaussian distribution is fitted to the largest d
singular values, and the other to the smallest K − d. Then, d̂ is the value of
d that maximise the sum of the log-likelihoods of the two distributions.

Notice that d̂ is robust to network size.

SVD Entropy

Given a network, we can assess its graph complexity by computing its
SVD entropy, which is again based on Σ. A network has higher SVD entropy
when many of its singular vectors are highly important for its structure,
meaning that the network can not be efficiently compressed. This commonly
read as an indication of high network complexity [25], and it is related (al-
though not in a linear nor straightforward way) to its dimension. We nor-
malise the SVD entropy using Pielou’s evenness [26], so that the results do
not depend on the network size.

In particular, let Σ be the sequence of singular values of a network’s
adjacency matrix A. The nuclear norm of A is given by the sum total of
Σ (that is, the sum of all singular values). We define the normalized values
si = σi

∥A∥∗ , where i ∈ {1, ....N} and σi is the i-th singular value.
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Then, the (Pielou normalised) SVD entropy of a graph G is given by

J = −ln(N)−1 ×
N∑
i=1

siln(si)

where the sum term in the definition is, indeed, an entropy.

2.2. Polarization

We define a process of polarization as the loss of dimensionality of a graph
observed in time. Namely, we find the optimal RDPG embedding dimension
d̂ at multiple time points. If d̂ decreases over time then we argue that the
network has become more polarised during that time. This is based on the
same principles as the view that the process of polarisation is one of increasing
correlation. The dimensions of d̂ are all uncorrelated; as such reduction in
d̂ corresponds to a reduction in uncorrelation in the social network graph,
which is an increase in correlation.

We complement this definition by also observing the complexity of the
graph, as determined by its SVD entropy, and notice whether it corresponds
to an increase or decrease of polarisation.

2.3. Code

All the Social Network analysis discussed above have been performed
in Julia[27], in particular using the packages Graphs.jl[28] for network
manipulation, PROPACK.jl[29] for computing the (truncated) singular values,
and DotProductGraphs.jl for computing the embedding dimension and SVD
entropy.

All scripts are available at https://github.com/gvdr/Sage data.

3. Data

We apply our computational framework for polarisation to three different
data sets: two from Twitter, and one consisting of simulated interaction
networks.
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3.1. Climate discussion in New Zealand Twitter

We obtained 12939 tweets by querying Twitter’s Academic API v2.0 for
keywords related to climate change: climate, pollution, age, CO2, and car-
bon. We restricted our search to tweets geographically tagged as being from
New Zealand, and tweets published after 2017. We then considered two time
windows that corresponded to roughly equally sized networks: between 2017
and 2020, and 2020 to 2023. For each time frame, we built a network by
considering each user (identified by their unique IDs) as a node, and any
mention, reply, or quote tweet between two users as an edge. There were
6767 tweets in the 2017-2020 network and 6172 in the 2020-2023 network.
We analyzed the two networks independently.

3.2. COP discussion in Twitter

Falkenberg et al. collected a large corpus of tweets by querying Twitter’s
Academic API v2.0 for tweets mentioning ”COP2x” where x was an integer
between 0 and 6 (inclusive) [17]. They restricted their search to tweets in
English, and covered the COP from 20 to 26 (years 2014 to 2022, with 2020
and 2021 skipped due to the Covid-19 pandemic). Their adjacency matrix
was constructed based on whether a user i retweeted tweets from a political
influencer j. Their focus was whether there was noticeable division among
users based on whether they were spreading true information about climate
change or disinformation from climate change denialist influencers.

To test for polarisation using our framework, we built a network for each
COP using the same data by considering each user (identified by their unique
IDs) as a node, and any mention, reply, or quote tweet between two users as
an edge. The network for each year was analysed independently.

3.3. Synthetic Data

We wanted to explore what happens when common axioms about po-
larisation are evaluated using our approach. To do this, we generated two
networks using stochastic block models. The first network is used to eval-
uate the how changing the chances of between-groups engagement affects
dimensionality of the network. The second dataset is used to evaluate what
happens when the two groups in a polarisation are different sizes, to test the
concept that polarisation is maximised when the two groups are equal in size
and then decreases as one group becomes predominant.
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Table 1: Pointwise estimates of network dimensionality and entropy.

Year Dimension Dimension GC Entropy Entropy GC
2017-2020 39.0 39.0 0.980229 0.979954
2020-2023 27.0 24.0 0.97439 0.97372

Between-groups engagement We simulated a stochastic block network
of 1000 nodes, split into two equally sized groups. We varied the prob-
ability of each node forming a connection within its group and varying
probabilities of in-group and between-groups linking. In particular, we
simulated a networks with in-group link probability of 0.3 to 0.45 with
steps of 0.05. and between-group probabilities of 0.1, 0.05, and 0.01.

Predominance of a group We simulated a stochastic block network of
1000 nodes, split into two groups. We fixed probabilities of in-group
linking between 0.3 and 0.45 with steps of 0.05, and fixed the proba-
bility of between-groups linking at 0.05. We varied the sizes of the two
groups, in particular, we simulated a process in which one of the two
groups becomes predominant, progressively increasing its size from 0.5
of the full network to 0.2, 0.1, and finally 0.01.

4. Results

4.1. NZ Twitter Climate Change Data

We find that the dimensionality of the NZ Twitter discussion of climate
change has decreased over time, indicating that it is becoming more polarised.
Similarly, the von Neumann entropy of the network is lower in the 2020-2023
period than in the 2017-2020 period. This suggests that the complexity of
the network is decreasing and the political positions that it is possible for
users to hold are becoming narrower over time, which matches Baldassarri
and Gelman’s view of how polarisation works politically.

4.2. COP Data

We found that the dimensionality of the network of Twitter users dis-
cussing the COP conference has been decreasing over time, though the de-
crease was not linear. Unexpectedly, the von Neumann entropy of the net-
work did not decrease in this way, and instead it was at its highest in 2022
even though the dimensionality of the network was at its lowest.
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Figure 1: Plot comparing the network dimensionality of NZ climate change tweets in
2017-2020 to the dimensionality in 2020-2023.
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Figure 2: Plot comparing the von Neumann entropy of NZ climate change tweets in 2017-
2020 to the entropy in 2020-2023.

11



[h]

Figure 3: Plot comparing the network dimensionality of tweets for COP20-COP26.
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Figure 4: Plot comparing the network von Neumann entropy of tweets for COP20-COP26.
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Table 2: Pointwise estimates of network dimensionality and entropy based on the first 100
SVD values.
COP Dimension Entropy

20 14.0 0.9802473
21 7.0 0.97777313
22 2.0 0.97607696
23 3.0 0.97573924
24 9.0 0.9748669
25 3.0 0.9791759
26 2.0 0.9754415

Table 3: Pointwise estimates of network dimensionality and entropy based on the first
1000 SVD values.
COP Dimension Entropy

20 54.0 0.97711855
21 47.0 0.9803695
22 62.0 0.9787037
23 52.0 0.9789476
24 42.0 0.9741172
25 78.0 0.9807784
26 38.0 0.9823967
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Interestingly, Falkenberg et al. expected to find polarisation during COP21,
due to the signing of the Paris Agreement at COP21. Their Hartigan’s Dip
Test for COP21 returned a significant result (p = 0.003), but they go on to
claim that COP21 was not polarised despite this result. In our data, COP21
has lower dimensionality than the years before or after. It may be possible
that the network as a whole became more polarised, which is captured by
our data, but this effect had not yet occurred among the ”influencers” that
Falkenberg et al selected. Our results support Falkenberg et al’s suggestion
that the increase in polarisation they observed was due to an increase in the
prominence of anti-climate and generally far-right influencers on Twitter,
since COP26 was the conference with the lowest associated network dimen-
sionality among Twitter users discussing it.

4.3. Simulated Data

As expected, increasing the chance of connection between the two blocks
increases the dimensionality of the network (and therefore decreases the po-
larisation). The effect was consistent across all in-group link probabilities
tested. This indicates that a potential social strategy to decrease polarsa-
tion could include facilitating the creation of connections between different
groups.

For cases where the in-group link probability was lower, the von Neumann
entropy decreased as the out-group link probability increased. In cases where
the in-group link probability was higher, the entropy remained consistent or
increased as the out-group link probability increased. As such, von Neumann
entropy may be a less reliable indicator of polarisation than d̂.

We found that the dimensionality of the network increases slightly as one
group becomes predominant in the network, but decreases strongly when one
group is much larger than the other. This effect was consistent across all in-
group link probabilities tested. The von Neumann entropy of the network
also strongly decreased when one group was much larger than the other (99
to 1), but did not exhibit the same behaviour as the dimensionality when the
group was only starting to become predominant (80 to 20, and 90 to 10). At
low in-group link probabilities, the von Neumann entropy decreased as one
group became predominant; at higher in-group link probabilities, the entropy
either remained stable or increased slowly as one group became predominant.

It is possible that our experiment did not decrease the group size far
enough to trigger the effect expected by Esteban and Ray. However, it does
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Figure 5: Network dimensionality of the stochastic blockmodel as the link probabilities
are changed.
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Figure 6: von Neumann entropy of the stochastic blockmodel as the link probabilities are
changed.
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Figure 7: Network dimensionality of the stochastic blockmodel as the sizes of the blocks
are changed.
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Figure 8: von Neumann entropy of the stochastic blockmodel as the sizes of the blocks
are changed.
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demonstrate that polarisation does not linearly decrease as one group be-
comes predominant, as was expected, and that the behaviour of the stochas-
tic block model is more complicated. This is also a useful result to be aware
of because groups that are the target of political polarisation are often only a
small percentage of the population, such as ethnic minority or refugee popula-
tions; as such, societies where this is the case may be structurally vulnerable
to polarisation.

5. Conclusions

We have demonstrated a novel method for measuring polarisation through
the embedded dimensionality of random dot-product graphs. This is a reli-
able and straightforward implementation of the correlation-based approach
to polarisation suggested by Baldassarri and Gelman. Our method captured
the presence of polarisation in all the scenarios where it was expected and
had been found by other researchers, in both simulated data and real social
media networks. The RDPG approach also allows us to easily see that the
process of polarisation is occurring in a network, through its embedded di-
mensionality reducing, rather than relying on a binary test of whether the
network was polarised or non-polarised.

Another advantage of the RDPG approach is that it is computationally
light; the main bottleneck is the computation of the first singular values of
a large matrix, but this is well known in computer science literature and has
already been strongly optimised. We found that the SVD was feasible even
when used on networks with millions of nodes. Bimodality-based methods
typically use SVD or correspondance analysis to determine the dimension
they will test for bimodality, so our approach is at least as efficient.

Our approach is also highly interpretable, without forcing the latent ide-
ological distributions into an artificially unidimensional space. Rather than
creating a unidimensional space and then interpreting its political meaning
(such as pro- and anti-climate, or left- and right-wing), the dimensionality
method instead focuses on the number of dimensions rather than what those
dimensions are. In high-dimensional spaces, we do not need to know exactly
what ideologies the dimensions correspond to; the important part is that
they signal that there are ideological connections being made between nodes
that would not be possible if the network was polarised.

The von Neumann entropy of the network did not relate to the dimen-
sionality as closely as we expected, though it did reflect major changes in

20



the networks when they occurred. As such, we think it is best to use the
embedded dimensionality of the network to measure its polarisation.

A major limitation of this method which could be improved is that it does
not capture affective polarisation very well. Our method functionally consid-
ers any interaction between two nodes to be “good”; this means that it is not
capable of capturing antagonistic interactions between nodes, and as a result
it may overestimate the dimensionality of the network by mistaking brief an-
tagonistic reactions for positive social bonds. There is a great deal of scope
for integrating the concept of affective polarisation into our model, through
methods such as using signed matrices and classification systems such as
sentiment analysis to determine whether interactions in a social network are
positive, negative, or neutral before determining the dimensionality.

Another possible extension of this method would be to implement a non-
parametric two-sample hypothesis test[30], since this would allow a hypoth-
esis test of whether the two networks are significantly different as additional
evidence of polarisation having occurred. We believe that being able to ob-
serve the dimensionality of the graph alone is useful; however, we understand
that sometimes a hypothesis test is demanded, and we believe this would help
demonstrate that changes in the dimensionality of the network are significant.

Since we found some unexpected results when testing common axioms
about polarisation, it would also be worthwhile to experiment more with
the basics of the field using our method. For example, this paper has only
explored the two-block case; many instances of online ”echo chambers” have
a large number of groups who all hate people different to them, and it would
be useful to see what happens to the dimensionality in such cases. Similarly,
our testing on group prevalence showed a decrease in dimensionality when
one group was 100 times the size of the other, but we did not test how the
dimensionality changed as the size of the smaller group approaches zero.
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