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Abstract

Mitigating the disparate impact of statistical machine learning methods is crucial for ensuring fairness.
While extensive research aims to reduce disparity, the effect of using a finite dataset—as opposed to
the entire population—remains unclear. This paper explores the statistical foundations of fair binary
classification with two protected groups, focusing on controlling demographic disparity, defined as the
difference in acceptance rates between the groups. Although fairness may come at the cost of accuracy
even with infinite data, we show that using a finite sample incurs additional costs due to the need to
estimate group-specific acceptance thresholds. We study the minimax optimal classification error while
constraining demographic disparity to a user-specified threshold. To quantify the impact of fairness
constraints, we introduce a novel measure called fairness-aware excess risk and derive a minimax lower
bound on this measure that all classifiers must satisfy. Furthermore, we propose FairBayes-DDP+, a
group-wise thresholding method with an offset that we show attains the minimax lower bound. Our lower
bound proofs involve several innovations. Experiments support that FairBayes-DDP+ controls disparity
at the user-specified level, while being faster and having a more favorable fairness-accuracy tradeoff than
several baselines.

Contents

1 Introduction 2

2 Related Literature 4

3 Classification with a Bounded Demographic Parity 5
3.1 Fair Bayes-Optimal Classifier under Demographic Parity . . . . . . . . . . . . . . . . . . . . . 5

4 Minimax Lower Bound for Fair Classification 7
4.1 Measure of Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.2 Conditions on the Data Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.3 Minimax Lower Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5 FairBayes-DDP+: Plug-in Thresholding Rule with Offset 11
5.1 Local Polynomial Estimator of the Regression Function . . . . . . . . . . . . . . . . . . . . . 11
5.2 Bandwidth Parameter with Possible Jump Discontinuity . . . . . . . . . . . . . . . . . . . . . 12
5.3 Plug-in Estimators with Offset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.4 FairBayes-DDP+: Plug-in Estimator with Offset for Fair Classification . . . . . . . . . . . . . 13

6 Asymptotic Analysis of FairBayes-DDP+ 15
6.1 Convergence Rate and Minimax Optimality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6.2 Asymptotic Fairness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

∗University of Pennsylvania. zengxl19911214@gmail.com.
†University of California, Los Angeles. guangcheng@ucla.edu.
‡University of Pennsylvania. dobriban@wharton.upenn.edu.

1

ar
X

iv
:2

40
3.

18
21

6v
1 

 [
st

at
.M

L
] 

 2
7 

M
ar

 2
02

4



7 Simulation Studies 18
7.1 Simulation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
7.2 Empirical Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

8 Summary and Discussion 21

A Fair Bayes-optimal Classifier with a Nonzero Disparity 24

B Additional Lemmas 25

C Proofs of Results in Section 4 29
C.1 Proof of Proposition 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
C.2 Proof of Theorem 4.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

D Proofs of Theorems in Section 5 43
D.1 Proof of Proposition 5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

E Proofs of Theorems in Section 6 44
E.1 Proof of Theorem 6.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
E.2 Proof of Theorem 6.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
E.3 Proof of Theorem 6.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

F Proofs of Lemmas 48
F.1 Proof of Lemma B.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
F.2 Proof of Lemma B.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
F.3 Proof of Lemma B.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
F.4 Proof of Lemma B.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
F.5 Proof of Lemma B.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
F.6 Proof of Lemma B.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
F.7 Proof of Lemma B.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
F.8 Proof of Lemma B.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
F.9 Proof of Lemma B.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
F.10 Proof of Lemma B.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
F.11 Proof of Lemma B.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
F.12 Proof of Lemma B.12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
F.13 Proof of Lemma B.13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
F.14 Proof of Lemma B.14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
F.15 Proof of Lemma B.15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
F.16 Proof of Lemma B.16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
F.17 Proof of Lemma B.17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

G Bayes-optimal Classifier for Data Distribution from Section 7.1 65

1 Introduction

Fairness, a concept closely related to justice, has been studied for thousands of years, dating back at least
to Plato’s Republic (Plato, 1994; Rawls, 1971, 2001). Many laws and provisions aim to ensure fairness and
protect the rights and interests of individuals, especially those of vulnerable groups. Recently, the fairness of
automated decision-making systems enabled by statistical machine learning has come into question. Due to
their ever-improving performance, advanced machine learning methods are increasingly being utilized in high-
stakes sectors—ranging from credit lending (Ma et al., 2018) and criminal recidivism forecasting (Angwin
et al., 2016) to medical diagnoses (Gupta and Mohammad, 2017)—where their decisions profoundly affect
individual lives.

Concurrently, these powerful predictive models risk making discriminative decisions against certain
protected groups, such as those defined by race, gender, and other characteristics (e.g., Angwin et al.,
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Figure 1: Our FairBayes-DDP+ method achieves a
better fairness-accuracy tradeoff than other baselines
on the ”Adult” dataset. Here DDP is the demographic
disparity, i.e., the difference in the probabilities of a
positive classification among the two protected groups;
see Section 7.2 for details.

Table 1: Performance of our FairBayes-DDP+
method with various pre-specified disparity levels on
the “Adult” dataset; see Section 7.2. Our method
controls the demographic disparity (DDP) at a user-
specified value δ, while achieving a high accuracy
(ACC); while having a small standard deviation (SD)
over 1000 repetitions.

δ DDP (SD) ACC (SD)
0.00 0.008 (0.003) 0.791 (0.001)
0.02 0.013 (0.003) 0.794 (0.001)
0.04 0.033 (0.003) 0.797 (0.001)
0.06 0.054 (0.003) 0.800 (0.001)
0.08 0.074 (0.003) 0.803 (0.000)
0.10 0.096 (0.003) 0.805 (0.000)
0.12 0.115 (0.002) 0.807 (0.000)
0.14 0.135 (0.002) 0.808 (0.000)

2016; Flores et al., 2016; Corbett-Davies et al., 2023). This has motivated a growing body of work literature
on the algorithmic aspects of achieving fairness (see Section 2). However, statistical considerations—such as
the effect of having a finite dataset on fairness and accuracy in the entire population, and the optimal use
of data—are much less studied.

To shed light on the statistical aspects of fairness, we study fair classification, where various population-
level fairness criteria exist, see Section 2. Classifiers that conform to such fairness constraints and are most
accurate—Bayes-optimal—in the population have been identified (Corbett-Davies et al., 2017; Menon and
Williamson, 2018; Chzhen et al., 2019; Schreuder and Chzhen, 2021; Wei et al., 2021; Zeng et al., 2022, 2024).
From these works, it is known that there can be fundamental trade-offs between accuracy and fairness even
if the entire population is known and available to determine a classifier.

However, it is not known how much additional cost using a finite dataset induces. What is the best
possible—minimax optimal—accuracy and fairness that we can achieve with a finite sample? For a different
problem, fair regression, this has been studied by Chzhen and Schreuder (2022) and Fukuchi and Sakuma
(2023); but even the definitions of fairness are unrelated.

To study fairness in classification, we consider the most commonly discussed fairness metric, demographic
parity. Since the accuracy of unfair classifiers can be higher than that of fair classifiers, we introduce a novel
notion of fairness-aware excess risk to measure performance (See Definition 4.1). This metric coincides
with the conventional excess risk when the classifier is fair, and appropriately penalizes unfairness otherwise.
Further, it is minimized by the most accurate—Bayes-optimal—fair classifier.

Since the properties of the data distribution affect performance, we quantify the behavior of the data near
the decision boundary via the margin condition studied in non-parametric classification (Tsybakov, 2004;
Audibert and Tsybakov, 2007; Lei et al., 2013). In fair binary classification with a binary protected attribute,
we derive a minimax lower bound for the error when the group-wise probabilities of the positive class—or, the
regression functions—are Hölder-smooth and the group-wise density functions of features satisfy a so-called
strong density condition (Audibert and Tsybakov, 2007),

When the disparity constraint is sufficiently stringent, the group-wise acceptance thresholds need to be
adjusted to satisfy the fairness constraint. Estimating these thresholds incurs an additional error, and the
minimax lower bound is determined by the maximum of this and the error in estimating the regression
functions for each protected group. Deriving the additional term in the lower bound requires an innovative
argument, by proposing an intricate novel construction of two similar distributions with distinct decision
thresholds in Le Cam’s two point lower bound method (see Part II of Appendix C.2 for details).

After deriving the lower bound, we complete the minimax analysis by proposing FairBayes-DDP+, a
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method that we show is minimax rate optimal. Our method is a group-wise thresholding algorithm, and
improves previous estimators of fair Bayes-optimal classifiers (Menon and Williamson, 2018; Zeng et al., 2022,
2024) in two key components: (1) it identifies and adapts to possible jump discontinuities of the disparity
as a function of the group-wise threshold (see Section 5.2) and (2) it introduces offsets to handle the case
where the decision boundary has a positive probability (see Section 5.3). We prove that FairBayes-DDP+
is minimax optimal and asymptotically controls disparity.

We summarize our contributions as follows.

• Minimax lower bound in binary classification with a bounded demographic disparity:
We study classification problems with a constraint on demographic disparity. We introduce the
notion of fairness-aware excess risk (Definition 4.1) to measure the performance of classifiers given
fairness constraints. When the data distribution satisfies appropriate versions of Hölder-smoothness
condition and Tsybakov noise condition (Tsybakov, 2004), we derive the a minimax lower bound for
fair classification with a bounded demographic disparity. We find that, in addition to a population-level
effect, fairness may or may not have a significant effect on accuracy in a finite sample. Our analysis
requires a novel construction of distributions in the lower bound, in the case where the group-wise
decision thresholds need to be adjusted to satisfy the fairness constraint.

• Minimax optimal classifier: We introduce FairBayes-DDP+, an algorithm for binary fair
classification, improving on previous methods in two key ways: (1) by adapting to possible jump
discontinuities of the disparity as a function of the group-wise threshold (see Section 5.2) and (2) by
introducing offsets to handle a decision boundary with a positive measure (see Section 5.3). We further
prove that FairBayes-DDP+ attains minimax optimality. In experiments, we compare it with several
baselines and show that it has a competitive performance. FairBayes-DDP+ controls disparity at
the user-specified level, and attains a better tradeoff between fairness and accuracy in a finite sample
than baselines. See Figure 1 and Table 1 for a brief example, and see Section 7 for details. Our
numerical results can be reproduced with the code provided at https://github.com/XianliZeng/

FairBayes-DDP-Plus.

2 Related Literature

There is a great deal of related work, and we can only discuss the most closely related papers.
Definitions of Fairness. Many fairness metrics have been developed. Group fairness (e.g., Calders et al.,

2009; Dwork et al., 2012; Hardt et al., 2016, etc) targets parity across protected groups, while individual
fairness (e.g., Joseph et al., 2016; Lahoti et al., 2019; Ruoss et al., 2020, etc) aims to provide nondiscriminatory
predictions for similar individuals.

Algorithms Aiming for Fairness. There is a large literature on fair machine learning algorithms,
broadly categorized into three types: pre-processing (e.g., Feldman et al., 2015; Lum and Johndrow, 2016;
Johndrow and Lum, 2019; Calmon et al., 2017, etc), in-processing (e.g., Goh et al., 2016; Zafar et al., 2019;
Narasimhan, 2018; Celis et al., 2019; Cotter et al., 2019; Cho et al., 2020, etc), and post-processing (e.g.,
Fish et al., 2016; Corbett-Davies et al., 2017; Valera et al., 2018; Menon and Williamson, 2018; Chzhen et al.,
2019; Alabdulmohsin, 2020; Schreuder and Chzhen, 2021; Jang et al., 2022, etc), see Caton and Haas (2023)
for a review.

Our method is a post-processing algorithm, aiming to mitigate disparities in the output of a classifier.
Specifically, it is a group-wise thresholding rule (e.g., Fish et al., 2016; Corbett-Davies et al., 2017; Valera
et al., 2018; Menon and Williamson, 2018; Chzhen et al., 2019; Alabdulmohsin, 2020; Schreuder and Chzhen,
2021; Jang et al., 2022, etc), estimating the probability of a positive label given the features for each protected
group, and assigning thresholds to protected groups aiming for parity. Menon and Williamson (2018); Zeng
et al. (2024) propose post-processing algorithms aiming to estimate the Bayes-optimal classifier, but do not
study the finite-sample performance of their methods. We refine their method with an offset and show that
it achieves the minimax optimal rate.

Nonparametric Classification and Minimax Optimal Rate. For a binary classification problem
where the goal is to predict a label Y ∈ {0, 1} based on observed d-dimensional features x ∈ X := Rd, a
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probabilistic classifier f is a function1 X → [0, 1] that specifies the probability of predicting Ŷf = 1 given

X = x, i.e., f(x) = P(Ŷf = 1 | X = x) for all x ∈ X . Classification methods include plug-in rules, which
estimate the regression function η : x 7→ P(Y = 1 | X = x) and makes decisions by thresholding it, and
empirical risk minimizers (ERM). The convergence rates and minimax optimality of both methods have been
studied (e.g., Mammen and Tsybakov, 1999; Yang, 1999, etc).

When x 7→ P(Y = 1 | X = x) is β-Hölder-smooth, n is the sample size, and d is the dimensionality, Yang
(1999) showed that the convergence rate of a plug-in classifier is n−β/(2β+d), the same as the convergence rate
of the estimated regression function. Moreover, that work proved that the rate is minimax optimal. When the
regression function is well-behaved near the decision boundary, the convergence rate is faster. By considering
boundary fragments with β-smooth boundaries and noise satisfying the γ-exponent condition, Mammen and
Tsybakov (1999) and Tsybakov (2004) proved that the minimax convergence rate is n−β(γ+1)/[β(γ+2)+(d−1)γ],
which can be achieved by ERM rules. Audibert and Tsybakov (2007) showed that a plug-in rule with a
local polynomial regression estimate is minimax optimal under the γ-exponent condition and for β-smooth
regression functions, with a rate n−β(γ+1)/(2β+d).

3 Classification with a Bounded Demographic Parity

In fair binary classification problems with labels in Y = {0, 1}, two types of features are observed: the usual
features X ∈ X , and the binary protected (or, sensitive) features A ∈ A = {0, 1}2, with respect to which
we aim to be fair. For example, in a credit lending setting, X could refer to education level and income,
A could indicate the race or gender of the individual, and Y could correspond to the status of repayment
or defaulting on a loan. Here and below, for all a ∈ A and y ∈ Y = {0, 1}, we denote by PX , PX|A=a and
PX|A=a,Y=y the marginal distribution function of X, the conditional distribution function of X given A = a,
and the conditional distribution of X given A = a, Y = y, respectively.

To evaluate the fairness of a classifier, we consider demographic parity, the possibly most popular fairness
metric.3 A probabilistic classifier f : X × A → [0, 1] specifies the probability of predicting Ŷf = 1 given

X = x and A = a, i.e., f(x) = P(Ŷf = 1 | X = x,A = a) for (x, a) ∈ X × A. The classifier f satisfies

demographic parity if its prediction Ŷf is probabilistically independent of the protected attribute A: Ŷf A,

so that PX|A=1

(
Ŷf = 1

)
= PX|A=0

(
Ŷf = 1

)
. However, demographic parity may be too stringent in certain

cases, and it is desired to have more flexible metrics controlling disparate impact. To measure the disparate
impact of a classifier, we use the demographic disparity or DDP (Cho et al., 2020), i.e., the difference in the

probabilities of predicting Ŷf = 1 across groups:

DDP(f) = PX|A=1(Ŷf = 1)− PX|A=0

(
Ŷf = 1

)
. (3.1)

We denote by Fδ the set of functions satisfying the δ-parity constraint |DDP(f)| ⩽ δ, so that

Fδ = {f : X ×A → [0, 1] : |DDP(f)| ⩽ δ}.

Subject to this δ-parity constraint, we aim to minimize the misclassification error. This is achieved by δ-fair
Bayes-optimal classifiers, defined as

f⋆δ ∈ argmin
f∈Fδ

P
(
Y ̸= Ŷf

)
. (3.2)

3.1 Fair Bayes-Optimal Classifier under Demographic Parity

The classification thresholds of fair Bayes-optimal classifiers need to be adjusted for each group, see Corbett-
Davies et al. (2017); Menon and Williamson (2018); Chzhen et al. (2019); Schreuder and Chzhen (2021);

1All functions considered will be measurable with respect to the Borel sigma algebras on the input and output spaces; this
will not be mentioned further.

2Conventionally, we consider A = 0 to represent the underprivileged group that could potentially face discrimination.
3In future work, we expect that our insights can seamlessly be extrapolated to other group fairness metrics, including equality

of opportunity (Hardt et al., 2016) and predictive equality (Corbett-Davies et al., 2017).
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Wei et al. (2021); Zeng et al. (2022, 2024) and Proposition A.1 for details. To leverage these results, we need
some additional notation.

Intuitively, to minimize the error, we should output Ŷ = 1 if the probability of Y = 1 given X = x and
A = a is large. Therefore, the group-conditional probabilities—or, regression functions—ηa, a ∈ A defined
for all x ∈ X via ηa(x) := P(Y = 1 | A = a,X = x), play a crucial role. All optimal classifiers f will aim to

output Ŷf = 1 if ηa(x) is large.
To explain this in detail, for a ∈ A, we denote pa := P(A = a), and let T = [−min(p1, p0),min(p1, p0)].

For a ∈ {0, 1} and t ∈ T , define group-wise thresholds via the formula Ta(t) = 1/2 + (2a− 1)t/(2pa). Let
F t be the class of group-wise thresholding rules with thresholds Ta(t) for each a ∈ A as follows; where I(·)
is the indicator function that equals unity if its argument is true, and zero otherwise:

F t :=
{
f : X ×A → [0, 1], f(x, a) = I (ηa(x) > Ta(t)) + τaI (ηa(x) = Ta(t)) , (τ1, τ0) ∈ [0, 1]2

}
.

These classifiers output Ŷf = 1 if ηa(x) is large, and the thresholds Ta(t) are allowed to depend on the group
a ∈ A. It turns out that parametrizing the thresholds of acceptance via t 7→ Ta(t) for t ∈ T suffices to obtain
Bayes-optimal classifiers.

Further, define the disparity functions D− : T → R and D+ : T → R such that for all t ∈ T ,

D−(t) = PX|A=1

(
η1(X) >

1

2
+

t

2p1

)
− PX|A=0

(
η0(X) ⩾

1

2
− t

2p0

)
; (3.3)

D+(t) = PX|A=1

(
η1(X) ⩾

1

2
+

t

2p1

)
− PX|A=0

(
η0(X) >

1

2
− t

2p0

)
. (3.4)

By inspection, both functions are non-increasing, and for any t ∈ R, D−(t) ⩽ D+(t). Moreover D− is
right-continuous and D+ is left-continuous. It is not hard to see, and it is shown in Zeng et al. (2024), that
for all t ∈ T , the DDP of group-wise thresholding rules ranges between D−(t) and D−(t); specifically

D−(t) = inf
f∈Ft

DDP(f) and D+(t) = sup
f∈Ft

DDP(f).

In particular, D−(0) and D+(0) are, respectively, the infimum and supremum of the DDP over all
unconstrained Bayes-optimal classifiers from (3.2) with δ = ∞.

We will focus on the setting where the group-wise thresholds are uniquely defined, which holds if there
is enough probability mass near the decision boundaries (and is ensured by our formal conditions to follow).
In this case, a δ-fair Bayes-optimal classifier f⋆δ has the following form. Define the following “inverse” of the
functions D−, D+ on R⩾0, for δ ⩾ 0,

t⋆δ = inf
t∈T

{D−(t) < δ} = inf
t∈T

{D+(t) < δ}. (3.5)

Since D− is non-increasing and right-continuous, we have D−(t
⋆
δ) = δ if D− is continuous at t⋆δ , and D−(t

⋆
δ) <

δ while limt→(t⋆δ)
− D−(t) > δ if D− has a jump discontinuity at t⋆δ , A similar statement applies to D+.

Define the group-wise thresholds of the two groups

T ⋆
δ,1 =

1

2
+

t⋆δ
2p1

and T ⋆
δ,0 =

1

2
− t⋆δ

2p0
. (3.6)

Then, for some τ⋆δ,1, τ
⋆
δ,0 ∈ [0, 1]—specified later in (5.11)—there is a δ-fair Bayes-optimal classifier f⋆δ that

is a group-wise thresholding rule of the form, for all x, a,

f⋆δ (x, a) = I
(
ηa(x) > T ⋆

δ,a

)
+ τ⋆δ,aI

(
ηa(x) = T ⋆

δ,a

)
. (3.7)

As discussed in Appendix A, the behavior of the fair Bayes-optimal classifiers on the decision boundary
{x, a : ηa(x) = T ⋆

δ,a} is generally not unique. For the sake of generality, for instance to deal with discrete-
valued data, we will allow the decision boundary to have a positive probability mass. However, it will help
to have a specific choice of the Bayes-optimal classifier to estimate. Our minimax lower bounds and rate of
convergence will not depend on the specific choice of the Bayes-optimal classifier.
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Moreover, we will assume without loss of generality that D+(0) ⩾ −D−(0). This condition means that

among Bayes-optimal classifiers, PX|A=1(Ŷf = 1)− PX|A=0(Ŷf = 1) can be larger than its negative. In this
sense, the group A = 0 is underprivileged. If this condition does not hold, we can introduce a new variable
Ã defined as 1−A, which swaps the groups characterized by A = 1 and A = 0. We will construct estimators
of D+(0) and D−(0), and these may be used to decide which group is underprivileged.

Remark 1 (The impact of fairness on Bayes-optimal classifiers). Since by definition D−(0) ⩽ D+(0), there
are three possibilities for δ > 0: (1) δ < D−(0), (2) D−(0) ⩽ δ < D+(0), and (3) δ ⩾ D+(0).

1. Fairness-impacted case: δ < D−(0). When δ is relatively small with δ < D−(0), no unconstrained
Bayes-optimal classifier satisfies the fairness constraint |DDP(f)| ⩽ δ. As a result, we need to estimate
the group-wise thresholds, and the fairness constraint has a significant impact on the fair Bayes-optimal
classifiers. Thus, we call this case the fairness-impacted case.

2. Fair-boundary case: D−(0) ⩽ δ < D+(0). When δ is moderately large with D−(0) ⩽ δ < D+(0),

there is at least one unconstrained classifier f⋆ ∈ argminf∈F P(Y ̸= Ŷf ) satisfying |DDP(f⋆)| ⩽ δ, and
the optimal group-wise thresholds are 1/2 for both protected groups. In this case, we need to change
the classifiers on the decision boundaries {x : ηa(x) = 1/2} to satisfy fairness constraint. We thus
refer to this case as the fair-boundary case. Since changes on the decision boundary do not change
the accuracy, the misclassification rate of fair Bayes-optimal classifiers equals the unconstrained Bayes
error.

3. Automatically fair case: δ ⩾ D+(0). Finally, we call δ ⩾ D+(0) the automatically fair case, as all
unconstrained Bayes-optimal classifiers are δ-fair.

As we can see, t⋆δ is non-zero only in the fairness-impacted case when δ < D−(0).

4 Minimax Lower Bound for Fair Classification

The minimax approach from statistical decision theory characterizes fundamental performance limits. An
estimator is minimax rate-optimal if its convergence rate matches the minimax lower bound, i.e., the best
possible rate of convergence over all estimators. In this section, we derive a minimax lower bound for the
fair classification problem. This requires quantifying the performance of classifiers. We begin by introducing
a proper metric for fair classification problems.

4.1 Measure of Performance

Consider first an unconstrained classification problem with a Bayes-optimal classifier f⋆ := f⋆∞ defined in
(3.2) with δ = ∞. The performance of a classifier f is commonly measured by its excess risk over f⋆ (e.g.,
Hastie et al., 2009), defined as

dR(f, f
⋆) := P(Y ̸= Ŷf )− P(Y ̸= Ŷf⋆) =

∑
a∈A

pa

∫
(f(x, a)− f⋆(x, a)) (1− 2ηa(x)) dPX|A=a(x). (4.1)

For fair classification problems, a first attempt may be to consider the excess risk of f over a fair
Bayes-optimal classifier f⋆δ from (3.7), i.e., dR (f, f⋆δ ). However, in the fairness-impacted case, dR (f, f⋆δ )
can be negative, as the fair Bayes-optimal classifier does not generally minimize the unconstrained risk, i.e.,
f⋆δ /∈ argminf∈F P(Y ̸= Ŷf ). As a result, dR (f, f⋆δ ) is not directly suitable for measuring the cost of fairness.

As an alternative, we define the following fairness-aware excess risk to quantify the performance of a
classifier within the context of fair classification. Its functional form is analogous to (4.1), and we provide
further justification below.

Definition 4.1 (Fairness-aware excess risk). Let δ ⩾ 0 and f⋆δ be a δ-fair Bayes-optimal classifier from
(3.2), and consider T ⋆

δ,a from (3.6). For any classifier f : X × {0, 1} → [0, 1], we define the fairness-aware
excess risk as

dE (f, f⋆δ ) = 2
∑
a∈A

pa

[∫
(f(x, a)− f⋆δ (x, a))

(
T ⋆
δ,a − ηa(x)

)
dPX|A=a(x)

]
. (4.2)
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Observe first that dE (f, f⋆δ ) ⩾ 0, as from (3.7), it follows that f(x, a) − f⋆δ (x, a) ⩽ 0 when ηa(x) > T ⋆
δ,a

and f(x, a) − f⋆δ (x, a) ⩾ 0 when ηa(x) ⩽ T ⋆
δ,a. Moreover, it follows from Proposition A.1 that the choice of

the δ-fair Bayes-optimal classifier f⋆δ does not affect the value of dE . The following result further elucidates
the fairness-aware excess risk dE , connecting it to the classical excess risk dR.

Proposition 4.2 (Characterizing fairness-aware excess risk). For any classifier f ∈ F , the fairness-aware
excess risk simplifies as follows, in the cases identified in Remark 1:

dE (f, f⋆δ ) =

{
dR (f, f⋆δ ) , in the automatically fair and fair-boundary cases δ ⩾ D−(0);
dR (f, f⋆δ ) + t⋆δ [DDP(f)− δ] , in the fairness-impacted case δ < D−(0);

Moreover, for δ-fair classifiers f with |DDP(f)| ⩽ δ, we have dR (f, f⋆δ ) ⩾ dE(f, f
⋆
δ ).

We will show a lower bound on the minimax excess fairness-aware risk dE over all classifiers, and an
upper bound realized by an asymptotically δ-fair classifier. This will ensure that our method is asymptotically
optimal with respect to both dE and dR among all δ-fair classifiers.

4.2 Conditions on the Data Distribution

In this section, we introduce conditions on the data distribution that we need in our theoretical analysis,
which require some notations and definitions. For a scalar β, we denote by ⌊β⌋+ := ⌈β⌉ − 1 the maximal
integer that is strictly less than β. For an integer d > 0, and a multi-index s ∈ Nd, we denote |s| = s1+. . .+sd.
Moreover, for x ∈ Rd and s ∈ Nd, we denote xs = xs11 · . . . · xsdd . The first concept is the smoothness of the
per-group regression functions ηa, a ∈ A.

Definition 4.3 (Hölder Smoothness). Consider β > 0 and any ⌊β⌋+-times continuously differentiable real-
valued function g on Rd. For any x ∈ Rd, we denote by gx the Taylor approximation of degree ⌊β⌋+ of g at
x, such that for all x′ ∈ Rd,

gx(x
′) =

∑
s∈Nd:|s|⩽⌊β⌋+

(x′ − x)s

s!
g(s)(x).

For Lβ > 0, the (β, Lβ ,Rd)-Hölder class of functions, denoted Σ(β, L,Rd), is defined as the set of functions
g : Rd → R that are ⌊β⌋+ times continuously differentiable and satisfy, for any x, x′ ∈ Rd, the inequality
|g(x′)− gx(x

′)| ⩽ Lβ∥x′ − x∥β.

The next definition is the margin condition, which we adapt to the fair classification problem from
Tsybakov (2004); Audibert and Tsybakov (2007), Lei et al. (2013), and which controls the regularity of the
regression function near the decision boundary. Let γ ⩾ 0, and let P be a distribution defined on X ×A×Y
with conditional probability functions ηa, a ∈ A. For D−, D+ from (3.3) and (3.4) and t⋆δ from (3.5), define
the boundary probability functions gδ,−, gδ,+ : [0,∞) → [0, 2] for the positive (“+”) and negative (“-”) sides
of t⋆δ , such that for all ε ⩾ 0,

gδ,−(ε) = D−(t
⋆
δ)−D−(t

⋆
δ + ε)

= PX|A=1

(
T ⋆
δ,1 < η1(X) ⩽ T ⋆

δ,1 +
ε

2p1

)
+ PX|A=0

(
T ⋆
δ,0 −

ε

2p0
⩽ η0(X) < T ⋆

δ,0

)
;

gδ,+(ε) = D+(t
⋆
δ − ε)−D+(t

⋆
δ)

= PX|A=1

(
T ⋆
δ,1 −

ε

2p1
⩽ η1(X) < T ⋆

δ,1

)
+ PX|A=0

(
T ⋆
δ,0 < η0(X) ⩽ T ⋆

δ,0 +
ε

2p0

)
.

Clearly, both gδ,−, gδ,+ are monotone non-decreasing, while gδ,+ is right-continuous and gδ,− is left-
continuous. One can verify that all notions introduced so far can be defined not just when δ ∈ [0,∞),
but also when δ = ∞, which corresponds to the unconstrained case.

Definition 4.4 (γ-Margin Condition, Adapted from Tsybakov (2004), Audibert and Tsybakov (2007), Lei
et al. (2013)). Let γ ⩾ 0, and let P be a distribution defined on X ×A×Y with group-conditional probabilities
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ηa(x, a) = P(Y = 1 | A = a,X = x), for x ∈ X and a ∈ A. For δ ⩾ 0, we say that (η1, η0) satisfies the
strong γ-margin condition for δ ∈ [0,∞] with respect to P if, first, there exist constants ε0, Uγ > 0 such that,

max{gδ,−(ε), gδ,+(ε)} ⩽ Uγε
γ , for all 0 < ε < ε0; (4.3)

and second, for j ∈ {+,−}, if Dj(t
⋆
δ) = δ,4 then

gδ,j(ε) ⩾ U−1
γ ε1/γ , for all 0 < ε < ε0. (4.4)

Conditions (4.3) and (4.4) provide upper and lower bounds, respectively, on the probability mass of
the regression functions near the decision boundaries. Condition (4.3) adapts the γ-exponent condition
introduced by Tsybakov (2004), Audibert and Tsybakov (2007) for characterizing the convergence rate
in nonparametric classification to our problem. When γ is large, the probability mass of the conditional
probability function near the decision boundary decays quickly with ε → 0, suggesting that the estimating
the conditional probability functions ηa near the decision boundary is less challenging.

For conventional classification problems, an upper such as (4.3) bound is sufficient to characterize problem
difficulty. However, for fair classification, a lower bound on the density is also necessary to characterize the
estimation error of t⋆δ when D−(t

⋆
δ) = δ or D+(t

⋆
δ) = δ. In the fairness-impacted case from Remark 1, the

difficulty of estimating t⋆δ > 0 is impacted by the behavior of D− and D+ near t⋆δ . This is quantified by
gδ,−(ε) = D−(t

⋆
δ)−D−(t

⋆
δ + ε) and gδ,+(ε) = D+(t

⋆
δ − ε)−D+(t

⋆
δ) for ε > 0. Without Condition (4.4), D−

and D+ could potentially be “flat”, making it hard to estimate t⋆δ , as illustrated in case (3) of Figure 2. In
addition, if either D−(t

⋆
δ) < δ or δ < D+(t

⋆
δ), we do not need a lower bound for that side of the distribution

around t⋆δ , as the gap between δ and Dj(t
⋆
δ), j ∈ {+,−} ensures that t⋆δ can be estimated accurately; see case

(1) of Figure 2.
Moreover, we also need to ensure that the mass of X is sufficiently “spread out”, as per the following

strong density condition introduced by Audibert and Tsybakov (2007). For x ∈ Rd and r ⩾ 0, denote by
Bd,2(x, r) the closed d-dimensional Euclidean ball centered at x with radius r.

Definition 4.5 (Strong Density Condition (Audibert and Tsybakov, 2007)). Fix a compact set C̃ ⊂ Rd.
We say that a distribution of (X,A) with the pair of conditional distributions (PX|A=1,PX|A=0) satisfies the
strong density condition if there exist positive constants cµ, rµ, µmin and µmax such that the following hold.
For a ∈ {0, 1}, PX|A=a is absolutely continuous with respect to the Lebesgue measure λ on Rd, and it is

supported on a compact (cµ, rµ)-regular set Ωa ⊂ C̃, namely

λ [Bd,2(x, r) ∩ Ωa] ⩾ cµλ
[
Bd,2(x, r) ∩ C̃

]
, for all x ∈ Ωa and 0 < r ⩽ rµ.

Moreover, for a ∈ {0, 1}, the density function µa of PX|A=a with respect to the Lebesgue measure satisfies
µmin ⩽ µa(x) ⩽ µmax for x ∈ Ωa and µa(x) = 0 otherwise.

Letting δ > 0 be the chosen disparity level, with the above definitions, our parameter space
PΣ(δ, β, Lβ , γ)—or, PΣ for short—is defined as:

Definition 4.6 (Parameter space). For δ ⩾ 0, β, Lβ > 0 and γδ, γ∞ ⩾ 0, we denote by PΣ the class of all
probability distributions P on X ×A× Y satisfying the following.

1. The group-conditional probability functions ηa : x 7→ P(Y = 1 | A = a,X = x), for x ∈ X and a ∈ A,
satisfy η1, η0 ∈ Σ(β, Lβ ,Rd), for the Hölder parameter space Σ from Definition 4.3.

2. Further, (η1, η0) satisfies the margin condition from Definition 4.4 at δ for γδ and at ∞ for γ∞.

3. The pair of distributions (PX|A=1,PX|A=0) satisfies the strong density condition from Definition 4.5.

Without loss of generality, we can assume that η1 and η0 share the same smoothness parameter β and
satisfy the margin condition with the same parameters γδ, γ∞. When η1 ∈ Σ(β1, Lβ,1,Rd) satisfies the
γδ,1-margin condition and η0 ∈ Σ(β0, Lβ,0,Rd) satisfies the γδ,0-margin condition, we can set β = β1 ∧ β0
and γδ = γδ,1 ∧ γδ,0.

We will further assume that γδβ ⩽ d, which in particular holds if γδ and β are constants; this condition
is commonly used when deriving minimax lower bounds in nonparametric classification (e.g., Audibert and
Tsybakov, 2007; Cai and Wei, 2021, etc.).

4If D−(t⋆δ) < δ < D+(t⋆δ), the lower bound is unnecessary.
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4.3 Minimax Lower Bound

We now present our first major result: a minimax lower bound for fair classification. The estimation errors
of both the regression functions and the group-wise thresholds contribute to the overall error in estimating
a δ-fair Bayes-optimal classifier. Based on the discussion in Remark 1 and after Definition 4.4, there are two
cases: (1) The non-trivial fairness-impacted regime, where t⋆δ > 0 (fairness-impacted regime from Remark 1)
and D− (t⋆δ) = D+ (t⋆δ) = δ (D− and D+ are continuous at t⋆δ), so that the estimation of t⋆δ may affect the
minimax lower bound; (2) The classical regime, which is the complement of case (1). Here, t⋆δ does not need
to be estimated, or can be estimated at a fast rate.

Theorem 4.7 (Minimax lower bound for fair classification). For a fixed δ ⩾ 0, let β, γδ > 0 be such that
γδβ ⩽ d, and consider the class of distributions PΣ = PΣ(δ, β, Lβ , γδ, γ∞, cµ, rµ, µmin, µmax) from Definition
4.6. Let δsign = DDP(f⋆δ ).

5 Then, there is C > 0 depending only on the problem hyperparameters, such that

for any n ⩾ 1 and any classifier f̂δ,n estimating the δ-fair Bayes-optimal classifier f⋆δ from (3.7), constructed
from a dataset Sn = {(Xi, Ai, Yi)}ni=1 sampled i.i.d. from some P from PΣ, we have the following.

(1). Non-trivial fairness-impacted regime. In the fairness-impacted regime from Remark 1, if in
addition D− (t⋆δ) = D+ (t⋆δ) = δ, we have

inf
f̂δ,n

sup
P∈P

E⊗n
[
dE

(
f̂δ,n, f

⋆
δ

)]
⩾ C

[
n−(γδ+1)β/(2β+d) + n−(γδ+1)/(2γδ)

]
. (4.5)

(2). Classical regime. Otherwise, let γ′ = γ∞ in the automatically fair and fair-boundary cases from
Remark 1, i.e., for D−(0) ⩽ δ; and γ′ = γδ in the fairness-impacted case from Remark 1, if further
D− (t⋆δ) < δ or D+ (t⋆δ) > δ. Then, we have

inf
f̂δ,n

sup
P∈P

E⊗n
[
dE

(
f̂δ,n, f

⋆
δ

)]
⩾ Cn−(γ′+1)β/(2β+d). (4.6)

We have the following observations:

1. In the fairness-impacted case, there are two sources of error: the estimation error of the regression
functions near the decision boundaries, and the estimation error of the thresholds, i.e., balancing the
probability of success in each group. The first is well characterized by the boundary behavior of ηa,
a ∈ {0, 1}. For the second estimation error, when D− (t⋆δ) < δ or D+ (t⋆δ) > δ, t⋆δ can be estimated with
a rate faster than the regression functions, see Case (1) of Figure 2. When D− (t⋆δ) = D+ (t⋆δ) = δ,
and D+ or D− is relatively “steep” near t⋆δ , one can estimate t⋆δ at a faster rate (as shown in Case
(2) of Figure 2). In contrast, when D+ or D− is relatively “flat” near t⋆δ , the error in estimating t⋆δ is
larger (See Case (3) of Figure 2). In addition to the population-level accuracy loss due to fairness, the
constraint worsens the minimax lower bound when γδ > 1 + d/(2β).

2. In the automatically fair and fair-boundary cases, the lower bound (4.6) depends only on the error in
estimating the regression functions near the optimal threshold 1/2; and coincides with the lower bound
from conventional non-parametric classification problems (Audibert and Tsybakov, 2007).

The proof of Theorem 4.7, presented in Section C.2, consists of two parts, considering the convergence
rate of regression functions and of thresholds separately. In the first part, starting with an approach
similar to Audibert and Tsybakov (2007), we construct a set of distributions indexed by the hyper-cube
and meticulously verify the distributional assumptions. We then leverage Assouad’s lemma to derive the
lower bound from (4.6). In the second step, we consider the effect of estimating the thresholds. We depart
from the existing proof ideas, introducing a novel construction which provides two very similar distributions
with different optimal thresholds t⋆δ . Then, by applying Le Cam’s Lemma, we establish the additional term
of the lower bound for the fairness-impacted case.

5We have δsign = δ in the δ-positive DDP case whenD−(0) > δ and δsign = −δ in the δ-negative DDP case whenD+(0) < −δ.
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Figure 2: Estimation error of t⋆δ in three cases, with P(A = 1) = 1/2, X|A = a ∼ U(0, 1) and δ = 0.
As we can see, when D−(t

⋆
δ) < δ < D+(t

⋆
δ), t

⋆
δ can be estimated with a fast rate. When δ = D−(t

⋆
δ) (or

δ = D+(t
⋆
δ)), the convergence rate depends on the slope of D− (or D+) near t

⋆
δ .

5 FairBayes-DDP+: Plug-in Thresholding Rule with Offset

In this section, we complete the picture by proposing an adaptive thresholding estimator that achieves the
minimax lower bounds. Together with Theorem 4.7, this establishes the minimax convergence rate in our
fair classification problems. We first introduce the required estimators.

5.1 Local Polynomial Estimator of the Regression Function

In this section, we recall the definition of the local polynomial estimator of the regression function (e.g,
Tsybakov, 2009; Audibert and Tsybakov, 2007, etc). For a random variable (X,Y ) over Rd × R and n
i.i.d. copies (Xi, Yi)

n
i=1, the local polynomial estimator of the regression function η : Rd → R, such that for

all x ∈ Rd, η(x) = E(Y |X = x), is defined as follows.

Definition 5.1. For a bandwidth h > 0, x ∈ Rd, for an integer k ⩾ 0 and a kernel K : Rd → [0,∞), denote
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by θ̂x a polynomial on Rd of degree k, whose k + 1 coefficients minimize6 over Rk+1

n∑
i=1

(
Yi − θ̂x(Xi − x)

)2
K

(
Xi − x

h

)
. (5.1)

The local polynomial estimator η̂LPn (x) of order k of the value η(x) of the regression function at the point

x is defined by η̂LPn (x) = θ̂x(0) if θ̂x is a unique minimizer of (5.1), and η̂LPn (x) = 0 if θ̂x is a non-unique
minimizer.

For a multi-index s ∈ Nd, and x ∈ Rd, we introduce the vector U(x) = (xs)|s|⩽k and matrix Q =
(Qs1,s2)|s1|,|s2|⩽k with

Qs1,s2(x) =

n∑
i=1

(Xi − x)s1+s2K

(
Xi − x

h

)
.

Audibert and Tsybakov (2007) show that if the matrix Q is positive definite, there exists a unique polynomial
on Rd of degree k minimizing (5.1). The corresponding local polynomial regression function estimator equals,
for all x ∈ Rd,

ηLPn (x) =

n∑
i=1

YiK

(
Xi − x

h

)
U⊤(0)Q−1U(Xi − x).

We refer readers to Audibert and Tsybakov (2007) and Tsybakov (2009) for more details about local
polynomial estimators.

5.2 Bandwidth Parameter with Possible Jump Discontinuity

We saw in Theorem 4.7 that even in the fairness-impacted case, if D− (t⋆δ) < δ or D+ (t⋆δ) > δ, the fair
Bayes-optimal classifier can be estimated with the classical convergence rate for non-parametric regression.
This happens if t⋆δ is a jump discontinuity point7 of t 7→ D−(t) − δ or 7→ D+(t) − δ; by definition, D− and
D+ share the same jump discontinuity points. Even though the disparity functions D−, D+ are estimated at
a non-parametric rate, its jump discontinuities can be estimated with a near-parametric rate. We consider
the following strategy to estimate t⋆δ , by taking possible discontinuities into account.

Let (∆n)n⩾0 and (rn)n⩾0 be two positive sequences that converge to zero slowly (e.g., at rates on the
order of (log log n)−1 and (log n)−1, respectively). First, consider the case where D− and D+ have a jump
discontinuity at t⋆δ . If δ < D+(t

⋆
δ), for ∆n → 0+, we have D+(t

⋆
δ) > δ + ∆n > D−(t

⋆
δ). This implies

that inft>0{D+(t) > δ + ∆n} = t⋆δ . Similarly, if D−(t
⋆
δ) < δ, we have inft>0{D−(t) > δ − ∆n} = t⋆δ .

Other other hand, if both D− and D+ are continuous at t⋆δ with D−(t
⋆
δ) = D+(t

⋆
δ) = δ, it holds that

inft>0{D+(t) > δ + ∆n} < t⋆δ and inft>0{D−(t) > δ + ∆n} > t⋆δ . Motivated by this, letting D̂n be an
estimate of D− (or D+), we define t̂δ,mid, t̂δ,∆n,min and t̂δ,∆n,max as in (5.3) and t̂δ as in (5.4) using empirical
versions of the above relations.

5.3 Plug-in Estimators with Offset

Next, we consider estimating the group-wise probability functions via plug-in estimators with an offset
(Rigollet and Vert, 2009). For a density function g defined on X , the λ-level set of g is Λg(λ) = {x ∈
X , g(x) > λ}. If ĝ is a consistent estimator of g, a first thought is to estimate Λg(λ) by the plug-in estimator

Λ̂g(λ) = {x ∈ X , ĝ(x) > λ}. However, this can be inconsistent if the boundary set {x ∈ X , g(x) = λ} has
positive probability. Alternatively, Rigollet and Vert (2009) proposed plug-in density estimators with offset
(ℓn)n⩾1:

Λ̃g,ℓn(λ) = Λ̂g(λ+ ℓn) = {x ∈ X , ĝ(x) > λ+ ℓn},
where ℓn ⩾ 0 tends to zero as n tends to infinity; see Appendix D for further discussion. Similarly, {x ∈
X , g(x) < λ} and {x ∈ X , g(x) = λ} can be consistently estimated by {x ∈ X , ĝ(x) ⩽ λ − ℓn} and
{x ∈ X , λ− ℓn < ĝ(x) ⩽ λ+ ℓn}, respectively; and we will adapt such ideas to our problem.

6A minimizer always exists, but may not be unique.
7For a function D : R → R, we say that t0 is a jump discontinuity point of D if both the left limit lim

t→t−0
D(t) and right

limit lim
t→t+0

D(t) of D at t0 are finite, and lim
t→t+0

D(t) ̸= lim
t→t−0

D(t).
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Algorithm 1 FairBayes-DDP+: Thresholding Rule with Offset for Fair Classification under Demographic
Parity

Input: Disparity level δ. Dataset Sn = Sn,1 ∪ Sn,0 with Sn = {(xi, ai, yi)}ni=1 and, for a ∈ {0, 1},
Sn,a = {(xa,j , a, ya,j)}na

j=1.
Step 1: Estimate ηa and η0 by local polynomial estimators:

Let U(x) = (xs)|s|⩽⌊β⌋+ , Qa = (Qa,s1,s2)|s1|,|s2|⩽⌊β⌋+ with Qa,s1,s2 =
na∑
j=1

(xa,j − x)
s1+s2 K

(
xa,j−x
hn,a

)
,

and B̄a = (B̄a,s1,s2)|s1|,|s2|⩽⌊β⌋+ with B̄a,s1,s2 = n−1
a h

−(d+s1+s2)
n,a Qa,s1,s2 .

Define

ηLPn,a(x) =

na∑
j=1

Ya,jK

(
xa,j − x

hn,a

)
U⊤(0)Q−1U(Xi − x).

Let

η̂a(x) =


0; λmin(B̄a) ⩽ (log na)

−1 or ηLPn,a(x) < 0;
1; λmin(B̄a) > (log na)

−1 and ηLPn,a(x) > 1;
ηLPn,a(x), otherwise.

Step 2: Estimate the optimal thresholds:

D̂n(t, ℓn,1, ℓn,0) =
1

n1

n1∑
j=1

I

(
η̂1(x1,j) >

1

2
+

nt

2n1
+ ℓn,1

)
− 1

n0

n0∑
j=1

I

(
η̂0(x0,j) >

1

2
− nt

2n0
+ ℓn,0

)
. (5.2)

Set 
t̂δ,mid = inft⩾0

{
D̂n(t, 0, 0) < δ

}
;

t̂δ,∆n,min = inft⩾0

{
D̂n(t, 0, 0) < δ +∆n

}
;

t̂δ,∆n,max = inft⩾0

{
D̂n(t, 0, 0) < δ −∆n

}
,

(5.3)

t̂δ =


t̂δ,∆n,min, t̂δ,mid − t̂δ,∆n,min ⩽ rn;

t̂δ,∆n,max, t̂δ,mid − t̂δ,∆n,min > rn and t̂δ,∆n,max − t̂δ,mid ⩽ rn;

t̂δ,mid, t̂δ,mid − t̂δ,∆n,min > rn and t̂δ,∆n,max − t̂δ,mid > rn.

(5.4)

and

τ̂δ,1 = ρ

(
π̂n,0,+ − π̂n,1,+ + δ̂

π̂n,1,=

)
and τ̂δ,0 = ρ

(
π̂n,1,+ − π̂n,0,+ − δ̂

π̂n,0,=

)
. (5.5)

with

π̂n,a,+ =
1

na

na∑
j=1

I
(
η̂a(xa,j) > T̂δ,a + ℓn,a

)
, π̂n,a,= =

1

na

na∑
j=1

I
(
T̂δ,a − ℓn,a < η̂a(xa,j) ⩽ T̂δ,a + ℓn,a

)
,

(5.6)
and

δ̂ = δ · I
(
D̂n(0, ℓn,1,−ℓn,0) > δ

)
. (5.7)

Output: f̂δ,n from (5.13).

5.4 FairBayes-DDP+: Plug-in Estimator with Offset for Fair Classification

In this section, we introduce our FairBayes-DDP+ method, a classifier for minimax optimal classification
under demographic parity. This method is based on a two-stage plug-in estimator with offsets, where the
first stage estimates the regression functions for each group and the second stage estimates the thresholding
adjustment parameter t⋆δ . As elaborated in Appendix A, the behavior of the fair Bayes-optimal classifier
on the decision boundary is generally not unique. For identifiability, we estimate a specific Bayes-optimal
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classifier, chosen such that the probability of Ŷ = 1 is minimized on the decision boundaries. Consider the
truncation function ρ : R ∪ {∞} → [0, 1] defined as

ρ (x) =

 0, x ⩽ 0
1, x ⩾ 1;
x, otherwise.

(5.8)

and the adjustment of δ in the fairness-impacted case given by

δ̃ = δI (D−(0) > δ) =

{
0, D−(0) ⩽ δ;
δ, D−(0) > δ.

(5.9)

We set, for a ∈ {0, 1},

π⋆
a,+ = PX|A=a(ηa(X) > T ⋆

δ,a) and π⋆
a,= = PX|A=a(ηa(X) = T ⋆

δ,a), (5.10)

and interpreting x/0 = 0 for all x ∈ R here and in what follows, the randomization probabilities

τ⋆δ,1 = ρ

(
π⋆
0,+ − π⋆

1,+ + δ̃

π⋆
1,=

)
and τ⋆δ,0 = ρ

(
π⋆
1,+ − π⋆

0,+ − δ̃

π⋆
0,=

)
. (5.11)

These choices lead to a specific fair Bayes-optimal classifier with the following properties.

Proposition 5.2 (Properties of a specific fair Bayes-optimal classifier). Consider the fair Bayes-optimal
classifier f⋆δ from (3.7), with the thresholds T ⋆

δ,a from (3.6) and the randomization probabilities τ⋆δ,a from
(5.11).

• In the fairness-impacted case where D−(0) > δ, we have that DDP(f⋆δ ) = δ;

• In the automatically fair and fair-boundary cases where D−(0) ⩽ δ, we have that

DDP(f⋆δ ) = 0 if D−(0) ⩽ 0, and DDP(f⋆δ ) = D−(0) if 0 < D−(0) ⩽ δ.

Now, suppose we have a dataset Sn = {(xi, ai, yi)}ni=1. We separate the data according to the protected
information: for a ∈ {0, 1}, we let Sn,a = {(xi, ai, yi) ∈ Sn, ai = a} with na := |Sn,a|. The j-th element of
Sn,a is denoted as (xa,j , a, ya,j), for j ∈ [na].

Step 1: First, we estimate ηa via local polynomial estimation using Sn. Specifically, consider a kernel
K : Rd → R satisfying

(1) there is c > 0 with K(x) ⩾ cI(∥x∥ ⩽ c), for all x ∈ Rd; (2)
∫
Rd K(t)dt = 1;

(3)
∫
Rd(1 + ∥t∥4β)K2(t)dt <∞; (4) supt∈Rd(1 + ∥t∥2β)K(t) <∞.

(5.12)

One can take, for example, K as the Gaussian kernel. Let hn,a > 0, and consider the matrix B̄a =
(B̄a,s1,s2)|s1|,|s2|⩽⌊β⌋+ , where

B̄a,s1,s2(x) =
1

nahdn,a

na∑
j=1

(
xa,j − x

hn,a

)s1+s2

K

(
xa,j − x

hn,a

)
.

Define the regression function estimator η̂a as follows. If the smallest eigenvalue of the matrix B̄a is greater
than or equal to (log na)

−1, for all x, we set η̂a(x) equal to the projection of η̂LPa (x) on the interval [0, 1],
where η̂LPa is the LP (⌊β⌋+) estimator of ηa with bandwidth hn,a > 0 and kernel K satisfying (5.12). If the
smallest eigenvalue of B̄a is less than (log na)

−1, we set η̂a(x) = 0.
Step 2: In the second step, we start by estimating the acceptance threshold for each protected group, via

solving a one-dimensional empirical fairness constraint and then determining the prediction on the decision
boundaries when those have strictly positive estimated probability. We observe that the thresholds of the fair
Bayes-optimal classifier from (3.7) balance the probability measures of the level sets {x ∈ X , η1(x) > T ⋆

δ,1}
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and {x ∈ X , η0(x) > T ⋆
δ,0}. As a result, we can incorporate plug-in estimation with an offset for level set

estimation. Specifically, for a ∈ {0, 1}, some ℓn,a > 0, and any ζ ∈ R, we estimate PX|A=a(ηa(X) > ζ) and
PX|A=a(ηa(X) ⩾ ζ) by n−1

a

∑na

j=1 I (η̂a (xa,j) > ζ + ℓn,a) and n
−1
a

∑na

j=1 I (η̂a (xa,j) > ζ − ℓn,a), respectively.
With this, the probability of the decision boundary can be consistently estimated. Based on (3.7), we
consider the group-wise thresholding rule defined for all x, a by

f tℓ (x, a) = I

(
η̂a(x) >

1

2
+

nt

2(2a− 1)na
+ ℓn,a

)
+ τaI

(∣∣∣∣η̂a(x)− 1

2
+

nt

2(2a− 1)na

∣∣∣∣ ⩽ ℓn,a

)
,

where ηa and pa are estimated by plug-in estimators.
Next, our goal is to construct estimates t̂δ and τ̂δ,a such that the proposed classifier approximately

satisfies the fairness constraint. With D̂n(t, ℓn,1, ℓn,0) from (5.2), we consider plug-in estimators of D−(t)

and D+(t) given by D̂n(t, ℓn,1,−ℓn,0) and D̂n(t,−ℓn,1, ℓn,0) with ℓn,1, ℓn,0 > 0, respectively. We estimate

t⋆δ using the approach introduced in Section 5.2. Let t̂δ defined as in (5.4) and let, for a ∈ {0, 1}, T̂δ,a =
1/2 + (2a − 1)nt̂δ/na. We estimate τ⋆δ,1 and τ⋆δ,1 specified in (5.11) by τ̂δ,a from (5.5), using the plug-in

estimates with offsets (π̂n,a,+, π̂n,a,=) of (π
⋆
a,+, π

⋆
a,+) from (5.6), respectively. Also, δ̃ from (5.9) is estimated

by δ̂ from (5.7). Our final estimate of the δ-fair Bayes-optimal classifier is

f̂δ,n(x, a) = I
(
η̂a(x) > T̂δ,a + ℓn,a

)
+ τ̂δ,aI

(
|η̂a(x)− T̂δ,a| ⩽ ℓn,a

)
. (5.13)

Our plug-in method is directly motivated by the fair Bayes-optimal classifier from Theorem A.1. The offsets
ℓn,a, a ∈ {0, 1} are carefully designed to handle estimation on the boundaries.

Remark 2. In Step 1 of our method, we use the local polynomial estimators only for theoretical purposes, as
they lead to an upper bound matching the minimax lower bound. However, as we show in our experiments,
in practice we can use other methods, such as support vector machines or deep neural networks, to estimate
the regression function for improved performance.

6 Asymptotic Analysis of FairBayes-DDP+

In this section, we study the statistical properties of FairBayes-DDP+. We first derive the convergence rate
of our plug-in method, establishing its minimax optimality. We then show that the constraint |DDP(f)| ⩽ δ
is satisfied up to a vanishing error term.

6.1 Convergence Rate and Minimax Optimality

In this section, we establish the convergence rate of FairBayes-DDP+. The rate depends on the pointwise
convergence of η̂a to ηa, a ∈ {0, 1}. To quantify this rate, the following definition describes a notion of
pointwise convergence of a sequence of estimators of the conditional probability functions ηa, a ∈ {0, 1}.

Definition 6.1 (Pointwise convergence). Let P be a class of distributions for (X,A, Y ) and fix Uη > 0. Let
(ϕn,1)n⩾1 and (ϕn,0)n⩾1 be two positive, monotonically non-increasing sequences. We say that the estimator
sequence (η̂n,1, η̂n,0)n⩾1, where η̂n,1, η̂n,0 is constructed using a sample of size n, converges pointwise at rate
(ϕn,1, ϕn,0)n⩾1 uniformly over P if there are positive constants c1,η, c2,η and Lη, as well as a set Ω ⊂ X ,
such that P(Ω) = 1 and, for a ∈ {0, 1},

sup
P∈P

P⊗n

(
sup
x∈Ω

|η̂n,a(x)− ηa(x)| > ε

)
⩽ c1,η exp

(
−c2,η (ε/ϕn,a)2

)
, Lηϕn,a < ε < Uη. (6.1)

We will usually drop the subscript n and write η̂a = η̂n,a. In the rest of this paper, we let, for ε > 0, for
i ∈ [4] and ι ∈ {t, T, t1, t2, r,D, π}, and for quantities ci,ι > 0,

ψn,1,ι(ε) = c1,ι exp
(
−c2,ι (ε/[ϕn,1 ∨ ϕn,0])2

)
and ψn,2,ι(ε) = c3,ι exp

(
−c4,ιnε2

)
. (6.2)
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With t⋆δ from (3.5), D− and D+ from (3.3) and (3.4), we denote by Ĩ⋆(δ) the indicator function of the
non-trivial fairness-impacted regime introduced in Theorem 4.7, i.e.,

Ĩ⋆(δ) = I({t⋆δ > 0} ∩ {D−(t
⋆
δ) = D+(t

⋆
δ) = δ}). (6.3)

Moreover, for ε > 0 and rn > 0, we write

ω(ε, rn) = Ĩ⋆(δ) · ε+ (1− Ĩ⋆(δ)) · rn, (6.4)

which selects ε in the non-trivial fairness-impacted regime, and rn otherwise. We derive a a general and
abstract convergence rate for t̂δ below, assuming the convergence of η̂a. Later we will apply this result to our
concrete setting. For two scalars a, b, we denote their maximum by max{a, b} or a ∨ b, and their minimum
by min{a, b} or a ∧ b.

Theorem 6.2 (Error bound for estimating t⋆δ). Let P be a class of densities on X ×A×Y, let δ ⩾ 0, and let
(ϕn,1, ϕn,0)n⩾1 be two positive, monotonically non-increasing sequences such that, for constants cµ > 0, µ̃a ⩾
1/2 for a ∈ {0, 1}, we have ϕn,a ⩾ cµn

−µ̃a . Suppose that (η̂1, η̂0) are (ϕn,1, ϕn,0)n⩾1-pointwise convergent to
(η1, η0) as per Definition 6.1, uniformly over P. Then, with D− and D+ from (3.3) and (3.4), there are
constants ci,t, i ∈ [4], Lt, Ut and U∆,t such that, if Lt(ϕn,1 ∨ ϕn,0) < rn < Ut, 2(gδ,−(4rn) ∨ gδ,+(4rn)) <
∆n < U∆ and Lt(ϕn,1 ∨ ϕn,0) < ε < rn hold, then with ψn,j,t, j ∈ {1, 2} from (6.2) and ω from (6.4), we
have for any ε > 0 that

P⊗n
(
|t̂δ − t⋆δ | > ε

)
⩽ ψn,1,t(ε) +

∑
j∈{−,+}

I(δ = Dj(t
⋆
δ))ψn,2,t (gδ,j (ω(ε, rn))) . (6.5)

The bound in (6.5) consists of two parts. The first is determined by the convergence rates of η̂1 and η̂0,
as t̂δ is based on them. The second depends on the behavior of the conditional probability functions near the
decision boundary, for the same reason as explained after Theorem 4.7. When D−(t

⋆
δ) < δ or δ < D−(t

⋆
δ),

the second term in (6.5) disappears, and the convergence rate of t̂δ depends only on the convergence of η̂1
and η̂0.

By definition, we have T̂δ,a = 1/2 + (2a− 1)t̂δn/(2na) and T ⋆
δ,a = 1/2 + (2a − 1)t⋆δ/(2pa). Moreover,

n/na is a root-n-consistent estimate of 1/pa when pa > 0. Building on these observations, we can show the
following corollary, still in an abstract setting:

Corollary 6.3 (Error bound for optimal thresholds). Under the condition of Theorem 6.2, there are
constants ci,T , i ∈ [4], UT , LT and U∆ such that, if LT (ϕn,1 ∨ ϕn,0) < rn < UT , 2(gδ,−(4rn) ∨ gδ,+(4rn)) <
∆n < U∆,T and LT (ϕn,1 ∨ ϕn,0) < ε < rn hold, then with ψn,j,T , j ∈ {1, 2}, from (6.2) and ω from (6.4),
we have for any ε > 0 that

P⊗n
(
|T̂δ,a − T ⋆

δ,a| > ε
)
⩽ ψn,1,T (ε) +

∑
j∈{−,+}

I(δ = Dj(t
⋆
δ))ψn,2,T (gδ,j (ω(ε, rn))) . (6.6)

Assuming the convergence rates of the estimated regression functions in (6.1), and with the results on
the thresholds from (6.5), we can show that FairBayes-DDP+ is asymptotically fair and accurate, again first
in an abstract setting.

Theorem 6.4 (Fairness-aware excess risk upper bound; abstract version). For any δ ⩾ 0, suppose that the
conditions of Theorem 6.2 hold. Suppose further that the regression functions (η1, η0) satisfy the γδ-margin

condition. Then, the plug-in estimate f̂δ,n with offsets ℓn,a from (5.13), a ∈ {0, 1}, satisfies, with Ĩ⋆(δ) from
(6.3),

sup
P∈P

E⊗n
[
dE

(
f̂δ,n, f

⋆
δ

)]
⩽ C

(
(ϕn,1 ∨ ϕn,0 ∨ ℓn,1 ∨ ℓn,0) + Ĩ⋆(δ)n−1/(2γδ)

)γδ+1

. (6.7)

The convergence of dE(f̂δ,n, f
⋆
δ ) remains unaffected by the offsets when ℓn,1∨ℓn,0 ⩽ C(ϕn,1∨ϕn,0). Indeed,

the boundary effects are negligible when considering dE , as the expression (f(x, a)−f⋆δ (x, a))(T ⋆
δ,a−ηa(x)) ≡ 0

holds for any f on the boundary sets. However, the offsets are key to ensuring the asymptotic fairness of
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our method, as demonstrated in the next section. Additionally, they also impact the accuracy through
Proposition 4.2.

We can make this result concrete by leveraging the point-wise convergence of the local polynomial
estimator from Audibert and Tsybakov (2007), for the appropriate choice of hn,a. With this we now show
that FairBayes-DDP+ achieves the minimax lower bound derived in Theorem 4.7.

Corollary 6.5 (Fairness-aware excess risk upper bound). Consider the class of densities PΣ defined in

Definition 4.6. For any δ > 0, consider the FairBayes-DDP+ classifier f̂δ,n from (5.13), where for a ∈
{0, 1}, ηa is estimated by the local polynomial estimators of (η1, η0) with kernel K satisfying (5.12) and

hn,a ≍ n
−1/(2β+d)
a , ∆n ≍ (log log n)−1, rn ≍ (log n)−1, and the offsets satisfy ℓn,1, ℓn,0 ≍ n−β/(2β+d). Then,

we have, with Ĩ⋆(δ) from (6.3),

sup
P∈PΣ

E⊗n
[
dE

(
f̂δ,n, f

⋆
δ

)]
⩽ C

[
n−(γδ+1)β/(2β+d) + Ĩ⋆(δ)n−(γδ+1)/(2γδ)

]
.

The convergence rate stated in equation (4.5) matches the minimax lower bound specified in Theorem
4.7. Specifically,

(1) In the non-trivial fairness-impacted regime, i.e., t⋆δ > 0 and D− (t⋆δ) = D+ (t⋆δ) = δ, we have Ĩ⋆(δ) = 1
and

sup
P∈P

E⊗n
[
dE

(
f̂δ,n, f

⋆
δ

)]
⩽ C

[
n−(γδ+1)β/(2β+d) + n−(γδ+1)/(2γδ)

]
.

(2) In the classical regime, i.e., (2.1) t⋆δ > 0 or (2.2) D−(t
⋆
δ) < δ or (2.3) D+(t

⋆
δ) > δ, we have Ĩ⋆(δ) = 0.

Thus, with γ′ = γ∞ for the automatically fair and fair-boundary cases (t⋆δ = 0), and γ′ = γδ for the

fairness impacted case (t⋆δ > 0), we have supP∈P E⊗n
[
dE

(
f̂δ,n, f

⋆
δ

)]
⩽ Cn−(γ′+1)β/(2β+d).

This implies that our FairBayes-DDP+ classifier is minimax optimal.

6.2 Asymptotic Fairness

For any δ ⩾ 0, at the population level, our fairness constraint enforces that |DDP(f)| ⩽ δ. However, based
on a finite sample, in general one may slightly violate the constraint. When δ = 0, Fukuchi and Sakuma
(2023) defined a learning algorithm with output f̂δ,n to be (α, ξ)-consistently fair—for α > 0 and ξ > 0—for
an unfairness measure U : F → R, if there are constants n0 ⩾ 0 and C > 0 independent of n such that
P(U(f̂δ,n) > Cn−α) ⩽ ξ for all n ⩾ n0, over the randomness from the training data. We adapt this definition
to fair classification.

Definition 6.6. A sequence of classifiers f̂δ,n depending on a sample of size n is (δ, α, ξ)-consistently
fair under demographic parity if there are constants n0 ⩾ 0 and C > 0 independent of n, such that
P(|DDP(f̂δ,n)| > δ + Cn−α) ⩽ ξ for all n ⩾ n0, over the randomness from the training data.

The following theorem demonstrates that the FairBayes-DDP+ algorithm is consistently fair.

Theorem 6.7. For any δ ⩾ 0 and ξ > 0, there is Cξ > 0 such that, with ∆n ≍ (log log n)−1, rn ≍ (log n)−1

and offsets satisfying Cξ(ϕn,1 ∨ ϕn,0) < ℓn,1 ∧ ℓn,0 < rn, the FairBayes-DDP+ estimate of the δ-fair Bayes-
optimal classifier is (δ, 1/2, ξ)-consistently fair. In particular, there exist constants cD,i, i ∈ [6] and Lε such

that for Lε(ℓn,1 ∨ ℓn,0)γ < ε ⩽
√
8(p1 ∧ p0), we have

P⊗n
(∣∣∣DDP(f̂δ,n)

∣∣∣ > δ + ε
)
⩽ ψn,1,D (ℓn,1 ∧ ℓn,0) +

∑
j∈{−,+}

I(δ = Dj(t
⋆
δ))ψn,2,D (gδ,j(ω(ℓn,1 ∧ ℓn,0, rn)))

+ c5,D exp(−c6,Dnε2). (6.8)

Theorem 6.7 demonstrates that if ℓn,1 ∧ ℓn,0 > Cξ(ϕn,1 ∨ ϕn,0), then the disparity level of f̂δ,n will be no
more than the pre-specified level δ, up to a small term of order n−1/2. This lower bound for offsets is necessary
to ensure that the boundary sets and their probability measures are consistently estimated. Smaller offsets
could lead to inconsistent estimators of (τ⋆δ,1, τ

⋆
δ,0), which would increase the risk of violating the fairness

constraint. Moreover, the level of offsets also determines the tradeoff between fairness and accuracy. Larger
offsets lead to slower convergence rates for the measure dE , but also to a smaller probability of disparity.
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(a) Estimated fairness-aware excess risk (b) Estimated demographic disparity

Figure 3: Estimated fairness-aware excess risk and DDP of our FairBayes-DDP+ classifier f̂δ,n in the setting
from Section 7.1, for various sample sizes.

Table 2: Estimated fairness-aware excess risk and DDP of our FairBayes-DDP+ classifier f̂δ,n in the setting

from Section 7.1, with ℓn,a = 0.25 · n−1/(2β+d)
a and various sample sizes.

Sample size 100 200 400 800 1600 3200 6400 12800

dE(f̂δ,n) 0.041 0.029 0.018 0.010 0.006 0.004 0.003 0.002
(SD) (0.024) (0.019) (0.012) (0.008) (0.005) (0.005) (0.005) (0.005)
DDP 0.066 0.048 0.035 0.027 0.020 0.015 0.012 0.010
(SD) (0.051) (0.036) (0.027) (0.022) (0.016) (0.012) (0.010) (0.008)

7 Simulation Studies

7.1 Simulation Studies

In this section, we conduct simulation studies to illustrate the numerical performance of our method. We
consider a data-generating progress with standard components, similar to e.g., Cai and Wei (2021):

(1) Protected attribute: The protected attribute A follows the Bernoulli distribution with parameter 1/2.

(2) Common feature: The common features X = (X1, X2) are two-dimensional. For a = {0, 1}, the
conditional distribution of (X1, X2) given the protected feature A = a follows the uniform distribution on
[−1, 1]2.

(3) Regression functions: The conditional probability of Y = 1 given (X1, X2, A) = (x1, x2, a) is

ηa(x1, x2) =
1 + (2a− 1)s1

2
+
s2 · sign(x1)

2
(|x1|(1− |x2|))β ,

for all (x1, x2) ∈ [−1, 1]2 and a ∈ A. Here s1, s2 and β are hyperparameters that determine the group-wise
thresholds, the margin condition, and the smoothness of the regression function. we set s2 > s1 > 0 so that
s1 + s2 ⩽ 1.

It is clear that, for a = {0, 1}, ηa ∈ [0, 1] is β-smooth, and it also satisfies the γδ-margin condition with
γδ = 1/β when δ = 0 and γδ = 1 otherwise. As shown in Section G, the δ-fair Bayes-optimal classifier takes
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Table 3: Estimated fairness-aware excess risk and DDP of our FairBayes-DDP+ classifier f̂δ,n in the setting
from Section 7.1, for various pre-specified disparity levels.

δ 0.00 0.05 0.10 0.15 0.20 0.25 0.30

dE(f̂δ,n) 0.002 0.002 0.002 0.003 0.003 0.004 0.005
(SD) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005)
DDP 0.010 0.050 0.100 0.150 0.200 0.250 0.300
(SD) (0.008) (0.013) (0.013) (0.013) (0.013) (0.013) (0.014)

values

f⋆δ (x1, x2, a) = I

(
ηa(x1, x2) >

1

2
+ (2a− 1)t⋆δ

)
for x1, x2, a, and this choice is unique almost surely with respect to the distribution of the data. Here t⋆δ
satisfies (s1 − s2)/2 ⩽ t⋆δ ⩽ s1/2 and solves the equation(

s1 − 2t⋆δ
s2

) 1
β
(
1− 1

β
ln

(
s1 − 2t⋆δ
s2

))
= δ ∧

[(
s1
s2

) 1
β

− 1

β

(
s1
s2

) 1
β

ln

(
s1
s2

)]
.

Moreover, with q⋆δ = ((s1 − 2t⋆δ)/s2)
1/β , the misclassification rate of f⋆δ is given by

R(f⋆δ ) =
1

2
− s1q

⋆
δ

2
(1− ln (q⋆δ ))−

s2
2(β + 1)

(
1− (q⋆δ )

β+1

β + 1
+ (q⋆δ )

β+1
ln (q⋆δ )

)
.

In our experiments, we set s1 = 0.2, s2 = 0.8, β = 1 and generate samples of size ntrain = 2j · 50,
j ∈ [6] from the source distribution. For each sample size, we estimate the regression functions by local

polynomial estimators with a Gaussian kernel. Additionally, we vary the bandwidth hn,a from 0.5 · n−1/4
a

to 5 · n−1/4
a , where na is the sample size associated with group A = a, and select the bandwidth that

yields the best performance on a validation set of size nval = 1000. For estimating the thresholds, we let

∆n = 0.1 · (log log n)−1, rn = 0.1 · (log n)−1 and consider offsets with levels ℓn,a = {0, 0.25, 0.5, 0.75, 1} ·n−1/4
a

to evaluate the effect of offsets.
For the resulting FairBayesDDP+ classifier f̂δ,n, we estimate the fairness-aware excess risk dE(f̂δ,n) and

disparity DDP(f̂δ,n) on a test set with size ntest = 1000. We repeat the experiments 1000 times. The results
with δ = 0 are summarized in Figure 3 and Table 2. As we can see, both the fairness-aware excess risk
and disparity converge to zero as the sample size increases, lending support to the asymptotic consistency
and fairness of our method. For a given sample size, larger offsets lead to a a slower convergence of the
fairness-aware excess risk dE and a faster convergence of the DDP, which is consistent with our theoretical
results from Theorem 6.4 and Theorem 6.7.

Next, we set ntrain = 12800, ℓn,a = 0.25 · n−1/4
a and consider different pre-specified levels of δ. Again,

we set β = 1, and the bandwidth is chosen on a grid from 0.5 · n−1/4
a to 5 · n−1/4

a to optimize performance
on a validation set. Figure 4 and Table 3 present the fairness-aware excess risks and disparity levels of
our estimator under various pre-specified levels of disparity, based on 1000 simulations. As we can see,
FairBayes-DDP+ effectively controls the disparity and achieves a vanishing fairness-aware excess risk.

7.2 Empirical Data Analysis

To further support our theory and our proposed method, we conduct experiments on the benchmark “Adult”
dataset (Becker and Kohavi, 1996), and compare our method with strong baseline methods.

Data Description. The “Adult” dataset is a commonly considered dataset in fair statistical learning.
It contains data on a sample of individuals. The target variable y measures if the income of an individual
is more than $50,000. Age, marriage status, education level, and other related variables are included in x,
and the protected attribute a refers to gender. To support our asymptotic theory from Section 6, we select
three continuous features—“age”, “year of education”, and “working hours per week”—as predictors; these
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(a) Estimated and population values of the fairness-
aware excess risk.

(b) Estimated and population values of the demographic
disparity.

Figure 4: Estimated and population values of the fairness-aware excess risk and DDP of our FairBayes-
DDP+ classifier f̂δ,n in the setting from Section 7.1, for various desired disparity levels.

features have the largest empirical marginal correlation with the label. We adopt a standard data processing
approach as in e.g., Cho et al. (2020). In addition, we split the usual training set into a training part (70%)
and a validation part (30%) for model selection.

Baselines. We consider several strong baselines proposed recently for fair classification: (1) Adversarial
training (ADV, Zhang et al. (2018)), (2) KDE-based constrained optimization (KDE, Cho et al. (2020)),
(3) Post-processing through optimal transport (PPOT, Xian et al. (2023)), and (4) Post-processing through
flipping (PPF, Chen et al. (2023)).

Training details. For our Fair Bayes-DDP+ method, we estimate the regression functions over
three features using local polynomial estimators. We use the Gaussian kernel and set the smoothness
hyperparameter as β = 3; which influences the choices below. We select the bandwidth hn,a with the best

performance on the validation set, ranging from 0.5×n−1/(2β+d)
a to 5×n−1/(2β+d)

a . To estimate the group-wise

thresholds, we let ∆n = 0.1·(log log n)−1 and rn = 0.1·(log n)−1. The offsets are set as ℓn,a = 0.1·n−β/(2β+d)
a ,

for all a.
For other methods, we follow the training settings from Cho et al. (2020). A three-layer fully connected

neural network with 32 hidden neurons is trained with the Adam optimizer with the default hyperparameters
(β1, β2) = (0.9, 0.999). The batch size, training epochs, and learning rate are set to be 512, 200 and 0.1,
respectively. For adversarial training (Zhang et al., 2018), we further use a two-layer fully connected neural
network with 16 hidden neurons as the discriminator. In all cases, we train the model on the training set
and perform early stopping based on the validation set. All experiments use PyTorch; we repeat them 50
times.8

Simulation Results. We first evaluate the FairBayes-DDP+ algorithm with various pre-determined
levels of disparity. We present the simulation results in Table 1. We observe that FairBayes-DDP+ controls
the disparity level at the pre-determined values, as desired.

We then compare FairBayes-DDP+ with baseline methods in Table 4. We observe that FairBayes-
DDP+, PPOT, and PPF demonstrate comparable performance in terms of both accuracy and disparity
control. This similarity arises because they are all post-processing methods that aim to estimate the fair
Bayes-optimal classifier and are able to control the disparity directly. In contrast, KDE and ADV are
in-processing methods where the disparity is controlled implicitly by tuning hyperparameters controlling
the training process. Consequently, they exhibit inferior performance in disparity control compared to the

8The randomness of the experiments comes from the stochasticity of the batch selection in the optimization algorithm.
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Table 4: Classification accuracy and DDP on the “Adult” dataset

Methods Parameters ACC DDP

FairBayes-DDP+ (Proposed) δ = 0 0.791 (0.001) 0.008 (0.003)
ADV(Zhang et al., 2018) α = 5 0.799 (0.004) 0.055 (0.017)
KDE(Cho et al., 2020) λ = 0.95 0.784 (0.002) 0.039 (0.008)
PPOT (Xian et al., 2023) δ = 0 0.790 (0.001) 0.008 (0.004)
PPF (Chen et al., 2023) δ = 0 0.790 (0.001) 0.007 (0.003)

post-processing methods.
To further support FairBayes-DDP+, we compare its fairness-accuracy tradeoff with that of other baseline

methods. For FairBayes-DDP+, PPOT and PPF, the level of unfairness is directly controlled, ranging from
zero to the empirical DDP of the unconstrained classifier. In KDE-based constrained optimization, fairness
and accuracy are balanced through a tuning parameter that controls the ratio between the loss and the
fairness regularization term. We let this tuning parameter λ vary from 0.05 to 0.95 to explore a wide range
of the tradeoff. In adversarial training, the tradeoff is controlled by changing the hyperparameter α that
handles the gradient of the discriminator. We vary this parameter from zero to five. We empirically find
that in this range, the performance is representative and suffices for comparison. More details about the
effects of λ and α can be found in Cho et al. (2020) and Zhang et al. (2018), respectively.

Figure 1 presents the empirical fairness-accuracy tradeoff, where each point represents a particular tuning
parameter. Our FairBayes-DDP+ algorithm demonstrates the best tradeoff, followed by PPOT and PPF.
For a given disparity level, FairBayes-DDP+ achieves the highest accuracy. The KDE method performs
satisfactorily in the high disparity regime; however, it may lose accuracy in the low disparity regime. This
loss in accuracy could be attributed to its use of a Huber surrogate loss to handle the non-differentiability
of the absolute value function at zero. Here, adversarial training does not reduce the DDP to near zero,
possibly due to the instability of minimax training.

8 Summary and Discussion

In this paper, we develop minimax optimal classifiers having a bounded demographic disparity. Under
appropriate smoothness and margin conditions, we show that there can be an additional term in the minimax
lower bound, caused by the error in estimating the per-class thresholds. We also propose the FairBayes-
DDP+ method for fair classification, prove its minimax optimality, and illustrate it in simulations and
empirical data analysis. In this work, our theory rests on the low-dimensional optimality of local polynomial
methods, however, empirically the plug-in method works well in higher-dimensional settings by leveraging
neural nets (Zeng et al. (2024)). Formalizing this rigorously remains an intriguing direction for future work.
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Appendix

Additional Notation and Definitions

In this appendix, we use some additional notation. For a real-valued function f defined on [a, b) for some
a < b, we denote by limx→a+ f(x) the limit from the right of f at a, if it exists. Similarly, if f is defined
on (b, a] for b < a, we denote by limx→a− f(x) the limit from the left of f at a, if it exists. For an interval
[a, b], and scalars c ∈ R, d > 0, we denote c + d[a, b] = [c + da, c + db]. For an integer p ⩾ 1, we let ej ,
j ∈ [p] be the j-th standard basis vector, with ejj = 1 and ejk = 0 for k ̸= j. For an integer p ⩾ 1 and
x = (x1, . . . , xd)

⊤ ∈ Rd, denote by Bd,p(x, r) the d-dimensional ℓp ball with center x and radius r ⩾ 0, i.e.,

Bd,p(x, r) = {y = (y1, . . . , yd)
⊤ :
∑d

j=1 |yj − xj |p ⩽ rp}. Moreover, let Vd,p be the volume of Bd,p(0, 1). For

q > 0 and z = (z1, . . . , zd)
⊤ ∈ [0, 1]d, we define Cz,q = {x = (x1, . . . , xd)

⊤ : |xi − zi| ⩽ 4q−1, i = 1, 2, . . . , d}
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Figure 5: When both D+(t) and D−(t) are flat at δ (or −δ), there exists an interval [t⋆δ,inf , t
⋆
δ,sup] within

which the conditions D+(t) = D−(t) = δ (or −δ) always hold. In other words, the corresponding classifiers
satisfy the hard constraint. Here, we set P(A = 1) = 1/2, X|A = a ∼ U(0, 1) and δ = 0.

as the cube of side length 8/q centered at z, and Dz,q = Bd,2(z, 2q
−1)\Bd,2(z, q

−1) as a hyperspherical shell.

The interior of a set S is denoted by intS. For a classifier f , we also define R(f) := P
(
Y ̸= Ŷf

)
.

Without a fairness constraint, a Bayes-optimal classifier, which minimizes the misclassification rate, is
defined as f⋆ ∈ argminf [P(Y ̸= Ŷf )]. Bayes-optimal classifiers are the “best possible” method when fairness
is not a concern. Denoting the indicator function by I(·), a classical result (see e.g., Devroye et al., 1996,
etc) is that all Bayes-optimal classifiers f⋆ : X × {0, 1} → [0, 1] have the form

f⋆(x, a) = I (ηa(x) > 1/2) + τaI (ηa(x) = 1/2) , (.1)

for all (x, a) ∈ X × {0, 1}, where and τ0, τ1 ∈ [0, 1] are any two constants.

A Fair Bayes-optimal Classifier with a Nonzero Disparity

Here we give the general form of Bayes-optimal classifiers for the case where the group-wise decision thresholds
are not unique, following Zeng et al. (2024). For any δ > 0, define the following quantities, which can be
viewed as “inverses” of the functions D−, D+ in the various cases:

t⋆δ,inf =

{
inf {t : D−(t) ⩽ δ} = inf {t : D+(t) ⩽ δ} , in the fairness-impacted case D−(0) > δ;
0, otherwise,

(A.1)

t⋆δ,sup =

{
inf {t : D−(t) < δ} = inf {t : D+(t) < δ} , in the fairness-impacted case D−(0) > δ;
0, otherwise.

(A.2)

We need both t⋆δ,inf , t
⋆
δ,sup to account for the case where D−, D+ are “flat” at δ or −δ, so that they can take

any value over a nonempty interval, see Figure 5 for an illustration.

Proposition A.1 (Fair Bayes-optimal classifiers). For any δ ⩾ 0, all δ-fair Bayes-optimal classifiers f⋆δ have
the following form: for any Tδ,1 ∈ [1/2 + t⋆δ,inf/(2p1), 1/2 + t⋆δ,sup/(2p1)] and Tδ,0 ∈ [1/2− t⋆δ,sup/(2p0), 1/2−
t⋆δ,inf/(2p0)], there are (τδ,1, τδ,0) ∈ [0, 1]2, such that for all x, a,

f⋆δ (x, a) = I (ηa(x) > Tδ,a) + τδ,aI (ηa(x) = Tδ,a) . (A.3)

Further, (Tδ,1, Tδ,0) and (τδ,1, τδ,0) are determined by the following constraints:

(1). When D−(0) ⩽ δ, ∣∣∣PX|A=1

(
Ŷf⋆

δ
= 1
)
− PX|A=0

(
Ŷf⋆

δ
= 1
)∣∣∣ ⩽ δ. (A.4)
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(2). When D−(0) > δ,

PX|A=1

(
Ŷf⋆

δ
= 1
)
− PX|A=0

(
Ŷf⋆

δ
= 1
)
= δ. (A.5)

The form of (τδ,1, τδ,0) is provided below. For scalars a, b, c, d with b ⩽ c and d > 0, let ρ((a + [b, c])/d)

represent [ρ((a+ b/d)), ρ((a+ c)/d)] with ρ from (5.8), let δ̃ and δ̃ be defined in (5.9), and let, for a ∈ {0, 1},
π⋆
a,+ and π⋆

a,= be defined in (5.10). We have the following four cases:

• Case (1). When π⋆
1,= = π⋆

0,= = 0, (τδ,1, τδ,0) ∈ [0, 1]2 can be arbitrary.

• Case (2). When π⋆
1,= > π⋆

0,= = 0, τδ,0 ∈ [0, 1] can be arbitrary, and we can take

τδ,1 ∈ ρ

π⋆
0,+ − π⋆

1,+ +
[
δ̃, δ̃
]

π⋆
1,=

 .

• Case (3). Similarly, when π⋆
0,= > π⋆

1,= = 0, τδ,1 ∈ [0, 1] can be arbitrary, and we can take

τδ,0 ∈ ρ

π⋆
1,+ − π⋆

0,+ +
[
−δ̃,−δ̃

]
PX|A=0 (η0(X) = Tδ,0)

 .

• Case (4). Finally, when π⋆
1,+ > 0 and π⋆

0,+ > 0, we can take

τδ,1 ∈ ρ

π⋆
0,+ − π⋆

1,+ +
[
δ̃, δ̃ + π⋆

0,=

]
π⋆
1,=

 , and τδ,0 ∈ ρ

π⋆
1,+ + τδ,1π

⋆
1,= − π⋆

0,+ +
[
−δ̃,−δ̃

]
π⋆
0,=

 .

Remark 3. When η1(X) and η0(X) have density functions on [0, 1], we have for a ∈ {0, 1}, PX|A=a(ηa(X) =
1/2 + (2a − 1)t⋆δ/(2pa)) = 0 and the optimal classifier is deterministic. With t⋆δ ∈ [t⋆δ,inf , t

⋆
δ,sup], and for all

x, a, it takes values

f⋆δ (x, a) = I

(
ηa(x) >

1

2
+

(2a− 1)t⋆δ
2pa

)
. (A.6)

Proofs

In Sections B to E, we present the proofs of our theoretical results from the main text. We first introduce
several technical lemmas that are essential for proving our theoretical results (Section B), and defer their
proofs to Section F.

B Additional Lemmas

Lemma B.1. For any z = (z1, . . . , zd)
⊤ ∈ Rd, R > 0 and x = (x1, . . . , xd)

⊤ ∈ Bd,1(z,R), we have, for
0 ⩽ r ⩽ 2R/(d+ 2),

λ[Bd,1(z,R) ∩Bd,2(x, r)] ⩾
Vd,1
Vd,22d

· λ[Bd,2(x, r)].

Lemma B.2. For any z = (z1, . . . , zd)
⊤ ∈ Rd, R > 0 and x = (x1, . . . , xd)

⊤ ∈ Bd,2(z,R), we have, for
0 ⩽ r ⩽ R,

λ[Bd,2(z,R) ∩Bd,2(x, r)] ⩾
3

d+1
2 Vd−1,2

2d+1(d+ 1)Vd,2
· λ[Bd,2(x, r)].

Lemma B.3. Let z be a point such that Cz,q ⊂ [0, 1]d. Then, for any r > 0, there is 0 < Cr ⩽ 1 also
depending on d, such that, for any x = (x1, . . . , xd)

⊤ ∈ [0, 1]d \ Dz,q,

λ[Bd,2(x, r) ∩ (Cz,q \ Dz,q)] ⩾ Crλ[Bd,2(x, r) ∩ Cz,q].
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Lemma B.4. For any classifier f : X ×A → [0, 1], we have

R(f) =
∑

a∈{0,1}

pa

∫
[(1− 2ηa(x)) f(x, a) + ηa(x)] dPX|A=a(x),

and

DDP(f) =
∑

a∈{0,1}

∫
(2a− 1)f(x, a)dPX|A=a(x). (B.1)

Lemma B.5. Let Sn = Sn,1 ∪Sn,0 with Sn = {(xi, ai, yi)}ni=1 and, for a ∈ {0, 1}, Sn,a = {(xa,j , a, ya,j)}na

j=1

being an i.i.d. sample. We have, for a ∈ {0, 1},

P⊗n
(∣∣∣na
n

− pa

∣∣∣ ⩾ ε
)
⩽ 2 exp

(
−2nε2

)
. (B.2)

Moreover, if p1 ∧ p0 > 0, we have, for a ∈ {0, 1} and ε ⩽ 1/pa,

P⊗n

(∣∣∣∣ nna − 1

pa

∣∣∣∣ ⩾ ε

)
⩽ 2 exp

(
−np

4
aε

2

2

)
. (B.3)

Lemma B.6. For a ∈ {0, 1}, we have that if ε ⩽
√
pa/2,

P⊗n

sup
T∈R

∣∣∣∣∣∣ 1na
na∑
j=1

I (ηa (xa,j) > T )− PX|A=a (ηa(X) > T )

∣∣∣∣∣∣ > ε

 ⩽ 4 exp
(
−npaε2

)
.

Lemma B.7. Let D− and D+ be defined as in (3.3) and (3.4), respectively. For t ∈ R, we denote

Dn,−(t) =
1
n1

∑n1

j=1 I
(
η1 (x1,j) >

1
2 + t

2p1

)
− 1

n0

∑n0

j=1 I
(
η0 (x0,j) ⩾ 1

2 − t
2p0

)
,

Dn,+(t) =
1
n1

∑n1

j=1 I
(
η1 (x1,j) ⩾ 1

2 + t
2p1

)
− 1

n0

∑n0

j=1 I
(
η0 (x0,j) >

1
2 − t

2p0

)
.

Then, for ε ⩽
√
(p1 ∧ p0)/2,

max
{
P⊗n (|Dn,+(t)−D+(t)| > ε) ,P⊗n (|Dn,−(t)−D−(t)| > ε)

}
⩽ 8 exp

(
−n(p1 ∧ p0)ε

2

4

)
. (B.4)

Lemma B.8. For a set {ι0, ι1, ..., ιK} ⊂ R and K > 0, and for ι ∈ {ι0, ι1, ..., ιK}, let ψn,1,ι and ψn,2,ι be
defined for all ε > 0 as in (6.2), with ci,ι > 0, i ∈ [4]:

ψn,1,ι(ε) = c1,ι exp
(
−c2,ι (ε/[ϕn,1 ∨ ϕn,0])2

)
and ψn,2,ι(ε) = c3,ι exp

(
−c4,ιnε2

)
.

Under the margin condition (4.4), for any Ck > 0, k ∈ [K], there exists Uε > 0 such that, for

j ∈ {−,+} and ε < Uε, with c1,ι0 =
∑K

k=1 c1,ιk , c2,ι0 = mink∈[K]

(
c2,ιkC

2
k

)
, c3,ι0 =

∑K
k=1 c3,ιk and

c4,ι0 =
(
mink∈[K] c4,ιk · U−2

γ Cγ
k

)
∧ 1, we have for all ε > 0 that

K∑
k=1

ψn,1,ιk(Ckε) ⩽ ψn,1,ι0(ε), (B.5)

and

I (δ = Dj(t
⋆
δ))

(
K∑

k=1

ψn,2,ιk (gδ,j(ω(Ckε, rn)))

)
⩽ I (δ = Dj(t

⋆
δ))ψn,2,ι0 (gδ,j(ω(ε, rn))) . (B.6)

Lemma B.9. Under the conditions of Theorem 6.2, there are constants Lt1 , Ut1 and ci,t1 , i ∈ [4] determining
functions ψn,i,t1 in (6.2), such that, for ∆n ⩾ 0 and Lt1(ϕn,1 ∨ ϕn,0) < ε < Ut1 , with t

⋆
δ from (3.5),

P⊗n
(
D̂n (t

⋆
δ + ε, 0, 0) ⩾ δ +∆n

)
⩽ ψn,1,t1(ε) + I (δ = D−(t

⋆
δ))ψn,2,t1

(
∆n + gδ,−

(ε
2

))
, (B.7)

and

P⊗n
(
D̂n (t

⋆
δ − ε, 0, 0) ⩽ δ −∆n

)
⩽ ψn,1,t1(ε) + I (δ = D+(t

⋆
δ))ψn,2,t1

(
∆n + gδ,+

(ε
2

))
. (B.8)
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Lemma B.10. Under the conditions of Theorem 6.2, there are constants Lt2 , Ut2 and ci,t2 , i ∈ [4]
determining functions ψn,i,t2 in (6.2), such that, for Lt2(ϕn,1 ∨ ϕn,0) < ε < Ut2 ,

(1) if D−(t
⋆
δ) = δ, for gδ,−(2ε) < ∆n ⩽ gδ,−(2ε) +

√
(p1 ∧ p0)/2,

P⊗n
(
D̂n (t

⋆
δ + ε, 0, 0) ⩽ δ −∆n

)
⩽ ψn,1,t2(ε) + ψn,2,t2 (∆n − gδ,− (2ε)) ; (B.9)

(2) if D−(t
⋆
δ) < δ, for ∆n < (δ −D−(t

⋆
δ))/2,

P⊗n
(
D̂n (t

⋆
δ + ε, 0, 0) ⩾ δ −∆n

)
⩽ ψn,1,t2(ε); (B.10)

(3) if D+(t
⋆
δ) = δ, for gδ,+(2ε) < ∆n ⩽ gδ,+(2ε) +

√
(p1 ∧ p0)/2,

P⊗n
(
D̂n (t

⋆
δ − ε, 0, 0) ⩾ δ +∆n

)
⩽ ψn,1,t2(ε) + ψn,2,t2 (∆n − gδ,+ (2ε)) ; (B.11)

(4) if D+(t
⋆
δ) < δ, for ∆n < (D+(t

⋆
δ)− δ)/2,

P⊗n
(
D̂n (t

⋆
δ − ε, 0, 0) ⩽ δ +∆n

)
⩽ ψn,1,t2(ε). (B.12)

Lemma B.11. Under the conditions of Theorem 6.2, there are constants Lr, Ur, U∆,r and ci,r, i ∈ [4]
determining functions ψn,i,r in (6.2) , such that, for Lr(ϕn,1∨ϕn,0) < rn < Ur, and 2(gδ,−(4rn)∨gδ,+(4rn)) <
∆n < U∆,r,

(1) if t⋆δ = 0,

P⊗n
(
t̂δ,mid − t̂δ,∆n,min > rn

)
⩽ ψn,1,r(rn) + I(δ = D−(t

⋆
δ))ψn,2,r

(
gδ,−

(rn
2

))
; (B.13)

(2) if t⋆δ > 0 and D+(t
⋆
δ) > δ,

P⊗n
(
t̂δ,mid − t̂δ,∆n,min > rn

)
⩽ ψn,1,r

(rn
2

)
+ I(δ = D−(t

⋆
δ))ψn,2,r

(
gδ,−

(rn
4

))
; (B.14)

(3) if t⋆δ > 0 and D+(t
⋆
δ) = δ > D−(t

⋆
δ),

P⊗n
(
t̂δ,mid − t̂δ,∆n,min ⩽ rn

)
⩽ ψn,1,r(rn) + ψn,2,r

(
gδ,+

(rn
2

))
, (B.15)

and
P⊗n

(
t̂δ,∆n,max − t̂δ,mid > rn

)
⩽ ψn,1,r

(rn
2

)
+ ψn,2,r

(
gδ,+

(rn
4

))
; (B.16)

(4) if t⋆δ > 0 and D−(t
⋆
δ) = D+(t

⋆
δ) = δ,

P⊗n
(
t̂δ,mid − t̂δ,∆n,min ⩽ rn

)
⩽ ψn,1,r(rn) + ψn,2,r

(
gδ,+

(rn
2

))
, (B.17)

and
P⊗n

(
t̂δ,mid − t̂δ,∆n,min ⩽ rn

)
⩽ ψn,1,r(rn) + ψn,2,r

(
gδ,−

(rn
2

))
. (B.18)

Lemma B.12. Under the conditions of Theorem 6.2, let η1 and η0 satisfy the γ-exponent condition in the
upper bound from Definition 4.4 at level T ⋆

1 with respect to PX|A=1 and at level T ⋆
0 with respect to PX|A=0,

respectively. Then, for a ∈ {0, 1}, the plug-in estimator with offset ℓn,1, ℓn,0 > 0, rn ≍ (log log n)−1 and
∆n ≍ (log n)−1 satisfies, for some positive constant C,

E⊗n

∫
I{ηa(x) > T ⋆

δ,a, η̂a(x) ⩽ T̂δ,a + ℓn,a}
∣∣ηa(x)− T ⋆

δ,a

∣∣ dPX|A=a(x)

⩽ C
(
(ϕn,1 ∨ ϕn,0 ∨ ℓn,a)γ+1

+ I (0 < D− (t⋆δ) = δ = D+ (t⋆δ)) · n
− γ+1

2γ

)
.

An analogous bound holds for E⊗n
∫
I{ηa(x) < T ⋆

δ,a, η̂a(x) ⩾ T̂δ,a − ℓn,a}
∣∣∣ηa(x)− T ⋆

δ,a

∣∣∣ dPX|A=a(x).
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Lemma B.13. Under the condition of Theorem 6.2, there are constants Uδ, Lδ, U∆,δ ci,δ, i ∈ [4] determining

functions ψn,i,δ in (6.2) such that, for Lδ(ϕn,1 ∨ ϕn,0) < rn < Uδ and 0 < ∆n < U∆,δ, with δ̃ from (5.9) and

δ̂ from (5.7),

P⊗n
(
δ̂ ̸= δ̃

)
⩽ ψn,1,δ(rn) + ψn,2,δ(∆n). (B.19)

In the following lemmas, we denote, for a ∈ {0, 1},

π̂a,+ = PX|A=a

(
η̂a(X) > T̂δ,a + ℓn,a

)
; π̂a,= = PX|A=a

(
|η̂a(X)− T̂δ,a| ⩽ ℓn,a

)
. (B.20)

Lemma B.14. There is Lπ1
, Uπ1

, U∆,π1
and ci,π, i ∈ [4] determining functions ψn,i,π1

, i ∈ {1, 2} in (6.2),
such that, for Lπ1

(ϕn,1 ∨ ϕn,0) < rn < Uπ1
, 2 (gδ,−(4rn) ∨ gδ,+(4rn)) < ∆n < U∆,π1

, ε > 4Uγ(4(p1ℓn,1 ∨
p0ℓn,0))

γ and 2Lπ1
(ϕn,1 ∨ ϕn,0) < ℓn,1, ℓn,0 < 2rn, with ω(ε, rn) from (6.4), we have

max
{
P⊗n(π̂a,+ > π⋆

a,+ + ε), P⊗n(π̂a,+ < π⋆
a,+ − ε), P⊗n(π̂a,= > π⋆

a,= + ε), P⊗n(π̂a,= < π⋆
a,= − ε)

}
(B.21)

⩽ ψn,1,π (ℓn,a) +
∑

j={−,+}

I(δ = Dj(t
⋆
δ))ψn,2,π (gδ,j(ω(ℓn,a, rn))) .

Lemma B.15. With the same Lπ1
, Uπ1

, U∆,π1
and ci,π, i ∈ [4] as in Lemma B.14, we have, for LT (ϕn,1 ∨

ϕn,0) < rn < UT , 2 (gδ,−(4rn) ∨ gδ,+(4rn)) < ∆n < U∆, 4Uγ(4(p1ℓn,1 ∨ p0ℓn,0))γ < ε ⩽
√
(p1 ∧ p0)/2 and

2(Lη ∨ LT )(ϕn,1 ∨ ϕn,0) < ℓn,1, ℓn,0 < 2rn, with ω(ε, rn) from (6.4), π̂n,a,+, π̂n,a,= from (5.6) and π⋆
a,+, π

⋆
a,=

from (5.10),

max
{
P⊗n(π̂n,a,+ > π⋆

a,+ + ε), P⊗n(π̂n,a,+ < π⋆
a,+ − ε), P⊗n(π̂n,a,= > π⋆

a,= + ε), P⊗n(π̂n,a,= < π⋆
a,= − ε)

}
⩽ ψn,1,π (ℓn,a) +

∑
j={−,+}

I(δ = Dj(t
⋆
δ))ψn,2,π (gδ,j(ω(ℓn,a, rn))) + 4 exp

(
−npaε

2

4

)
. (B.22)

Lemma B.16. Let b > 0. For 0 < ε < b/2, we have, with ρ from (5.8),

ρ

(
a+ 2ε

b− ε

)
− ρ

(a
b

)
⩽

6ε

b
and ρ

(
a− 2ε

b+ ε

)
− ρ

(a
b

)
⩾

−6ε

b
. (B.23)

Lemma B.17. There exist constants Lπ, Uπ, Lε,π, U∆,π, c5,π, c6,π and with the same ci,π, i ∈ [4] as in
Lemma B.14 such that, for a ∈ {0, 1}, Lπ(ϕn,1 ∨ ϕn,0) < rn < Uπ, 2 (gδ,−(4rn) ∨ gδ,+(4rn)) < ∆n < U∆,π,

Lε,π(ℓn,1∨ ℓn,0)γ < ε ⩽
√
(p1 ∧ p0)/2 and (Lη ∨LT )(ϕn,1∨ϕn,0) < ℓn,a/2 < rn, with π̂a,+, π̂a,= from (B.20),

τ̂δ,a from (5.5), π⋆
a,+, π

⋆
a,= from (5.10) and τ⋆δ,a from (5.11),

max
{
P⊗n

(
π̂a,=τ̂δ,a > π⋆

a,=τ
⋆
δ,a + ε

)
, P⊗n

(
π̂a,=τ̂δ,a < π⋆

a,=τ
⋆
δ,a − ε

)}
⩽ 4ψn,1,π (ℓn,a) + 4

∑
j={−,+}

I(δ = Dj(t
⋆
δ))ψn,2,π (gδ,j(ω(ℓn,a, rn))) + c5,π exp

(
−c6,πnε2

)
. (B.24)

The following proposition from Audibert and Tsybakov (2007) demonstrates the point-wise convergence
of the local polynomial estimator.

Proposition B.18. Let P be a class of probability distributions for (X,Y ), such that the regression function
η(x) = P(Y = 1 | X = x) belongs to the Hölder class Σ(β, Lβ ,Rd) and the marginal law of X satisfies the
strong density condition. Let (Xi, Yi)

n
i=1 an i.i.d. sample from P, and η̂ be the local polynomial estimator

with kernel K satisfying (5.12) and hn ≍ n−1/(2β+d). Then there exist constants C1, C2 > 0 such that for
any δ > 0, n ⩾ 1 we have

sup
P∈P

P⊗n (|η̂(x)− η(x)| > ε) ⩽ C1 exp
(
−C2n

2β
2β+d ε2

)
,

for almost all x with respect to PX . The constants C1, C2 depend only on β, d, L, c0, r0, µmin, µmax, and
on the kernel K.

Proposition B.18 shows that the local polynomial estimators (η̂1, η̂0) are (ϕn,1, ϕn,0)n⩾1-pointwise
convergent with ϕn,1 = ϕn,0 = n−β/(2β+d).
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C Proofs of Results in Section 4

C.1 Proof of Proposition 4.2

By (3.5) and (A.5), we have t⋆δ = 0 when δ ⩾ D−(0) and

t⋆δ

[
PX|A=1

(
Ŷf⋆

δ
= 1
)
− PX|A=0

(
Ŷf⋆

δ
= 1
)]

=

{
0, D−(0) ⩽ δ;
t⋆δδ, D−(0) > δ.

Using Lemma B.4, it follows that

dE (f, f⋆δ ) = 2
∑
a∈A

pa

∫
X

(
1

2
+

(2a− 1)t⋆δ
2pa

− ηa(x)

)
(f(x, a)− f⋆δ (x, a)) dPX|A=a(x)

= dR(f, f
⋆
δ ) + 2

∑
a∈A

pa

(
(2a− 1)t⋆δ

2pa

)[∫
(f(x, a)− f⋆δ (x, a)) dPX|A=a(x)

]
= dR(f, f

⋆
δ ) +

∑
a∈A

(2a− 1)t⋆δ

[
PX|A=a

(
Ŷf = 1

)
− PX|A=a

(
Ŷf⋆

δ
= 1
)]

= dR(f, f
⋆
δ ) + t⋆δ

[
PX|A=1

(
Ŷf = 1

)
− PX|A=1

(
Ŷf⋆

δ
= 1
)
− PX|A=0

(
Ŷf = 1

)
+ PX|A=0

(
Ŷf⋆

δ
= 1
)]

=

{
dR(f, f

⋆
δ ), D−(0) ⩽ δ;

dR(f, f
⋆
δ ) + t⋆δ [DDP(f)− δ] , D−(0) > δ.

Now note that t⋆δ > 0 when D−(0) > δ and t⋆δ < 0 when δ < −D+(0). This implies that if |DDP(f)| ⩽ δ,
then dR (f, f⋆δ ) ⩾ dE(f, f

⋆
δ ).

C.2 Proof of Theorem 4.7

In the automatically fair and fair-boundary cases when δ ⩾ max {|D−(0)|, |D+(0)|}, all unconstrained Bayes-
optimal classifiers are δ-fair Bayes-optimal classifiers. In this scenario, the fair classification problem is simply
a standard unconstrained classification problem, and the minimax lower bound is the same as the lower bound
(4.6) from Audibert and Tsybakov (2007).

Next, we consider the fairness-impacted case. In what follows, we assume δ = 0 and write γ := γ0 without
loss of generality. We will generally omit mentioning δ further in this proof. In addition to the usual lower
bound for classification problems, in the fairness-impacted case, the minimax lower bound may contain a
second term due to the estimation of thresholds. Accordingly, the proof of the theorem also contains two
parts.

In the first part, we start from the strategy of Audibert and Tsybakov (2007); with some modifications,
either in order to streamline the proof, or as required by the fairness constraint. For σ⃗ ∈ {0, 1}m, we
construct a family of distributions Pσ⃗ on [0, 1]d × {0, 1} × {0, 1} such that Dσ⃗,r(t

⋆
σ⃗) < 0 < Dσ⃗,l(t

⋆
σ⃗), and

apply Assouad’s lemma adapted to the fair classification problem. In the second part, we construct two
distributions, P1 and P−1, on Rd × {0, 1} × {0, 1} such that D±1,r(t

⋆
±1) = 0 = D±1,l(t

⋆
±1), and then apply

Le Cam’s lemma to show that the second term appears in the lower bound for the fairness-impacted case.
Part I: For an integer q ⩾ 1 divisible by eight, we consider the following regular grid in the unit cube:

Gq =

{(
8k1 + 4

q
,
8k2 + 4

q
, . . . ,

8kd + 4

q

)
: ki ∈ {0, 1, ..., q/8− 1}, i ∈ [d]

}
. (C.1)

Observe that the cardinality of Gq is M = 8−dqd, and denote by x1, x2, ..., xM the points in Gq. Let
m ⩽ M be a positive integer to be specified later. Writing B0 = [0, 1]d \ ∪m

j=1Bd,2(xj , 2q
−1), we have

that B0, Bd,2(x1, 2q
−1), . . . , Bd,2(xm, 2q

−1) forms a partition of [0, 1]d; note in particular any two distinct
points xi, xj are at distance at least 8/q, and so the balls do not intersect. We next define a collection
H = {Pσ⃗ : σ⃗ ∈ {0, 1}m} of probability distributions Pσ⃗ on Z = Rd × {0, 1} × {0, 1}, indexed by the vertices
of the hypercube, by specifying the marginal distributions of X and A, and the conditional distribution
PY |X,A=a.
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Figure 6: The shaded areas illustrate the support of µ in a two-dimensional setting.

• Construction of marginal distributions of X and A:

We construct A and X to be independently distributed with the marginal distributions of X and A
not depending on σ⃗. For any Pσ⃗ ∈ H, we set Pσ⃗(A = 1) = 1/2. For a certain w with 0 < w < m−1,
to be chosen later, X has a density µ with respect to the Lebesgue measure λ on Rd, defined in the
following way:

µ(x) =

 w/λ[Bd,2(xj , q
−1)], x ∈ Bd,2(xj , q

−1), j ∈ [m];
(1−mw)/λ[B0], x ∈ B0;
0, otherwise.

(C.2)

Figure 6 provides an illustration of the support of the function µ(x). Note that µ has a constant density
over the ball Bd,2(xj , q

−1) 9, for all j; as well as on B0. Clearly, µ is a probability density function on
[0, 1]d.

• Construction of conditional distribution of Y given X and A:

Let u be an infinitely differentiable and non-increasing function on [0,∞), with bounded derivatives of
all orders, such that u(x) = 1 when x ⩽ 1, u(x) ∈ (0, 1) when x ∈ (1, 2), and u(x) = 0 when x ⩾ 2.
For 0 < cβ ⩽ qβ/2, let ϕ : Rd → [0,∞) be the function defined, for x ∈ Rd, as

ϕ(x) = cβq
−βu(q∥x∥), (C.3)

and note that by the choice of cβ and the properties of u, ϕ(x) ⩽ 1/2 for all x. For any Pσ⃗ ∈ H, denote
ησ⃗,a(x, a) = Pσ⃗(Y = 1 | X = x,A = a) for all x, a. We set

ησ⃗,1(x) =

{
(1 + σjϕ(x− xj))/2, x ∈ Bd,2(xj , 2q

−1), j ∈ [m];
1/2, otherwise;

(C.4)

and
ησ⃗,0(x) = 1/2, x ∈ [0, 1]d. (C.5)

9Here, we use q−1 rather than 2q−1.
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Next, we consider the fair Bayes-optimal classifiers under Pσ⃗ ∈ H. Define Dσ⃗,− to be D− from (3.3) for the
distribution Pσ⃗ and define Dσ⃗,+, t

⋆
σ⃗, T

⋆
σ⃗,a, τ

⋆
σ⃗,a, gσ⃗,a similarly. By the definition of the distribution of X from

(C.2), by (C.4), (C.5), and due to our choice w < m−1,

− 1 ⩽ Dσ⃗,−(0) = Pσ⃗,X|A=1

(
ησ⃗,1(X) >

1

2

)
− Pσ⃗,X|A=0

(
ησ⃗,0(X) ⩾

1

2

)
=

m∑
j=1

I(σj = 1)

∫
Bd,2(xj ,q−1)

µ(x)dx− 1 = w

m∑
j=1

I(σj = 1)− 1 < 0.

Similarly,

Dσ⃗,+(0) = Pσ⃗,X|A=1

(
ησ⃗,1(X) ⩾

1

2

)
− Pσ⃗,X|A=0

(
ησ⃗,0(X) >

1

2

)
= 1 > 0.

This implies D+(0) ⩾ −D−(0). In addition, one can verify that for any t > 0, one has Dσ⃗,+(t) < 0. Thus,
we have t⋆σ⃗ = supt {Dσ⃗,+(t) > 0} = 0 and Dσ⃗,−(t

⋆
σ⃗) < 0 < Dσ⃗,+(t

⋆
σ⃗). Further, from (3.6), T ⋆

σ⃗,a = 1/2 for
a ∈ {0, 1}. Moreover, due to (A.3), and since δ = 0 and Dσ⃗,l(t) < 0, (A.5) becomes

Pσ⃗,X|A=1

(
ησ⃗,1(X) >

1

2

)
+ τ⋆σ⃗,1Pσ⃗,X|A=1

(
ησ⃗,1(X) =

1

2

)
− Pσ⃗,X|A=0

(
ησ⃗,0(X) >

1

2

)
− τ⋆σ⃗,0Pσ⃗,X|A=0

(
ησ⃗,0(X) =

1

2

)
= 0.

Since by (C.2), (C.4), and (C.5), Pσ⃗,X|A=1 (ησ⃗,1(X) > 1/2) = w
∑m

j=1 I(σj = 1), while
Pσ⃗,X|A=0 (ησ⃗,0(X) > 1/2) = 0, and Pσ⃗,X|A=0 (ησ⃗,0(X) = 1/2) = 1, this is equivalent to

w

m∑
j=1

I(σj = 1) + τ⋆σ⃗,1Pσ⃗,X|A=1 (ησ⃗,1(X) = 1/2) = τ⋆σ⃗,0.

Hence, to ensure that a classifier is Bayes-optimal, due to (A.5) in Theorem A.1, it suffices to take τ⋆σ⃗,1 = 0

and τ⋆σ⃗,0 = w
∑m

j=1 I(σj = 1) ∈ [0, 1]. Thus, based on (A.3), using that T ⋆
σ⃗,a = 1/2, a fair Bayes-optimal

classifier is given by {
f⋆σ⃗(x, 1) = I

(
x ∈

⋃
j∈[m]:σj=1Bd,2(xj , 2q

−1)
)
;

f⋆σ⃗(x, 0) = w
∑m

j=1 I(σj = 1).
(C.6)

Now, we verify the distributional conditions:

• Smoothness Condition from Definition 4.3: For any b ∈ Nd such that |b| ⩽ ⌊β⌋+, the partial derivative
Dbησ⃗,1 at x ∈ Bd,2(xj , 2q

−1) exists and Dbησ⃗,1(x) = cβq
|b|−βϕj/2 · Dbu(q∥x − xj∥). Since ∥ · ∥ is

infinitely differentiable on Rd/{0} and u(·) is infinitely differentiable on [0,∞) with u(t) = 1 for
0 < t ⩽ 1, we have that u(∥ · ∥) is infinitely differentiable on Rd with bounded derivatives of all order.
Thus, there is a constant M such that |Dbu(q∥x− xj∥)| < M . Therefore, for any j ∈ {1, . . . ,m} and
any x, x′ ∈ Bd,2(xj , 2q

−1), we have, when cβ is small enough, that |ησ⃗,1(x′)− ησ⃗,1(x)| ⩽ Lβ∥x′ − x∥β .
This implies that ησ⃗,a belongs to the Hölder class Σ(β, Lβ ,Rd).

• Margin Condition from Definition 4.4: Since Dσ⃗,r(t
⋆
σ⃗) < 0 < Dσ⃗,l(t

⋆
σ⃗), we only need to verify condition

(4.3). We have from (C.4) that, for σ⃗ ∈ {0, 1}m,

gσ⃗,+(ε) = Pσ⃗,X|A=1

(
1

2
− ε ⩽ ησ⃗,1(X) <

1

2

)
+ Pσ⃗,X|A=0

(
1

2
< ησ⃗,0(X) ⩽

1

2
+ ε

)
= 0

and

gσ⃗,−(ε) = Pσ⃗,X|A=1

(
1

2
< ησ⃗,1(X) ⩽

1

2
+ ε

)
+ Pσ⃗,X|A=0

(
1

2
− ε ⩽ ησ⃗,0(X) <

1

2

)
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=

m∑
j=1

I (σj = 1) · Pσ⃗,X|A=1 (0 < ϕ(X − xj) < 2ε) ⩽
m∑
j=1

∫
Bd,2(xj ,2q−1)

I(0 < ϕ(x− xj) < 2ε)µ(x)dx

=

m∑
j=1

∫
Bd,2(xj ,q−1)

I(0 < ϕ(x− xj) < 2ε)
w

λ[Bd,2(xj , q−1)]
dx = mw · I

(
ε > cβq

−β/2
)
,

where in the last step we have used that due to (C.3), we have ϕ(x− xj) ⩽ cβq
−β for all x. Therefore,

the γ-margin condition is satisfied if mw = Θ(q−γβ).

• Strong density condition from Definition 4.5: Let m = ⌊qd−γβ⌋, w = cwq
−d for some cw > 0 and take

q → ∞ as n → ∞. The condition γβ ⩽ d ensures that m ⩾ 1. Next, note that since by definition X
is independent of A, we have µa = µ for all a. Now, let Ωµ = B0 ∪m

j=1 Bd,2(xj , q
−1) be the support

of µ. Recall that Cz,q = {y : |yi − zi| ⩽ 4q−1, i = 1, 2, . . . , d} and Dz,q = Bd,2(z, 2q
−1) \ Bd,2(z, q

−1).
Recalling Gq from (C.1), we have that

[0, 1]d = ∪z∈Gq
Cz,q and Ωµ = [0, 1]d \ (∪m

i=1Dxi,q) .

For x ∈ Ωµ, we have, for all i that x ∈ [0, 1]d \ Cxi,q. Then, by Lemma B.3, for any r > 0, there exists
0 < Cr ⩽ 1 such that,

λ[Bd,2(x, r) ∩ Ωµ] = λ
[
Bd,2(x, r) ∩ [0, 1]d

]
−

m∑
i=1

λ[Bd,2(x, r) ∩ Dxi,q]

=
∑
z∈Gq

λ[Bd,2(x, r) ∩ Cz,q]−
m∑
i=1

λ[Bd,2(x, r) ∩ Dxi,q]

=
∑

z∈Gq\(∪m
i=1{xi})

λ[Bd,2(x, r) ∩ Cz,q] +
m∑
i=1

λ[Bd,2(x, r) ∩ Cxi,q]−
m∑
i=1

λ[Bd,2(x, r) ∩ Dxi,q]

=
∑

z∈Gq\(∪m
i=1{xi})

λ[Bd,2(x, r) ∩ Cz,q] +
m∑
i=1

λ[Bd,2(x, r) ∩ (Cxi,q \ Dxi,q)]

⩾
∑

z∈Gq\(∪m
i=1{xi})

λ[Bd,2(x, r) ∩ Cz,q] + Cr

m∑
i=1

λ[Bd,2(x, r) ∩ Cxi,q]

⩾ Cr

∑
z∈Gq

λ[Bd,2(x, r) ∩ Cz,q] = Crλ[Bd,2(x, r) ∩ [0, 1]d].

On the other hand, if x ∈ ∪m
j=1Bd,2(xj , q

−1), due to (C.2), we have due to the choice of w that µ(x) =

cwq
−d/λ[Bd,2(xj , q

−1)] = cwV
−1
d,2 . On the other hand, if x ∈ B0, due to (C.2), we have µ(x) = (1 −

mcwq
−d)/(1−m2dq−dVd,2). Thus, the conditional distribution of X given A = a satisfies the strong

density condition with cµ = Cr, rµ = 1, and µmin ⩽ µmax if µmin ⩽ (1−mcwq
−d)/(1−m2dq−dVd,2) ⩽

µmax and µmin ⩽ cw/Vd,2 ⩽ µmax.

Finally, we derive the first term of the minimax lower bound. For r ∈ {0, 1} and σ⃗ ∈ {−1, 1}m, denote
σ⃗j,r = (σ1, . . . , σj−1, r, σj+1, . . . , σm), Clearly, P⊗n

σ⃗j,1
is absolutely continuous with respect to P⊗n

σ⃗j,0
. Moreover,

recall that the total variation distance between P⊗n
σ⃗j,1

and P⊗n
σ⃗j,0

can be expressed as

TV
(
P⊗n
σ⃗j,1

,P⊗n
σ⃗j,0

)
= 1−

∫ (P⊗n
σ⃗j,1

(z)

P⊗n
σ⃗j,0

(z)
∧ 1

)
dP⊗n

σ⃗j,0
(z).

Now, we provide an upper bound on the Kullback–Leibler divergence between P⊗n
σ⃗j,1

and P⊗n
σ⃗j,0

, taking

j = 1 without loss of generality. As Pσ⃗1,1
(A = a) = Pσ⃗1,0

(A = a) = 1/2 for a ∈ {0, 1}, recalling ησ⃗,a from
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(C.4) and (C.5), we have

KL
(
Pσ⃗1,1

,Pσ⃗1,0

)
=
∑
a∈A

Pσ⃗1,1
(A = a)

∫
ησ⃗1,1,a(x) log

ησ⃗1,1,a(x)

ησ⃗1,0,a(x)
µ(x)dx

=
1

2

[∫
ησ⃗1,1,1(x) log

ησ⃗1,1,1(x)

ησ⃗1,0,1(x)
µ(x)dx+

∫
(1− ησ⃗1,1,1(x)) log

1− ησ⃗1,1,1(x)

1− ησ⃗1,0,1(x)
µ(x)dx

]
=

1

2

∫
Bd,2(x1,2q−1)

[
1 + ϕ(x− x1)

2
log (1 + ϕ(x− x1)) +

1− ϕ(x− x1)

2
log (1− ϕ(x− x1))

]
µ(x)dx

⩽
1

2

∫
Bd,2(x1,2q−1)

[
1 + ϕ(x− x1)

2
ϕ(x− x1)−

1− ϕ(x− x1)

2
ϕ(x− x1)

]
µ(x)dx

⩽
1

2

∫
Bd,2(x1,2q−1)

(
ϕ2(x− x1)

w

λ [Bd,2(x1, q−1)]

)
dx ⩽

w

2
c2βq

−2β .

Here, the first inequality holds since, for 0 < x < 1, log(1 + x) < x and log(1 − x) < −x; and the last
inequality holds due to (C.3). By Pinsker’s inequality (Tsybakov, 2009), we therefore have

TV
(
P⊗n
σ⃗1,1

,P⊗n
σ⃗1,−1

)
⩽

1

2

√
KL
(
P⊗n
σ⃗1,1

,P⊗n
σ⃗1,−1

)
=

1

2

√
nKL

(
Pσ⃗1,1

,Pσ⃗1,−1

)
⩽

√
1

8
cβ
√
nwq−β . (C.7)

Recalling that w = cwq
−d and taking q = n1/(2β+d) with cw = 2c−2

β , we have TV
(
P⊗n
σ⃗1,1

,P⊗n
σ⃗1,−1

)
⩽ 1/2.

To complete the proof for the first term in minimax lower bound, we apply Assouad’s lemma (Assouad,
1983; Tsybakov, 2009) to the class H. Let ν denote the distribution of a Bernoulli variable with parameter

1/2, so that for σ ∼ ν, ν(σ = 1) = ν(σ = 0) = 1
2 . For data-dependent sets Ĝa,1 and Ĝa,τ for a ∈ {0, 1}, let

f̂δ,n be the classifier with, for all x, a,

f̂δ,n(x, a) = I(x ∈ Ĝa,1) + τ̂ I(x ∈ Ĝa,τ ).

We use Eσ⃗ to denote expectation under the distribution Pσ⃗. Then, by the definition of dE from (4.2), using
that T ⋆

σ⃗,a = 1/2, and by (C.6), (C.4)

sup
P∈PΣ

E⊗ndE(f̂δ,n, f
⋆) ⩾ sup

σ⃗∈{0,1}m

E⊗n
σ⃗ dE(f̂δ,n, f

⋆
σ⃗)

= sup
σ⃗∈{0,1}m

E⊗n
σ⃗

{∫ (
f̂δ,n(x, 1)− f⋆σ⃗(x, 1)

)(1

2
− ησ⃗,1(x)

)
µ(x)dx

}

= sup
σ⃗∈{0,1}m

E⊗n
σ⃗


m∑
j=1

∫
Bd,2(xj ,2q−1)

∣∣∣f̂δ,n(x, 1)− σj

∣∣∣ ϕ(x− xj)

2
µ(x)dx


⩾

1

2
E⊗m
ν

E⊗n
σ⃗


m∑
j=1

∫
Bd,2(xj ,2q−1)

∣∣∣f̂δ,n(x, 1)− σj

∣∣∣ϕ(x− xj)µ(x)dx


 .

In the last line, we have written E⊗m
ν for the expectation over σ⃗ = (σ1, . . . , σm) with i.i.d. σi ∼ ν for all

i ∈ [m]. Recalling the definition σ⃗j,0, the last term equals

1

2
E⊗m
ν


m∑
j=1

E⊗n
σ⃗j,0

{
P⊗n
σ⃗

P⊗n
σ⃗j,0

∫
Bd,2(xj ,2q−1)

∣∣∣f̂δ,n(x, 1)− σj

∣∣∣ϕ(x− xj)µ(x)dx

}
=

1

2
E⊗{m−1}
ν


m∑
j=1

Eσj∼νE⊗n
σ⃗j,0

{
P⊗n
σ⃗

P⊗n
σ⃗j,0

∫
Bd,2(xj ,2q−1)

∣∣∣f̂δ,n(x, 1)− σj

∣∣∣ϕ(x− xj)µ(x)dx

}
⩾

1

2
E⊗{m−1}
ν


m∑
j=1

E⊗n
σ⃗j,0

{(
P⊗n
σ⃗j,1

P⊗n
σ⃗j,0

∧ 1

)
Eσj∼ν

∫
Bd,2(xj ,2q−1)

∣∣∣f̂δ,n(x, 1)− σj

∣∣∣ϕ(x− xj)µ(x)dx

} .
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Since for all z ∈ [0, 1], Eσj∼ν |z − σj | = (|z − 1|+ |z|)/2 = 1/2, this can be further written as

1

4
E⊗{m−1}
ν


m∑
j=1

E⊗n
σ⃗j,0

{(
1− TV

(
P⊗n
σ⃗j,1

,P⊗n
σ⃗j,−1

))∫
Bd,2(xj ,2q−1)

ϕ(x− xj)µ(x)dx

} .

Using (C.7) with m = ⌊qd−γβ⌋, w = cwq
−d and q = n1/(2β+d), as well as by∫

Bd,2(x1,2q−1)

ϕ(x− x1)µ(x)dx =

∫
Bd,2(x1,q−1)

ϕ(x− xj)
w

λ [Bd,2(x1, q−1)]
dx = wcβq

−β ,

this is lower bounded by
mwcβq

−β

8 ⩾ C ′n−
β(γ+1)
2β+d , as desired. This finishes the argument of the first part.

Part 2. In this part, we apply Le Cam’s method to prove that the second term on the right hand side
of (4.5) appears in the lower bound; see Figure 7 for an illustration of the construction. Recall that Vd,p is

the volume of a d-dimensional unit ℓp ball and let vd = V
−1/d
d,1 . We will construct two distributions P1 and

P−1 on X ×{0, 1} with X = [−3, 3]× [−1, 1]d−1. For 0 < s ⩽ 1 specified later, let B1 = {x = (x1, . . . , xd)
⊤ ∈

Rd : |x1 + (1 + s)vd| + |x2| + . . . |xd| ⩽ vd}, B2 = {x = (x1, . . . , xd)
⊤ ∈ Rd : |x1| + |x2| + . . . |xd| ⩽ svd},

and B3 = {x = (x1, . . . , xd)
⊤ ∈ Rd : |x1 − (1 + s)vd| + |x2| + . . . |xd| ⩽ vd}. By construction, we have

λ[B1] = λ[B3] = 1 and λ[B2] = sd. We will the use subscripts +1 and −1 to denote quantities corresponding
to P1 and P−1, respectively.

• Construction of marginal distributions of X and A: We set P1(A = 1) = P−1(A = 1) = 0.5 and for
j ∈ {−1, 1} and a ∈ {0, 1}, denote by µj,a the conditional density function of X given A = a under Pj ,
defined as, for x = (x1, ..., xd)

⊤,
µ1,1(x) = µ−1,0(x) =

 1/(2 + 2sd), x1 ∈ B1 ∪ B2;
1/2, x1 ∈ B3;
0, otherwise;

µ1,0(x) = µ−1,1(x) =

 1/2, x1 ∈ B1;
1/(2 + 2sd), x1 ∈ B2 ∪ B3;
0, otherwise.

• Construction of conditional distribution of Y given X and A: For j ∈ {−1, 1} and all x, a, consider
the regression functions ηj,a(x) = Pj(Y = 1 | A = a,X = x), defined as

ηj,a(x) = ηa(x) =


1/2 + (2a− 1)/4− cβ(svd)

d/γ − cβ(−x1 − svd)
d/γ , −(2 + s)vd ⩽ x1 < −svd;

1/2 + (2a− 1)/4− cβ(svd)
d/γ + cβ(x1 + svd)

d/γ , −svd ⩽ x1 < 0;
1/2 + (2a− 1)/4 + cβ(svd)

d/γ − cβ(−x1 + svd)
d/γ , 0 ⩽ x1 < svd;

1/2 + (2a− 1)/4 + cβ(svd)
d/γ + cβ(x1 − svd)

d/γ , svd ⩽ x1 ⩽ (2 + s)vd.

(C.8)

Here cβ ∈ (0, 1) is chosen small enough that ηj,a ∈ Σ
(
β, Lβ ,Rd

)
for all j, a, which can be done since

γβ ⩽ d.

Next, we consider the fair Bayes-optimal classifiers under P1 and P−1. Define, for j ∈ {−1, 1}, Dj,r to be
D− from (3.3) for the distribution Pj and define Dj,ℓ, t

⋆
j , T

⋆
j,a, τ

⋆
j,a, gj,a similarly. It can be readily verified

that

P1,X|A=1(η1,1(X) > 3/4 + cβ(svd)
d/γ) = P1,X|A=0(η1,0(X) ⩾ 1/4− cβ(svd)

d/γ)

= P−1,X|A=1(η−1,1(X) > 3/4− cβ(svd)
d/γ) = P−1,X|A=0(η−1,0(X) ⩾ 1/4 + cβ(svd)

d/γ) =
1

2
. (C.9)

For instance, η1,1(x) > 3/4 + cβ(svd)
d/γ holds if and only if svd ⩽ x1 ⩽ (2 + s)vd. Noting that µj,a(x) ≡ 0

when x /∈ ∪3
j=1Bj , we have

P1,X|A=1(svd ⩽ X1 ⩽ (2 + s)vd) =

∫
(∪3

j=1Bj)∩{svd⩽x1⩽(2+s)vd}
µ1,1(x)dx =

∫
B3

µ1,1(x)dx =
1

2
λ(B3) = 1/2.
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Figure 7: Illustration of constructions in the lower bound based on a two-dimensional setting. In the upper
panel, we plot the support of µ(x), i.e., B1, B2 and B3. In the lower panel, we plot the regression functions
for two groups (Here, we only plot ηa(x1) as ηa(x) only depends on the first coordinate of x), and the fair
thresholds under P+1 and P−1.

Recalling (3.3), using that p0 = p1 = 1/2, (C.9) further implies that for j ∈ {−1, 1},

Dj,r

(
1

4
+ j · cβ(svd)d/γ

)
= Pj,X|A=1

(
ηj,1(X) >

3

4
+ j · cβ(svd)d/γ

)
− Pj,X|A=0

(
ηj,0(X) ⩾

1

4
− j · cβ(svd)d/γ

)
=

1

2
− 1

2
= 0.

As both η1(X) and η0(X) are continuous random variable on ∪3
j=1Bj , We thus deduce that t⋆j = 1/4 + j ·

cβ(svd)
d/γ . In fact, for any ε > 0, we have

Dj,r(t
⋆
j − ε) = Dj,r(t

⋆
j − ε)−Dj,r(t

⋆
j ) +Dj,r(t

⋆
j )

= Pj,X|A=1

(
1

2
+ t⋆ − ε < ηj,1(X) ⩽

1

2
+ t⋆

)
+ Pj,X|A=0

(
1

2
− t⋆ ⩽ ηj,0(X) <

1

2
− t⋆ + ε

)
> 0,

and

Dj,r(t
⋆
j + ε) = Dj,r(t

⋆
j + ε)−Dj,r(t

⋆
j ) +Dj,r(t

⋆
j )

= −Pj,X|A=1

(
1

2
+ t⋆ < ηj,1(X) ⩽

1

2
+ t⋆ + ε

)
− Pj,X|A=0

(
1

2
− t⋆ − ε ⩽ ηj,0(X) <

1

2
− t⋆

)
< 0.
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Hence based on (A.6), if we set τ⋆j,1 = τ⋆j,0 = 0, a fair Bayes-optimal classifier is given by

f⋆±1(x, a) = I
(
η±1,a(x) > 1/2 + (2a− 1)

(
1/4± cβ(svd)

d/γ
))

. (C.10)

Now, we verify the distributional conditions:

• Smoothness Condition from Definition 4.3: Since γβ ⩽ d, for any b ∈ Nd such that |b| ⩽ ⌊β⌋+, we
have that |b| ⩽ d/γ. Thus, for a ∈ {0, 1}, the partial derivative Dbηj,a exists and is bounded by

Π
|b|
j=1 (d/γ − j + 1) (|x1|+ svd)

d/γ−|b|
. As |x1| and s are bounded, when cβ > 0 is small enough, for

j ∈ {−1, 1} and a ∈ {0, 1}, ηj,a belongs to the Hölder class Σ(β, Lβ ,Rd).

• Margin Condition from Definition 4.4: In this case, we have Dj,−(t
⋆
j ) = 0 = Dj,+(t

⋆
j ) for j = {−1, 1}.

To verify the margin condition, we need to provide both lower and upper bounds for

gδ,j(t
⋆
j , ε) =

∑
a

Pj,X|A=a

(
0 < |ηj,a − T ⋆

j,a| < ε
)

for j = {−1, 1}, ε ∈ (0, ε0],

with some ε0 > 0. We set ε0 = cβ (vd)
d/γ

. By construction, we have for j ∈ {−1, 1} and all x ∈ X that
µj,1(x) = µ−j,0(x) and η−j,1(x) = η−j,0(x)− 1/2. Moreover, T ⋆

j,1 −T ⋆
−j,0 = 1/2+ 1/4+ j · cβ(svd)d/γ −

(1/2− (1/4− j · cβ(svd)d/γ)) = 1/2. Thus,

Pj,X|A=1

(
T ⋆
j,1 < ηj,1(X) < T ⋆

j,1 + ε
)
=

∫
X
I
(
T ⋆
j,1 < ηj,1(x) < T ⋆

j,1 + ε
)
µj,1(x)dx

=

∫
X
I

(
T ⋆
j,1 −

1

2
< ηj,1(x)−

1

2
< T ⋆

j,1 + ε− 1

2

)
µj,1(x)dx

=

∫
X
I
(
T ⋆
−j,0 < η−j,0(x) < T ⋆

−j,0 + ε
)
µ−j,0(x)dx

= P−j,X|A=0

(
T ⋆
−j,0 < η−j,0(X) < T ⋆

−j,0 + ε
)
. (C.11)

Again, by construction, we have for a ∈ {0, 1} and x ∈ X that µ1,a(x) = µ1,1−a(−x) and η1,1−a(−x) =
1− η1,a(x). Moreover, T ⋆

1,a = 1/2 + (2a− 1)t⋆1 = 1− (1/2 + (1− 2a)t⋆1) = 1− T ⋆
1,1−a. Thus,

P1,X|A=a

(
T ⋆
1,a < η1,a(X) < T ⋆

1,a + ε
)
=

∫
X
I
(
1− T ⋆

1,a − ε < 1− η1,a(x) < 1− T ⋆
1,a

)
µ1,a(x)dx

=

∫
X
I
(
T ⋆
1,1−a − ε < η1,1−a(−x) < T ⋆

1,1−a

)
µ1,1−a(−x)dx

=

∫
X
I
(
T ⋆
1,1−a − ε < η1,1−a(x) < T ⋆

1,1−a

)
µ1,1−a(x)dx

= P1,X|A=1−a

(
T ⋆
1,1−a − ε < η1,1−a(X) < T ⋆

1,1−a

)
. (C.12)

Thus, for j ∈ {−1, 1},

gδ,j(t
⋆
j , ε) =

∑
a

Pj,X|A=a

(
0 < |ηj,a − T ⋆

j,a| < ε
)

=
∑
a

(
Pj,X|A=a

(
T ⋆
j,a − ε < ηj,a < T ⋆

j,a

)
+ Pj,X|A=a

(
T ⋆
j,a < ηj,a < T ⋆

j,a + ε
))

= 2
(
P1,X|A=1

(
T ⋆
1,1 − ε < η1,1 < T ⋆

1,1

)
+ P1,X|A=1

(
T ⋆
1,1 < η1,1 < T ⋆

1,1 + ε
))
,

where the last equality follows (C.11) and (C.12). Next, we provide upper bounds for

P1,X|A=1

(
T ⋆
1,1 − ε < η1,1 < T ⋆

1,1

)
and P1,X|A=1

(
T ⋆
1,1 < η1,1 < T ⋆

1,1 + ε
)
when 0 < ε ⩽ cβ (vd)

d/γ
.

We first observe the following two facts:

– Fact 1. By construction, we have that

B1 ⊂ {x : −(2 + s)vd ⩽ x1 ⩽ −vd}, B2 ⊂ {x : −svd ⩽ x1 ⩽ svd},
and B3 ⊂ {x : vd ⩽ x1 ⩽ (2 + s)vd}. (C.13)
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– Fact 2. Recalling that for any d ⩾ 1, Vd,1 is the volume of the unit ℓ1 ball, we have

Vd,1 =

∫
∑d

j=1 |xj |⩽1

dx =

∫ 1

−1

(∫
∑d

j=2 |xj |⩽1−|x1|
dx2 . . . dxd

)
dx1

= 2

∫ 1

0

(∫
∑d

j=2 |xj |⩽1−x1

dx2 . . . dxd

)
dx1 = 2

∫ 1

0

(∫
∑d

j=2 |xj |⩽x1

dx2 . . . dxd

)
dx1

= 2Vd−1,1

∫ 1

0

xd−1
1 dx1 =

2Vd−1,1

d
. (C.14)

This further implies Vd,1 = 2d/(d!) and vd = (d!)1/d/2.

For P1,X|A=1

(
T ⋆
1,1 < η1,1 < T ⋆

1,1 + ε
)
, since η1,1(x) only depends on x1, is continuous, and is strictly

increasing as a function of x1, its inverse η
−1
1,1 as a function of x1 exists with η−1

1,1(T
⋆
1,1) = svd. Moreover,

for 0 < ε ⩽ ε0, η
−1
1,1(T

⋆
1,1 + ε) = svd + (ε/cβ)

γ/d
. Thus, T ⋆

1,1 < η1,1(x) < T ⋆
1,1 + ε is equivalent to

svd < x1 < svd + (ε/cβ)
γ/d

. Further, by (C.13), we have Bj ∩ {svd < x1 < svd + (ε/cβ)
γ/d} = ∅ for

j = 1, 2. Thus, for 0 < ε ⩽ ε0,

P1,X|A=1

(
T ⋆
1,1 < η1,1(X) < T ⋆

1,1 + ε
)
= P1,X|A=1

(
svd < X1 < svd +

(
ε

cβ

)γ/d
)

(C.15)

=

∫
I

(
svd < x1 < svd +

(
ε

cβ

)γ/d
)
µ1,1(x)dx =

3∑
j=1

∫
Bj

I

(
svd < x1 < svd +

(
ε

cβ

)γ/d
)
µ1,1(x)dx

=
1

2

∫
B3

I

(
svd < x1 < svd +

(
ε

cβ

)γ/d
)
dx.

Since 0 < ε ⩽ cβ (vd)
d/γ

, and recalling (C.14), this further equals

1

2

∫ svd+
(

ε
cβ

)γ/d

svd

(∫
∑d

j=2 |xj |⩽vd−|x1−(1+s)vd|
dx2 . . . dxd

)
dx1

=
1

2

∫ svd+
(

ε
cβ

)γ/d

svd

(∫
∑d

j=2 |xj |⩽x1−svd

dx2 . . . dxd

)
dx1 =

1

2

∫ (
ε
cβ

)γ/d

0

(∫
∑d

j=2 |xj |⩽x1

dx2 . . . dxd

)
dx1

=
1

2

∫ (
ε
cβ

)γ/d

0

Vd−1,1x
d−1
1 dx1 =

Vd−1,1

2d

(
ε

cβ

)γ

=
Vd,1
4

(
ε

cβ

)γ

. (C.16)

To bound P1,X|A=1

(
T ⋆
1,1 − ε < η1,1 < T ⋆

1,1

)
, we first study the inverse η−1

1,1 of η1,1, viewed as a function

of x1. We have η−1
1,1(T

⋆
1,1) = svd and

η−1
1,1(T

⋆
1,1 − ε) =


svd −

(
ε
cβ

)γ/d
, 0 < ε ⩽ cβ(svd)

d/γ ;(
2 (svd)

d/γ − ε
cβ

)γ/d
− svd, cβ(svd)

d/γ < ε ⩽ 2cβ(svd)
d/γ ;

−
(

ε
cβ

− 2 (svd)
d/γ
)γ/d

− svd, 2cβ(svd)
d/γ < ε ⩽ 2cβ(svd)

d/γ + cβ(2vd)
d/γ .

Thus, for 0 < ε ⩽ 2cβ(svd)
d/γ + cβ(2vd)

d/γ , T ⋆
1,1 − ε < η1,1(x) < T ⋆

1,1 is equivalent to
svd −

(
ε
cβ

)γ/d
< x1 < svd, when 0 < ε ⩽ cβ(svd)

d/γ ;(
2 (svd)

d/γ − ε
cβ

)γ/d
− svd < x1 < svd, when cβ(svd)

d/γ < ε ⩽ 2cβ(svd)
d/γ ;

−
(

ε
cβ

− 2 (svd)
d/γ
)γ/d

− svd < x1 < svd, when 2cβ(svd)
d/γ < ε ⩽ 2cβ(svd)

d/γ + cβ(2vd)
d/γ .

Now we consider several cases.

37



– (1) 0 < ε ⩽ cβ(svd)
d/γ . We can write

P1,X|A=1

(
T ⋆
1,1 − ε < η1,1(X) < T ⋆

1,1

)
= P1,X|A=1

(
svd −

(
ε

cβ

)γ/d

< X1 < svd

)

=

∫
I

(
svd −

(
ε

cβ

)γ/d

< x1 < svd

)
µ1,1(x)dx

=

3∑
j=1

∫
Bj

I

(
svd −

(
ε

cβ

)γ/d

< x1 < svd

)
µ1,1(x)dx.

In this case, we have svd − (ε/cβ)
γ/d ⩾ 0. Using (C.13), we have Bj ∩{x : svd − (ε/cβ)

γ/d
< x1 <

svd} = ∅ for j = 1, 3. Thus, this further equals∫
B2

I

(
svd −

(
ε

cβ

)γ/d

< x1 < svd

)
1

2 + 2sd
dx

=
1

2 + 2sd

∫ svd

svd−
(

ε
cβ

)γ/d

(∫
∑d

j=2 |xj |⩽svd−|x1|
dx2 . . . dxd

)
dx1

=
1

2 + 2sd

∫ (
ε
cβ

)γ/d

0

(∫
∑d

j=2 |xj |⩽x1

dx2 . . . dxd

)
dx1

=
Vd−1,1

2 + 2sd

∫ (
ε
cβ

)γ/d

0

xd−1
1 dx1 =

Vd,1
4 + 4sd

(
ε

cβ

)γ

.

As 1 ⩽ 1 + sd ⩽ 2 when 0 ⩽ s ⩽ 1, we thus have, for 0 < ε ⩽ cβ(svd)
d/γ ,

Vd,1
8

(
ε

cβ

)γ

⩽ P1,X|A=1

(
T ⋆
1,1 − ε < η1,1(X) < T ⋆

1,1

)
⩽
Vd,1
4

(
ε

cβ

)γ

.

– (2) cβ(svd)
d/γ < ε ⩽ 2cβ(svd)

d/γ . In this case, we have −svd ⩽
(
2 (svd)

d/γ − ε
cβ

)γ/d
− svd < 0.

Again, by (C.13), we have Bj ∩ {x : svd − (ε/cβ)
γ/d

< x1 < svd} = ∅ for j = 1, 3. Thus,

P1,X|A=1

(
T ⋆
1,1 − ε < η1,1(X) < T ⋆

1,1

)
= P1,X|A=1

((
2 (svd)

d/γ − ε

cβ

)γ/d

− svd < X1 < svd

)

=

∫
I

((
2 (svd)

d/γ − ε

cβ

)γ/d

− svd < x1 < svd

)
µ1,1(x)dx

=

3∑
j=1

∫
Bj

I

((
2 (svd)

d/γ − ε

cβ

)γ/d

− svd < x1 < svd

)
µ1,1(x)dx

=

∫
B2

I

((
2 (svd)

d/γ − ε

cβ

)γ/d

− svd < x1 < svd

)
1

2 + 2sd
dx. (C.17)

On one hand, since I

((
2 (svd)

d/γ − ε/cβ

)γ/d
− svd < x1 < svd

)
⩽ 1, this is upper bounded by

∫
B2

1

2 + 2sd
dx =

1

2 + 2sd
λ(B2) =

Vd,1
2 + 2sd

(svd)
d <

Vd,1
2

(
ε

cβ

)γ

,

where the last inequality holds since 1 + sd > 1 and (ε/cβ)
γ > (svd)

d when ε > cβ(svd)
d/γ .
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On the other hand, since I

((
2 (svd)

d/γ − ε/cβ

)γ/d
− svd < x1 < svd

)
⩾ I (0 < x1 < svd) when(

2 (svd)
d/γ − ε/cβ

)γ/d
− svd < 0, the (C.17) is lower bounded by∫

B2

I (0 < x1 < svd)
1

2 + 2sd
dx =

1

2

∫
B2

1

2 + 2sd
dx =

1

4 + 4sd
λ(B2)

=
Vd,1

4 + 4sd
(svd)

d ⩾
Vd,1
23+γ

(
ε

cβ

)γ

,

where the last inequality holds since 1 + sd < 2 and (ε/cβ)
γ ⩽ 2γ(svd)

d when ε ⩽ 2cβ(svd)
d/γ .

As a result, we have, for cβ(svd)
d/γ < ε ⩽ 2cβ(svd)

d/γ ,

Vd,1
23+γ

(
ε

cβ

)γ

⩽ P1,X|A=1

(
T ⋆
1,1 − ε < η1,1(X) < T ⋆

1,1

)
⩽
Vd,1
2

(
ε

cβ

)γ

.

– (3) 2cβ(svd)
d/γ < ε ⩽ 2cβ(svd)

d/γ + cβ(2vd)
d/γ . In this case, we have −

(
ε/cβ − 2 (svd)

d/γ
)γ/d

−

svd < −svd. By (C.13), B2 ∩
{
x : −

(
ε/cβ − 2 (svd)

d/γ
)γ/d

− svd < x1 < svd

}
= intB2, where

int denotes the interior of a set, and B3 ∩
{
x : −

(
ε/cβ − 2 (svd)

d/γ
)γ/d

− svd < x1 < svd

}
= ∅.

Thus,

P1,X|A=1

(
T ⋆
1,1 − ε < η1,1(X) < T ⋆

1,1

)
= P1,X|A=1

(
−
(
ε/cβ − 2 (svd)

d/γ
)γ/d

− svd < X1 < svd

)
=

∫
I

(
−
(
ε/cβ − 2 (svd)

d/γ
)γ/d

− svd < x1 < svd

)
µ1,1(x)dx

=

3∑
j=1

∫
Bj

I

(
−
(
ε/cβ − 2 (svd)

d/γ
)γ/d

− svd < x1 < svd

)
µ1,1(x)dx

=

∫
B1

I

(
−
(
ε/cβ − 2 (svd)

d/γ
)γ/d

− svd < x1 < svd

)
1

2 + 2sd
dx+

∫
intB2

1

2 + 2sd
dx.

The first term further equals

1

2 + 2sd

∫ −svd

−(ε/cβ−2(svd)
d/γ)

γ/d−svd

(∫
∑d

j=2 |xj |⩽vd−|x1+(1+s)vd|
dx2 . . . dxd

)
dx1

=
1

2 + 2sd

∫ −svd

−(ε/cβ−2(svd)
d/γ)

γ/d−svd

(∫
∑d

j=2 |xj |⩽−x1−svd

dx2 . . . dxd

)
dx1

=
1

2 + 2sd

∫ (ε/cβ−2(svd)
d/γ)

γ/d

0

(∫
∑d

j=2 |xj |⩽x1

dx2 . . . dxd

)
dx1

=
Vd,1

4 + 4sd

(
ε/cβ − 2 (svd)

d/γ
)γ
.

We have on one hand,

sd

2 + 2sd
+

Vd,1
4 + 4sd

(
ε

cβ
− 2 (svd)

d/γ

)γ

<
Vd,1

2 + 2sd
(svd)

d +
Vd,1

4 + 4sd

(
ε

cβ

)γ

⩽
3Vd,1
4

(
ε

cβ

)γ

,

where the last inequality holds since 1 + sd > 1 and (ε/cβ)
γ
> (svd)

d when ε > 2cβ(svd)
d/γ >

cβ(svd)
d/γ . On the other hand, we have, when 2cβ(svd)

d/γ < ε ⩽ 4cβ(svd)
d/γ ,

sd

2 + 2sd
+

Vd,1
4 + 4sd

(
ε

cβ
− 2 (svd)

d/γ

)γ

⩾
sd

2 + 2sd
=

Vd,1
2 + 2sd

(svd)
d ⩾

Vd,1
22+2γ

(
ε

cβ

)γ

,
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and when 4cβ(svd)
d/γ < ε,

sd

2 + 2sd
+

Vd,1
4 + 4sd

(
ε

cβ
− 2 (svd)

d/γ

)γ

⩾
Vd,1

4 + 4sd

(
ε

2cβ

)γ

⩾
Vd,1
23+γ

(
ε

cβ

)γ

,

As a result, we have, for 2cβ(svd)
d/γ < ε ⩽ 2cβ(svd)

d/γ + cβ(2vd)
d/γ ,

Vd,1
23+2γ

(
ε

cβ

)γ

⩽ P1,X|A=1

(
T ⋆
1,1 − ε < η1,1(X) < T ⋆

1,1

)
⩽

3Vd,1
4

(
ε

cβ

)γ

.

In particular, we have, for 0 < ε ⩽ cβv
d/γ
d ,

Vd,1
23+2γ

(
ε

cβ

)γ

⩽ P1,X|A=1

(
T ⋆
1,1 − ε < η1,1(X) < T ⋆

1,1

)
⩽

3Vd,1
4

(
ε

cβ

)γ

. (C.18)

Combining (C.15), (C.16) and (C.18), we get, for j ∈ {−1,+1} and 0 < ε ⩽ cβv
d/γ
d ,

Vd,1(2
−1 + 2−(2+2γ))

(
ε

cβ

)γ

⩽ gδ,j(t
⋆
j , ε) = 2P1,X|A=1

(
0 < |η1,1 − T ⋆

1,1| < ε
)
⩽ 2Vd,1

(
ε

cβ

)γ

.

Thus, for 0 < x ⩽ 1/2, g−1
δ,j (t

⋆
j , x) ⩽ cβ (2x/Vd,1)

1/γ
, and the γ-margin condition from Definition 4.4 is

satisfied.

• Strong density condition from Definition 4.5: Denote Cd = [−3, 3]d and by Ωµ = ∪3
j=1Bj the support

of µ±1,a. By construction, we have, for a ∈ {0, 1} and j ∈ {−1, 1}, since s ⩽ 1,

1

4
⩽

1

2 + 2sd
⩽ µj,a(x) ⩽

1

2
.

Thus, we can take µmin = 1/4 and µmax = 1/2. We then show that Ωµ is a regular set by considering
the following two cases: (1) x ∈ B1 ∪ B3 and (2) x ∈ B2. Let Ξd = Vd,1/(Vd,22

d).

– (1) When x ∈ B1 ∪ B3: Without loss of generality, we assume x ∈ B1. By Lemma B.1 where
B1 = Bd,1(z,R) with z = ((1 + s)vd, . . . , 0)

⊤ and R = vd, we have, when r ⩽ 2vd/(d+ 2),

λ[Bd,2(x, r) ∩ Ωµ] ⩾ λ[Bd,2(x, r) ∩ B1] ⩾ Ξdλ[Bd,2(x, r)] ⩾ Ξdλ[Bd,2(x, r) ∩ Cd].

– (2) When x ∈ B2: Without loss of generality, we assume x1 > 0.

∗ When r ⩽ 2svd/(d + 2), by Lemma B.1 where B2 = Bd,1(z,R) with z = 0 and R = svd, we
have

λ[Bd,2(x, r) ∩ Ωµ] ⩾ λ[Bd,2(x, r) ∩ B2] ⩾ Ξdλ[Bd,2(x, r)] ⩾ Ξdλ[Bd,2(x, r) ∩ Cd].

∗ When 2svd/(d+2) < r ⩽ 2
√
2svd, we have, by Lemma B.1 where B2 = Bd,1(z,R) with z = 0

and R = svd,

λ[Bd,2(x, r) ∩ Ωµ] ⩾ λ[Bd,2(x, 2svd/(d+ 2)) ∩ B2]

⩾ Ξdλ[Bd,2(x, 2svd/(d+ 2))] =
Ξd

2d/2(d+ 2)d
λ[Bd,2(x, 2

√
2svd)]

⩾
Ξd

2d/2(d+ 2)d
λ[Bd,2(x, r)] ⩾

Ξd

2d/2(d+ 2)d
λ[Bd,2(x, r) ∩ Cd].

∗ When
√
2svd < r/2 < vd/(d + 2), we denote z = (svd, 0, . . . , 0)

⊤ ∈ B3. As x1 > 0, we have
z ∈ B2,d(x,

√
2svd). Noting that when r > 2

√
2svd, r −

√
2svd > r/2, this further implies

B2,d(z, r/2) ⊂ B2,d(z, r −
√
2svd) ⊂ B2,d(x, r). Now, since z ∈ B1, by Lemma B.1 again, as

B3 = Bd,1(z,R) with z = (−(1 + s)vd, . . . , 0)
⊤ and R = vd, we have

λ[B2,d(x, r) ∩ Ωµ] ⩾ λ[B2,d(z, r/2) ∩ B3] ⩾ Ξdλ[B1] ⩾ Ξdλ[B1 ∩ Cd].
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The strong density condition is thus satisfied.

Using (C.8), and in particular that η1,1 = η−1,1 or P1,Y |X,A=a(y) = P−1,Y |X,A=a(y), the Kullback–Leibler
divergence between P1 and P−1 can be expressed as

KL(P1,P−1) =

∫
X×A×Y

log
dP1(x, a, y)

dP−1(x, a, y)
dP1(x, a, y)

=

∫
X×A×Y

log
dP1,A(a)dP1,X|A=a(x)dP1,Y |X,A=a(y)

dP−1,A(a)dP−1,X|A=a(x)dP−1,Y |X,A=a(y)
dP1(x, a, y)

=
∑

a∈{0,1}

P1(A = a)

∫
X
log

dP1,X|A=a(x)

dP−1,X|A=a(x)
dP1,X|A=a(x).

Using the definition of µj,a, and in particular that for all a, µ1,a ̸= µ−1,a only for x ∈ B1 ∪ B3, as well as
that λ[B1] = λ[B3] = 1, this further equals∑

a∈{0,1}

1

2

∫
log

µ1,a(x)

µ−1,a(x)
µ1,a(x)dx

=
1

2

∫
B1∪B3

[
1

2
log(1 + sd)− 1

2 + 2sd
log(1 + sd)

]
dx =

sd

2 + 2sd
log(1 + sd) ⩽ Cs2d.

By Pinsker’s inequality, we have

TV
(
P⊗n
1 ,P⊗n

−1

)
⩽

1

2

√
KL
(
P⊗n
1 ,P⊗n

−1

)
=

1

2

√
nKL (P1,P−1) ⩽ C ′√nsd. (C.19)

Recall that ν denotes the distribution of a Rademacher variable. We have, by (4.2),

sup
P∈PΣ

EPdE(f̂δ,n, f
⋆) ⩾ sup

j∈{−1,1}
E⊗n
Pj
dE

(
f̂δ,n, f

⋆
j

)
= sup

j∈{−1,1}
E⊗n
Pj

∑
a∈{0,1}

{∫
∪3

j=1Bj

(
f̂δ,n(x, a)− f⋆j (x, a)

) (
T ⋆
j,a − ηj,a(x)

)
µj,a(x)dx

}

⩾ sup
j∈{−1,1}

E⊗n
Pj

∑
a∈{0,1}

{∫
B2

(
f̂δ,n(x, a)− f⋆j (x, a)

) (
T ⋆
j,a − ηj,a(x)

)
µj,a(x)dx

}

⩾ EνE⊗n
Pν

∑
a∈{0,1}

{∫
B2

(
f̂δ,n(x, a)− f⋆ν (x, a)

) (
T ⋆
ν,a − ην,a(x)

)
µν,a(x)dx

}
. (C.20)

Here, the second to last inequality holds since
(
f̂δ,n(x, a)− f⋆j (x, a)

) (
T ⋆
j,a − ηj,a(x)

)
⩾ 0, which follows the

fact that f̂δ,n(x, a) ∈ [0, 1], while f⋆j (x, a) = 1 when ηj,a(x) > T ⋆
j,a and f⋆j (x, a) = 0 when ηj,a(x) < T ⋆

j,a.

Now, define the distribution P0 = (P1 + P−1)/2. We have that P⊗n
1 and P⊗n

−1 are absolutely continuous

with respect to P⊗n
0 . Moreover, by (C.13),

ηj,a(x) =


1/2 + (2a− 1)/4− cβ(svd)

d/γ − cβ(−x1 − svd)
d/γ , x ∈ B1;

1/2 + (2a− 1)/4− cβ(svd)
d/γ + cβ(x1 + svd)

d/γ , x ∈ B2 ∩ {x1 < 0};
1/2 + (2a− 1)/4 + cβ(svd)

d/γ − cβ(−x1 + svd)
d/γ , x ∈ B2 ∩ {x1 ⩾ 0};

1/2 + (2a− 1)/4 + cβ(svd)
d/γ + cβ(x1 − svd)

d/γ , x ∈ B3.

In particular, we have, for x ∈ B2,

ηj,a(x) = 1/2 + (2a− 1)/4 + sign(x1)cβ(svd)
d/γ − sign(x1)cβ(−|x1|+ svd)

d/γ . (C.21)

and
1/2 + (2a− 1)/4− cβ(svd)

d/γ ⩽ ηj,a(x) ⩽ 1/2 + (2a− 1)/4 + cβ(svd)
d/γ .
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By (C.10), for x ∈ int(B2), we thus have

f⋆+1(x, 1) = f⋆−1(x, 0) = 0 and f⋆−1(x, 1) = f⋆+1(x, 0) = 1.

In other words, we have f⋆j (x, a) = I(j + 1 ̸= 2a) on int(B2). Moreover, since the boundary of B2 has zero
measure, we can set f⋆j (x, a) arbitrarily on this boundary. Thus, (C.20) can be written and bounded as

Eν

∑
a∈{0,1}

E⊗n
P0

(
dP⊗n

ν

dP⊗n
0

){∫
B2

(
f̂δ,n(x, a)− I(ν + 1 ̸= 2a)

) (
T ⋆
ν,a − ην,a(x)

)
µν,a(x)dx

}

⩾
∑

a∈{0,1}

E⊗n
P0

(
dP⊗n

1

dP⊗n
0

∧
dP⊗n

−1

dP⊗n
0

)
Eν

{∫
B2

(
f̂δ,n(x, a)− I(ν + 1 ̸= 2a)

) (
T ⋆
ν,a − ην,a(x)

)
µν,a(x)dx

}

= EP0(1− TV
(
P⊗n
1 ,P⊗n

−1

) ∑
a∈{0,1}

Eν

{∫
B2

(
f̂δ,n(x, a)− I(ν + 1 ̸= 2a)

) (
T ⋆
ν,a − ην,a(x)

)
µν,a(x)dx

}
.

(C.22)

Then, if we take s ≍ n−1/(2d) with TV
(
P⊗n
1 ,P⊗n

−1

)
⩽ C ′√nsd < 1/2, by (C.19), (C.22) is further lower

bounded by

1

2

∑
a∈{0,1}

Eν

{∫
B2

(
f̂δ,n(x, a)− I(ν + 1 ̸= 2a)

) (
T ⋆
ν,a − ην,a(x)

)
µν,a(x)dx

}

=
1

4

∫
B2

(
f̂δ,n(x, 1)− I(1 + 1 ̸= 2)

) (
T ⋆
1,1 − η1,1(x)

)
µ1,1(x)dx

+
1

4

∫
B2

(
f̂δ,n(x, 1)− I(−1 + 1 ̸= 2)

) (
T ⋆
−1,1 − η−1,1(x)

)
µ−1,1(x)dx

+
1

4

∫
B2

(
f̂δ,n(x, 0)− I(1 + 1 ̸= 0)

) (
T ⋆
1,0 − η1,0(x)

)
µ1,0(x)dx

+
1

4

∫
B2

(
f̂δ,n(x, 0)− I(−1 + 1 ̸= 0)

) (
T ⋆
−1,0 − η−1,0(x)

)
µ−1,0(x)dx.

By (C.21) and the fact that T ⋆
j,a = 1/2 + (2a− 1)(1/4 + j · cβ(svd)d/γ),

ηj,a − T ⋆
j,a = −cβ(2a− 1)j(svd)

d/γ + cβsign(x1)
(
(svd)

d/γ − (svd − |x1|)d/γ
)
.

Moreover, we have µj,a(x) = 1/(2 + 2sd) for x ∈ B2. Thus, denoting Wd = (svd)
d/γ and h(x) =

sign(x1)
[
(svd)

d/γ − (svd − |x|)d/γ
]
, this further equals

cβ
8 + 8sd

{∫
B2

f̂δ,n(x, 1) (Wd − h(x)) dx

}
+

cβ
8 + 8sd

{∫
B2

(
f̂δ,n(x, 1)− 1

)
(−Wd − h(x)) dx

}
+

cβ
8 + 8sd

{∫
B2

(
f̂δ,n(x, 0)− 1

)
(−Wd − h(x)) dx

}
+

cβ
8 + 8sd

{∫
B2

f̂δ,n(x, 0) (Wd − h(x)) dx

}
=

cβ
8 + 8sd

{∫
B2

(
f̂δ,n(x, 1)Wd − f̂δ,n(x, 1)h(x)− f̂δ,n(x, 1)Wd − f̂δ,n(x, 1)h(x) +Wd + h(x)

)
dx

}
+

cβ
8 + 8sd

{∫
B2

(
−f̂δ,n(x, 0)Wd − f̂δ,n(x, 0)h(x) +Wd + h(x) + f̂δ,n(x, 0)Wd − f̂δ,n(x, 0)h(x)

)
dx

}
.

Cancelling terms, this equals

cβ
8 + 8sd

{∫
B2

(
−2f̂δ,n(x, 1)h(x) +Wd + h(x)

)
dx

}
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+
cβ

8 + 8sd

{∫
B2

(
−2f̂δ,n(x, 0)h(x) +Wd + h(x)

)
dx

}
=

cβ
4 + 4sd

{∫
B2

(
−
(
f̂δ,n(x, 1) + f̂δ,n(x, 0)

)
h(x) +Wd + h(x)

)
dx

}
. (C.23)

Note that 0 ⩽ f̂δ,n(x, a) ⩽ 1 for a ∈ {0, 1}. By definition of Wd and h(x), we have, for a ∈ {0, 1},

Wd + h(x)− 2f̂δ,n(x, a)h(x) =Wd + (1− 2f̂δ,n(x, a))h(x) ⩾Wd − |h(x)|

= (svd)
d/γ −

(
(svd)

d/γ − (svd − |x1|)d/γ
)
= (svd − |x1|)d/γ .

Then, (C.23) is lower bounded by

cβ
4 + 4sd

∫
B2

(svd − |x1|)d/γdx =
cβ

2 + 2sd

∫
B2∩{x1>0}

(svd − x1)
d/γdx

=
cβ

2 + 2sd

∫ svd

0

(∫
∑d

j=2 |xj |⩽svd−x1

(svd − x1)
d/γdx2 . . . dxd

)
dx1

=
cβ

2 + 2sd

∫ svd

0

(svd − x1)
d/γ

(∫
∑d

j=2 |xj |⩽svd−x1

dx2 . . . dxd

)
dx1

=
cβVd−1,1

2 + 2sd

∫ svd

0

(svd − x1)
d/γ (svd − x1)

d−1
dx1

=
cβγVd−1,1

(2 + 2sd)(1 + γ)d
(svd)

d/γ+d ⩾ Cβ,γ,ds
d
γ +d ⩾ C ′n−

1+γ
2γ .

In the last inequality, we have used that s ≍ n−1/(2d). This finishes the proof.

D Proofs of Theorems in Section 5

The following counterexample from Rigollet and Vert (2009) demonstrates the advantage of offsets. Assume
that X ⊂ R, that the density g is such that g(x) = 1/2 for x ∈ [0, 1] and that g(x) < 1/2 elsewhere. Assume
ĝ is an consistent estimator of g such that ∥ĝ−g∥∞ ⩽ ε for some small ε > 0. If ĝ(x) = g(x)+ε for x ∈ [0, 1],

we have Λf (1/2) = ∅ and Λ̂f (1/2) ⊃ [0, 1]. Thus, the standard plug-in estimate fails to estimate Λf (1/2)

consistently even as ε tends to 0. However, Λ̃g,ℓn (1/2) with a positive offset ℓn > ε can become consistent.

D.1 Proof of Proposition 5.2

• In the fairness-impacted case, we have D−(0) > 0 and δ̃ = δ. Recalling (3.3), (3.4), (3.5) and (5.10),
we have, by the left continuity of D+ and the right continuity of D−,

D+(t
⋆
δ) = PX|A=1

(
η1(X) ⩾

1

2
+

t⋆δ
2p1

)
− PX|A=0

(
η0(X) >

1

2
− t⋆δ

2p0

)
= PX|A=1

(
η1(X) > T ⋆

δ,1

)
+ PX|A=1

(
η1(X) = T ⋆

δ,1

)
− PX|A=0

(
η0(X) > T ⋆

δ,0

)
= π⋆

1,+ + π⋆
1,= − π⋆

0,+ ⩾ δ,

and

D−(t
⋆
δ) = PX|A=1

(
η1(X) >

1

2
+

t⋆δ
2p1

)
− PX|A=0

(
η0(X) ⩾

1

2
− t⋆δ

2p0

)
= PX|A=1

(
η1(X) > T ⋆

δ,1

)
− PX|A=0

(
η0(X) > T ⋆

δ,0

)
− PX|A=0

(
η0(X) = T ⋆

δ,0

)
= π⋆

1,+ − π⋆
0,+ − π⋆

0,= ⩽ δ.
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It follows that
δ − π⋆

1,+ + π⋆
0,+ = δ −D+(t

⋆
δ) + π⋆

1,= ⩽ π⋆
1,=,

and thus, and interpreting x/0 = 0 for all x ∈ R in what follows,
π⋆
0,+−π⋆

1,++δ

π⋆
1,=

⩽ 1. Similarly, π⋆
1,+ −

π⋆
0,+ − δ = D−(t

⋆
δ)− δ + π⋆

0,= ⩽ π⋆
0,= and

π⋆
1,+−π⋆

0,+−δ

π⋆
0,=

⩽ 1. As a result, with x 7→ σ(x) = max(x, 0),

DDP(f⋆δ ) =
∑

a∈{0,1}

[
(2a− 1)

(
PX|A=a

(
ηa(X) > T ⋆

δ,a

)
+ τ⋆δ,aPX|A=a

(
ηa(X) = T ⋆

δ,a

))]
= π⋆

1,+ + τ⋆δ,1 · π⋆
1,= − π⋆

0,+ − τ⋆δ,0 · π⋆
0,=

= π⋆
1,+ + π⋆

1,=ρ

(
π⋆
0,+ − π⋆

1,+ + δ

π⋆
1,=

)
− π⋆

0,+ − π⋆
0,=ρ

(
π⋆
1,+ − π⋆

0,+ − δ

π⋆
0,=

)
= π⋆

1,+ + σ
(
π⋆
0,+ − π⋆

1,+ + δ
)
− π⋆

0,+ − σ
(
π⋆
1,+ − π⋆

0,+ − δ
)
= δ,

were the last equation follows by checking the cases π⋆
0,+ − π⋆

1,+ + δ ⩾ 0 and π⋆
0,+ − π⋆

1,+ + δ < 0.

• In the automatically-fair and fair-boundary cases, we have D−(0) ⩽ 0 and δ̃ = 0.

– If D−(0) ⩽ 0, we have,

−π⋆
1,= ⩽ D+(0)− π⋆

1,= = π⋆
1,+ − π⋆

0,+ = D−(0) + π⋆
0,= ⩽ π⋆

0,=.

It holds that (π⋆
0,+ − π⋆

1,+)/π
⋆
1,= ⩽ 1 and (π⋆

1,+ − π⋆
0,+)/π

⋆
0,= ⩽ 1. As a result, with x 7→ σ(x) =

max(x, 0),

DDP(f⋆δ ) = π⋆
1,+ + π⋆

1,=ρ

(
π⋆
0,+ − π⋆

1,+

π⋆
1,=

)
− π⋆

0,+ − π⋆
0,=ρ

(
π⋆
1,+ − π⋆

0,+

π⋆
0,=

)
= π⋆

1,+ + σ
(
π⋆
0,+ − π⋆

1,+

)
− π⋆

0,+ − π⋆
0,=σ

(
π⋆
1,+ − π⋆

0,+

)
= 0,

were the last equation follows by checking the cases π⋆
0,+ − π⋆

1,+ ⩾ 0 and π⋆
0,+ − π⋆

1,+ < 0.

– If D−(0) > 0, we have,
π⋆
1,+ − π⋆

0,+ = D−(0) + π⋆
0,= > π⋆

0,=.

It holds that (π⋆
0,+ − π⋆

1,+)/π
⋆
1,= ⩽ 0 and (π⋆

1,+ − π⋆
0,+)/π

⋆
0,= > 1. As a result, with x 7→ σ(x) =

max(x, 0),

DDP(f⋆δ ) = π⋆
1,+ + π⋆

1,=ρ

(
π⋆
0,+ − π⋆

1,+

π⋆
1,=

)
− π⋆

0,+ − π⋆
0,=ρ

(
π⋆
1,+ − π⋆

0,+

π⋆
0,=

)
= π⋆

1,+ +−π⋆
0,+ − π⋆

0,= = D−(0).

E Proofs of Theorems in Section 6

E.1 Proof of Theorem 6.2

Recall the definition of t̂δ,mid, t̂δ,∆n,min and t̂δ,∆n,max from (5.3). By construction, we have for any ε > 0
that{
t̂δ,mid > t⋆δ + ε

}
⊂
{
D̂n(t

⋆
δ + ε, 0, 0) ⩾ δ

}
;

{
t̂δ,mid < t⋆δ + ε

}
⊂
{
D̂n(t

⋆
δ + ε, 0, 0) ⩽ δ

}
;{

t̂δ,∆n,min > t⋆δ + ε
}
⊂
{
D̂n(t

⋆
δ + ε, 0, 0) ⩾ δ +∆n

}
;
{
t̂δ,∆n,min < t⋆δ + ε

}
⊂
{
D̂n(t

⋆
δ + ε, 0, 0) ⩽ δ +∆n

}
;{

t̂δ,∆n,max > t⋆δ + ε
}
⊂
{
D̂n(t

⋆
δ + ε, 0, 0) ⩾ δ −∆n

}
;
{
t̂δ,∆n,max < t⋆δ + ε

}
⊂
{
D̂n(t

⋆
δ + ε, 0, 0) ⩽ δ −∆n

}
.

44



Let Lt1 , Ut1 and ci,t1 be defined in Lemma B.9; let Lt2 , Ut2 and ci,t2 be defined in Lemma B.10; and let
Lr, Ur, U∆,r, and ci,r be defined in Lemma B.11. During this proof, we take Lt = Lt1 ∨ Lt,2 ∨ Lr and
Ut = Ut1 ∧ Ut,2 ∧ Ur. We further denote

Et = ψn,1,t(ε) +
∑

j={−1,1}

I(δ = Dj(t
⋆
δ))ψn,2,t (gδ,j (ω(ε, rn))) .

Next, we consider the following four cases: (1) t⋆δ = 0, (2) t⋆δ > 0 and D+(t
⋆
δ) > δ, (3) t⋆δ > 0 and

D+(t
⋆
δ) = δ > D−(t

⋆
δ) and (4) t⋆δ > 0 and D+(t

⋆
δ) = δ = D−(t

⋆
δ).

Case (1) t⋆δ = 0.

In this case, we have Ĩ⋆(δ) = 0 and ω(ε, rn) = rn. By construction, we have t̂δ = t̂δ,∆n,min when
t̂δ,mid − t̂δ,∆n,min ⩽ rn. By (B.7) of Lemma B.9, (B.13) of Lemma B.11 and Lemma B.8, when
Lt(ϕn,1 ∨ϕn,0) < rn < Ut, 2(gδ,−(4rn)∨ gδ,+(4rn)) < ∆n < U∆,t := U∆,r and Lt(ϕn,1 ∨ϕn,0) < ε < rn,
we have, with ci,t > 0, i ∈ [4] that

P⊗n
(
t̂δ > t⋆δ + ε

)
= P⊗n

(
t̂δ > ε

)
= P⊗n

(
t̂δ > ε, t̂δ = t̂δ,∆n,min

)
+ P⊗n

(
t̂δ > ε, t̂δ ̸= t̂δ,∆n,min

)
⩽ P⊗n

(
t̂δ,∆n,min > ε

)
+ P⊗n

(
t̂δ ̸= t̂δ,∆n,min

)
⩽ P⊗n

(
D̂n(t

⋆
δ + ε, 0, 0) ⩾ δ +∆n

)
+ P⊗n

(
t̂δ,mid − t̂δ,∆n,min > rn

)
⩽ ψn,1,t1(ε) + I(δ = D−(t

⋆
δ))ψn,2,t1

(
∆n + gδ,−

(ε
2

))
+ ψn,1,r(rn) + I(δ = D−(t

⋆
δ))ψn,2,r

(
gδ,−

(rn
2

))
⩽ ψn,1,t1(ε) + I(δ = D−(t

⋆
δ))ψn,2,t1

(
gδ,−

(rn
4

))
+ ψn,1,r(rn) + I(δ = D−(t

⋆
δ))ψn,2,r

(
gδ,−

(rn
4

))
⩽ ψn,1,t(ε) + I(δ = D−(t

⋆
δ))ψn,2,t (gδ,− (rn)) ⩽ Et.

Here, the third last inequality holds since ∆n + gδ,−(ε/2) > ∆n > 4gδ,−(4rn) > gδ,−(rn/4).

Moreover, by definition, P⊗n
(
t̂δ < t⋆δ − ε

)
⩽ P⊗n

(
t̂δ < 0

)
= 0 ⩽ Et.

Case (2) t⋆δ > 0 and δ < D+(t
⋆
δ).

In this case, we have Ĩ⋆(δ) = 0 and ω(ε, rn) = rn. By construction, we have t̂δ = t̂δ,∆n,min when
t̂δ,mid − t̂δ,∆n,min ⩽ rn. By (B.7) of Lemma B.9, (B.14) of Lemma B.11 and Lemma B.8, when
Lt(ϕn,1 ∨ϕn,0) < rn < Ut, 2(gδ,−(4rn)∨ gδ,+(4rn)) < ∆n < U∆,t := U∆,r and Lt(ϕn,1 ∨ϕn,0) < ε < rn,
we have, with ci,t > 0, i ∈ [4] that

P⊗n
(
t̂δ > t⋆δ + ε

)
= P⊗n

(
t̂δ > t⋆δ + ε, t̂δ = t̂δ,∆n,min

)
+ P⊗n

(
t̂δ > t⋆δ + ε, t̂δ ̸= t̂δ,∆n,min

)
⩽ P⊗n

(
t̂δ,∆n,min > t⋆δ + ε

)
+ P⊗n

(
t̂δ ̸= t̂δ,∆n,min

)
⩽ P⊗n

(
D̂n(t

⋆
δ + ε, 0, 0) ⩾ δ +∆n

)
+ P⊗n

(
t̂δ,mid − t̂δ,∆n,min > rn

)
⩽ ψn,1,t1(ε) + I(δ = D−(t

⋆
δ))ψn,2,t1

(
∆n + gδ,−

(ε
2

))
+ ψn,1,r

(rn
2

)
+ I(δ = D−(t

⋆
δ))ψn,2,r

(
gδ,−

(rn
4

))
⩽ ψn,1,t1(ε) + I(δ = D−(t

⋆
δ))ψn,2,t1

(
gδ,−

(rn
4

))
+ ψn,1,r (ε) + I(δ = D−(t

⋆
δ))ψn,2,r

(
gδ,−

(rn
4

))
⩽ ψn,1,t(ε) + I(δ = D−(t

⋆
δ))ψn,2,t (gδ,− (rn)) ⩽ Et.

Here, the third last inequality holds since ∆n − gδ,−(ε/2) > ∆n − gδ,−(4rn) > gδ,−(4rn) ⩾ gδ,−(rn/4).

On the other hand, by (B.12) of Lemma B.10, (B.16) of Lemma B.11 and Lemma B.8, when Lt(ϕn,1 ∨
ϕn,0) < rn < Ut, 2(gδ,−(4rn)∨gδ,+(4rn)) < ∆n < U∆,t := U∆,r∧((D+(t

⋆
δ)−δ)/2) and Lt(ϕn,1∨ϕn,0) <

ε < rn, we have, with ci,t > 0, i ∈ [4] that

P⊗n
(
t̂δ < t⋆δ − ε

)
= P⊗n

(
t̂δ < t⋆δ − ε, t̂δ = t̂δ,∆n,min

)
+ P⊗n

(
t̂δ < t⋆δ − ε, t̂δ ̸= t̂δ,∆n,min

)
⩽ P⊗n

(
t̂δ,∆n,min < t⋆δ − ε

)
+ P⊗n

(
t̂δ ̸= t̂δ,∆n,min

)
⩽ P⊗n

(
D̂n(t

⋆
δ − ε, 0, 0) ⩽ δ +∆n

)
+ P⊗n

(
t̂δ,mid − t̂δ,∆n,min > rn

)
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⩽ ψn,1,t2(ε) + ψn,1,r

(rn
2

)
+ I(δ = D−(t

⋆
δ))ψn,2,r

(
gδ,−

(rn
4

))
⩽ ψn,1,t1(ε) + ψn,1,r (ε) + I(δ = D−(t

⋆
δ))ψn,2,r

(
gδ,−

(rn
4

))
⩽ ψn,1,t(ε) + I(δ = D−(t

⋆
δ))ψn,2,t (gδ,− (rn)) ⩽ Et.

Case (3) t⋆δ > 0 and D−(t
⋆
δ) < δ = D+(t

⋆
δ).

Again, we have Ĩ⋆(δ) = 0 and ω(ε, rn) = rn. By construction, we have t̂δ = t̂δ,∆n,max when t̂δ,mid −
t̂δ,∆n,min > rn and t̂δ,∆n,max − t̂δ,mid < rn. By (B.10) of Lemma B.10, (B.15), (B.16) of Lemma
B.11 and Lemma B.8, when Lt(ϕn,1 ∨ ϕn,0) < rn < Ut, 2(gδ,−(4rn) ∨ gδ,+(4rn)) < ∆n < U∆,t :=
U∆,r ∧ ((δ −D−(t

⋆
δ)/2) and Lt(ϕn,1 ∨ ϕn,0) < ε < rn, we have, with ci,t > 0, i ∈ [4] that

P⊗n
(
t̂δ > t⋆δ + ε

)
= P⊗n

(
t̂δ > t⋆δ + ε, t̂δ = t̂δ,∆n,max

)
+ P⊗n

(
t̂δ > t⋆δ + ε, t̂δ ̸= t̂δ,∆n,max

)
⩽ P⊗n

(
t̂δ,∆n,max > t⋆δ + ε

)
+ P⊗n

(
t̂δ ̸= t̂δ,∆n,max

)
⩽ P⊗n

(
D̂n(t

⋆
δ + ε, 0, 0) ⩾ δ −∆n

)
+ P⊗n

(
t̂δ,mid − t̂δ,∆n,min ⩽ rn

)
+ P⊗n

(
t̂δ,∆n,max − t̂δ,mid > rn

)
⩽ ψn,1,t2(ε) + ψn,1,r(rn) + ψn,2,r

(
gδ,+

(rn
2

))
+ ψn,1,r

(rn
2

)
+ ψn,2,r

(
gδ,+

(rn
4

))
⩽ ψn,1,t2(ε) + 2ψn,1,r

(rn
2

)
+ 2ψn,2,r

(
gδ,+

(rn
4

))
⩽ ψn,1,t(ε) + ψn,2,t (gδ,+ (rn)) ⩽ Et.

Here, the third last inequality holds since ∆n − gδ,−(2ε) > ∆n − gδ,−(4rn) > gδ,+(4rn) ⩾ gδ,+(rn/4).

On the other hand, by (B.8) of Lemma B.9, (B.15), (B.16) of Lemma B.11 and Lemma B.8, when
Lt(ϕn,1 ∨ϕn,0) < rn < Ut, 2(gδ,−(4rn)∨ gδ,+(4rn)) < ∆n < U∆,t := U∆,r and Lt(ϕn,1 ∨ϕn,0) < ε < rn,
we have, with ci,t > 0, i ∈ [4] that

P⊗n
(
t̂δ < t⋆δ − ε

)
= P⊗n

(
t̂δ < t⋆δ − ε, t̂δ = t̂δ,∆n,max

)
+ P⊗n

(
t̂δ < t⋆δ − ε, t̂δ ̸= t̂δ,∆n,max

)
⩽ P⊗n

(
t̂δ,∆n,max < t⋆δ − ε

)
+ P⊗n

(
t̂δ ̸= t̂δ,∆n,max

)
⩽ P⊗n

(
D̂n(t

⋆
δ − ε, 0, 0) ⩽ δ −∆n

)
+ P⊗n

(
t̂δ,mid − t̂δ,∆n,min ⩽ rn

)
+ P⊗n

(
t̂δ,∆n,max − t̂δ,mid > rn

)
⩽ ψn,1,t1(ε) + ψn,2,t1

(
∆n + gδ,+

(ε
2

))
+ ψn,1,r(rn) + ψn,2,r

(
gδ,+

(rn
2

))
+ ψn,1,r

(rn
2

)
+ ψn,2,r

(
gδ,+

(rn
4

))
⩽ ψn,1,t1(ε) + ψn,2,t1

(
gδ,+

(rn
4

))
+ 2ψn,1,r

(rn
2

)
+ 2ψn,2,r

(
gδ,+

(rn
4

))
⩽ ψn,1,t(ε) + ψn,2,t (gδ,− (rn)) ⩽ Et.

Case (4) t⋆δ > 0 and D−(t
⋆
δ) = δ = D+(t

⋆
δ).

In this case, we have Ĩ⋆(δ) = 1 and ω(ε, rn) = ε. By construction, we have t̂δ = t̂δ,mid when min(t̂δ,mid−
t̂δ,∆n,min, t̂δ,∆n,max − t̂δ,mid) > rn. By (B.7), (B.8) of Lemma B.9, (B.17), (B.18) of Lemma B.11 and
Lemma B.8, when Lt(ϕn,1 ∨ ϕn,0) < rn < Ut, 2(gδ,−(4rn) ∨ gδ,+(4rn)) < ∆n < U∆,t := U∆,r and
Lt(ϕn,1 ∨ ϕn,0) < ε < rn, we have, with ci,t > 0, i ∈ [4] that,

P⊗n
(
t̂δ > t⋆δ + ε

)
= P⊗n

(
t̂δ > t⋆δ + ε, t̂δ = t̂δ,mid

)
+ P⊗n

(
t̂δ > t⋆δ + ε, t̂δ ̸= t̂δ,mid

)
⩽ P⊗n

(
t̂δ,mid > t⋆δ + ε

)
+ P⊗n

(
t̂δ ̸= t̂δ,mid

)
⩽ P⊗n

(
D̂n(t

⋆
δ + ε, 0, 0) ⩾ δ

)
+ P⊗n

(
t̂δ,mid − t̂δ,∆n,min ⩽ rn

)
+ P⊗n

(
t̂δ,∆n,max − t̂δ,mid ⩽ rn

)
⩽ ψn,1,t1(ε) + ψn,2,t1

(
gδ,−

(ε
2

))
+ 2ψn,1,r(rn) + ψn,2,r

(
gδ,+

(rn
2

))
+ ψn,2,r

(
gδ,−

(rn
2

))
⩽ ψn,1,t(ε) + ψn,2,t (gδ,− (ε)) + ψn,2,t (gδ,+ (ε)) ⩽ Et.

Similarly,

P⊗n
(
t̂δ < t⋆δ − ε

)
= P⊗n

(
t̂δ < t⋆δ − ε, t̂δ = t̂δ,mid

)
+ P⊗n

(
t̂δ < t⋆δ − ε, t̂δ ̸= t̂δ,mid

)
⩽ P⊗n

(
t̂δ,mid < t⋆δ − ε

)
+ P⊗n

(
t̂δ ̸= t̂δ,mid

)
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⩽ P⊗n
(
D̂n(t

⋆
δ − ε, 0, 0) ⩽ δ

)
+ P⊗n

(
t̂δ,mid − t̂δ,∆n,min ⩽ rn

)
+ P⊗n

(
t̂δ,∆n,max − t̂δ,mid ⩽ rn

)
⩽ ψn,1,t1(ε) + ψn,2,t1

(
gδ,+

(ε
2

))
+ 2ψn,1,r(rn) + ψn,2,r

(
gδ,+

(rn
2

))
+ ψn,2,r

(
gδ,−

(rn
2

))
⩽ ψn,1,t(ε) + ψn,2,t (gδ,− (ε)) + ψn,2,t (gδ,+ (ε)) ⩽ Et.

E.2 Proof of Theorem 6.4

By definition, we have

f̂δ,n(x, a) =


1,

{
(x, a) : η̂a(x) > T̂δ,a + ℓn,a

}
,

τ̂δ,a,
{
(x, a) :

∣∣∣η̂a(x)− T̂δ,a

∣∣∣ < ℓn,a

}
,

0,
{
(x, a) : η̂a(x) < T̂δ,a − ℓn,a

}
;

and f⋆δ (x, a) =


1,

{
(x, a) : ηa(x) > T ⋆

δ,a

}
,

τ⋆δ,a,
{
(x, a) : ηa(x) = T ⋆

δ,a

}
,

0,
{
(x, a) : ηa(x) < T ⋆

δ,a

}
.

It follows that

f̂δ,n(x, a)− f⋆δ (x, a) =



0,
{
(x, a) : η̂a(x) > T̂δ,a + ℓn,a, ηa(x) > T ⋆

δ,a

}
,

1− τ⋆δ,a,
{
(x, a) : η̂a(x) > T̂δ,a + ℓn,a, ηa(x) = T ⋆

δ,a

}
,

1,
{
η̂a(x) > T̂δ,a + ℓn,a, (x, a) : ηa(x) < T ⋆

δ,a

}
,

τ̂δ,a − 1,
{
(x, a) :

∣∣∣η̂a(x)− T̂δ,a

∣∣∣ ⩽ ℓn,a, ηa(x) > T ⋆
δ,a

}
,

τ̂δ,a − τ⋆δ,a,
{
(x, a) :

∣∣∣η̂a(x)− T̂δ,a

∣∣∣ ⩽ ℓn,a, ηa(x) = T ⋆
δ,a

}
,

τ̂δ,a,
{∣∣∣η̂a(x)− T̂δ,a

∣∣∣ ⩽ ℓn,a, (x, a) : ηa(x) < T ⋆
δ,a

}
,

−1,
{
(x, a) : η̂a(x) ⩽ T̂δ,a − ℓn,a, ηa(x) > T ⋆

δ,a

}
,

−τ⋆δ,a,
{
(x, a) : η̂a(x) < T̂δ,a − ℓn,a, ηa(x) = T ⋆

δ,a

}
,

0,
{
η̂a(x) < T̂δ,a − ℓn,a, (x, a) : ηa(x) < T ⋆

δ,a

}
.

Since T ⋆
δ,a − ηa(x) = 0 on

{
(x, a) : ηa(x) = T ⋆

δ,a

}
, we have

(f̂δ,n(x, a)− f⋆δ (x, a))(T
⋆
δ,a − f⋆δ (x, a))

=



T ⋆
δ,a − ηa(x), {(x, a) : η̂a(x) > T̂δ,a + ℓn,a, ηa(x) < T ⋆

δ,a};
(τ̂δ,a − 1)(T ⋆

δ,a − ηa(x)), {(x, a) : |η̂a(x)− T̂δ,a| ⩽ ℓn,a, ηa(x) > T ⋆
δ,a};

τ̂δ,a(T
⋆
δ,a − ηa(x)), {(x, a) : |η̂a(x)− T̂δ,a| ⩽ ℓn,a, ηa(x) < T ⋆

δ,a};
−(T ⋆

δ,a − ηa(x)), {(x, a) : η̂a(x) < T̂δ,a − ℓn,a, ηa(x) > T ⋆
δ,a};

0, otherwise,

⩽ |ηa(x)− T ⋆
δ,a|
[
I(ηa(x) > T ⋆

δ,a, η̂a(x) ⩽ T̂δ,a + ℓn,a) + I(ηa(x) < T ⋆
δ,a, η̂a(x) ⩾ T̂δ,a − ℓn,a)

]
.

Then, by (4.2) and Lemma B.12 for a ∈ {0, 1}, we conclude that

E⊗n
[
dE

(
f̂δ,n, f

⋆
)]

= 2
∑

a∈{0,1}

paE⊗n

[∫
(f̂δ,n(x, a)− f⋆(x, a))(T ⋆

δ,a − ηa(x))dPX|A=a(x)

]

= 2
∑

a∈{0,1}

paE⊗n

∫
I{ηa(x) > T ⋆

δ,a, η̂a(x) ⩽ T̂δ,a + ℓn,a}
∣∣ηa(x)− T ⋆

δ,a

∣∣ dPX|A=a(x)

+ 2
∑

a∈{0,1}

paE⊗n

∫
I{ηa(x) < T ⋆

δ,a, η̂a(x) ⩾ T̂δ,a − ℓn,a}
∣∣ηa(x)− T ⋆

δ,a

∣∣ dPX|A=a(x)

⩽ C
(
(ϕn,1 ∨ ϕn,0 ∨ ℓn,1 ∨ ℓn,0) + Ĩ⋆(δ)n−1/(2γδ)

)γδ+1

.
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E.3 Proof of Theorem 6.7

Recalling (3.5) and (5.10), we have by definition

D+(t
⋆
δ) = PX|A=1

(
η1(X) ⩾

1

2
+

t⋆δ
2p1

)
− PX|A=0

(
η0(X) >

1

2
− t⋆δ

2p0

)
= PX|A=1

(
η1(X) > T ⋆

δ,1

)
+ PX|A=1

(
η1(X) = T ⋆

δ,1

)
− PX|A=0

(
η0(X) > T ⋆

δ,0

)
= π⋆

1,+ + π⋆
1,= − π⋆

0,+ ⩾ δ,

and

D−(t
⋆
δ) = PX|A=1

(
η1(X) >

1

2
+

t⋆δ
2p1

)
− PX|A=0

(
η0(X) ⩾

1

2
− t⋆δ

2p0

)
= PX|A=1

(
η1(X) > T ⋆

δ,1

)
− PX|A=0

(
η0(X) > T ⋆

δ,0

)
− PX|A=0

(
η0(X) = T ⋆

δ,0

)
= π⋆

1,+ − π⋆
0,+ − π⋆

0,= ⩽ δ.

Recall that for all x, a,

f̂δ,n(x, a) = I
(
η̂a(X) > T̂δ,a + ℓn,a

)
+ τ̂δ,aI

(∣∣∣η̂a(x)− T̂δ,a

∣∣∣ ⩽ ℓn,a

)
.

The disparity level of our method f̂δ,n can be expressed as

DDP(f̂δ,n) = PX|A=1

(
Ŷf̂δ,n = 1

)
− PX|A=0

(
Ŷf̂δ,n = 1

)
= PX|A=1

(
η̂1(X) > T̂δ,1 + ℓn,1

)
+ τ̂δ,1PX|A=1

(∣∣∣η̂1(x)− T̂δ,1

∣∣∣ ⩽ ℓn,1

)
− PX|A=0

(
η̂0(X) > T̂δ,0 + ℓn,0

)
+ τ̂δ,0PX|A=0

(∣∣∣η̂0(x)− T̂δ,0

∣∣∣ ⩽ ℓn,0

)
= π̂1,+ + π̂1,=τ̂δ,1 − π̂0,+ − π̂0,=τ̂δ,0.

From Proposition 5.2, we have |π⋆
1,+ + π⋆

1,=τ
⋆
δ,1 − π⋆

0,+ − π⋆
0,=τ

⋆
δ,0| ⩽ δ. Then, by Lemmas B.14 and B.17,

we have, for (Lπ ∨ Lπ1)(ϕn,1 ∨ ϕn,0) < rn < (Uπ ∧ Uπ1), 2 (gδ,−(4rn) ∨ gδ,+(4rn)) < ∆n < (U∆,π ∧ U∆,π1),

Lε,π < ε/4 ⩽
√
(p1 ∧ p0)/2 and (Lη ∨ LT )(ϕn,1 ∨ ϕn,0) < ℓn,a/2 < rn,

P⊗n
(
DDP(f̂δ,n) > δ + ε

)
= P⊗n

(
DDP(f̂δ,n) > π⋆

1,+ + π⋆
1,=τ

⋆
δ,1 − π⋆

0,+ − π⋆
0,=τ

⋆
δ,0 + ε

)
⩽ P⊗n

(
π̂1,+ − π⋆

1,+ >
ε

4

)
+ P⊗n

(
τ̂δ,1π̂1,= − π⋆

1,=τ
⋆
δ,1 >

ε

4

)
+ P⊗n

(
π̂0,+ − π⋆

0,+ < −ε
4

)
+ P⊗n

(
π̂0,=τ̂δ,0 − π⋆

0,=τ
⋆
δ,0 < −ε

4

)
⩽ 10ψn,1,π (ℓn,1 ∧ ℓn,0) + 10

∑
j∈{−,+}

I (δ = Dj(t
⋆
δ))ψn,2,π (g (ξ (ℓn,1 ∧ ℓn,0, rn))) + 2c5,π exp

(
−c6,πnε

2

16

)
.

For c1,D = 20c1,π, c2,D = c2,π/16, c3,D = 20c3,π, c4,D = c4,π/(4
2γ), c5,D = c5,π, and c6,D = c6,π/16, this is

upper bounded by

1

2
ψn,1,D (ℓn,1 ∧ ℓn,0) +

1

2
ψn,2,D (g (ξ (ℓn,1 ∧ ℓn,0, rn))) +

1

2
c5,D exp

(
−c6,Dnε2

)
.

Similarly, the same upper bound holds for P⊗n
(
DDP(f̂δ,n) < −δ − ε

)
. As a result, there exist constants

cD,i, i ∈ [6] such that (6.8) holds.

F Proofs of Lemmas

F.1 Proof of Lemma B.1

Without loss of generality, we assume z = 0 by translation, and that R = 1 by scaling. The vertices of the
polyhedron Bd,1(0, 1) are {σ ·ej : j ∈ [d], σ ∈ {−1, 1}}. Without loss of generality, we assume that the vertex
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of Bd,1(0, 1) closest to x is e1. Then, we have
∑d

j=1 |xj | ⩽ 1 and x1 > maxj=2,...,d |xj |. When r ⩽ 1/(d+ 2),
we will show that

Bd,1

(
x− re1

2
,
r

2

)
⊂ Bd,2(x, r) ∩Bd,1(0, 1). (F.1)

First, as Bd,1(x, r) ⊂ Bd,2(x, r), we have Bd,1(x − e1r/2, r/2) ⊂ Bd,1(x, r) ⊂ Bd,2(x, r). Next, let y =
(y1, . . . , yd)

⊤ ∈ Bd,1(x− e1r/2, r/2). We have

∣∣∣y1 − x1 +
r

2

∣∣∣+ d∑
j=2

|yj − xj | ⩽
r

2
.

We consider the following two cases: (1)
∑d

j=1 |xj | ⩽ 1− r and (2) 1− r <
∑d

j=1 |xj | ⩽ 1.

(1) When
∑d

j=1 |xj | ⩽ 1− r, we have

d∑
j=1

|yj | ⩽
∣∣∣y1 − x1 +

r

2

∣∣∣+ d∑
j=2

|yj − xj |+
∣∣∣x1 − r

2

∣∣∣+ d∑
j=2

|xj |

⩽
r

2
+
∣∣∣x1 − r

2

∣∣∣+ d∑
j=2

|xj | ⩽
r

2
+
r

2
+

d∑
j=1

|xj | ⩽ 1.

(2) When 1 − r <
∑d

j=1 |xj | ⩽ 1, we have x1 > 1 − r −
∑d

j=2 |xj | ⩾ 1 − r − (d − 1)x1. It follows that
x1 > (1− r)/d ⩾ r/2 as r ⩽ 2/(d+ 2). Thus, starting with the same argument as above,

d∑
j=1

|yj | ⩽
r

2
+
∣∣∣x1 − r

2

∣∣∣+ d∑
j=2

|xj | =
r

2
+ x1 −

r

2
+

d∑
j=1

|xj | ⩽ 1.

This implies (F.1), and we then have

λ [Bd,1(0, 1) ∩Bd,2(x, r)] ⩾ λ
[
Bd,1

(
x− re1

2
,
r

2

)]
=
Vd,1r

d

2d
=

Vd,1
Vd,22d

· Vd,2rd =
Vd,1
Vd,22d

λ[Bd,2(x, r)].

F.2 Proof of Lemma B.2

As in the proof of Lemma B.1, without loss of generality, we can assume z = 0 and R = 1. Further, since
the ℓ2-ball is rotation-invariant, we can assume without loss of generality that x = x1e1 with x1 ∈ [0, 1]. For
r ⩽ 1, and for y = (y1, . . . , yd)

⊤ ∈ Bd,2(x− e1, 1) ∩Bd,2(x, r), we have

(y1 − x1 + 1)2 +

d∑
j=2

y2j ⩽ 1 and (y1 − x1)
2 +

d∑
j=2

y2j ⩽ r2.

It follows that

−

√√√√1−
d∑

j=2

y2j ⩽ x1 −

√√√√r2 −
d∑

j=2

y2j ⩽ y1 ⩽

√√√√1−
d∑

j=2

y2j + x1 − 1 ⩽

√√√√1−
d∑

j=2

y2j .

It follows that y ∈ Bd,2(0, 1). This shows that Bd,2(x− e1, 1)∩Bd,2(x, r) ⊂ Bd,2(0, 1)∩Bd,2(x, r). Moreover,

{y : ∥y − x+ e1∥22 = 1} ∩ {y : ∥y − x∥22 = r2} =

y : y1 = x1 −
r2

2
,

d∑
j=2

y2j = r2 − r4

4

 .

It follows that

λ[Bd,2(0, 1) ∩Bd,2(x, r)] ⩾ λ[Bd,2(x− e1, 1) ∩Bd,2(x, r)]
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=

∫
I

x1 − r ⩽ y1 ⩽ x1 − r2/2,

d∑
j=2

y2j ⩽ r2 − (y1 − x1)
2

 dy

+

∫
I

x1 − r2/2 ⩽ y1 ⩽ x1,

d∑
j=2

y2j ⩽ 1− (y1 − x1 + 1)2

 dy

=

∫ x1− r2

2

x1−r

(
r2 − (y1 − x1)

2
) d−1

2 Vd−1,2dy1 +

∫ x1

x1− r2

2

(
1− (y1 − x1 + 1)2

) d−1
2 Vd−1,2dy1.

By substituting t =
√
r2 − (y1 − x1)2 for the first integral, and using r ⩽ 1, this is lower bounded by

Vd−1,2

∫ √
r2− r4

4

0

td√
r2 − t2

dt ⩾ Vd−1,2

∫ √
3r
2

0

td

r
dt

⩾ rdVd,2
3

d+1
2 Vd−1,2

2d+1(d+ 1)Vd,2
=

3
d+1
2 Vd−1,2

2d+1(d+ 1)Vd,2
· λ[Bd,2(x, r)].

F.3 Proof of Lemma B.3

We consider two cases: (1) x ∈ [0, 1]d \ Cz,q and (2) x ∈ Cz,q \ Dz,q.

• Case (1): x ∈ [0, 1]d \ Cz,q.
Since the result holds for any Cr ⩽ 1 when Bd,2(x, r)∩Dz,r = ∅, we only need to consider the case that
Bd,2(x, r)∩Dz,r ̸= ∅. In this case, we have ∥x−z∥ < 2q−1+r. Letting zx = z+3q−1(x−z)/∥x−z∥, we
can verify that Bd,2

(
zx, q

−1
)
⊂ Bd,2(x, r) ∩ (Cz,q \ intDz,q) . In fact, for any point y ∈ Bd,2

(
zx, q

−1
)
,

we have

∥y − x∥ ⩽ ∥y − zx∥+ ∥zx − x∥ ⩽ q−1 + ∥x− z∥ − 3q−1 = ∥x− z∥ − 2q−1 < r.

Moreover,
∥y − z∥ ⩽ ∥y − zx∥+ ∥zx − z∥ = q−1 + 3q−1 = 4q−1,

and ∥y − z∥ ⩾ ∥zx − z∥ − ∥y − zx∥ = 3q−1 − q−1 = 2q−1. It follows that

y ∈ Bd,2(x, r) ∩
(
Bd,2(z, 4q

−1) \ intBd,2(z, 2q
−1)
)
⊂ Bd,2(x, r) ∩ (Cz,q \ intDz,q) .

Since λ[Cz,q] = 8dq−d, and the boundary of Dz,q has zero Lebesgue measure, we thus have

λ[Bd,2(x, r) ∩ (Cz,q \ Dz,q)] ⩾ λ[Bd,2(zx, q
−1)] = Vd,2q

−d = 8−dVd,2λ[Cz,q]
⩾ 8−dVd,2λ[Bd,2(x, r) ∩ Cz,q].

• (2) Case (2): x ∈ Cz,q \ Dz,q. In this case, we consider two sub-cases: (2.1) x ∈ Bd,2(z, q
−1); and (2.2)

x ∈ Cz,q \Bd,2(z, 2q
−1).

– Case (2.1): x ∈ Bd,2(z, q
−1).

∗ When r ⩽ q−1, we have Bd,2(x, r) ⊂ Bd,2(z, 2q
−1) ⊂ Cz,q since, for any point y ∈ Bd,2(x, r),

∥y− z∥ ⩽ ∥y− x∥+ ∥x− z∥ ⩽ r+ q−1 ⩽ 2q−1. Thus, by Lemma B.2 with R = q−1, denoting

Ψd = 3
d+1
2 Vd−1,2/(2

d+1(d+ 1)Vd,2), we have

λ[Bd,2(x, r) ∩ (Cz,q \ Dz,q)] = λ[Bd,2(x, r) ∩Bd,2(z, q
−1)]

⩾ Ψdλ[Bd,2(x, r)] = Ψdλ[Bd,2(x, r) ∩ Cz,q].

∗ When, q−1 < r < (4
√
d+ 1)q−1, we have

λ[Bd,2(x, r) ∩ (Cz,q \ Dz,q)] ⩾ λ[Bd,2(x, q
−1) ∩ (Cz,q \ Dz,q)]
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= λ[Bd,2(x, q
−1) ∩Bd,2(z, q

−1)] ⩾ Ψdλ[Bd,2(x, q
−1)] =

Ψd

(4
√
d+ 1)d

λ[Bd,2(x, (4
√
d+ 1)q−1)]

⩾
Ψd

(4
√
d+ 1)d

λ[Bd,2(x, (4
√
d+ 1)q−1) ∩ Cz,q] ⩾

Ψd

(4
√
d+ 1)d

λ[Bd,2(x, r) ∩ Cz,q].

∗ When r ⩾ (4
√
d + 1)q−1, we have Cz,q ⊂ Bd,2(x, r) since for any point y ∈ Cz,q, ∥y − x∥ ⩽

∥y − z∥+ ∥z − x∥ ⩽ 4
√
dq−1 + q−1 ⩽ (4

√
d+ 1)q−1. We thus have,

λ[Bd,2(x, r) ∩ (Cz,q \ Dz,q)] = λ[Cz,q \ Dz,q] = (8d − (2d − 1)Vd,2)q
−d

=
8d − (2d − 1)Vd,2

8d
λ[Cz,q] =

8d − (2d − 1)Vd,2
8d

λ[Bd,2(x, r) ∩ Cz,q]. (F.2)

– Case (2.2): x ∈ Cz,q \Bd,2(z, 2q
−1).

∗ When r ⩽ q−1, the result holds when ∥x− z∥ > 3q−1 since in this case, Bd,2(x, r)∩Dz,q = ∅.
When ∥x−z∥ ⩽ 3q−1, we consider the set M = {ỹ = 2x−y : y ∈ Bd,2(x, r)∩Dz,q}. Since M
is a translation and reflection of Bd,2(x, r)∩Dz,q, we clearly have λ[M] = λ[Bd,2(x, r)∩Dz,q].
Moreover, we can verify that M ⊂ Bd,2(x, r) ∩

(
Bd,2(z, 4q

−1) \Bd,2(z, 3q
−1)
)
⊂ Bd,2(x, r) ∩

(Cz,q \ Dz,q) . In fact, for any ỹ ∈ M with y = 2x − ỹ ∈ Bd,2(x, r) ∩ (Cz,q \ Dz,q), we have
∥ỹ − x∥ = ∥x− y∥ ⩽ r ⩽ q−1 and

∥ỹ − z∥ ⩽ ∥ỹ − x∥+ ∥x− z∥ ⩽ q−1 + 3q−1 = 4q−1.

Moreover, since x = (y + ỹ)/2, it holds that ∥z − x∥ ⩽ max(∥z − ỹ∥, ∥z − y∥). As ∥z − y∥ ⩽
2q−1 < 3q−1 ⩽ ∥z − x∥, we have ∥ỹ − z∥ ⩾ 3q−1. As a result,

ỹ ∈ Bd,2(x, r) ∩
(
Bd,2(z, 4q

−1) \Bd,2(z, 3q
−1)
)
.

Therefore,
λ[Bd,2(x, r) ∩ (Cz,q \ Dz,q)] ⩾ λ[M] = λ[Bd,2(x, r) ∩ Dz,q],

which, using Cz,q =
(
Cz,q \ Dz,q

)
∪ Dz,q, implies that

λ[Bd,2(x, r) ∩ (Cz,q \ Dz,q)] ⩾
1

2
λ[Bd,2(x, r) ∩ Cz,q]. (F.3)

∗ When q−1 < r < 8
√
dq−1. We consider the set N = {ỹ = x+ (rq)−1(y− x) : y ∈ Bd,2(x, r)∩

Cz,q}. Since N is a scaling of Bd,2(x, r) ∩ Cz,q with scaling coefficient (rq)−1, we clearly have
λ[N ] = (rq)−dλ[Bd,2(x, r)∩Cz,q].Moreover, we can verify thatN ⊂ Bd,2(x, q

−1)∩Cz,q. In fact,
for any ỹ ∈ N with y = x+ rq(y−x) ∈ Bd,2(x, r)∩Cz,q, we have ∥ỹ−x∥ = ∥(rq)−1(y−x)∥ ⩽
q−1, and

|ỹi − zi| = |ỹi − xi + xi − zi| ⩽ |ỹi − xi|+ |xi − zi|I ((ỹi − xi) · (xi − zi) ⩾ 0)

= (rq)−1|yi − xi|+ |xi − zi|I ((yi − xi) · (xi − zi) ⩾ 0)

= |yi − xi|+ |xi − zi|I ((yi − xi) · (xi − zi) ⩾ 0)

= max (|yi − xi|, |yi − zi|) ⩽ 4q−1,

which uses that (rq)−1 ⩽ 1 when r > q−1 and I ((ỹi − xi) · (xi − zi) ⩾ 0) =
I ((yi − xi) · (xi − zi) ⩾ 0) . As a result, ỹ ∈ Bd,2(x, q

−1) ∩ Cz,q.
Now, using (F.3), we have, for q−1 < r < 8

√
dq−1,

λ[Bd,2(x, r) ∩ (Cz,q \ Dz,q)] ⩾ λ[Bd,2(x, q
−1) ∩ (Cz,q \ Dz,q)]

=
1

2
λ[Bd,2(x, q

−1) ∩ Cz,q] ⩾
1

2
λ[N ] =

1

2rdqd
λ[Bd,2(x, r) ∩ Cz,q] ⩾

1

23d+1d
d
2

λ[Bd,2(x, r) ∩ Cz,q].

∗ When r ⩾ 8
√
dq−1, we have Cz,q ⊂ Bd,2(x, r), since for any point y ∈ Cz,q, ∥y − x∥ ⩽

∥y − z∥ + ∥z − x∥ ⩽ 4
√
dq−1 + 4

√
dq−1 ⩽ 8

√
dq−1. Thus, the conclusion follows from the

same reasoning as (F.2).
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F.4 Proof of Lemma B.4

By definition, Ŷ is conditionally independent of Y given X and A. Thus,

P(Ŷf = 1, Y = 0 | X = x,A = a) = f(x, a)(1− ηa(x)), and

P(Ŷf = 1, Y = 0 | X = x,A = a) = ηa(x)(1− f(x, a)).

This implies that

R(f) = P(Y ̸= Ŷf ) =
∑
a∈A

paP(Y ̸= Ŷf |A = a)

=
∑

a∈{0,1}

pa

∫
X

(
P(Ŷf = 1, Y = 0 | X = x,A = a) + P(Ŷf = 1, Y = 0 | X = x,A = a)

)
dPX|A=a(x)

=
∑

a∈{0,1}

pa

∫
X
(f(x, a)(1− ηa(x)) + ηa(x)(1− f(x, a))) dPX|A=a(x)

=
∑

a∈{0,1}

pa

∫
X
((1− 2ηa(x))f(x, a) + ηa(x)) dPX|A=a(x).

For the second result,

DDP(f) = P
(
Ŷf = 1 | A = 1

)
− P

(
Ŷf = 1 | A = 0

)
=

∑
a∈{0,1}

(2a− 1)P
(
Ŷf = 1 | A = a

)
=

∑
a∈{0,1}

∫
(2a− 1)f(x, a)dPX|A=a(x).

This finishes the proof.

F.5 Proof of Lemma B.5

For a ∈ {0, 1} and (xj , aj , yj) ∈ Sa, denote Ia,j = I(aj = a). We have that Ia,j are i.i.d. copies of I(A = a)
with na =

∑n
j=1 Ia,j , Ia,j ∈ {0, 1}, and E(Ia,j) = pa. Then, by Hoeffding’s inequality, P⊗n

(∣∣na

n − pa
∣∣ ⩾ ε

)
⩽

2 exp
(
−2nε2

)
. Next, when |na/n− pa| ⩽ δ ⩽ pa/2, we have∣∣∣∣ nna − 1

pa

∣∣∣∣ = n

napa

∣∣∣na
n

− pa

∣∣∣ ⩽ 2δ

p2a
.

Thus, by taking ε = 2δ
p2
a
⩽ 1/pa,

P⊗n

(∣∣∣∣ nna − 1

pa

∣∣∣∣ ⩾ ε

)
⩽ P⊗n

(∣∣∣na
n

− pa

∣∣∣ ⩾ p2aε

2

)
⩽ 2 exp

(
−np

4
aε

2

2

)
.

F.6 Proof of Lemma B.6

When ε ⩽
√
pa/2 and |na/n − pa| ⩽ ε

√
pa/2, we have, na ⩾ n

(
pa − ε

√
pa/2

)
⩾ npa/2. By the

Dvoretzky–Kiefer–Wolfowitz inequality and (B.2) of Lemma B.5, when ε ⩽
√
pa/2,

P⊗n

sup
T∈R

∣∣∣∣∣∣ 1na
na∑
j=1

I (ηa (xa,j) > T )− PX|A=a (ηa(X) > T )

∣∣∣∣∣∣ > ε


= P⊗n

sup
T∈R

∣∣∣∣∣∣ 1na
na∑
j=1

I (ηa (xa,j) > T )− PX|A=a (ηa(X) > T )

∣∣∣∣∣∣ > ε,
∣∣∣na
n

− pa

∣∣∣ ⩽√pa
2
ε


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+ P⊗n

sup
T∈R

∣∣∣∣∣∣ 1na
na∑
j=1

I (ηa (xa,j) > T )− PX|A=a (ηa(X) > T )

∣∣∣∣∣∣ > ε,
∣∣∣na
n

− pa

∣∣∣ >√pa
2
ε


⩽ 2 exp

(
−2n

(
pa −

√
pa
2
ε

)
ε2
)
+ P⊗n

(∣∣∣na
n

− pa

∣∣∣ ⩾√pa
2
ε

)
⩽ 2 exp

(
−npaε2

)
+ 2 exp

(
−npaε2

)
= 4 exp

(
−npaε2

)
.

F.7 Proof of Lemma B.7

Here, we only study the first term on the left hand side of (B.4); the same argument applies to the second
one. For t ∈ R and all j ∈ [n1], let I1,j(t) = I(η1(x1,j) > 1/2 + t/(2p1)), and for all j ∈ [n0], let
I0,j(t) = I(η0(x0,j) ⩾ 1/2− t/(2p0)). We have, for a ∈ {0, 1} and j ∈ [na],

EX|A=1 (I1,j(t)) = PX|A=1

(
η1(X) > 1

2 + t
2p1

)
; EX|A=0 (I0,j(t)) = PX|A=0

(
η0(X) ⩾ 1

2 − t
2p0

)
;

Dn,− (t) = 1
n1

n1∑
j=1

I1,j(t)− 1
n0

n0∑
j=1

I0,j(t); D− (t) = 1
n1

n1∑
j=1

E[I1,j(t)]− 1
n0

n0∑
j=1

E[I0,j(t)].

By Lemma B.6, we have, for ε ⩽
√

(p1 ∧ p0)/2 and a ∈ {0, 1}

P⊗n

sup
T∈R

∣∣∣∣∣∣ 1na
na∑
j=1

(
Ia,j(t)− EX|A=a[Ia,j(t)]

)∣∣∣∣∣∣ > ε

 ⩽ 4 exp
(
−npaε2

)
.

It follows that, for ε ⩽
√

(p1 ∧ p0)/2,

P⊗n (|Dn,r(t)−D−(t)| > ε)

⩽
1∑

a=0

P⊗n

∣∣∣∣∣∣ 1na
na∑
j=1

(
Ia,j(t)− EX|A=a[Ia,j(t)]

)∣∣∣∣∣∣ > ε

2

 ⩽ 8 exp

(
−n(p1 ∧ p0)ε

2

4

)
.

F.8 Proof of Lemma B.8

Proof. For (B.5), by construction, we have, with c1,ι0 =
∑K

k=1 c1,ιk and c2,ι0 = mink∈[K]

(
c2,ιkC

2
k

)
,

K∑
k=1

ψn,1,ιk(Ckε) =

K∑
k=1

(
c1,ιk exp

(
−c2,ιk

(
Ckε

ϕn,1 ∨ ϕn,0

)2
))

⩽

(
K∑

k=1

c1,ιk

)
exp

((
− min

k∈[K]

(
c2,ιkC

2
k

))( ε

ϕn,1 ∨ ϕn,0

)2
)

= ψn,1,ι0(ε).

For (B.6), under the margin condition (4.4), we have, for j ∈ {−,+}, k ∈ [K] and
(
maxk∈[K] ck ∨ 1

)
ε <

ε0, if δ = Dj (t
⋆
δ), that

gδ,j(Ck) > U−1
γ (Ckε)

γ > U−2
γ Cγ

k (Uγε
γ) > U−2

γ Cγ
k gδ,j(ε).

Thus, with Ĩ⋆(δ) from (6.3),

gδ,j(ω(Ckε, rn)) = Ĩ⋆(δ) · gδ,j(Ckε) + (1− Ĩ⋆(δ)) · gδ,j(rn) > Ĩ⋆(δ) · U−2
γ Cγ

k · gδ,j(ε) + (1− Ĩ⋆(δ)) · gδ,j(rn)

> (U−2
γ Cγ

k ∧ 1)
(
Ĩ⋆(δ) · gδ,j(ε) + (1− Ĩ⋆(δ)) · gδ,j(rn)

)
= (U−2

γ Cγ
k ∧ 1)gδ,j(ω(ε, rn)).

It then follows that, with c3,ι0 =
∑K

k=1 c3,ιk and c4,ι0 =
(
mink∈[K] c4,ιk · U−2

γ Cγ
k

)
∧ 1,

I (δ = Dj(t
⋆
δ))

(
K∑

k=1

ψn,2,ιk (gδ,j (ω(C1ε, rn)))

)
= I (δ = Dj(t

⋆
δ))

(
K∑

k=1

c3,ιk exp
(
−c4,ιkng2δ,j (ω(C1ε, rn))

))

53



⩽ I (δ = Dj(t
⋆
δ))

K∑
k=1

c3,ιk exp
(
−
((
c4,ιk · U−2

γ Cγ
1

)
∧ 1
)
ng2δ,j (ω(ε, rn))

)
⩽ I (δ = Dj(t

⋆
δ))

((
K∑

k=1

c3,ιk

)
exp

(
−
((

min
k∈[K]

c4,ιk · U−2
γ Cγ

k

)
∧ 1

)
ng2δ,j (ω(ε, rn))

))
= I (δ = