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1. Introduction
The long-term scheduling of open-pit mines has received considerable research interest. Much
existing work has focused on simplified models in which many of the characteristics of real-
world mining have been ignored. Material from different regions of a mine site (called ‘blocks’) is
extracted, in each period of a horizon, and sent to one of a number of destinations (e.g., process-
ing plants, waste dumps, and stockpiles). Precedences constrain the order in which blocks can be
extracted and capacity constraints exist on the total tons of material mined in each period, and sent
to each destination.

We consider a long-term production scheduling problem for a set of open-pit mines, connected
by rail to junctions at which blending takes place. The model includes blending constraints, mini-
mum production constraints across regions of each mine (called pits), and capex decisions relating
to the opening of pits. We present a Large Neighbourhood Search (LNS) based algorithm for
solving this long-term open pit planning problem. We present a mixed-integer program (MIP)
modelling of the problem, and evaluate our algorithm on a suite of real world instances.

Large Neighbourhood Search improves upon an existing solution to a problem by repeatedly
solving a simplified version of the problem. In this simplification, a subset of variables are fixed
to their values in the existing solution and the remainder left to take on a new value. The variables
that are free to take on a new value form a neighbourhood around the current solution. The result
is a smaller, restricted MIP. Solving this MIP allows us to search for a new and improved solution
in this neighbourhood.

Our approach first applies a sliding windows method, described in Section 5, to find an initial
feasible solution to our long-term planning problem. Once an initial solution has been found, we
perform a parallelised form of LNS over multiple threads of computation. On each thread, we form
a neighbourhood with respect to the current best found solution. In our context, this neighbourhood
is a collection of blocks. Given such a neighbourhood, we leave the decision variables related to
the mining of blocks in our neighbourhood free in our MIP, and fix the mining related decision
variables for blocks outside of the neighbourhood to their values in the current best solution. We
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solve these restricted MIPs, updating our current best solution to the best solution found over all
threads. We describe our neighbourhood formation process, including the variables that we fix for
each neighbourhood, in Section 6. We repeat these iterations of LNS until a termination criterion
is satisfied. We describe several possible termination criteria in Section 6.3.3.

Much existing work on the use of neighbourhood-based search for long-term mine planning con-
siders small neighbourhood structures based on shifting the mining of blocks from one time period
to another, altering the destination of extracted material, and adding or removing blocks from the
schedule. The complexity of our model means that we must consider much larger neighbourhoods
in order to find different, feasible, and improved solutions.

To limit the size of our neighbourhoods, and to increase the likelihood that each neighbour-
hood will lead us to an improved solution, we have designed a novel path-based neighbourhood
structure, and a series of novel neighbourhood formation strategies. We form a neighbourhood
by repeatedly selecting a block from the model, forming a path around that block, and adding
the blocks in that path to the neighbourhood. A path-based neighbourhood resembles a chain of
blocks, where each block in the chain, excepting the first and last, is connected to a predeces-
sor and successor. The predecessor must be completely extracted before the block can be mined,
while the successor cannot be mined until the block is completely extracted. For each block in the
chain, the neighbourhood includes all blocks in a restricted cone above and below. A restricted
cone above (below) a block b contains all the predecessors (successors) of b that are located in b’s
bench. We consider a range of strategies for selecting the blocks around which to form paths. These
strategies define different methods for weighting the blocks in a model according to their value for
the purposes of scheduling, and using those weights to guide selection. We also outline how we
can leverage what we know about different sets of model constraints to form neighbourhoods that
increase the likelihood of finding new feasible solutions. We show that our approach substantially
improves upon the quality of the initial solutions formed through the sliding windows method.

The remainder of this paper is structured as follows. Related work is discussed in Section 2.
A MIP model of the long-term mine planning problem we consider is detailed in Section 3. We
describe three instances of this model, of increasing complexity, in Section 4. These instances are
used to evaluate our LNS approach, described in Sections 5–6. Section 5 outlines our method for
finding initial feasible solutions to the problem, while Section 6 describes our LNS algorithm. We
evaluate our approach, contrasting its performance against solving the MIP directly, in Section 7.

2. Related Work
The scheduling of mines over long-term horizons (i.e., decades) has been well studied (see Osan-
loo et al. (2008), Newman et al. (2010), Askari-Nasab et al. (2011), Epstein et al. (2012), Lambert
et al. (2014), Lamghari (2017), Zeng et al. (2021), and Fathollahzadeh et al. (2021) for reviews).
Epstein et al. (2012) present mixed-integer program (MIP) models characterising a variety of long-
term scheduling problems. Of these, the precedence constrained production scheduling problem
(PCPSP) is most similar to the problem we tackle in this paper. In the PCPSP, blocks are extracted
and sent to one of a number of facilities such as processing plants or stockpiles. Mining prece-
dences constrain the order in which blocks are extracted, while side constraints can be specified to
enforce resource capacities.

Numerous approaches have been developed to solve the PCPSP. Cullenbine et al. (2011) present
a sliding time window heuristic (STWH) for solving a variation of the PCPSP, without continuous
variables, in which a sequence of integer programs (IPs) are solved. In each IP, the full set of
problem constraints are enforced in a window of w periods, initially spanning periods 1 to w. A
Lagrangian relaxation of the model is enforced outside of this window. The solution to this IP is
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used to fix the activities of period 1, after which the window slides forward by one period. The
decision variables of the subsequent IP are fixed for period 1, subject to all problem constraints in
the w periods in the window, and a relaxation of the model thereafter. The STWH terminates once
the last period in the horizon is scheduled.

Our sliding windows heuristic, described in Section 5, is modelled on the work of Cullenbine
et al. (2011). We consider both continuous and integer variables, however, and multiple destinations
for extracted material. For each window, we include a varying number of additional relaxed time
periods, rather than a relaxation of the remainder of the planning horizon.

Much existing work applying neighbourhood-based search techniques to mine scheduling prob-
lems employ simple neighbourhood structures. With an initial solution formed using the heuristics
of Gershon (1987), Sari and Kumral (2016) employ a simple neighbourhood move that changes
the period in which a selected block is mined, with a certain probability. Goodfellow and Dimi-
trakopoulos (2016) employ three neighbourhood structures when solving a stochastic mine plan-
ning problem: randomly selecting a block to either remove from the schedule, or alter its time
of extraction; altering the destination of material from a randomly selected cluster of blocks; and
altering the subsequent destination of material leaving stockpiles or processing plants. Lamghari
and Dimitrakopoulos (2020) present hyperheuristics that select among a range of simple pertur-
bative neighbourhood structures: shift the mining of a block to the previous or subsequent time
period; move the mining of block to another period; or swap the periods in which two blocks are
mined. A range of variations in how blocks and time periods are selected are presented, forming
27 different ways of perturbing a schedule.

Amaya et al. (2009) solve a series of IPs to incrementally improve an initial schedule found
using the greedy heuristic of Gershon (1987). All variables in the PCPSP IP are first fixed to their
value in this initial schedule. A selection of variables are then unfixed and the resulting IP solved
to yield a (potentially) improved solution. These variables are then fixed to their value in this new
solution. This process is repeated for all collections of variables generated in accordance with
several strategies. The ‘cone above’ strategy defines, for each block b, a set of variables relating
to the mining of b and its predecessors. The ‘periods’ strategy defines, for each period t, a set of
variables relating to the activities of t. The ‘transversal’ strategy defines, for each block b, a set of
variables relating to the mining of all blocks within a defined distance of b. Chicoisne et al. (2012)
extend the heuristic of Amaya et al. (2009) with different methods of selecting which variables to
fix. These methods select a random block b that has been scheduled for mining in some period t,
then: unfix variables relating to the mining of b and its predecessors (or, alternately, its successors);
or unfix all variables (to a maximum number) relating to blocks mined in periods t−1, t, and t+1.

Our LNS approach is similar to that of Amaya et al. (2009), in that we repeatedly select blocks
around which to form a neighbourhood. Variables related to the mining of these blocks are left
unfixed, and the resulting MIP solved to form a new solution. Our approach differs in the type
of neighbourhood structure used, and the strategies applied to instantiate it. Simple perturbative
neighbourhood structures, such as swapping or shifting the periods in which blocks are mined
do not form large enough neighbourhoods to allow new feasible solutions to be discovered for
our model. Altering the mining of a block may require changes to how its predecessors and their
predecessors are mined, or how its successors and their successors are mined. This is the motivation
behind our path-based neighbourhood structure. This type of neighbourhood can be considered
as a refinement of the often used cone-above or below structures. The strategies we use to select
blocks around which to form paths (Section 6.2) focus on the constraints in our model that are
tight or more often responsible for infeasibilities (blending and minimum production constraints)
and decisions that are likely to have a substantial impact on the objective (such as when pits are
opened).
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Lamghari and Dimitrakopoulos (2012) apply Tabu search to improve an initial schedule gener-
ated by greedily selecting eligible blocks to be mined in each time period. Their method repeatedly
shifts, adds, or deletes the mining of a block to, or from, an eligible period such that the objective
is improved. Shifts that reverse recently performed actions form part of a Tabu-list, and are not
permitted. Lamghari et al. (2015) alternately form an initial schedule by considering each period t
in turn, solving a linear program capturing mining precedences, but ignoring processing and min-
ing capacities, to determine which blocks to mine. A repair heuristic repeatedly selects a block,
of those mined in t, to remove from the schedule, while ensuring that mining precedences are not
violated. A variable neighbourhood descent (VND) heuristic improves the quality of this initial
schedule by repeatedly swapping the mining of two blocks in consecutive periods, shifting the
mining of a block (and its successors) from one period to the next, or moving the mining of a block
(and its predecessors) forward by one period.

Lamghari and Dimitrakopoulos (2016) compare several heuristics for long-term mine plan-
ning with geological uncertainty. These include the Tabu search approach of Lamghari and Dim-
itrakopoulos (2012); the variable neighbourhood descent (VND) approach of Lamghari et al.
(2015); LNS based on network flow techniques (NF); and diversified local search (DLS). NF and
DLS were found to be more efficient and more robust than Tabu search and VND. NF employs
two neighbourhood structures – forward, and backward – each based on selecting blocks mined
in one period to be moved to the next (or the previous) period, continually shifting the mining of
blocks forward or backward in time until we achieve a new and feasible solution. DLS alternates
the application of VND and NF.

Senécal and Dimitrakopoulos (2020) apply a parallel multi-neighbourhood form of Tabu search.
The neighbourhood structures considered involve moving the mining of a block to a different time
period, or changing its destination. Single or simultaneous applications of these moves form neigh-
bourhoods around a current solution. The parallel algorithm maintains a pool of moves, grouped
according to neighbourhood type. A number of threads operate in parallel, each taking a move
group from the pool, computing the result of applying each combination of moves, and maintain-
ing a record of those resulting in the most improvement. Once the pool is empty, the best move
found across threads is applied, and Tabu structures are updated. This process is repeated until a
stopping criterion is met.

Lamghari and Dimitrakopoulos (2022) define an adaptive LNS method for long-term mine plan-
ning with uncertainty. To generate an initial solution, the planning horizon is decomposed into
smaller sub-problems, each solved in two stages. The first focuses on extraction decisions, and
the second on material destinations. Their LNS employs multiple ways of destroying a schedule–
selecting blocks to remove–and then repairing it–adding blocks to the schedule. Heuristics are
used to identify blocks for removal, including: random selection; selection with the aim to reduce
mining surpluses; selection based on time period mined or destination; and selection based on geo-
logical proximity and dependencies. Given a set of removed blocks, repair heuristics are then used
to re-insert each block. Their final repair strategy–MIP repair–is most similar to our approach, in
that it uses a MIP solver to find new values for the variables associated with removed blocks. Their
approach is adaptive in the sense that the choice of destroy/repair methods to employ at any given
point in the algorithm is determined probabilistically, on the basis of their past performance.

3. Model Formulation
Our long-term mine planning problem is defined in terms of a set of mines connected by rail to
blending junctions. Each mine contains a set of pits, where each pit is composed of a set of blocks.
A block contains a set of parcels of different material types, including high grade, low grade and
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Table 1 Sets and indices involved in our long-term mine planning model.

Set Description

M The set of pits in our model, indexed by m.
R Set of saleable products produced, indexed by r.
NR Set of product nodes in the overall flow network.
Fm Flow network for pit m ∈ M with nodes Nm and arcs Am. A directed arc (i, j) ∈ Am connects

nodes i ∈Nm and j ∈Nm ∪NR. The arc (m,j) ∈Am denotes the path from the blocks in pit m to
destination j. A single source node is defined to represent the set of blocks in a pit.

N s
m Nodes in the flow network for pit m∈M that represent stockpiles.

B The set of blocks in the model, indexed by b.
Bm The set of blocks in pit m∈M, indexed by b.
D Mining precedences between blocks in B, where each (i, j)∈D indicates that the extraction of block

i∈B cannot begin until block j ∈B has been depleted.
Lb Material types in block b∈Bm of pit m∈M, indexed by l. Where a variable, set or parameter relates

to a block b∈Bm, we do not include the index m in its subscript, but rather let b imply the pit.
Pbl Parcels of type l ∈Lb in block b∈Bm, pit m∈M, indexed by p.
T Set of time periods in the planning horizon, indexed by t.
J A collection of sets of pits, indexed by K, where for each pit set K ∈ J a minimum production

constraint is present.
E Set of mineral elements of interest, indexed by e.

waste. The optimization problem aims to find a yearly block extraction sequence that maximizes
the net present value of multiple products. Extracted material flows through a network composed of
different elements–such as crushers, stockpiles, and processing plants–transforming ore into prod-
ucts. Saleable products are defined by different grade (blending) constraints, imposing minimum
and maximum levels on a range of mineral elements. We take into account maximum mining rate
constraints based on equipment capacities, and flow network node limits such as crusher and stock-
pile capacities. Finally, in some particular cases, mines have to contribute to a yearly minimum
production imposed by joint venture exploitation and contractual agreements.

3.1. Notation
We view a set of mines as a collection of pits, with constraints formed over sets of pits. We use
M to denote the set of pits, and m to denote a specific pit. A flow network is defined for each
pit, as described below. Each of these networks contains a source node, which we also denote
by m, representing the pit from which blocks are extracted, and a number of destination nodes.
These destinations, capturing stockpiles, crushers, processing plants, and dumps, are connected to
a virtual node r, for each saleable product r ∈R. Tables 1–3 identify and define the sets, variables,
and parameters involved in our long-term mine planning model.

