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Abstract. Rapid advancements in medical image segmentation perfor-
mance have been significantly driven by the development of Convolu-
tional Neural Networks (CNNs) and Vision Transformers (ViTs). How-
ever, these models introduce high computational demands and often have
limited ability to generalize across diverse medical imaging datasets. In
this manuscript, we introduce Generative Medical Segmentation (GMS),
a novel approach leveraging a generative model for image segmentation.
Concretely, GMS employs a robust pre-trained Variational Autoencoder
(VAE) to derive latent representations of both images and masks, fol-
lowed by a mapping model that learns the transition from image to
mask in the latent space. This process culminates in generating a pre-
cise segmentation mask within the image space using the pre-trained
VAE decoder. The design of GMS leads to fewer learnable parameters in
the model, resulting in a reduced computational burden and enhanced
generalization capability. Our extensive experimental analysis across five
public datasets in different medical imaging domains demonstrates GMS
outperforms existing discriminative segmentation models and has re-
markable domain generalization. Our experiments suggest GMS could
set a new benchmark for medical image segmentation, offering a scal-
able and effective solution. GMS implementation and model weights are
available at https://github.com/King-HAW/GMS

Keywords: Image segmentation · Generative model · Cross-domain gen-
eralization.

1 Introduction

Image segmentation plays a crucial role in the field of medical image analy-
sis allowing an automated method to precisely delineate and separate different
anatomical structures and pathological entities visible in medical images. Au-
tomated segmentation enables clinicians to obtain detailed visualizations and
quantitative assessments of lesions and other structural anomalies facilitating
computer-aided diagnosis, treatment planning, and the monitoring of disease
progression [1,21,10].

Current deep learning models designed for the medical image segmentation
task, such as U-Net [17] and its various adaptations [18,8], have significantly
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advanced the field of medical imaging analysis. These models have been pivotal
in enhancing the accuracy and efficiency of segmenting anatomical structures
or abnormalities from various imaging modalities such as MRI and CT. Early
deep learning models leverage convolutional neural networks (CNNs) to learn
local patch representations from large amounts of labeled data. Despite their
successes, CNN-based models often have a large number of parameters which
may produce challenges in model training. Additionally, the limited receptive
field of convolution operations makes it difficult for CNN-based models to learn
global context information that can provide important guidance during segmen-
tation. Moreover, CNN-based models sometimes struggle with generalizing to
unseen domains, leading to substantial potential performance drops when the
test dataset distribution is shifted from the training dataset distribution.

Vision transformer (ViT) [5] has recently been presented as a powerful al-
ternative to CNN-based segmentation models in medical imaging analysis. ViT
enables capturing global semantic information often overlooked by convolution
operations. Transformer-based segmentation models, such as UCTransNet [22]
and Swin-Unet [2], leverage the transformer architecture to treat images as se-
quences of patches, promoting the model to learn relationships across the en-
tire image. Transformer-based models facilitate more holistic image analysis by
integrating both local and global context information. Therefore, they can ac-
curately segment anatomical structures or pathological changes in medical im-
ages, surpassing CNNs in certain domains. However, transformer-based models
are required to be pre-trained on very large datasets to achieve optimal perfor-
mance, which can be a major bottleneck given the scarcity of such datasets in
the medical field. Additionally, the high computational complexity needed for
the multi-head attention module poses practical challenges for real-time appli-
cations and deployment in environments with limited computational resources.
Furthermore, due to the large number of parameters in transform-based models,
there is an increased risk of overfitting when training on small datasets with the
subsequent challenges of poor generalization to out-of-domain datasets.

Generative models, such as Generative Adversarial Networks (GANs) [6] and
Variational Autoencoders (VAEs) [12], are often adopted as data augmentation
techniques to improve the performance of segmentation models [7]. However,
GANs are well-known to suffer from mode collapse and distorted outputs when
the number of training samples is small [11]. Additionally, GANs can not guar-
antee that the distribution of synthetic images they create is similar to the dis-
tribution of real images. Image-to-image translation models have been presented
for building segmentation models directly in a generative manner. To date, the
performance of image-to-image models is well below state-of-the-art model per-
formance [13]. Recently, BerDiff [4] deployed a diffusion model using an image
as the condition for mask generation. Such an approach is less efficient for im-
age segmentation because it requires repetitive denoising steps. Chen et al. [3]
proposed a generative semantic segmentation (GSS) framework with a two-stage
learning protocol. However, GSS still has a high computational cost as it trains
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an image encoder to translate the input image into a latent prior distribution,
requiring a large number of trainable parameters.

