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Abstract

Originally, protocols were designed for multi-agent systems (MAS) using
information about the network. However, in many cases there is no or only
limited information available about the network. Recently, there has been
a focus on scale-free synchronization of multi-agent systems (MAS). In this
case, the protocol is designed without any prior information about the network.
As long as the network contains a directed spanning tree, the scale-free
protocol guarantees that the network achieves synchronization.

If there is no directed spanning tree for the network then synchronization
cannot be achieved. But what happens when these scale-free protocols are
applied to such a network where the directed spanning tree no longer exists?
The latter might arise if, for instance, a fault occurs in one of more crucial
links. This paper establishes that the network decomposes into a number
of basic bicomponents which achieves synchronization among all nodes in
this basic bicomponent. On the other hand, nodes which are not part of
any basic bicomponent converge to a weighted average of the synchronized
trajectories of the basic bicomponents. The weights are independent of the
initial conditions and are independent of the designed protocol.
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1 Introduction

The synchronization problem for multi-agent systems (MAS) has attracted substan-
tial attention due to its potential for applications in several areas, see for instance
the books [1, 2, 4, 8, 11, 12, 18] or the papers [5, 9, 10].

Most of the proposed protocols in the literature for synchronization of MAS
require some knowledge of the communication network such as bounds on the
spectrum of the associated Laplacian matrix or the number of agents. As it is
pointed out in [14–17], these protocols suffer from scale fragility where stability
properties are lost when the size of the network increases or when the network
changes due to addition or removal of links.

In the past few years, scale-free linear protocol design has been actively studied
in the MAS literature to deal with the existing scale fragility in MAS [6]. The
“scale-free” design implies that the protocols are designed solely based on the
knowledge of agent models and do not depend on

• information about the communication network such as the spectrum of the
associated Laplacian matrix or

• knowledge of the number of agents.
In, for instance, [6], scale-free protocols have been designed utilizing localized
information exchange between agent and its neighbor for various cases of MAS
problems. Due to this local information exchange the protocols are referred to as
collaborative protocols.

By contrast, scale-free non-collaborative protocol designs only use relative
measurements and no additional information exchange is allowed and therefore the
protocols are fully distributed. The necessary and sufficient condition for solvability
of scale-free design via non-collaborative linear protocol for MAS consisting of
SISO agent model was recently reported, see [7].

For both collaborative and non-collaborative protocol, the designs achieve syn-
chronization for any communication network which contains a directed spanning
tree. If, for instance, due to a faulty link, the network no longer contains a directed
spanning tree then synchronization is no longer achieved. This in itself is not sur-
prising since the existence of a directed spanning tree is a necessary condition for
achieving network synchronization.

However, it is an interesting question what happens if we apply our scale-free
protocol to a network which no longer contains a directed spanning tree. Can this
cause instability where synchronization errors blow up or is there some inherent
stability in the system. This question is answered in this paper for both collaborative
and non-collaborative scale-free protocols. We will establish that the network can
be decomposed in basic bicomponents and a set of additional nodes.
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• Within each basic bicomponent we achieve synchronization.

• The additional nodes converge to a weighted average of the synchronized
trajectories of the basic bicomponents. The nonnegative weights are inde-
pendent of the initial conditions, sum up to 1 and are independent of the
designed protocol.

It will be established that this behavior is true for both collaborative and non-
collaborative protocols independent of their specific design methodology. This
specific behavior will be referred to as cluster synchronization.

2 Communication network and graph

To describe the information flow among the agents we associate a weighted graph
G to the communication network. The weighted graph G is defined by a triple
(V, E,A) where V = {1, . . . , 𝑁} is a node set, E is a set of pairs of nodes
indicating connections among nodes, and A = [𝑎𝑖 𝑗] ∈ R𝑁×𝑁 is the weighted
adjacency matrix with non negative elements 𝑎𝑖 𝑗 . Each pair in E is called an edge,
where 𝑎𝑖 𝑗 > 0 denotes an edge ( 𝑗 , 𝑖) ∈ E from node 𝑗 to node 𝑖 with weight 𝑎𝑖 𝑗 .
Moreover, 𝑎𝑖 𝑗 = 0 if there is no edge from node 𝑗 to node 𝑖. We assume there
are no self-loops, i.e. we have 𝑎𝑖𝑖 = 0. A path from node 𝑖1 to 𝑖𝑘 is a sequence of
nodes {𝑖1, . . . , 𝑖𝑘} such that (𝑖 𝑗 , 𝑖 𝑗+1) ∈ E for 𝑗 = 1, . . . , 𝑘 − 1. A directed tree is a
subgraph (subset of nodes and edges) in which every node has exactly one parent
node except for one node, called the root, which has no parent node. A directed
spanning tree is a subgraph which is a directed tree containing all the nodes of the
original graph. If a directed spanning tree exists, the root has a directed path to
every other node in the tree [3].

The weighted in-degree of a vertex 𝑖 is given by

𝑑in(𝑖) =
𝑁∑︁
𝑗=1

𝑎𝑖 𝑗 .

For a weighted graph G, the matrix 𝐿 = [ℓ𝑖 𝑗] with

ℓ𝑖 𝑗 =

{ ∑𝑁
𝑘=1 𝑎𝑖𝑘 , 𝑖 = 𝑗 ,

−𝑎𝑖 𝑗 , 𝑖 ≠ 𝑗 ,

is called the Laplacian matrix associated with the graph G. The Laplacian matrix
𝐿 has all its eigenvalues in the closed right half plane and at least one eigenvalue
at zero associated with right eigenvector 1 [3]. Moreover, if the graph contains
a directed spanning tree, the Laplacian matrix 𝐿 has a single (simple) eigenvalue

3



at the origin and all other eigenvalues are located in the open right-half complex
plane [11].

A directed communication network is said to be strongly connected if it contains
a directed path from every node to every other node in the graph. For a given
graph G every maximal (by inclusion) strongly connected subgraph is called a
bicomponent of the graph. A bicomponent without any incoming edges is called
a basic bicomponent. Every graph has at least one basic bicomponent. Networks
have one unique basic bicomponent if and only if the network contains a directed
spanning tree. In general, every node in a network can be reached from at least one
basic bicomponent, see [13, page 7]. In Fig. 1 a directed communication network
with its bicomponents is shown. The network in this figure contains 6 bicomponents,
3 basic bicomponents (the blue ones) and 3 non-basic bicomponents (the yellow
ones).

Figure 1: A directed communication network and its bicomponents.

In the absence of a directed spanning tree, the Laplacian matrix of the graph
has an eigenvalue at the origin with a mutiplicity 𝑘 larger than 1. This implies
that it is a 𝑘-reducible matrix and the graph has 𝑘 basic bicomponents. The
book [18, Definition 2.19] shows that, after a suitable permutation of the nodes, a
Laplacian matrix with 𝑘 basic bicomponents can be written in the following form:

𝐿 =

©­­­­­­­«

𝐿0 𝐿01 · · · 𝐿0𝑘
0 𝐿1 0 · · · 0
...

. . .
. . .

. . .
...

...
. . . 𝐿𝑘−1 0

0 · · · · · · 0 𝐿𝑘

ª®®®®®®®¬
(1)

where 𝐿1, . . . , 𝐿𝑘 are the Laplacian matrices associated to the 𝑘 basic bicomponents
in our network. These matrices have a simple eigenvalue in 0 because they are
associated with a strongly connected component. On the other hand, 𝐿0 contains
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Figure 2: A directed communication network with a spanning tree and its bicom-
ponents.

all non-basic bicomponents and is a grounded Laplacian with all eigenvalues in the
open right-half plane. After all, if 𝐿0 would be singular then the network would
have an additional basic bicomponent.

3 Scale-free non-collaborative protocol design for multi-
agent systems

Consider multi-agent systems (MAS) consisting of 𝑁 identical agents:

𝑥+
𝑖
(𝑡) = 𝐴𝑥𝑖 (𝑡) + 𝐵𝑢𝑖 (𝑡),

𝑦𝑖 (𝑡) = 𝐶𝑥𝑖 (𝑡),
(2)

where 𝑥𝑖 (𝑡) ∈ R𝑛, 𝑦𝑖 (𝑡) ∈ R and 𝑢𝑖 (𝑡) ∈ R are the state, output, and input of
agent 𝑖, respectively, with 𝑖 = 1, . . . , 𝑁 . In the aforementioned presentation, for
continuous-time systems, 𝑥+

𝑖
(𝑡) = ¤𝑥𝑖 (𝑡) with 𝑡 ∈ R while for discrete-time systems,

𝑥+
𝑖
(𝑡) = 𝑥𝑖 (𝑡 + 1) with 𝑡 ∈ Z.

For continuous time MAS, the communication network provides agent 𝑖 with
the following information,

𝜁𝑖 (𝑡) =
𝑁∑︁
𝑗=1

𝑎𝑖 𝑗 (𝑦𝑖 (𝑡) − 𝑦 𝑗 (𝑡)), (3)

where 𝑎𝑖 𝑗 > 0, and 𝑎𝑖𝑖 = 0. The communication topology of the network can be
described by a weighted and directed graph G with nodes corresponding to the
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agents in the network and the weight of edges given by coefficient 𝑎𝑖 𝑗 . In terms of
the coefficients of the associated Laplacian matrix 𝐿, 𝜁𝑖 (𝑡) can be rewritten as

𝜁𝑖 (𝑡) =
𝑁∑︁
𝑗=1

ℓ𝑖 𝑗 𝑦 𝑗 (𝑡). (4)

For discrete-time agents, in particular, each agent 𝑖 ∈ {1, · · · , 𝑁} has access to
the quantity

𝜁𝑖 (𝑡) =
1

1 + 𝑞𝑖

𝑁∑︁
𝑗=1

𝑎𝑖 𝑗 (𝑦𝑖 (𝑡) − 𝑦 𝑗 (𝑡)), (5)

where 𝑞𝑖 is an upper bound on 𝑑in(𝑖) for 𝑖, 𝑗 ∈ {1, · · · , 𝑁}. In that case, we can use
the modified information-exchange

𝜁𝑖 (𝑡) =
𝑁∑︁

𝑗=1, 𝑗≠𝑖
𝑑𝑖 𝑗 (𝑦𝑖 (𝑡) − 𝑦 𝑗 (𝑡)), (6)

instead of (4) where
𝑑𝑖 𝑗 =

𝑎𝑖 𝑗

1 + 𝑞𝑖
,

for 𝑖 ≠ 𝑗 while

𝑑𝑖𝑖 = 1 −
𝑁∑︁

𝑗=1, 𝑗≠𝑖
𝑑𝑖 𝑗

Note that the weight matrix 𝐷 = [𝑑𝑖 𝑗] is then a, so-called, row stochastic matrix.
Let

𝑄in = diag (𝑞1, 𝑞2, · · · , 𝑞𝑁 ) .

Then, the relationship between the row stochastic matrix 𝐷 and the Laplacian
matrix 𝐿 is

(𝐼 +𝑄in)−1𝐿 = 𝐼 − 𝐷. (7)

Non-collaborative protocols only use this relative measurement 𝜁𝑖 and achieve
fully distributed protocols. In scale-free protocols, we are looking for protocols
which do not depend on the network structure. This is motivated by the fact that in
many applications, an agent might be added/removed or a link might fail and you
then do not want to have to redesign the protocols being used.

Definition 1 We denote by G𝑁 the set of all directed graphs with 𝑁 nodes which
contain a directed spanning tree.
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We formulate the scale-free or scale-free synchronization problem of a MAS
as follows.

Problem 1 The scale-free non-collaborative state synchronization problem for
MAS (2) with communication given by (4) for continuous-time or (6) for discrete-
time case is to find, if possible, a fixed linear protocol of the form:{

𝑥+
𝑖,𝑐

= 𝐴𝑐𝑥𝑖,𝑐 + 𝐵𝑐𝜁𝑖 ,

𝑢𝑖 = 𝐹𝑐𝑥𝑖,𝑐 + 𝐺𝑐𝜁𝑖 ,
(8)

where 𝑥𝑐,𝑖 (𝑡) ∈ R𝑛𝑐 is the state of protocol, such that state synchronization is
achieved

lim
𝑡→∞

𝑥𝑖 (𝑡) − 𝑥 𝑗 (𝑡) = 0 (9)

for all 𝑖, 𝑗 = 1, . . . , 𝑁 for any number of agents 𝑁 , for any fixed communication
graph G ∈ G𝑁 and for all initial conditions of agents and protocols.

We refer to a protocol (8) which solves Problem 1 as a scale-free non-collaborative
linear protocol.

3.1 Continuous-time MAS

In this section, we focus on the continuous-time MAS. It is known that the Problem
1 is solvable for a large class of systems. We recall the following theorem which is
provided in [7, Theorem 1].

Theorem 1 The scale-free continuous-time state synchronization problem as for-
mulated in Problem 1 is solvable if the agent model (2) is either asymptotically
stable or satisfies the following conditions:

• Stabilizable and detectable,

• Neutrally stable,

• Minimum phase,

• Uniform rank with the order of the infinite zero equal to one.

This paper wants to investigate what happens if we apply a protocol of the form
(8) designed to solve Problem 1 to a network which does not contain a directed
spanning tree.

By using protocol (8) we can define

𝐴̃ =

(
𝐴 𝐵𝐹𝑐

0 𝐴𝑐

)
, 𝐵̃ =

(
𝐵𝐺𝑐

𝐵𝑐

)
, 𝐶̃ =

(
𝐶 0

)
(10)

We have the following result:
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Theorem 2 Consider a continuous-time MAS with agent dynamics (2). Assume a
protocol (8) solves the scale-free state synchronization problem.

If the network does not contain a directed spanning tree, then the Laplacian
matrix of the graph has an eigenvalue at the origin with a mutiplicity 𝑘 larger than 1.
This implies that the graph has 𝑘 basic bicomponents. Then for any 𝑖 ∈ (1, . . . , 𝑘),

• Within basic bicomponent B𝑖 , the state of the agents and the state of the
associated protocol achieve synchronization and converge to trajectories 𝑥𝑖,𝑠
and 𝑥𝑖,𝑠,𝑐 respectively satisfying(

¤𝑥𝑖,𝑠
¤𝑥𝑖,𝑠,𝑐

)
= 𝐴̃

(
𝑥𝑖,𝑠
𝑥𝑖,𝑠,𝑐

)
whose initial condition is a linear combination of the initial conditions of the
agents within this basic bicomponent.

• An agent 𝑗 which is not part of any of the basic bicomponents synchronizes
to a trajectory:

𝑘∑︁
𝑖=1

𝛽 𝑗 ,𝑖

(
𝑥𝑖,𝑠
𝑥𝑖,𝑠,𝑐

)
where the coefficients 𝛽 𝑗 ,𝑖 are nonnegative, satisfy:

1 =

𝑘∑︁
𝑖=1

𝛽 𝑗 ,𝑖 (11)

and only depend on the parameters of the network and do not depend on any
of the initial conditions.

Proof: The paper [12, Chapter 2] has shown that we achieve scale-free state syn-
chronization if and only if

𝐴̃ + 𝜆𝐵̃𝐶̃ (12)

is asymptotically stable for all 𝜆 ∈ C with Re𝜆 > 0. We use the decomposition (1)
introduced before. We label the states of the agents and protocols as:

𝑥𝑖 =

©­­­­­­­­­­«

𝑥𝑘𝑖+1
𝑥𝑘𝑖+1,𝑐
𝑥𝑘𝑖+2
𝑥𝑘𝑖+2,𝑐

...

𝑥𝑘𝑖+1

𝑥𝑘𝑖+1,𝑐

ª®®®®®®®®®®¬
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where 𝑘0 = 0 and 𝑘𝑖+1 − 𝑘𝑖 is the number of columns of 𝐿𝑖 for 𝑖 = 0, . . . , 𝑘 . It is
easy to verify that the dynamics of the 𝑖’th basic bicomponent (𝑖 ∈ {1, . . . , 𝑘}) is
given by:

¤̄𝑥𝑖 =
[
(𝐼 ⊗ 𝐴̃) + 𝐿𝑖 ⊗ 𝐵̃𝐶̃

]
𝑥𝑖

and since (12) is asymptotically stable for all 𝜆 ∈ C with Re𝜆 > 0, classical results
guarantee synchronization within this basic bicomponent and(

𝑥 𝑗 (𝑡)
𝑥 𝑗 ,𝑐 (𝑡)

)
−
(
𝑥𝑖,𝑠 (𝑡)
𝑥𝑖,𝑠,𝑐 (𝑡)

)
→ 0

as 𝑡 → ∞ for 𝑗 = 𝑘𝑖 + 1, . . . , 𝑘𝑖+1 with:(
¤𝑥𝑖,𝑠
¤𝑥𝑖,𝑠,𝑐

)
= 𝐴̃

(
𝑥𝑖,𝑠
𝑥𝑖,𝑠,𝑐

)
and (

𝑥𝑖,𝑠 (0)
𝑥𝑖,𝑠,𝑐 (0)

)
=

𝑘𝑖+1∑︁
𝑖=𝑘𝑖+1

𝛼𝑖

(
𝑥𝑘𝑖+1(0)
𝑥𝑘𝑖+1,𝑐 (0)

)
where

𝛼̄𝑖 =
(
𝛼𝑘𝑖+1 · · · 𝛼𝑘𝑖+1

)
is the unique left-eigenvector associated with eigenvalue 0 of 𝐿𝑖 whose elements
are nonnegative and sum up to 1. Define

𝑥0,𝑠 = −
𝑘∑︁
𝑖=1

(𝐿−1
0 𝐿0,𝑖1𝑖 ⊗ 𝐼)

(
𝑥𝑖,𝑠
𝑥𝑖,𝑠,𝑐

)
where 1𝑖 is a column vector with all elements equal to 1 whose size is equal
to the number of columns of 𝐿0,𝑖 while 10 is a column vector with all elements
equal to 1 whose size is equal to the number of columns of 𝐿0. We claim that
𝑥0(𝑡) − 𝑥0,𝑠 (𝑡) → 0 as 𝑡 → ∞ which implies that(

𝑥 𝑗 (𝑡)
𝑥 𝑗 ,𝑐 (𝑡)

)
−

𝑘∑︁
𝑖=1

𝛽 𝑗 ,𝑖

(
𝑥𝑖,𝑠 (𝑡)
𝑥𝑖,𝑠,𝑐 (𝑡)

)
→ 0 (13)

as 𝑡 → ∞ for 𝑗 = 1, . . . , 𝑘1 where

©­­­­«
𝛽1,𝑖
𝛽2,𝑖
...

𝛽𝑘0,𝑖

ª®®®®¬
= −𝐿−1

0 𝐿0,𝑖1𝑖 (14)
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Note that the elements of 𝐿0,𝑖 are all nonpositive and the elements of 𝐿−1
0 are all

nonnegative (as the inverse of a grounded Laplacian matrix). This immediately
shows that the coefficients 𝛽 𝑗 ,𝑖 are all nonnegative. Moreover,

𝐿
©­­«
10
...

1𝑘

ª®®¬ = 0

implies

𝐿010 +
𝑘∑︁
𝑖=1

𝐿0,𝑖1𝑖 = 0. (15)

Note that (15) implies that the 𝛽𝑖, 𝑗 defined in (14) satisfies (11). Remains to verify
that (13) is satisfied. In order to establish this we look at the dynamics of the agents
not contained in one of the basic bicomponents. We get:

¤̄𝑥0 =
[
(𝐼 ⊗ 𝐴̃) + 𝐿0 ⊗ 𝐵̃𝐶̃

]
𝑥0 +

𝑘∑︁
𝑖=1

(𝐿0,𝑖 ⊗ 𝐵̃𝐶̃)𝑥𝑖

After some algebraic manipulations we find that

𝑒0 = 𝑥0 − 𝑥0,𝑠

satisfies:

¤𝑒0 =
[
(𝐼 ⊗ 𝐴̃) + 𝐿0 ⊗ 𝐵̃𝐶̃

]
𝑒0 +

𝑘∑︁
𝑖=1

(𝐿0,𝑖 ⊗ 𝐵̃𝐶̃)
[
𝑥𝑖 − (1𝑖 ⊗ 𝐼)

(
𝑥𝑖,𝑠
𝑥𝑖,𝑠,𝑐

)]
Since 𝐼 ⊗ 𝐴̃ + 𝐿0 ⊗ 𝐵̃𝐶̃ is asymptotically stable and

𝑥𝑖 (𝑡) − (1𝑖 ⊗ 𝐼)
(
𝑥𝑖,𝑠 (𝑡)
𝑥𝑖,𝑠,𝑐 (𝑡)

)
→ 0

as 𝑡 → ∞ we find that 𝑒0(𝑡) → 0 as 𝑡 → ∞ which yields (13).

Remark 1 In the above proof, we established cluster synchronization for a general
network structure. Let’s investigate how the above is consistent with the result that
we achieve synchronization in case the network has a directed spanning tree.

The network having a directed spanning tree is equivalent to the network having
a single basic bicomponent. In the notation of the above proof we then have 𝑘 = 1.

10



We note that the state of the agents and the state of their associated protocol within
the single basic bicomponent converge to some trajectory:(

𝑥1,𝑠 (𝑡)
𝑥1,𝑠,𝑐 (𝑡)

)
Next we note that

𝐿

(
10
11

)
= 0

implies:
𝐿010 + 𝐿0,111 = 0

and hence 10 = −𝐿−1
0 𝐿0,111. This yields that (14) reduces to:

©­­­­«
𝛽1,1
𝛽2,1
...

𝛽𝑘0,1

ª®®®®¬
= −𝐿−1

0 𝐿0,111 = 10

which implies that (13) reduces to:(
𝑥 𝑗 (𝑡)
𝑥 𝑗 ,𝑐 (𝑡)

)
−
(
𝑥1,𝑠 (𝑡)
𝑥1,𝑠,𝑐 (𝑡)

)
→ 0

as 𝑡 → ∞ for 𝑗 = 1, . . . , 𝑘1. This implies that we indeed achieve synchronization.

3.2 Discrete-time MAS

We focus on the discrete-time MAS. The following solvability results are known
by recalling [7, Theorem 2].

Theorem 3 The scale-free discrete-time non-collaborative state synchronization
problem as formulated in Problem 1 is solvable with information exchange (6) if the
agent model (2) is either asymptotically stable or satisfies the following conditions:

• Stabilizable and detectable,

• Neutrally stable.

Note that in the discrete-time case we do not need restrictions on the zeros
which is actually due to our use of local bounds on the neighborhoods that yielded
the modified exchange (6). The following result shows that in discrete time we
effectively get the same result as in continuous time.
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Theorem 4 Consider a discrete-time MAS with agent dynamics (2). Assume a
protocol (8) solves the scale-free non-collaboraive state synchronization problem.

If the network does not contain a directed spanning tree, then the Laplacian
matrix of the graph has an eigenvalue at the origin with a mutiplicity 𝑘 larger than 1.
This implies that the graph has 𝑘 basic bicomponents. Then for any 𝑖 ∈ (1, . . . , 𝑘),

• Within basic bicomponent B𝑖 , the state of the agents and the state of the
associated protocol achieve synchronization and converge to trajectories 𝑥𝑖,𝑠
and 𝑥𝑖,𝑠,𝑐 respectively satisfying(

𝑥𝑖,𝑠 (𝑡 + 1)
𝑥𝑖,𝑠,𝑐 (𝑡 + 1)

)
= 𝐴̃

(
𝑥𝑖,𝑠 (𝑡)
𝑥𝑖,𝑠,𝑐 (𝑡)

)
whose initial condition is a linear combination of the initial conditions of the
agents within this basic bicomponent.

• An agent 𝑗 which is not part of any of the basic bicomponents synchronizes
to a trajectory:

𝑘∑︁
𝑖=1

𝛽 𝑗 ,𝑖

(
𝑥𝑖,𝑠 (𝑡)
𝑥𝑖,𝑠,𝑐 (𝑡)

)
where the coefficients 𝛽 𝑗 ,𝑖 are nonnegative, satisfy (11) and only depend
on the parameters of the network and do not depend on any of the initial
conditions.

Proof: The proof of Theorem 2 can be easily modified to yield the above result. For
instance, instead of (12) we need that

𝐴̃ + (1 − 𝜆)𝐵̃𝐶̃ (16)

for all 𝜆 in the open unit disc and the structure of the matrix 𝐿 immediately relates
to a similar structure of the row stochastic matrix 𝐷.

4 Scale-free collaborative protocol design for multi-agent
systems

Consider the same class of multi-agent systems (MAS) consisting of 𝑁 identical
agents of the form (2) with information exchange given by (4).

Collaborative protocols, which were introduced by [5], allow extra information
exchange between neighbors. Typically, this additional information exchange con-
sists of relative information about the difference between the state of the protocol
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of a specific agent and the state of the protocol of a neighboring agent using the
same network. In other words, we also have:

𝜁𝑖 =

𝑁∑︁
𝑗=1

ℓ𝑖 𝑗𝐻𝑐𝑥𝑖,𝑐 (17)

available in our protocol design where 𝑥𝑖,𝑐 denotes the state of the protocol for the
𝑖’th agent and the matrix 𝐻𝑐 can be part of the protocol design.

For discrete-time MAS, we have

𝜁𝑖 (𝑡) =
𝑁∑︁

𝑗=1, 𝑗≠𝑖
𝑑𝑖 𝑗𝐻𝑐 (𝑥𝑖,𝑐 (𝑡) − 𝑥 𝑗 ,𝑐 (𝑡)) (18)

We formulate the scale-free collaborative synchronization problem of a MAS
as follows.

Problem 2 The scale-free collaborative state synchronization problem for MAS
(2) with communication given by (4) and (17) for continuous-time or (6) and (18)
for discrete-time is to find, if possible, a fixed linear protocol of the form:{

𝑥+
𝑖,𝑐

= 𝐴𝑐𝑥𝑖,𝑐 + 𝐵𝑐𝜁𝑖 + 𝐸𝑐𝜁𝑖 ,

𝑢𝑖 = 𝐹𝑐𝑥𝑖,𝑐,
(19)

and a matrix 𝐻𝑐 where 𝑥𝑐,𝑖 (𝑡) ∈ R𝑛𝑐 is the state of protocol, such that state
synchronization is achieved, i.e. (9) is satisfied for all 𝑖, 𝑗 = 1, . . . , 𝑁 for any
number of agents 𝑁 , for any fixed communication graph G ∈ G𝑁 and for all initial
conditions of agents and protocols.

We call a protocol (19) which solves Problem 2, a scale-free collaborative linear
protocol.

4.1 Continuous-time MAS

Firstly, we obtain the necessary and sufficient conditions for solvability of scale-free
collaborative state synchronization for continuous-time MAS. It is known that this
problem is solvable under some conditions. The main advantage of the collaborative
protocols in this context are that we no longer need restrictions on the zeros and the
relative degree of the system. Moveover, the requirement of neutrally stability has
been weakened to at most weakly unstable condition.

Theorem 5 The scale-free collaborative continuous-time state synchronization prob-
lem as formulated in Problem 2 is solvable if and only if the agent model (2) is
either asymptotically stable or satisfies the following conditions:

13



• Stabilizable and detectable,

• All poles are in the closed left-half plane.

Proof: Sufficiency has been established in the book [6, Chapter 3] by explicitly
constructing appropriate protocols.

We only provide the proof of necessity. Stabilizabiliy and detectability are
obviously necessary. By using protocol (19) we can define

𝐴̃ =

(
𝐴 𝐵𝐹𝑐

0 𝐴𝑐

)
, 𝐵̃ =

(
0 0
𝐵𝑐 𝐸𝑐

)
, 𝐶̃ =

(
𝐶 0
0 𝐻𝑐

)
(20)

A continuous-time scale-free design requires:

𝐴̃ + 𝜆𝐵̃𝐶̃

to be asymptotically stable for all 𝜆 with Re𝜆 ⩾ 0. Letting 𝜆 → 0 we find as a
necessary condition that the eigenvalues of 𝐴̃ must be in the closed left-half plane.
This yields that all poles of the agents must be in the closed left-half plane.

We again want to investigate what happens if we apply a protocol of the form
(19) designed to solve Problem 2 to a network which does not contain a directed
spanning tree. We have the following result:

Theorem 6 Consider a continuous-time MAS with agent dynamics (2) and com-
munication via (4) and (17). Assume a protocol (19) solves the scale-free state
synchronization problem.

If the network does not contain a directed spanning tree, then the Laplacian
matrix of the graph has an eigenvalue at the origin with a mutiplicity 𝑘 larger than 1.
This implies that the graph has 𝑘 basic bicomponents. Then for any 𝑖 ∈ (1, · · · , 𝑘),

• Within basic bicomponent B𝑖 , the state of the agents and the state of the
associated protocol achieve synchronization and converge to trajectories 𝑥𝑖,𝑠
and 𝑥𝑖,𝑠,𝑐 respectively satisfying(

¤𝑥𝑖,𝑠
¤𝑥𝑖,𝑠,𝑐

)
= 𝐴̃

(
𝑥𝑖,𝑠
𝑥𝑖,𝑠,𝑐

)
whose initial condition is a linear combination of the initial conditions of the
agents within this basic bicomponent.

• An agent 𝑗 which is not part of any of the basic bicomponents synchronizes
to a trajectory:

𝑘∑︁
𝑖=1

𝛽 𝑗 ,𝑖

(
𝑥𝑖,𝑠
𝑥𝑖,𝑠,𝑐

)
14



where the coefficients 𝛽 𝑗 ,𝑖 are nonnegative, satisfy (11) and only depend
on the parameters of the network and do not depend on any of the initial
conditions.

Remark 2 The main issue of the above theorem is that it shows that the extra
communication does not have any influence on the synchronization properties of
the network.

We obtain the same synchronization properties using collaborative protocols
as we obtained earlier for non-collaborative protocols.

Proof: The proof of Theorem 2 can be also used for this case with the only modifi-
cation that (10) is replaced by (20).

4.2 Discrete-time MAS

For discrete-time agents, we also have necessary and sufficient conditions for solv-
ability of scale-free collaborative state synchronization as presented in the following
result.

Theorem 7 The scale-free collaborative discrete-time state synchronization prob-
lem as formulated in Problem 2 is solvable by using protocol (19) if and only if the
agent model (2) is either asymptotically stable or satisfies the following conditions:

• Stabilizable and detectable,

• All poles are in the closed unit circle.

Proof: Sufficiency has been established in the book [6, Chapter 4] by explicitly
constructing appropriate protocols.

We only provide the proof of necessity. By using protocol (19) we still have
(20). For the discrete-time MAS, a scale-free design requires:

𝐴̃ + (1 − 𝜆)𝐵̃𝐶̃

to be asymptotically stable for all 𝜆 with |𝜆 | ⩽ 1. Letting 𝜆 → 1 we find as a
necessary condition that the eigenvalues of 𝐴̃ must be in the closed unit circle. This
immediately yields that all poles of the agents must be in the closed unit circle.

Next, we again want to investigate what happens if we apply a protocol of the
form (19) designed to solve Problem 2 to a network which does not contain a
directed spanning tree:
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Theorem 8 Consider a discrete-time MAS with agent dynamics (2) and commu-
nication via (6) and (18). Assume a protocol (19) solves the scale-free state
synchronization problem. We then call the protocol (19) a scale-free collaborative
linear protocol.

If the network does not contain a directed spanning tree, then the Laplacian
matrix of the graph has an eigenvalue at the origin with a mutiplicity 𝑘 larger than 1.
This implies that the graph has 𝑘 basic bicomponents. Then for any 𝑖 ∈ (1, . . . , 𝑘),

• Within basic bicomponent B𝑖 , the state of the agents and the state of the
associated protocol achieve synchronization and converge to trajectories 𝑥𝑖,𝑠
and 𝑥𝑖,𝑠,𝑐 respectively satisfying(

𝑥𝑖,𝑠 (𝑡 + 1)
𝑥𝑖,𝑠,𝑐 (𝑡 + 1)

)
= 𝐴̃

(
𝑥𝑖,𝑠 (𝑡)
𝑥𝑖,𝑠,𝑐 (𝑡)

)
whose initial condition is a linear combination of the initial conditions of the
agents within this basic bicomponent.

• An agent 𝑗 which is not part of any of the basic bicomponents synchronizes
to a trajectory:

𝑘∑︁
𝑖=1

𝛽 𝑗 ,𝑖

(
𝑥𝑖,𝑠 (𝑡)
𝑥𝑖,𝑠,𝑐 (𝑡)

)
where the coefficients 𝛽 𝑗 ,𝑖 are nonnegative, satisfy (11) and only depend
on the parameters of the network and do not depend on any of the initial
conditions.

Proof: Similar to the proof of Theorems 6 and 2, the proof can be also used for this
case with the only modification that (10) is replaced by (20).

Remark 3 Note that in the conversion from a Laplacian matrix 𝐿 to a row stochastic
matrix 𝐷 we used the local upper bounds 𝑞𝑖 , see equation (5). It can be easily
shown that the choice of 𝑞𝑖 does not affect the parameters 𝛽 𝑗 ,𝑖 in the above theorem.
However, this choice can affect the initial conditions for 𝑥𝑖,𝑠 and 𝑥𝑖,𝑠,𝑐 for the
synchronized trajectory within basic bicomponent B𝑖 .

5 Numerical examples

In this section, we show the efficiency of our protocol design by the following
examples.
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5.1 Scalability

To show the scalability of our design, we consider the following 51-node and
60-node communication networks which includes the spanning tree.

Figure 3: The 51-node communication network with spanning tree.

Figure 4: The 60-nodes communication network with spanning tree.

We provide three examples for both non-collaborative and collaborative protocol
designs to verify our results.

5.1.1 Non-collaborative protocol design

Firstly, we choose the following continous-time MAS consisting of neutrally stable
agents:  ¤𝑥𝑖 =

(
0 1
−1 0

)
𝑥𝑖 +

(
1
1

)
𝑢𝑖

𝑦𝑖 =
(
1 0

)
𝑥𝑖

(21)

The agent model satisfies the conditions of Theorem 1. As such the agent, we can
design a scale-free non-collaborative protocol based on the above agent model by
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using [7, Theorem 3]. {
¤𝜂𝑖 = −𝜂𝑖 − 2𝜁𝑖
𝑢𝑖 = −𝜂𝑖 − 2𝜁𝑖

(22)

Firstly, we consider scale-free state synchronization result for the 51-node and
60-node network shown in figures 3 and 4, which both contain a spanning tree.
We obtain state synchronization as illustrated in figures 5 and 6 respectively. Since
this specific protocol is scale free this is in line with the theoretical result that
state synchronization is achieved when there exists a directed spanning tree for the
network.

For discrete time MAS, we use the following agent model

𝑥𝑖 (𝑘 + 1) =
(

0 1
−1 0

)
𝑥𝑖 (𝑘) +

(
0
1

)
𝑢𝑖 (𝑘)

𝑦𝑖 (𝑘) =
(
1 0

)
𝑥𝑖 (𝑘)

(23)

The agent model satisfies the conditions of Theorem 3 and we can design the
following scale-free non-collaborative protocol by using [7, Theorem 5]: 𝜂𝑖 (𝑘 + 1) =

(
0 1

−0.5 0

)
𝜂𝑖 (𝑘) +

(
0

−0.5

)
𝜁𝑖 (𝑘)

𝑢𝑖 (𝑘) =
(
0.1 0

)
𝜂𝑖 (𝑘)

(24)

For the communication network in figure 4, we obtain synchronization as illustrated
in figure 7.

Figure 5: The state synchronization and error state results for 51-node continuous-
time MAS via non-collaborative protocol.
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Figure 6: The state synchronization and error state results for 60-node continuous-
time MAS via non-collaborative protocol.

Figure 7: The state synchronization and error state results for discrete-time MAS
via non-collaborative protocol.

5.1.2 Collaborative protocol design

Here, we consider a MAS consisting of double-integrator agents:

¤𝑥𝑖 =
(
0 1
0 0

)
𝑥𝑖 +

(
0
1

)
𝑢𝑖

𝑦𝑖 =
(
1 0

)
𝑥𝑖

(25)

The agent model satisfies the conditions of Theorem 5 and we design the scale-free
collaborative protocol by using [6, Chapter 2].

¤̂𝑥𝑖 =
(
−1 1
−1 0

)
𝑥𝑖 +

(
1
1

)
𝜁𝑖 −

(
0 0
1 1

)
𝜁𝑖

¤𝜂𝑖 =
(
0 1
0 0

)
𝜂𝑖 +

(
0
1

)
𝑢𝑖 + 𝑥𝑖 − 𝜁𝑖

𝑢𝑖 = −
(
1 1

)
𝜂𝑖

(26)
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where 𝜁𝑖 defined by (17) with 𝐻𝑐 = 𝐼. We apply this scale-free protocol the two
different networks given by 3 and 4. The theoretical results predict synchronization
which is confirmed by our simulation as illustrated in Figures 8 and 9 respectively.

Figure 8: The state synchronization and error state results for 51-node continuous-
time MAS via collaborative protocol.

Figure 9: The state synchronization and error state results for 60-node continuous-
time MAS via collaborative protocol.

5.2 Network without a directed spanning tree

When some links have faults in network so as to the links are broken, the commu-
nication network will loss its spanning tree. For example, two links are broken in
the original 60-node network given by Fig. 3. We obtain the network as given in
Figure 10

It is obvious that there is no spanning tree in Figure 10. We obtain three
basic bicomponents (indicated in blue): cluster 1 containing 30 nodes; cluster 2
containing 8 nodes and, finally, cluster 3 containing 1 node. Moreover, we have
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Figure 10: The communication network without spanning tree. Dashed lines denote
that the links are broken due to faults.

three non-basic bicomponents: cluster 4 containing 10 nodes, cluster 5 containing
10 nodes, and cluster 6 containing 1 node, which are indicated in yellow.

5.2.1 Non-collaborative protocol

We consider again the continous-time MAS consisting of neutrally stable agent
given by (21) with a scale-free protocol given by (22). For the original network
given in figure 4 we obtained state synchronization since the network contained a
directed spanning tree. But what happens for the network given by (10) which does
not contain a directed spanning tree. In line with part 1 of Theorem 2, the three
clusters 1, 2 and 3 which describe the three basic bicomponents of the network
each achieve state synchronization within the cluster. However, the synchronized
trajectories of these three clusters are not equal. See figures 11, 12 and 13. They
all converge to sinusoids of the same frequency (prescribed by the agent dynamics)
but with different phase and amplitude. Clusters 4, 5, and 6 represent non-basic
bicomponents and the theory (part 2 of Theorem 2) states that they converge to a
weighted average of the synchronized trajectories of clusters 1, 2 and 3. This is
indeed the case as illustrated in figures 14, 15 and 16, respectively.

For the discrete-time MAS consisting of neutrally stable agent given by (23)
with a scale-free protocol given by (24). For the original network given in figure 4
we obtained state synchronization since the network contained a directed spanning
tree. We again want to illustrate what happens for the network given by (10) which
does not contain a directed spanning tree. In line with part 1 of Theorem 4, the
three clusters 1, 2 and 3 which describe the three basic bicomponents of the network
each achieve state synchronization within the cluster. However, the synchronized
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Figure 11: Cluster 1: The cluster state synchronization and error state result for
30-node basic bicomponent continuous-time MAS via non-collaborative protocol.

Figure 12: Cluster 2: The cluster state synchronization and error state result for
8-node basic bicomponent continuous-time MAS via non-collaborative protocol.

trajectories of these three clusters are not equal. See figures 17, 18 and 19. They
all converge to sinusoids of the same frequency (prescribed by the agent dynamics)
but with different phase and amplitude. Clusters 4, 5, and 6 represent non-basic
bicomponents and the theory (part 2 of Theorem 4) states that they converge to a
weighted average of the synchronized trajectories of clusters 1,2 and 3. Like in
continuous-time, this is indeed the case as illustrated in figures 20, 21, and 22,
respectively.

5.2.2 Collaborative protocol

Finally, for collaborative protocols, we consider a MAS consisting of double-
integrator agent given by (25) and a scale-free collaborative protocol given by (26).
We have seen that for the 60-node network given by (4) this protocol indeed achieves
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Figure 13: Cluster 3: The cluster state synchronization result for 1-node basic
bicomponent continuous-time MAS via non-collaborative protocol. There is no
error state cause it is only one agent.

Figure 14: Cluster 4: The cluster state synchronization and error state result for 10-
node non-basic bicomponent continuous-time MAS via non-collaborative protocol.

state synchronization. If we apply the same protocol to the network described by
(10) which does not contain a directed spanning tree, we again consider the five
bicomponents constituting the network. We see that, consistent with the theory, we
get synchronization within clusters 1, 2 and 3 which are the three basic bicomponents
as illustrated in figures 23, 24 and 25 respectively. The synchronized trajectory is
this time no longer bounded due to the fact that the dynamics of the agents are
double integrators and hence no longer bounded. The synchronized trajectory then
becomes a line.

Clusters 4, 5, and 6 represent non-basic bicomponents and the theory (part 2
of Theorem 6) states that they converge to a weighted average of the synchronized
trajectories of clusters 1, 2 and 3. Like in the non-collaborative case, this is indeed
happening as illustrated in figures 26, 27, and 28, respectively.
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Figure 15: Cluster 5: The cluster state synchronization and error state result for 10-
node non-basic bicomponent continuous-time MAS via non-collaborative protocol.

Figure 16: Cluster 6: The cluster state synchronization and error state result for 1-
node non-basic bicomponent continuous-time MAS via non-collaborative protocol.

6 Conclusion

In this paper we have shown how scale-free protocols which achieve state synchro-
nization behave when, due to a fault, the network no longer contains a directed
spanning tree. We have seen that the protocols guarantee a stable response to these
faults with achieving cluster synchronization which is clearly the best we could
hope for in this scenario. This fault-tolerant behavior is a very attractive feature of
scale-free protocols and makes them more feasible for practical applications.
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