3.2. Objective
The maximisation of net present value (NPV) is the typical objective of long-term mine planning
problems. The NPV of a mining system captures the total value of the investment over a plan-
ning horizon, defined by the sum of (discounted) cash flows for each time period. Equation (3.2)
expresses our objective, where Revmt denotes the revenue associated with products formed from
ore in pit m∈M in period t (Equation (2)), Costmt the total costs incurred from the extraction and
processing of material from pit m (Equation (3)), and πt the discount factor for period t.

max
∑
t∈T

πt

(∑
m∈M

Revmt−Costmt

)
(1)
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Table 2 Variables involved in our long-term mine planning model.

Variable Description

f t
pij Fraction of parcel p∈Pbl, of type l ∈Lb, from block b∈Bm in pit m∈M, that flows along the path

(i, j) ∈ Am in period t ∈ T . Where a variable relates to a parcel p, we exclude indices b, l, and m
from its subscript, letting p imply the block, type, and pit.

xt
b Fraction of block b∈Bm, pit m∈M, extracted by the end of t∈ T .

yt
b Binary variable that takes on a value of 1 if and only if block b∈Bm, pit m∈M, has been completely

extracted by the end of t∈ T .
zt
b Binary variable that takes on a value of 1 if and only if extraction of block b ∈ Bm, pit m ∈M, has

commenced by the end of t∈ T .
stip Fraction of parcel p ∈ Pbl of type l ∈ Lb, from block b ∈ Bm, pit m ∈ M, in stockpile i ∈ N s

m in
period t∈ T .

witm Binary variable that takes on a value of 1 if and only if pit m∈M is opened in period t∈ T .
wpt

m Binary variable that takes on a value of 1 in period t ∈ T if and only if pit m ∈M has been opened
in, or prior to, t.

Table 3 Parameters involved in our long-term mine planning model.

Parameter Description

πt Discount factor for period t∈ T .
τp Tonnage of parcel p.
σr Revenue per ton of product r ∈R.
αp Extraction cost per ton for parcel p.
αx

m Capex investment cost associated with opening pit m∈M.
ζep Concentration (level) of mineral element e∈ E in parcel p.
ζmin
er Minimum required level of mineral element e∈ E in product r ∈R.
ζmax
er Maximum allowed level of mineral element e∈ E in product r ∈R.
Λmax

n Maximum tonnage permitted to exit node n, where n is a node in the overall network flow. Where n
is the source node of a pit’s flow network, Λmax

n is the maximum mining capacity for that pit.
Ωmin

Kt Minimum tonnage to be mined from the pits K ∈J in period t∈ T .
Γt

i Maximum capacity of stockpile i∈N s
m, pit m∈M, in t∈ T .

where:

Revmt =
∑
b∈Bm

∑
l∈Lb

∑
p∈Pbl

∑
(i,r)∈Am

|r∈NR

τp σr, f
t
pir (2)

∀t∈ T , ∀m∈M

Costmt = αx
mwi

t
m+ (3)∑

b∈Bm

∑
l∈Lb

∑
p∈Pbl

∑
(m,j)∈Am

τpαpf
t
pmj

∀t∈ T , ∀m∈M
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The revenue generated from pit m ∈M in period t ∈ T considers the contribution from each
parcel p ∈ Pbl, of each type l ∈ Lb, from each block in the pit b ∈ Bm, to each saleable product
r ∈R, and the revenue generated per ton of that product. The cost associated with pit m in period
t includes capex costs incurred when opening the pit, and extraction costs. The former is incurred
in the period in which the pit is opened (where witm = 1). Extraction costs consider the material
extracted from the pit, moving along paths from its source node m to destinations in its flow
network.

3.3. Constraints
Blending constraints (4)–(5) enforce lower and upper bounds on the concentration of each mineral
element e∈ E in each formed product r ∈R.

∑
m∈M

∑
b∈Bm

∑
l∈Lb

∑
p∈Pbl

∑
(i,r)∈Am

(ζep − ζmin
er ) τp f

t
pir ≥ 0 (4)

∀r ∈NR, ∀e∈ E , ∀t∈ T

∑
m∈M

∑
b∈Bm

∑
l∈Lb

∑
p∈Pbl

∑
(i,r)∈Am

(ζep − ζmax
er ) τp f

t
pir ≤ 0 (5)

∀r ∈NR, ∀e∈ E , ∀t∈ T

Constraint set (6) enforces capacities on the tonnage of material exiting any given intermediate
node n in our overall flow network. This excludes source nodes in the flow network for each pit,
and product nodes.

∑
b∈Bm

∑
l∈Lb

∑
p∈Pbl

∑
(n,j)∈Am

τp f
t
pnj ≤Λmax

n (6)

∀m∈M, ∀n∈Nm | n ̸=m, ∀t∈ T

Constraint set (7) enforces mining capacities in each pit m ∈ M. Recall that wptm is a binary
indicating whether pit m has been opened by, or in, period t ∈ T . When set to 1, the pit’s mining
capacity becomes Λmax

m .

∑
b∈Bm

∑
l∈Lb

∑
p∈Pbl

∑
(m,j)∈Am

τp f
t
pmj ≤Λmax

m wptm (7)

∀m∈M, ∀t∈ T
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Recall that witm is a binary variable signalling whether the pit m∈M was opened in period t. This
binary variable triggers the binary wptm, which in turn activates extraction capacity for pit m from
period t onward.

wptm ≤
∑

τ=1,2,...t

wiτm (8)

∀m∈M, ∀t∈ T

Constraint set (9) enforces minimum production constraints across collections of pits, K ∈J .

∑
m∈K

∑
b∈Bm

∑
l∈Lb

∑
p∈Pbl

∑
(m,j)∈Am

τp f
t
pmj ≥Ωmin

Kt (9)

∀K ∈J , ∀t∈ T

Mass balance constraints (10) are defined for all intermediate nodes in our overall flow network,
excluding source nodes and those representing stockpiles (nodes N s

m for pit m∈M).

∑
(i,n)∈Am

f t
pin =

∑
(n,j)∈Am

f t
pnj (10)

∀t∈ T ,∀m∈M,∀b∈Bm,∀l ∈Lb,

∀p∈Pbl,∀n∈Nm \N s
m ∪{m}

Mass balance constraints (11) are also defined for each node in our flow network representing a
stockpile to keep track of the fraction of each parcel present in the stockpile in any given time
period.

stip = st−1
ip +

∑
(j,i)∈Am

f t
pji−

∑
(i,j)∈Am

f t
pij (11)

∀m∈M,∀i∈N s
m, ∀b∈Bm,∀l ∈Lb,

∀p∈Pbl,∀t∈ T | s0ip = 0

Constraint set (12) ensures that the fraction of a parcel leaving a stockpile in period t∈ T does not
exceed the fraction of the parcel that was present in the stockpile in period t− 1.

∑
(i,j)∈Am

f t
pij ≤ st−1

ip (12)

∀m∈M, ∀i∈N s
m, ∀b∈Bm, ∀l ∈Lb,

∀p∈Pbl,∀t∈ T | t≥ 2
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Stockpile capacities are enforced by constraint set (13), where Γt
i denotes the capacity of stockpile

i∈N s
m in period t.

∑
b∈Bm

∑
l∈Lb

∑
p∈Pbl

τps
t
ip ≤ Γt

i (13)

∀m∈M, ∀i∈N s
m, ∀t∈ T

The following sets of constraints ensure that the block extraction sequence is feasible according
to the geological model and slope constraints. The first set of constraints (14) enforces mining
precedences between blocks. For a given precedence relationship (i, j)∈Dm between blocks i and
j in pit m, extraction of block i cannot begin until block j has been depleted. Moreover, we cannot
progress the mining of a block b∈Bm until extraction of the block has begun, ztb = 1 (15). A block
b∈Bm is not depleted until the fraction of the block mined by a time period, xt

b, is equal to 1 (16).

zti ≤ ytj ∀ (i, j)∈D, ∀t∈ T (14)
xt
b ≤ ztb ∀b∈B, ∀t∈ T (15)

ytb ≤ xt
b ∀b∈B, ∀t∈ T (16)

Constraint sets (17)–(19) enforce coherence in the state of a block over time.

xt
b ≤ xt+1

b ∀b∈B, ∀t∈ T (17)
ytb ≤ yt+1

b ∀b∈B, ∀t∈ T (18)
ztb ≤ zt+1

b ∀b∈B, ∀t∈ T (19)

Constraint set (20) connects the material flow variables f t
pmj associated with the extraction of a

block b ∈ Bm to its progression variables. Constraint set (21) restricts the mining of a parcel to its
available tonnage.

∑
(m,j)∈Am

∑
l∈Lb

∑
p∈Pbl

f t
pmj = xt

b −xt−1
b (20)

∀m∈M, ∀b∈Bm, ∀t∈ T | x0
b = 0

∑
t∈T

∑
(m,j)∈Am

f t
pmj ≤ τp (21)

∀m∈M, ∀b∈Bm, ∀l ∈Lb, ∀p∈Pbl
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4. Problem Instances
We evaluate our LNS method on three real world mining projects.

4.1. Test Case 1 (T1)
T1 is a copper deposit comprising of 64 blocks, a 15 year planning horizon, and a single saleable
product. The model contains no blending constraints, and no minimum production constraints. For
confidentiality reasons, no further details can be revealed.

4.2. Oyu Tolgoi project
Oyu Tolgoi (OT) is a large copper and gold deposit in the south of the Gobi region in Mongolia,
jointly owned by the Mongolian government and Rio Tinto. It is composed of both open-pit and
underground mines, with production expected to reach over 500 kt of copper per annum by 2027.

We capture only the open pit mines of the deposit in our model. The model is comprised of
two large open pits, each containing more than 100 blocks, with each block containing parcels
of multiple material types. The model has a supply chain network comprised of multiple dumps,
stockpiles and crushers. Blending constraints ensure the production of saleable gold, silver, and
copper products. Minimum production constraints are not present in this model. The OT model is
defined over a horizon of 15 years, and contains 4.4 million variables and 3.4 million constraints.

4.3. Pilbara Iron Ore System
The Pilbara Iron Ore system is composed of over 200 pits distributed across 17 hubs. These pits
contribute to five iron ore products whose composition is controlled by blending constraints. These
products are transported through a 200km rail system that connects the 17 hubs to 4 ports. Mini-
mum production constraints are enforced across subsets of pits. The model is defined over a horizon
of 15 years, and is composed of 11.8 million variables and 9.4 million constraints.

5. Recovery of a Feasible Solution
Sliding windows is a popular technique for tackling large-scale time-indexed optimization prob-
lems. It decomposes such problems by splitting the planning horizon into windows, and solving
the problem for each window in turn. We model our instantiation of the heuristic on the work of
Cullenbine et al. (2011).

Let W denote the number of time periods in each window (its width). The heuristic starts by
solving the MIP over periods 1 to W . Once this sub-problem is solved, we move the start of
our window forward to period W − O, where O represents an overlap. This parameter controls
the extent to which consecutive problems overlap in terms of the horizon. As the window moves
forward to period W −O, all variables in periods 1 to W −O− 1 are fixed to the solution found
after solving the first sub-problem. This process is repeated until the last time period in our horizon
has been scheduled.

There are two major drawbacks of the heuristic, as it has been described above. When minimum
production targets are present across the planning horizon, it may be the case that these targets can
only be satisfied by stockpiling material in early time periods. With the short-term view of each
window, the necessity of doing this may not be apparent, resulting in infeasible sub-problems as
our window moves forward. The second drawback is that in the optimal solution to our MIP, for a
given instance, it may be that certain capex decisions are triggered in early time periods. The width
of the window may be too small, however, to see the future benefits of triggering these decisions.
Increasing widow size increases the complexity of each sub-problem and the time required to
generate an initial solution. We address both of these limitations by extending each window with
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Table 4 Four neighbourhood formation strategies used during LNS.

STRATEGY SECTION DESCRIPTION

Blending 6.2.1 Seeks to support schedule changes while respecting blending constraints.

Timing 6.2.2 Changes to the scheduling of multiple blocks, across multiple time periods, are supported.

Pit links 6.2.3 Exploits the presence of minimum production constraints.

Trigger 6.2.4 Seeks to improve NPV by allowing key capex decisions, such as the opening or closing of
a pit, to be changed.

H relaxed time periods. Instead of solving sub-problems containing W time periods, we solve sub-
problems containing W +H time periods, with all integer variables in the last H of these periods
becoming continuous.

6. Large Neighbourhood Search
We use a novel path-based neighbourhood formation process to construct neighbourhoods in our
LNS-based approach (Section 6.1). In conjunction with this process, we define a series of novel
strategies to guide neighbourhood formation during each iteration of solving. These strategies seek
to exploit characteristics of the problem model, and of the current best found solution. We use four
neighbourhood formation strategies, as outlined in Table 4, and described in detail across Sections
6.2.1 to 6.2.4.

6.1. Path-Based Neighbourhoods
Given the highly constrained nature of our model, we observe that the likelihood of finding new,
and better, solutions is low unless our neighbourhood allows changes in the extraction sequence
across multiple time periods, involving blocks that span precedence chains, and that have the poten-
tial to increase NPV if the timing of their extraction changes.

We may have a block b that, if mined earlier, would increase NPV. To achieve this change, and
retain a feasible schedule, we may need to adjust the scheduling of blocks in a precedence chain
involving b. Let B denote the set of blocks across all pits. We form neighbourhoods by repeatedly
selecting a focal block f ∈ B, forming a path around that block, p(f)⊂B, and adding the blocks
in p(f) to our neighbourhood. This process is repeated until our neighbourhood reaches an upper
bound on its size, N̄ .

6.1.1. Block Selection To form neighbourhoods with blocks that are likely to have an impact
on NPV, we select focal blocks randomly on the basis of a weighted distribution. Each block is
assigned a weight, designed to represent its value for the purposes of scheduling. We consider
several different methods for weighting blocks: random; objective; minimum dependencies; and
mixed criteria. These methods are described in Table 5, and form the basic approach for weighting
blocks for neighbourhood selection. Section 6.2 describes four further strategies for adjusting these
weights by taking into specific features of our model such as blending and minimum production
constraints, and capex decisions.

6.1.2. Path Formation To form a path around a block f , we first consider the blocks in its
restricted cone above, CA(f). These are the predecessors of f that belong to the same bench as f .
Both f , and CA(f), are added to p(f). We then consider the blocks in its restricted cone below,
CB(f), which are also added to p(f). To expand this path, we randomly select a block b in CA(f)
according to their values, as per Section 6.1.1. Block b and CA(b) are added to p(f). At the same
time, we select a block b′ in CB(f), adding both b′ and CB(b′) to p(f). We continue this process
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Table 5 Block selection strategies used in neighbourhood formation.

STRATEGY DESCRIPTION

Random (RAND) Focal blocks are selected randomly from B.

Objective (OBJ) The contribution of a block to the objective function is used as its weight. In this
paper, we use the Iron (Fe) content of the block as a proxy for its contribution to
the objective function.

Minimum Dependencies (MD) Blocks with fewer predecessors and successors are given higher weights than
those with more. The weight of block with n predecessors and successors in
total, is set to 1/n for n> 0 and 0 otherwise. The idea is to bias selection toward
potential bottleneck blocks that, when scheduled, have a substantial influence on
the overall schedule.

Mixed Criteria (MIX) Each LNS solving thread is assigned one of the three weighting methods to use
– random is assigned to the first thread, objective to the second, and minimum
dependencies to the third, with the pattern repeated across the remaining threads.

Figure 1 Visual depiction of the formation of a path of blocks, around a focal block f ∈ B, during the con-
struction of a neighbourhood.

of expanding our path upwards, and downwards, until the cones above and below our selected
blocks are both empty, or we have reached the maximum neighbourhood size, N̄ . Figure 1 visually
depicts the formation of a path-based neighbourhood.

6.2. Neighbourhood Formation Strategies
Section 6.1 describes the basic method we use to form path-based neighbourhoods. We define
several variations of this approach, each designed to exploit different aspects of the model structure,
and current best solution, in order to maximise the likelihood of finding a better solution. While
these strategies exploit specific features of our model, these features are typical of real-world long-
term mine planning models.

6.2.1. Blending Blending constraints exist in our model, for each time period. Each block
makes a certain contribution to each of these constraints, for each of the available paths along
which material from the block can travel. This contribution may be positive, negative, or zero.
These constraints are satisfied if the sum of these contributions, over the set of blocks in our
model, is greater than zero. Using the Blending strategy, we keep track of the total contribution
of blocks already in the neighbourhood being formed, N , to each of the blending constraints, c,
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denoted c(N). While the blocks in N will be mined across different time periods, we consider an
approximation in which we imagine the total contribution of the neighbourhood to each blending
constraint, as if it was being mined all at once.

The Blending strategy restricts focal block selection to the set of blocks with non-zero weights,
and that do not make a negative contribution to any blending constraint c where c(N)< 0, given
the current state of N . This is effectively achieved by setting the weight of blocks that do not satisfy
this criterion to zero when selecting focal blocks. To form a path around a focal block, the process
of Section 6.1.2 is followed, with no restrictions on which blocks are selected to extend the path.

6.2.2. Timing For a given focal block, f , let Sf and Ff denote the time periods in which mining
starts, and finishes, in the current best solution. If the focal block is not scheduled for extraction, we
set Sf = Ff = |T |+1. When using the Timing strategy, we start by following the neighbourhood
formation process described in Section 6.1. Once we select a focal block for which Sf < |T |+1,
we restrict all subsequent focal block selections to the set of blocks with both non-zero weights
and that either start being extracted, or are mined to completion, in a period between Sf and Ff .
The idea is to form a neighbourhood with subsets of blocks mined at similar times.

Once a neighbourhood has been formed, we reject it, and form another, if all focal blocks
involved in its construction are not scheduled for mining in the current best found solution. The
intuition is that these neighbourhoods have a low likelihood of leading to a better solution.

6.2.3. Pit Links We consider instances of our model with minimum production constraints.
Each of these constraints is defined over a subset of pits. To find an improved solution, we need to
be able to make changes to an existing schedule while still satisfying these constraints.

Under the Pit Links strategy, we adjust the weights of blocks, for the purpose of focal block
selection, as the neighbourhood is constructed. Initially, blocks are weighted as per Section 6.1.1.
After the first path of blocks is added to the neighbourhood, these values are adjusted for sub-
sequent focal block selections. Let MN denote the subset of pits that are covered by the current
neighbourhood, N . A pit m is covered by N if there exists a block b ∈N that belongs to m. We
set the weights of all blocks b to zero if b does not belong to a pit in MN and b does not belong
to a pit that is linked, by a minimum production constraint, to a pit in MN . If the weights of all
remaining blocks are zero, and we have not reached the maximum neighbourhood size, we reset
all block weights to their original values.

6.2.4. Trigger Our model involves decisions, such as the opening of a pit, that are associated
with capex costs. Adjusting the timing of when a pit is opened, or even if the pit is never opened,
has the potential to achieve significant changes in NPV. In our model, binary variables, denoted
pit triggers, are associated with the opening of each pit (variables witm). We can associate each pit
trigger variable with a subset of blocks. The scheduling of these blocks determines the timing of
these decisions. Under the Trigger strategy, we do not form path-based neighbourhoods. Instead,
we randomly select a trigger variable, and include its associated blocks in the neighbourhood being
constructed. We repeat this process until we reach a desired neighbourhood size.

6.3. Solving Strategies
In addition to neighbourhood construction strategies and parallelism, we employ a number of other
strategies to improve the performance of the overall algorithm. These are: RINS-based techniques
when solving each MIP (Section 6.3.1); variations on what variables are fixed for a given neigh-
bourhood (Section 6.3.2); and varying termination criteria (Section 6.3.3).
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6.3.1. RINS Relaxation Induced Neighbourhood Search (RINS) is a neighbourhood construc-
tion approach that utilises a current incumbent solution and information obtained by solving the
linear relaxation of a MIP (Danna et al. 2005). The idea is that variables that take on the same
value in the incumbent, and in the MIPs linear relaxation, will likely take on the same value in a
good solution. We borrow this idea to allow larger neighbourhood sizes, in terms of numbers of
blocks, while retaining reasonable solve times in each iteration of LNS. When using this strategy,
we first solve the linear relaxation of each MIP formed during LNS. We fix each integer variable
that takes on the same value in the current best solution (the incumbent), and in the solution to the
linear relaxation, to that value. The MIP is then re-solved.

6.3.2. Fixing variables For a given neighbourhood, N , we form a restricted MIP based on N
as follows. For each block b that does not belong to N , we fix the mining decisions relating to that
block to their values in the current best solution. The decisions we consider fixing for a block b are
the block start and depletion binaries ztb and ytb and the flow variables f t

pij .
We consider two different levels of fixing: S/D; and S/D + Flow. Under S/D, we fix only the

block start and depletion variables for blocks that do not belong the neighbourhood N . Under
S/D + Flow, which we abbreviate to S/D + F in our analysis of results, we fix the block start and
depletion variables for blocks outside of N , and the flow variables for blocks that do not belong to
the same pit as any block in N .

We anticipate that for most blocks, we will not be able to radically change the time at which
they are mined in a single iteration of LNS. We define an unfix window UW such that for any
block b whose decision variables are to be unfixed in an LNS solve, they are unfixed in the window
[Sb −UW , Fb +UW ] where Sb denotes the period in which b is first extracted, and Fb the period
in which it is depleted. If b is never fully depleted, or is never extracted at all, Fb +UW is set to
the end of the planning horizon. If b is never extracted, Sb −UW is set to the start of the planning
horizon. The purpose of the unfix window is to control the size of each LNS MIP.

6.3.3. Termination Criteria We define two criteria to determine when to terminate LNS. The
first is a time limit, LT , where LNS terminates after LT seconds. The second is an improvement
rate, Limp. LNS terminates after a minimum number of iterations, Liter, have been performed
and the rate of solution improvement, Rimp, falls below Limp%. We define Rimp as the sum of
percentage improvements across all iterations thus far, divided by the number of iterations.

7. Results
All experiments have been conducted on a machine with an Intel Xeon Platinum 8176 chip
(2.1GHz), and 1TB of RAM. All MIPs are solved with Gurobi 9.11 using the following parameter
settings: NumericFocus (1); MIPFocus (1); PrePasses (2); AggFill (200); and Heuristics (0.25). All
other parameters are set to their default values. Through informal experimentation, this parameter
setting was found to elicit the best performance from Gurobi when solving the full MIP models of
our three problem instances.

We first evaluate our sliding windows method for generating initial feasible solutions across
varying window size (W ), relaxed horizon length (H), and overlap (O). Tables 6–8 report the
quality of solutions found by sliding windows, in terms of their gap to either a known optimal
solution or a best known upper bound, for the T1, OT, and Pilbara models. We vary W from 1 to 7,
H from 0 to 4, and O from 0 to 2. A ‘–’ indicates either that the combination of parameter values
could not be used in conjunction, or that sliding windows did not yield a feasible solution. For a
given window size and horizon length, increasing the overlap generally results in a better initial
solution at the cost of increased run times. Increasing the window size generally results in a better
initial solution at the cost of increased run times. Controlling the window size appears to be the
most effective method for achieving a desired trade off between solution quality and solve time.
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Table 6 T1: Quality of solutions formed by sliding windows, recording the gap % to the known optimal solution
and the time (s) required to find these solutions for varying window size (W ), relaxed horizon length (H), and overlap
(O). MIPs are terminated at a MIP gap of 0.1%.

H = 0, O= 0 H = 0, O= 1 H = 0, O= 2 H = 2, O= 1 H = 4, O= 1
W Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s)

1 20.3 15 – – – – – – – –
2 20.2 11 18.2 26 – – 17.2 34 17.2 42
3 16.9 10 16.6 18 16.1 27 17.2 32 17.2 38
4 19.7 10 19 23 14.1 20 7.1 31 8.3 44
5 16.2 11 7.5 25 6.2 25 8.5 47 7.5 46
6 17.6 13 13.9 28 8.5 35 15.1 46 15.1 68
7 6.5 21 8 39 13.9 35 7.1 61 7.1 75

Table 7 OT: Quality of solutions formed by sliding windows, recording the gap % to the best bound found after
148 hours of solving the full model, and the time (s) required to find these solutions for varying W , H, and O. MIPs
are terminated at a MIP gap of 0.1%.

H = 0, O= 0 H = 0, O= 1 H = 0, O= 2 H = 2, O= 1 H = 4, O= 1
W Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s)

1 99.9 152 – – – – – – – –
2 99.9 110 99.9 150 – – 99.9 162 37.7 168
3 99.9 97 99.9 112 99.9 144 99.9 122 37.8 125
4 99.9 92 99.9 98 99.9 103 48.3 105 27.1 108
5 68.3 85 59.6 92 48.4 90 27.1 98 27.1 102
6 27.1 87 27.1 85 27.1 84 27.1 89 27.1 88
7 27.1 78 27.1 87 27.1 87 27.1 90 27.1 90

Table 8 Pilbara: Quality of solutions formed by sliding windows, recording the gap % to the best bound found after 148
hours of solving the full model, and the time (ks, 1000s) required to find these solutions for varying W , H, and O. MIPs are
terminated at a MIP gap of 10%, or after 5000s.

H = 0, O= 0 H = 0, O= 1 H = 0, O= 2 H = 2, O= 1 H = 4, O= 1
W Gap (%) Time (ks) Gap (%) Time (ks) Gap (%) Time (ks) Gap (%) Time (ks) Gap (%) Time (ks)

1 12.2 1.9 – – – – – – – –
2 9.9 2.1 8.9 3.1 – – 9.6 15.6 – –
3 9.3 2.7 8.9 3.0 8.2 7.2 8.3 14.3 – –
4 9.6 4.1 8.2 4.9 9.6 7.3 – – – –

7.1. T1
Table 9 records the quality of solutions found by LNS for model T1, across varying neighbourhood
sizes (number of blocks), focal block selection methods (Minimum dependencies-MD, random
selection-RAND, objective contribution-based selection-OBJ, and mixed criteria-MIX), and vari-
able fixing strategies (S/D and S/D+F). Recall that the S/D fixing method fixes the values of block
start and depletion time binary variables for blocks outside of our neighbourhood, while S/D+F
additionally fixes the value of the material flow variables for those blocks. Also recall that to form
our path-based neighbourhoods, we repeatedly select a focal block, using a chosen strategy, form
of path of blocks around that focal block, and add that path to our neighbourhood. The three key
strategies for selecting focal blocks alternately select blocks randomly, favour blocks with a higher
contribution to the objective function, or with fewer predecessors and successors (minimum depen-
dencies). The mixed criteria setting alternates between using these three methods when forming
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Table 9 T1: Average time (s) spent by LNS, and average quality of solutions found (% gap to known optimal)
across 10 differently seeded runs, each over 10 threads. Initial solution with a gap of 16.6% obtained by sliding
windows (H = 0, O= 1, W = 3). Solutions compared given varying focal block selection methods (MD, MIX, OBJ,
and RAND), varying neighbourhood size (N), differing variable fixing methods (S/D and S/D + F), and use of RINS
(Yes/No). LNS MIPs solved to a gap of 0.1%. LNS is terminated when the improvement rate falls below 1%. Best
performing settings are in bold. Final row starts with a initial solution with a gap of 20.3% (H = 0, O= 0, W = 1).

N Focal Block Use of RINS Fixing Method Avg Time (Min, Max) (s) Avg Gap (Min, Max) (%)

Initial solution: gap of 16.6%, sliding windows (H = 0, W = 1, O= 0)

100s MIP time limit

10 MD Yes S/D 126, (114,137) 15.6 (15.5,15.9)
20 MD Yes S/D 597, (479,683) 0.1 (0,0.3)
30 MD Yes S/D 734, (683,817) 0 (0,0)
40 MD Yes S/D 1350, (1230,1464) 0 (0,0)

30 MD Yes S/D + F 740 (686,817) 0 (0,0)

30 MIX Yes S/D 676, (620,736) 0 (0,0)
30 OBJ Yes S/D 410, (360,445) 16.1 (15.5,16.3)
30 RAND Yes S/D 707, (647,807) 0 (0,0)

30 MD No S/D 1022, (730,1619) 10 (0,15.6)

200s MIP time limit

30 MD No S/D 1562, (1226,1928) 0 (0,0)

100s MIP time limit, Timing neighbourhood formation strategy applied

30 MD Yes S/D 716, (645,897) 0 (0,0)

Initial solution: gap of 20.3%, sliding windows (H = 0, W = 1, O= 0)
100s MIP time limit

30 MD Yes S/D 811, (725,977) 0 (0,0)

neighbourhoods across the threads of computation used by LNS. We also consider the impact of
the RINS-based strategy of Section 6.3.1 when solving each MIP during LNS.

For each parameter setting considered in Table 9, we record the average quality of solutions
found, in terms of their gap to a known optimal solution, across 10 differently seeded LNS runs.
We start LNS from two different initial solutions, one with a gap of 16.6% to the known optimal
(the first 11 entries in Table 9), and the second with a gap of 20.3% (the last entry in Table 9). The
purpose of this is to analyse how the performance of LNS changes when it starts from solutions
that differ in quality. The LNS explores 10 neighbourhoods in parallel, and is terminated when the
improvement rate falls below 1%. Each MIP solve is afforded either 100 or 200 seconds, and is
terminated at a gap of 0.1%. Best performing settings are in bold. Alongside the average quality
of solutions, we report the quality of the best and worst solution found across the 10 runs, and the
average, minimum, and maximum solve time. These solve times do not include the time spent by
sliding windows to form an initial feasible solution. For T1, we set the unfix window UW to the
length of the planning horizon.

Using objective contribution to guide focal block selection during LNS is a poor choice for T1
as the LNS gets stuck in a local optima. However, using minimum dependencies, random selec-
tion, or a mixture of criteria (including objective contribution), avoids this problem. Fixing flow
variables in addition to block start and depletion binaries has no discernable benefit for T1. The
RINS strategy of solving the LP relaxation of each MIP, and then fixing the integer variables that
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Figure 2 T1: Gap to optimal for solutions found during 10 differently seeded runs of LNS, over time, using
the settings shown in the first bold entry of Table 9 and 10 LNS threads. Run time is inclusive of the
time spent during sliding windows (with H = 0, O = 1, and W = 3). Starting feasible solution had a
gap of 16.6%. LNS is compared against the performance of Gurobi on the same model.
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take on the same value across the LP relaxation solution and the current best solution found during
LNS, appears to be effective at reducing overall run times. Where RINS was not applied, we had
to increase the time limit afforded to each MIP solve from 100s to 200s in order to find the optimal
solution. Without RINS, and with the increased MIP time limits, we more than double the LNS
run time.

Increasing neighbourhood size has the effect of both increasing the run time of LNS, but increas-
ing the quality of the final solution. A neighbourhood size of 30 blocks allows us to find the optimal
solution across all 10 runs when using an appropriate focal block selection strategy and RINS. Of
the proposed neighbourhood formation strategies, only Timing is applicable. The performance of
LNS when switching between the use of no strategy, and Timing, across the 10 LNS threads (five
use no strategy, five use Timing), and applying no strategy across all 10 threads, is similar (entries
3 and 11 in Table 9). Most of the results in Table 9 have started with a solution with a gap of
16.6%. The last row starts with a solution with a gap of 20.3%. LNS is still able to find the optimal
solution, yet requires more time.

Figure 2 compares the performance of LNS, using the settings shown in the first bold entry of
Table 9, and 10 LNS threads, against solving the T1 model directly with Gurobi. The parameter
settings used for the full model solve are defined at the start of Section 7. These settings were
chosen to extract the best performance from Gurobi when solving the full model. We plot the gap
between the solutions found during LNS to the known optimal solution, over the 10 differently
seeded runs, against those found by Gurobi over time. In the plots of LNS solution quality over
time, run time is inclusive of the time spent during sliding windows to form the first solution.

7.2. OT
Table 10 reports the average quality of solutions found by LNS to the OT model across varying
neighbourhood sizes, focal block selection methods, variable fixing strategies, and neighbourhood
formation strategies. We report solution quality in terms of the gap to the best known upper bound
on the objective of the model, found after solving the full model with Gurobi for 148 hours. For OT,
we set the unfix window UW to the length of the planning horizon. OT has blending constraints,
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Table 10 OT: Average time (ks) spent by LNS, and average quality of solutions found (gap to best upper bound
found after 148 hours of solving the full model) across 10 seeded runs, each over 10 threads. Initial solution with
a gap of 27.1% found by sliding windows (H = 2, O= 1, W = 5). Columns are defined as per Table 9. LNS MIPs are
terminated at a gap of 0.05%, or after 600s. LNS is terminated after 12 hrs or when the improvement rate fell below
1%. Final row starts with a initial solution with a gap of 99.9% (H = 0, O= 0, W = 4). Best settings are in bold.

N Focal Block Use of RINS Fixing Method Avg Time (Min, Max) (s) Avg Gap (Min, Max) (%)

Neighbourhood formation strategy: Timing and Blending

50 OBJ Yes S/D 2.3, (1.5,3.0) 17.5 (12.5,26.0)
100 OBJ Yes S/D 15.5, (9.7,18.9) 10.3 (9.1,11.3)
100 OBJ Yes S/D + F 15.1, (11.2,20.3) 10.7 (8.9,11.3)
100 OBJ No S/D 12.3, (5.5,19.1) 13.0 (9.1,24.0)
150 OBJ Yes S/D 22.7, (20.6,27.7) 10.5 (9.0,11.5)

100 MD Yes S/D 19.4, (17.4,21.2) 9.9 (7.8,11.2)
100 RAND Yes S/D 20.3, (18,23.5) 9.6 (7.9,10.8)
100 MIX Yes S/D 18.9, (16.8,21.2) 10.0 (8.4,10.7)

Neighbourhood formation strategy: Timing only

100 OBJ Yes S/D 8, (5,17.5) 11.4 (10.2,13.1)

Neighbourhood formation strategy: Blending only

100 OBJ Yes S/D 17.1, (12.7,21.3) 10.5 (8.8,12.0)

Neighbourhood formation strategy: None

100 OBJ Yes S/D 5.6, (1.7,10.6) 13.9 (11.1,26.0)

Neighbourhood formation strategy: Timing and Blending
Sliding windows (H = 0, W = 4, O= 0)

100 OBJ Yes S/D 43.7, (43.3,44.3) 9.8 (8.2,11.2)

but no minimum production constraints. Consequently, both the Timing and Blending strategies
are applicable. We contrast the performance of LNS when either, or both, of these strategies are
applied. Most entries in Table 10 start with an initial solution with a gap of 27.1%, obtained by
sliding windows with parameters H = 2, O = 1, and W = 5. The last entry in Table 10 applies
LNS to a starting solution with a gap of 99.9%, obtained by sliding windows using H = 0, O= 0,
and W = 4. LNS MIPs are solved to a gap of 0.05%, or to a time limit of 600s. LNS is terminated
after either 12 hours or when the improvement rate falls below 1%. Best settings are in bold.

As with T1, fixing flow variables, in addition to block start and depletion binaries, does not
appear to have a discernable benefit. Most entries in Table 10 involve use of the RINS strategy when
solving LNS MIPs. Without this strategy (the fifth entry in Table 10), MIP solves are more likely
to be cut off before reaching a desired gap, given the available time limit (of 600s). This results
in a smaller improvement rate over time, and in general an earlier termination. The first 8 entries
of Table 10 involve both the Timing and Blending strategies being used. Entries 9-11 show the
average quality of solutions found when using only Timing, only Blending, or neither. It seems that
the Blending strategy has most benefit for this instance, although applying both strategies appears
to be better than applying just one or neither. Although using a focal block selection method other
than OBJ seems to find solutions with slightly smaller gaps to the best known bound, on average,
this comes at a cost of increased runtimes.

Figure 3 compares the performance of LNS, using the settings shown in the first bold entry of
Table 10, and 10 LNS threads, against solving the OT model directly with Gurobi.
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Figure 3 OT: Optimality gap over 10 differently seeded runs of LNS, over time, using the settings shown in
the first bold entry of Table 10 and 10 LNS threads. Run time is inclusive of the time spent during
sliding windows (with H = 2, O= 1, and W = 5). Starting feasible solution had a gap of 27.1%. LNS
is compared against a full solve with Gurobi. The full solve reaches a gap of 14.9% after 72 hours
of solving. All five LNS solves reach a gap of under 11% within 5.5 hours of solving.
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7.3. Pilbara
Solving the Pilbara model with Gurobi does not yield a feasible solution after 7 days of solve
time. We compare the quality of solutions found by LNS with the best upper bound on the optimal
objective found after solving the full model for 148 hours. The Pilbara model contains blending
constraints, capex decisions, and minimum production constraints. All the neighbourhood forma-
tion strategies of Table 4 are applicable.

Table 11 reports the average quality of solutions found by LNS to the Pilbara model across vary-
ing parameter settings. We use a fixed neighbourhood size of 200 blocks across all experiments.
For T1 and OT, we did not utilise the unfix window strategy described in Section 6.3.2. We were
able to leave variables related to the mining of blocks in our neighbourhood unfixed across the
entire planning horizon. As the Pilbara model is substantially larger than T1 and OT, we find that
setting a small unfix window (UW ) is required to keep each MIP solve manageable. For each
parameter setting, we report the average quality of solutions found by LNS, in terms of their gap to
the best known upper bound on the optimal objective value, over 10 differently seeded runs, each
utilising 10 threads of computation. LNS MIPs were solved to a gap of 0.05%, or a time limit of
400s. Each LNS run was terminated after 12 hours. The entries in Table 11 have started with an
initial solution with a gap of 8.2%, found by sliding windows with H = 0, O = 1 and W = 4. The
best settings have been highlighted in bold.

In contrast to T1 and OT, use of the RINS solving strategy was not helpful for the Pilbara model
(contrast entries 1 and 3 in Table 11). The cost of two solves for each LNS MIP under the RINS
strategy (an LP relaxation, and then a further restricted MIP) was higher than a single solve of the
original LNS MIP. Moreover, we need to fix the additional flow variables to keep each LNS MIP
at a manageable size (contrast entries 1 and 2 in Table 11). For T1 and OT, there was no substantial
difference in the quality of solutions obtained with the two variable fixing strategies. Entries 1 and
4 in Table 11 highlight the impact of increasing the unfix window from 2 to 4.

The Trigger neighbourhood formation strategy appears to be the most effective for the Pilbara
model. Entries 5-7 in Table 11 contrast the performance of LNS when only the Trigger, Timing
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Table 11 Pilbara: Average time (ks) spent by LNS, and average quality of solutions found (% gap to best upper bound
found after 148 hours of solving the full model) across 10 seeded runs, each over 10 threads. Columns are defined as per
Table 9. Initial solution with a gap of 8.2% found by sliding windows (H = 0, O = 1, and W = 4). Neighbourhood size of 200
blocks. LNS MIPs terminated at a gap of 0.05%, or after 400s. LNS is terminated after 12 hrs. Best settings are in bold.

Neighbourhood Focal Block Fixing Method Use of RINS Unfix Window (UW ) Avg Gap (Min, Max) (%)
Strategies Used Selection

None OBJ S/D+F No 2 4.7 (4.5, 4.9)
None OBJ S/D No 2 8.2 (8.2, 8.2)
None OBJ S/D+F Yes 2 4.8 (4.4, 5.0)
None OBJ S/D+F No 4 4.8 (4.6,5.1)

Trigger OBJ S/D+F No 2 4.5 (4.4, 4.6)
Timing, Blending OBJ S/D+F No 2 4.7 (4.6,4.9)
Pit Links, Timing OBJ S/D+F No 2 4.6 (4.3, 4.9)

All OBJ S/D+F No 2 4.5 (4.2, 4.7)
− Blending OBJ S/D+F No 2 4.5 (4.2,4.8)
− Pit Links OBJ S/D+F No 2 4.5 (4.3,4.8)

All MD S/D+F No 2 4.5 (4.3, 4.8)
All RAND S/D+F No 2 4.5 (4.2, 4.7)
All MIX S/D+F No 2 4.5 (4.3, 4.8)

Figure 4 Pilbara: Optimality gap over 10 differently seeded runs of LNS, over time, using the settings shown
in the first bold entry of Table 11 and 10 LNS threads. Run time is inclusive of the time spent during
sliding windows (with H = 0, O= 1, and W = 4).
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and Blending, and Timing and Pit Links strategies have been applied, respectively. The difference
in the quality of solutions obtained when using the Trigger strategy versus not using any strategy
(average gaps of 4.5 versus 4.7) was statistically significant (Wilcoxon signed rank test applied to
the two populations of solutions: p = 0.027). The Blending strategy was least effective, resulting
in no improvement, on average, in solution quality relative to using no strategy. Entry 8 in Table
11 reports the average quality of solutions found when applying all four neighbourhood formation
strategies. Entries 9 and 10 consider the performance of LNS when we use all strategies but Blend-
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ing and Pit Links, respectively. It is clear that the inclusion of the less effective strategies, such as
Blending, does not compromise the performance of LNS.

The performance of LNS under objective, minimium dependencies, random, and mixed criteria
focal block selection was similar. This is evident by comparing entries 8 and 11-13 in Table 11.
Figure 4 shows the performance of LNS, using the settings shown in the first bold entry of Table
11.

8. Conclusion
We have presented a Large Neighbourhood Search (LNS) based method for solving long-term
open-pit mine planning problems, demonstrating the effectiveness of the approach on three real
world mining projects of varying complexity. We have proposed a novel path-based neighbourhood
structure, and a range of neighbourhood formation strategies, designed to maximise the likelihood
that our neighbourhoods will lead us to improved, feasible solutions. Our LNS-based method is
able to find, within hours, near optimal solutions to planning problems that cannot be solved with an
off-the-shelf solver in a reasonable time, or with reasonable computational resources. Future work
will consider how our LNS approach performs on a stochastic two-stage version of our long-term
mine planning problem. In this context, new neighbourhood formation strategies may be possible
that specifically target stochastic elements of the model.
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