In this paper, we propose Generative Medical Segmentation (GMS) to model
the segmentation task in a purely generative manner. GMS leverages a pre-
trained VAE encoder to obtain a latent representation with semantic informa-
tion and then only trains a latent mapping model to learn a transformation
function from the image latent representation to the mask latent representa-
tion. The final segmentation mask in the image space is obtained by decoding
the transformed latent representation using a pre-trained VAE decoder. Bene-
fiting from the robust latent space of the pre-trained VAE model, GMS achieves
the best performance among five public medical image segmentation datasets
across different domains. Furthermore, we perform a cross-domain experiment
to demonstrate that the inherent domain generalization ability of GMS is better
than other domain generalization methods presented in the literature such as
MixStyle [25].

2 Methodology

2.1 Overview of Generative Medical Segmentation

The Generative Medical Segmentation (GMS) model architecture is shown in
Fig. 1. Given a 2D image I and its segmentation mask M , we use a pre-trained
encoder E to obtain the latent representations ZI and ZM of I and M , re-
spectively. ZI is used as input into the latent mapping model which is trained
to predict an estimated latent representation of the mask M , corresponding to
ẐM . Finally, ẐM is decoded by a pre-trained decoder D to obtain the segmen-
tation mask prediction M̂ in the original image space. Note that the weights of
the E and D are assumed to be pre-trained and are frozen during both model
training and inference, which enables only updating the latent mapping model
parameters during training. This reduces the number of trainable parameters
to be much smaller than most other state-of-the-art deep learning segmentation
models.

The choice of appropriate E and D to obtain a representative latent space
for both input images and masks is critical for GMS performance. We use the
weights of stable diffusion (SD) VAE [16] for E and D. Since SD VAE was
trained on a large natural image dataset [19], it has a rich and diverse latent
information representation, leading to a strong zero-shot generalization ability
even for medical images. SD VAE can achieve near-perfect image reconstruction,
which enables the feasibility of training GMS.

SD VAE contains three down-sampling layers in E and three up-sampling lay-
ers in D, which means the latent representation Z is no longer a one-dimensional
vector, but a 3D tensor with spatial information (Z ∈ R4×H

8 ×W
8 if I ∈ R3×H×W ).

Such design enables Z to have a rich feature representation, improved reconstruc-
tion quality, and enhanced generalization.
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Fig. 1. GMS network architecture for 2D medical image segmentation. E and D rep-
resent a pre-trained SD VAE and weights are frozen. The latent mapping model does
not contain down-sampling layers to prevent information loss.

2.2 Latent Mapping Model

The latent mapping model is the key component in GMS to learn the transfor-
mation function from ZI to ZM . Instead of using a transformer-based model with
high computational cost, we build an UNet-like latent mapping model with 2D
convolutions. Since the input and the output are both latent representations,
we do not include any down-sampling layers in the mapping model to avoid
information loss. Note excluding down-sampling layers is not practical in the
original UNet model because the receptive field of convolutional operations is
greatly limited if no down-sampling layers are in the model. The latent mapping
model structure is shown in the lower middle of Fig. 1. A 2D convolutional layer
(Conv) followed by a PReLU activation function and group normalization (GN)
layer forms the basic model block. Furthermore, we utilize the self-attention
mechanism to better capture global semantic relationships and facilitate feature
interaction. Due to the small spatial size of the latent space features, employing
the self-attention mechanism results in only a minor increase in computational
overhead. We also utilize skip connections to prevent vanishing gradients and
the loss of semantic-relevant features.

2.3 Loss Functions

We utilize two loss functions for model training, a latent matching loss Llm in the
latent space and a segmentation loss Lseg in the image space. Llm is formulated
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to ensure the similarity between ZM and ẐM . Specifically, Llm is defined as:

Llm =
∥∥∥ZM − ẐM

∥∥∥
2

2
. (1)

Lseg enforces alignment between the predicted mask M̂ and the ground truth
mask M , even where ẐM deviates from ZM . Lseg is defined as:

Lseg = 1− 2 ∗∑M ∗ M̂∑
M +

∑
M̂

, (2)

where ∗ denotes element-wise multiplication. The final compound loss function
used for model training is:

L = Llm + Lseg. (3)

3 Experiments

3.1 Dataset

We evaluated the performance of GMS on five public datasets: BUS [24], BUSI [1],
GlaS [20], HAM10000 [21] and Kvasir-Instrument [10]. BUS and BUSI are breast
lesion ultrasound datasets that contain 163 and 647 images, respectively. GlaS
is a colon histology segmentation challenge dataset divided into 85 images for
training and 80 images for testing. HAM10000, referred to as HAM in the Tables,
is a large dermatoscopic dataset with 10015 images and skin lesion segmenta-
tion masks. The Kvasir-Instrument dataset, referred to as Kvasir in the Tables,
contains 590 endoscopic images with tool segmentation masks. For datasets not
already divided, we randomly select 80% of the images for training and the
remaining for testing.

3.2 Implementation Details

Our framework is implemented using PyTorch v1.13, and all model training was
performed on an NVIDIA A100 40G GPU. We use AdamW [15] as the training
optimizer. We utilize the cosine annealing learning rate scheduler to adjust the
learning rate in each epoch with the initial learning rate set to 2e−3. For all
experiments, the batch size was set to 8 and the total training epochs were 1000.
The input image size is resized to 224× 224, and on-the-fly data augmentations
were performed during training including random flip, random rotation, and
color jittering in the HSV domain. We set a threshold of 0.5 to change the
predicted gray-scale masks to binary masks. We use the Dice coefficient (DSC)
and Intersection over Union (IoU) to quantify segmentation performance.
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Table 1. Trainable parameters for each model expressed in millions (M). Note that
EGE-UNet is a well-designed lightweight model for medical image segmentation.

UNet MultiRes
UNet

ACC
UNet

EGE
UNet

Swin
UNet

SME
SwinUNet

UCTrans
Net GSS GMS

Trainable
Params (M) 14.0 7.3 16.8 0.05 27.2 169.8 66.4 49.8 1.5

3.3 Experimental Results

We compared GMS to CNN-based (UNet [17], MultiResUNet [9], ACC-UNet [8]
and EGE-UNet [18]), transformer-based (SwinUNet [2], SME-SwinUNet [23] and
UCTransNet [22]), and generative (GSS [3]) segmentation models. We also com-
pared against two domain generalization models (MixStyle [25] and DSU [14]) to
show the inherent cross-domain generalization ability of GMS. Total trainable
parameters for each model are shown in Table 1. Note only EGE-UNet has fewer
parameters than GMS, and most have between ×10 and ×100 more parameters.
We present the reconstruction results of SD VAE in the supplementary materials
to show the suitability of SD VAE to encode images and masks.

In-domain Segmentation Table 2 presents in-domain segmentation perfor-
mance, i.e. training and test set are from the same dataset. GMS achieves the
highest scores in terms of both DSC and IoU across all evaluated datasets.
Notably, generative segmentation models outperform all discriminative segmen-
tation methods on the two breast ultrasound datasets (BUS and BUSI), which
demonstrates the potential of generative approaches to enhance the precision
and reliability of breast ultrasound lesion segmentation. For the other datasets,
GMS outperforms CNN-based or transformer-based models, suggesting that gen-
erative models when carefully designed can provide stronger generalization and
are suitable for a wide variety of segmentation tasks.

Qualitative results for each model for all five datasets are shown in Fig. 2.
The original image and segmentation mask are the left two columns. Fig. 2
shows GMS segmentation masks are more consistent with the ground truth seg-
mentation masks than other models. UNet and its variants are more likely to
give false-positive or false-negative predictions. Additionally, GMS predictions
are more likely to be connected, while methods such as SwinUNet predict iso-
lated noise. The qualitative results suggest GMS not only improves segmentation
accuracy but also predicts cleaner and more reliable segmentation masks.

Cross-domain Segmentation We evaluated all models on their ability to seg-
ment cross-domain images to demonstrate model domain generalization ability.
Specifically, we train the model using the training set for one dataset (as with
the in-domain experiment) but evaluate performance on the test set of a different
dataset. This experiment was performed with the BUS and BUSI datasets inter-
changeably as training and test sets since they are the same modalities (breast
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Table 2. Quantitative performance for in-domain segmentation. Best and second-
best performances are bold and underlined, respectively. † indicates fewer trainable
parameters than GMS.

Model BUS BUSI GlaS HAM Kvasir
DSC IoU DSC IoU DSC IoU DSC IoU DSC IoU

UNet 81.50 70.77 72.27 63.00 87.99 80.01 92.24 86.93 93.82 89.23
MultiResUNet 80.41 70.33 72.43 62.59 88.34 80.34 92.74 87.60 92.31 87.03
ACC-UNet 83.40 73.51 77.19 68.51 88.60 80.84 93.20 88.44 93.95 89.73
EGE-UNet† 72.79 61.96 75.17 60.23 83.25 71.31 93.90 88.50 92.65 86.30
SwinUNet 80.37 69.75 76.06 66.10 86.44 76.89 93.51 88.68 92.02 85.83
SME-SwinUNet 78.87 67.13 73.93 62.70 83.72 72.77 92.71 87.21 93.32 88.27
UCTransNet 83.44 73.74 76.55 67.50 87.17 78.80 93.45 88.73 93.27 88.48
GSS 84.86 77.58 79.56 71.22 87.41 79.17 92.92 87.98 93.66 89.15
GMS (Ours) 88.42 80.56 81.43 72.58 88.98 81.16 94.11 89.68 94.24 90.02

