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The dynamics of a quantum system are characterized by three components: quantum state,
quantum process, and quantum measurement. The proper measurement of these components is
a crucial issue in quantum information processing. Recently, direct measurement methods have
been proposed and demonstrated wherein each complex matrix element of these three components
is obtained separately, without the need for quantum tomography of the entire matrix. Since
these direct measurement methods have been proposed independently, no theoretical framework has
been presented to unify them despite the time symmetry of quantum dynamics. In this study, we
propose a theoretical framework to systematically derive direct measurement methods for these three
components. Following this framework and further utilizing the basis-shift unitary transformation,
we have derived the most efficient direct measurement method using qubit probes. Additionally,
we have experimentally demonstrated the feasibility of the direct measurement method of quantum
states using optical pulse trains.

I. INTRODUCTION

The dynamics of a quantum system are characterized
by three key components: the quantum state, the quan-
tum process, and the quantum measurement. Each of
these components is represented by specific quantum el-
ements: the density operator ρ̂, the completely positive
and trace-preserving (CPTP) map M, and the positive-

operator-valued measure (POVM) element Ê, respec-
tively. These components are typically represented by
complex matrices on a fixed basis, and the appropriate
measurement of these matrix elements is a fundamen-
tal issue in various quantum applications. The standard
method for measuring quantum states is known as quan-
tum state tomography (QST) [1–5]. In QST, projective
measurements are performed on different bases, and each
matrix element of the density operator ρ̂ is estimated
by post-processing all the measured data. Similarly, for
quantum processes and quantum measurements, meth-
ods such as quantum process tomography (QPT) [6–9]
and quantum measurement tomography (QMT) [10–12]
are utilized. Analogous to QST, the CPTP map M
and the POVM element Ê can be determined by prepar-
ing various initial states, conducting projection measure-
ments on various bases, and subsequently post-processing
all the measurement data. In quantum tomography, as
the dimension of the Hilbert space of the measured quan-
tum system increases, the number of measurements and
the complexity of the reconstruction algorithm also in-
crease. This may render the quantum tomography im-
practical for certain applications. However, for some
quantum applications [13–18], it is not imperative to re-
construct the complete matrix; rather, only specific parts
of it need to be measured directly. In such scenarios, it
becomes crucial to develop methods for directly measur-
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ing only certain matrix elements of the quantum compo-
nent under examination.

Recently, a new class of measurement methods, re-
ferred to as direct measurements (DM), has been
emerged, exhibiting distinct characteristics from vari-
ous quantum tomography methods. In DM, each ma-
trix element of the quantum component under investi-
gation can be estimated within a single measurement
setup, eliminating the need for post-processing the results
of measurements across different initial states or mea-
surement bases. Initially, DM was applied to pure-state
wavefunctions [19] using the Aharonov–Albert–Vaidman
(AAV) weak measurement [20]. Subsequent studies ex-
panded the scope of DM to encompass objects such as
pseudo-probability distributions [21], density operators
[22], nonlocal entangled states [23], quantum processes
[24, 25], and quantum measurements [26]. Notably, cer-
tain DM techniques have been implemented not through
AAV weak measurements, but via standard indirect mea-
surements employing strong interactions and projective
measurements on the probe system, resulting in higher
measurement efficiency, as experimentally demonstrated
[27–36].

In prior studies, DM methods have been independently
proposed for each of the three quantum components.
However, given the time-reversal symmetry of quantum
time evolution, it is reasonable to consider direct mea-
surement methods for these components from a more uni-
fied perspective. Previously, we introduced an intuitive
diagrammatic representation of DM for wavefunctions us-
ing qubit probes, elucidating how DM operates regardless
of measurement strength [37]. In this research, we ex-
pand upon this framework and demonstrate the system-
atic design of efficient DM systems for quantum states,
quantum processes, and quantum measurements. This
framework can be viewed as a generalized Hadamard test
and offers guidance for designing quantum circuits to ob-
tain desired complex observables. Leveraging this frame-
work, we introduce a novel DM method employing the
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basis-shift unitary transformation, which proves to be
more efficient per shot measurement compared to pre-
vious DM methods. Moreover, we validate the feasibility
of this proposed DM method for quantum states (density
operators) by experimentally applying it to optical pulse
trains encoded in discrete time degrees of freedom.
This paper is structured as follows: In Section II, we

introduce the generalized Hadamard test along with its
diagrammatic representation, illustrating its applicabil-
ity in deriving DM methods for various quantum compo-
nents. In Section III, we detail the experimental demon-
stration of applying the newly derived direct measure-
ment method for density operators to optical pulse trains.
Finally, in Section IV, we provide a discussion and sum-
mary of this study.

II. THEORY

A. Generalized Hadamard test and its

diagrammatic representation

To systematically derive DM methods for complex ma-
trix elements of quantum components, we first explore
the generalized Hadamard test. This test is implemented
through a quantum circuit comprising a qubit probe sys-
tem and a measured system, as depicted in Fig. 1(a).
The initial states of the probe system and the measured
system are |0〉〈0| and ρ̂, respectively. The quantum gates

include the first Hadamard gate Ĥ, two controlled gates
(|0〉-controlled Â and |1〉-controlled B̂), the phase gate Ŝb

(an identity gate for b = 0 and a phase gate for b = 1),

and a second Hadamard gate Ĥ. Following the passage
through these quantum gates, we measure the expecta-
tion value of the tensor product Ẑ ⊗ Ê, composed of the
Pauli-Z operator Ẑ of the probe system and a POVM el-
ement Ê of the measured system. Depending on whether
b is 0 or 1, the resulting expectation value is obtained by
this measurement is given by

〈Ẑ ⊗ Ê〉 =







Re
[

tr(Âρ̂B̂†Ê)
]

(b = 0),

Im
[

tr(Âρ̂B̂†Ê)
]

(b = 1).
(1)

In particular, the case Â = Ê = Î corresponds to the
usual Hadamard test. By combining these two results,
the complex value tr(Âρ̂B̂†Ê) is obtained by the gener-
alized Hadamard test.
The value tr(Âρ̂B̂†Ê) obtained through the general-

ized Hadamard test can be intuitively grasped using the
diagrammatic representation introduced in Ref. [37], as
depicted in Fig. 1(b). In this representation, certain ele-

ments such as the initial state |0〉, quantum gates Ĥ and

Ŝb, and the quantum measurement Ẑ in the probe sys-
tem are not explicitly depicted as they are assumed, while
only the initial state of the measured system, the control
gates dependent on the probe state, and the POVM ele-

Measured

system

Probe 

system

Measured system's dynamics
Probe

state

(a) Generalized Hadamard Test

(b) Diagrammatic representation

FIG. 1. (a) Quantum circuit illustrating the generalized

Hadamard test. The expectation values of Ẑ ⊗ Ê for b = 0, 1
correspond to the real and imaginary parts of tr(Âρ̂B̂†Ê)
respectively. (b) Diagrammatic representation for intuitive
comprehension of the generalized Hadamard test. The top
and bottom rows of the diagram depict the time evolution of
the measured system when the probe system is |0〉 and |1〉,
respectively. The initial states of the probe system are set to
|+〉, and finally X̂- and Ŷ -basis measurements are conducted;
however, these are not explicitly depicted in the diagrammatic
representation. The complex value tr(Âρ̂B̂†Ê) obtained from
the measurement can be intuitively understood as the trace
of the operator Âρ̂B̂†Ê, forming a cyclic product of the oper-
ators ρ̂, Â, Ê, and B̂ in the diagram.

ments of the measurement are displayed on the diagram.
The complex value tr(Âρ̂B̂†Ê) acquired via the gener-
alized Hadamard test can be interpreted as the trace of
the operator Âρ̂B̂†Ê, which forms a cyclic product of the
operators ρ̂, Â, Ê, and B̂ in the diagram (noting that the

operator B̂ in the bottom row of the diagram must take
the Hermitian conjugate). Leveraging this relationship,
we can derive a DM method for a desired complex value
by appropriately arranging the operators on the diagram.

B. Derivation of direct measurement methods for

quantum components

Using the diagrammatic representation, we derive a
generalized-Hadamard-test-based DM method for each
quantum component—quantum states, measurement
POVM elements, and quantum processes. First, to di-
rectly measure the matrix element ρij := 〈i|ρ̂|j〉 =
tr(ρ̂|j〉〈i|) of the quantum state ρ̂, the diagrammatic

representation suggests that we can select Â, Ê, and
B̂ such that B̂†ÊÂ ∝ |j〉〈i| holds. For example, as

in Refs. [22, 28], if we choose Â = |i〉〈i|, B̂ = |j〉〈j|,
and Ê = |MUB〉〈MUB|, the above condition is satis-

fied, yielding tr(Âρ̂B̂†Ê) = ρij/d, where |MUB〉 rep-
resents the mutually unbiased basis of |i〉 and |j〉, and
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〈i|MUB〉 = 〈j|MUB〉 = 1/
√
d (where d is the dimension

of the measured system). As another example, to max-
imize the coefficient of |j〉〈i| and enhance measurement

efficiency, it is preferable to choose Â and B̂ as unitary
operators. For instance, selecting Â = Ûshift(j − i) =
∑

k |k + j − i mod d〉〈k|, B̂ = 1̂, and Ê = |j〉〈j|, as il-
lustrated in Fig. 2(a), eliminates the coefficient of 1/d,

resulting in tr(Âρ̂B̂†Ê) = ρij . Here, Ûshift(n) represents
the basis-shift unitary transformation defined by

Ûshift(n) :=
∑

k

|k + n mod d〉〈k|, (2)

which shifts the basis number by +n. Hence, the gen-
eralized Hadamard test can be utilized to determine the
expectation value of a non-physical observable that does
not meet the definition of a measurement POVM ele-
ment, such as |j〉〈i| for the state ρ̂. In the latter part of
this paper, we will conduct experiments to demonstrate
the DM method of the quantum state using this basis-
shift unitary transformation Ûshift(j − i).

Next, if we aim to directly measure the matrix ele-
ment Eij := 〈i|Ê|j〉 = tr(Ê|j〉〈i|) of the measurement

POVM element Ê, the diagrammatic representation sug-
gests that we can select Â, ρ̂, and B̂ in a manner that
Âρ̂B̂† ∝ |j〉〈i| holds. For instance, as demonstrated in

Refs. [26, 36], if we set ρ̂ = |MUB〉〈MUB|, Â = |j〉〈j|,
and B̂ = |i〉〈i|, the aforementioned condition is satisfied,

resulting in tr(Âρ̂B̂†Ê) = Eij/d. As another example,

if Â and B̂ are chosen as unitary operators, ρ̂ = |i〉〈i|,
Â = Ûshift(j − i) =

∑

k |k + j − i mod d〉〈k|, and B̂ = 1̂,
as shown in Fig. 2(b), then the coefficient of 1/d van-

ishes and tr(Âρ̂B̂†Ê) = Eij is obtained. Therefore, the
generalized Hadamard test can also yield the expecta-
tion value of a measurement POVM element Ê for an
unphysical quantum state, which does not adhere to the
definition of a density operator such as |j〉〈i|.
Moreover, DM of matrix elements of quantum pro-

cesses can also be achieved using the generalized
Hadamard test. The transformation of a quantum pro-
cess M for a state ρ̂ can be expressed in the following
operator-sum representation:

M(ρ) =
∑

ijkl

χijkl |l〉〈i|ρ̂|j〉〈k|. (3)

Here we consider DM of the matrix element χijkl ∈ C.
χijkl is expressed as follows:

χijkl = tr
[

M(|i〉〈j|)|k〉〈l|
]

. (4)

In other words, χijkl can be interpreted as the expecta-
tion value of the unphysical measurement POVM element
|k〉〈l| for the unphysical quantum state |i〉〈j| with time
evolution M. Therefore, χijkl can be measured using
the generalized Hadamard test with gates positioned be-
fore and after the quantum process M, as depicted in

(a)


(b)

(c)

FIG. 2. (a) Diagrammatic representation illustrating the
quantum dynamics enabling the DM of the matrix elements
of the quantum state ρ̂, along with the corresponding quan-
tum circuit. (b) Diagrammatic representation demonstrating
the DM of the matrix elements of the measurement POVM
element Ê, accompanied by the corresponding quantum cir-
cuit. (c) Diagrammatic representation showcasing the DM of
the matrix elements of a quantum process M, along with the
corresponding quantum circuit.

Fig. 2(c). Each operator is selected such that Âρ̂B̂† ∝
|i〉〈j| and D̂†ÊĈ ∝ |k〉〈l|. For instance, when using pro-

jection operators, we can opt for Â = |i〉〈i|, B̂ = |j〉〈j|,
Ĉ = |l〉〈l|, D̂ = |k〉〈k|, and ρ̂ = Ê = |MUB〉〈MUB|. The
result of this measurement is given as

tr
[

M(Âρ̂B̂†)D̂†ÊĈ
]

=
χijkl

d2
. (5)

On the other hand, in the scenario of employing the basis-
shift unitary transformation Ûshift, we can choose Â =
Ûshift(i−j) =

∑

m |m+i−j mod d〉〈m|, B̂ = 1̂, ρ̂ = |j〉〈j|,
Ĉ = Ûshift(k − l) =

∑

m |m + k − l〉〈m|, D̂ = 1̂, and

Ê = |k〉〈k|. Then the coefficient of 1/d2 vanishes and

tr
[

M(Âρ̂B̂†)D̂†ÊĈ
]

= χijkl (6)

is obtained.
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III. EXPERIMENT

In this section, we experimentally demonstrate the
DM method for matrix elements of quantum states de-
picted in Fig. 2(a). This method is one of the DM tech-
niques utilizing the basis-shifted unitary transformation
derived through the diagrammatic representation. We
employ quantum states of photons encoded in discrete
time degrees of freedom as the quantum states to be mea-
sured. In this experiment, we examine three-dimensional
quantum states encoded in a series of three laser pulse
trains. Since the detection probabilities for a single pho-
ton, without quantum entanglement, are proportional to
the intensity measurement result for classical coherent
light, this experiment was conducted using coherent light
with output power in the classical regime. This exper-
imental approach can be adapted for single photons by
employing a suitable single-photon light source and pho-
ton detector.

Figure 3 illustrates the experimental setup. A fiber
laser source (NP Photonics SMPF-2030) emits contin-
uous light at a wavelength of 1550nm. The output
laser beam is amplified to 53mW by an erbium-doped
fiber amplifier (EDFA; GIP Technology), with polariza-
tion adjustment performed by a polarization controller
(CPC900, Thorlabs; not shown in Fig. 3) to optimize
injection efficiency into the next component, a dual par-
allel modulator (DPM; Mach-10 086, COVEGA). Sub-
sequently, the DPM modulates the time distribution of
the laser light into a triple-pulse test waveform, crucial
for verifying the DM method. In the DPM, the output
complex amplitude is modulated as

Eout ∝ sin

(

π
V1
Vπ,1

)

+ exp

(

iπ
Vph
Vπ,ph

)

sin

(

π
V2
Vπ,2

)

(7)

by applying the three voltages V1, V2, and Vph as illus-
trated in Fig. 3, where Vπ,i (i = 1, 2, ph) represents the
voltage required for a phase shift of π at each voltage ap-
plication port. With Vph fixed at Vπ,ph/2 while assuming
V1 ≪ Vπ,1 and V2 ≪ Vπ,2, we can approximately express:

Eout ∝ π
V1
Vπ,1

+ iπ
V2
Vπ,2

. (8)

Thus, arbitrary complex amplitude waveforms can be
generated by applying RF voltages to V1 and V2 that
are proportional to the real and imaginary parts, respec-
tively, of the complex amplitude waveform to be gen-
erated. We have generated five amplitude states from
|ψtest

1 〉 to |ψtest
5 〉, presented in Fig. 4 as test waveforms.

The generalized Hadamard test is implemented us-
ing an asymmetric Mach–Zehnder interferometer (AMZI)
with delays of 200ps and 400ps. AMZI can introduce not
only delays between two paths but also the phase differ-
ence φ. We conducted measurements for four phase dif-
ference cases: φ = 0◦, 90◦, 180◦, and 270◦. From the dif-
ference between the measurement results for φ = 0◦ and

180◦, and those for φ = 90◦ and 270◦, the expectation
values of X̂ and Ŷ are obtained, respectively. The pulse
trains output by AMZI were detected by a photodetector
(PD), and their time waveforms were observed using an
oscilloscope.
Taking the case of |ψtest

1 〉 as an example, we explain
the procedure for obtaining each matrix element from
the observed waveform in this DM method. Initially,
we examine the waveform without AMZI, as depicted
in Fig. 5(a), and derive three pulse amplitudes through
fitting, denoted as A0, A1, and A2, respectively (refer
to Appendix A for details regarding the fitting function).
Normalizing these values allows us to obtain the diagonal
components of the matrix as follows:

A := A0 +A1 +A2 (9)

ρ00 =
A0

A
, ρ11 =

A1

A
, ρ22 =

A2

A
. (10)

Next, as depicted in Fig. 5(b), the waveform shifted
by one pulse using the basis-shift unitary transformation
is interfered with the original waveform by employing
AMZI with a delay of 200ps. We observe the waveform
after passing through AMZI and obtain the amplitudes
of the second and third pulses by fitting. Let A01(φ) and
A12(φ) represent the amplitudes of the second and third
pulses at the phase difference φ. Using the normalization
constant A obtained above, we obtain the values of ρ01
and ρ12 as follows:

ρ01 =
[A01(0

◦)− A01(180
◦)] + i [A01(90

◦)−A01(270
◦)]

A
,

(11)

ρ12 =
[A12(0

◦)− A12(180
◦)] + i [A12(90

◦)−A12(270
◦)]

A
.

(12)

The values of ρ10 and ρ21 are obtained as complex con-
jugates of ρ01 and ρ12, respectively.
Subsequently, as depicted in Fig. 5(c), we observe the

waveforms after passing through the AMZI with a delay
of 400ps, equivalent to a basis shift of two pulses, and
extract the amplitude of the third pulse through fitting.
Denoting A02(φ) as the amplitude of the third pulse at
the phase difference φ, ρ02 is obtained as follows:

ρ02 =
[A02(0

◦)− A02(180
◦)] + i [A02(90

◦)−A02(270
◦)]

A
.

(13)

Similarly, ρ20 is obtained as the complex conjugate of
ρ02. This procedure allows us to derive every matrix
element of the density operator of the quantum state.
Figs. 6(a)–(e) present the results of DM of the density
matrix for each state. Notably, each matrix element ob-
tained through the direct measurement method closely
approximates the ideal value, demonstrating the efficacy
of the proposed DM method.
Furthermore, the density matrix ρ̂exp reconstructed by
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Fiber laser

GND

GND

GND

GND

GND

DPM

AMZI

(200 ps, 400 ps)

PD

Oscilloscope

1550nm, CW

(    Real part)

(    Imaginary part)

0

0

Test state 

(to be measured)

Interfarence

State preparation Direct measurement

200 ps

FIG. 3. Experimental setup used in the proposed experiment for DM of quantum states. Continuous light with a wavelength of
1550 nm emitted from a fiber laser is injected into a DPM through an optical fiber. In the DPM, arbitrary complex amplitudes
can be realized by three applied voltages V1, V2, and Vph. Here, we fix Vph = Vπ,ph and apply the voltages corresponding to the
real and imaginary parts of the desired complex amplitude to V1 and V2, respectively, to obtain the desired complex amplitude.
After passing through the DPM, the test pulse enters the DM circuit. The waveforms without and with AMZI, which has
delays of 200 ps and 400 ps, are measured using an oscilloscope. The measurements are made for four cases of AMZI phase
difference φ: 0◦, 90◦, 180◦, and 270◦.

(a)

(b)

(c)

(d)

(e)

FIG. 4. (a)–(e) Waveforms of the voltages V1 and V2 applied
to the DPM to realize the test states |ψtest

1 〉–|ψtest
5 〉. The pulse

repetition period is 200 ps and the pulse width is 44 ps.

this DM method is evaluated by the fidelity:

F (ρ̂exp, |ψtest〉) =
√

〈ψtest|ρ̂exp|ψtest〉, (14)

where |ψtest〉 represents the ideal state. The matrices

presented in Figs. 6(a)–(e), obtained through the cur-
rent method, do not adhere to the requirement of non-
negativity and unity trace that a density operator should
satisfy. Consequently, we applied a transformation to en-
sure that the matrices obtained via the DM method con-
form to the properties of non-negativity and unity trace
(refer to Appendix B for details regarding the transfor-
mation procedure and the resulting matrices). The fi-
delities of these modified matrices with respect to the
ideal states are depicted in Fig. 6(f). Notably, all fideli-
ties exceed 0.98, indicating the proper functionality of
the proposed direct measurement method.

IV. DISCUSSION AND SUMMARY

The DM method utilizing the basis-shift unitary trans-
formation, proposed in this paper, proves to be the most
efficient in terms of DM of matrix elements using qubit
probes. It minimizes the statistical fluctuation of the es-
timated value to be measured within a fixed number of
shots. This efficiency can be explained as follows: In
measurements with qubit probes, the value to be esti-
mated, denoted as A ∈ [−1,+1], is given in proportion
to the expectation value of the Pauli-Z measurement:

A = k〈Ẑ〉 = k(p+ − p−) = k(2p+ − 1), (15)

where p± is the probability that the Pauli-Z measure-
ment yields the outcome ±1. The proposed DM method
with basis-shift unitary transformation corresponds to
the case k = 1. Let Z̄n be the sample mean of Z mea-
surements taken n times. The estimator Ãn of A is given
by Ãn = kZ̄n. Using Eq. (15), the sample variance of Z̄n



6

w/o AMZI

w/ 200 ps AMZI w/ 400 ps AMZI

(a)

(b) (c)

FIG. 5. FIG. 5. Experimental procedures for DM of each matrix element within the density matrix of the state |ψtest
1 〉. In each

graph, red dots represent experimental data points, while blue lines depict the fitted curves. (a) Measurement outcomes aimed
at determining the diagonal components ρ00, ρ11, and ρ22 of the density matrix. Without the AMZI, the normalized peak
amplitudes directly correspond to ρ00, ρ11, and ρ22. (b) Measurement results for obtaining ρ01, ρ10, ρ12, and ρ21 within the
density matrix. In the measurement results for the case of inserting AMZI with 200 ps delay, the two peak amplitudes enclosed
by the green dashed lines are normalized, and the difference between these normalized amplitudes when φ = 0◦ and φ = 180◦,
φ = 90◦ and φ = 270◦ correspond to the real and imaginary parts of the matrix elements to be obtained, respectively. The ρ10
and ρ21 are determined as the complex conjugates of ρ10 and ρ12, respectively. (c) Measurement outcomes to determine ρ02
and ρ20 within the density matrix. In the measurement results for the case of inserting AMZI with 400 ps delay, the two peak
amplitudes enclosed by the green dashed lines are normalized, and the difference between these normalized amplitudes when
φ = 0◦ and φ = 180◦, φ = 90◦ and φ = 270◦ correspond to the real and imaginary parts of ρ02, respectively. ρ20 is deduced as
the complex conjugate of ρ02.

is given as

Var(Z̄n) =
Var(Ẑ)

n
=

4p+(1− p+)

n
=

1− k−2A2

n
, (16)

and the sample variance of Ãn is expressed as

Var(Ãn) = k2Var(Z̄n) =
k2 −A2

n
. (17)

Given that the variance is minimized when k = 1, it
is concluded that the proposed DM method employing
the basis-shift unitary transformation stands as the most
efficient approach for DM of matrix elements using qubit
probes. In contrast, in most previous studies [19, 21–
30, 33, 34, 36], k < 1 since they conduct the projec-
tion measurement in MUB for the basis of the matrix
to be obtained. Hence, the efficiency of the proposed
DM method represents a notable advantage. The use of
basis-shift unitary transformation is also expected to im-
prove the measurement efficiency in DM of processes and
measurements.

In conclusion, we have introduced a theoretical frame-
work aimed at unifying the DM methods for the three
components of quantum dynamics: quantum states,
quantum processes, and quantum measurements. Lever-
aging this framework, DM methods for each quantum
component can be systematically derived. Particularly,
we have developed a DM method utilizing the basis-shift
unitary transformation, which stands out as the most
efficient approach when utilizing qubit probes. Further-
more, we have conducted experimental demonstrations of

the DM method for quantum states using optical pulse
trains. Our experiments have showcased that the ma-
trix elements of the density operator of the initial state
can be obtained separately, and the overall state can be
estimated with high fidelity. Although this experiment
utilized optical pulse trains for quantum communication
applications, we anticipate that this DM method will find
applications in various physical systems. We envisage
that in the future, DM techniques will not only facilitate
the measurement of states but also enable the measure-
ment of processes and measurements in diverse quantum
systems.
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FIG. 6. (a)–(e) Results of DM of the density matrix for the quantum state |ψtest
1 〉–|ψtest

5 〉 (top panel) and ideal values (bottom
panel). (f) Fidelities of the non-negative and normalized density matrices obtained by DM to the ideal states.
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Appendix A: Details of experimental results and fitting process

In the experiments detailed in Section III, we produced optical pulse trains corresponding to the five initial states
|ψtest

1 〉–|ψtest
5 〉 and detected these pulses using an oscilloscope following the proposed DM procedure. By fitting a

function with a peak shape to the detected waveforms, we obtained the values of the peaks of each pulse. The
measured waveforms and the fitting results are depicted in Fig. 7. For each individual peak, the following function is
employed as a peak shape fitting function:

ffitting(x) = A

{

exp

[−(x− x0)
2

2σ2

]

+R
exp[−(x− x0)/τ1]

1 + exp[−(x− x0)/τ2]

}

, (A1)

where the first term represents a Gaussian function with a center at x0 and a standard deviation of σ, while the
second term represents a peak shape function with a center at x0 and exhibits asymmetric behavior with its left and
right sides decreasing exponentially with decay constants τ1 and τ−1

2 − τ−1
1 , respectively. The magnitude ratio of

the second term to the first term is denoted by R. The second term is added to express the asymmetric shape of
the measured results for each peak, with a slower decay on the right side. The fitting functions were obtained by
adding three, four, and five instances of the aforementioned peak functions for cases without the AMZI, with AMZI
inserted with a delay of 200ps, and with AMZI inserted with a delay of 400ps, respectively. Each peak was fitted to
the measured data to obtain parameters including x0, σ, τ1, τ2, A, and R. These peak values A were then utilized to
estimate each matrix element of the initial state according to the procedure outlined in the main text.

Appendix B: Post-processing of density matrices measured by direct measurement

When each matrix element is obtained individually by DM, the resultant matrices generally fail to meet the
physical requirements of density operators, namely being non-negative operators with a unity trace. To rectify this in
the experiment, we post-processed the density matrix A obtained by DM using the following steps: First, to ensure
the non-negativity requirement, A underwent spectral decomposition, and the imaginary part of its eigenvalues was
replaced by zero. If the real part was negative, the real part was also replaced by zero. Subsequently, to ensure the
unit trace requirement, the entire matrix was normalized to A→ A/a, where a is the sum of the diagonal components
a := A00 +A11 +A22. The matrices obtained after this post-processing are displayed in Fig. 8. The fidelities of these
matrices with respect to the ideal states were evaluated as discussed in the main text.
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FIG. 7. (a)–(e) Measured waveforms and fitting results for the five initial states |ψtest
1 〉–|ψtest

5 〉. In each plot, red dots represent
experimental measurements, and blue lines depict fitting curves. Left panels: measurement results without the AMZI. Center
panels: measurement results with AMZI inserted with a 200 ps delay and phase differences of of φ = 0◦, 90◦, 180◦, and 270◦.
Right panels: measurement results with AMZI inserted with a 400 ps delay and phase differences of φ = 0◦, 90◦, 180◦, and
270◦.
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FIG. 8. (a)–(e) Density matrices of the quantum state |ψtest
1 〉–|ψtest

5 〉 measured by DM, post-processed to meet the requirements
of a non-negative operator and unit trace (upper panel), alongside the ideal values (bottom panel).