Image GT UNet
MultiRes
UNet

ACC
UNet

EGE
UNet

Swin
UNet

SME-Swin
UNet

UCTrans
Net GSS Ours

B
U
S

B
U
SI

G
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S

H
A
M

K
va
si
r

Fig. 2. Qualitative segmentation performance of each model for the five datasets.

ultrasound) but acquired from different centers and vendors. Therefore, the data
distributions of the training and test sets are not aligned. Table 3 shows the quan-
titative performance for the cross-domain segmentation task. Our GMS model
outperforms all other models, including the two domain generalization methods
(MixStyle and DSU). Interestingly, generative segmentation models tend to have
better performance than discriminative models when the training set is small
(BUS to BUSI). The increase in performance we believe is due to the latent rep-
resentations derived from the per-trained VAE being more domain-agnostic than
learned parameters, which improves domain generalization. Additionally, GMS
is more lightweight compared with the other generative model (GSS), which
further reduces the likelihood of overfitting the model to the training set.
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Table 3. Quantitative performance for cross-
domain segmentation. A to B indicates A for
training and B for testing. Best and second-best
performances are bold and underlined, respec-
tively.

Model BUSI to BUS BUS to BUSI
DSC IoU DSC IoU

UNet 62.99 56.63 53.83 44.09
MultiResUNet 61.53 52.76 56.25 46.18
ACC-UNet 64.60 57.23 47.80 39.24
EGE-UNet† 69.04 59.74 54.46 43.91
SwinUNet 78.38 68.42 57.47 46.30
SME-SwinUNet 74.78 63.51 58.28 47.06
UCTransNet 72.76 64.30 56.94 46.28
MixStyle 73.07 67.03 57.97 48.82
DSU 66.15 59.57 56.70 46.90
GSS 68.74 62.57 58.72 49.46
GMS (Ours) 80.31 71.99 61.60 53.09

Table 4. Quantitative seg-
mentation performance on
three datasets for ablation
study using different loss
functions.

Llm Lseg Dataset DSC IoU
✓ BUSI 80.25 71.26

✓ BUSI 78.75 69.87
✓ ✓ BUSI 81.43 72.58

✓ HAM 93.92 89.41
✓ HAM 93.64 88.99

✓ ✓ HAM 94.11 89.68

✓ Kvasir 92.93 88.28
✓ Kvasir 93.00 88.47

✓ ✓ Kvasir 94.24 90.02

Ablation Study The BUSI, HAM10000, and Kvasir-Instrument datasets were
used to perform an ablation study on different loss function combinations. As
shown in Fig. 4, the compound loss (Llm + Lseg) always has the best segmenta-
tion performance regardless of dataset modality or size. Interestingly, different
datasets have different supervision preferences. GMS only using Llm for model
training performs better on BUSI and HAM10000 datasets, which implies super-
vision in the latent space is more effective compared to the image space. However,
GMS performance is better for Lseg when training on the Kvasir-Instrument
dataset, indicating supervision in the image space is more important. The com-
pound loss having the best performance suggests that supervision in the image
and latent space are both important to maximize performance.

4 Conclusion

We presented Generative Medical Segmentation (GMS) to perform medical im-
age segmentation. Unlike other methods where a discriminative model is trained,
GMS leverages a powerful pre-trained VAE encoder to obtain latent represen-
tations of images and masks. Next, our novel lightweight latent mapping model
learns a transformation function from image latent representations to mask la-
tent representations. Finally, a pre-trained VAE decoder obtains a predicted
segmentation mask in the image space using the predicted latent representa-
tion of the mask. Extensive experiments on five datasets show that GMS out-
performs the state-of-the-art discriminative segmentation models such as ACC-
UNet. Moreover, the domain generalization ability of GMS is stronger than even
well-designed domain generalization models, like DSU and MixStyle, due to the
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domain-agnostic latent embedding space used by GMS. One key limitation is
that currently GMS can only segment 2D medical images, due to stable diffu-
sion variational autoencoder (SD VAE) being used for the pre-trained encoding
and decoding networks. In the future, we will explore extending GMS to 3D
medical images by selecting an appropriate pre-trained 3D model and adapting
the latent mapping model.
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No Author Given

No Institute Given

Raw Image Recon Image Raw Mask Recon Mask

Fig. 1. Visualization results of original and reconstructed images and masks. Images
and masks were input into the pre-trained Stable Diffusion (SD) VAE encoder to ob-
tain latent representations and then passed through the pre-trained VAE decoder to get
corresponding reconstructed images and masks. SD VAE achieves almost perfect recon-
struction even for complex inputs. Dice scores between the original and reconstructed
masks are above 99.5% which further confirms the conclusion of good reconstruction.
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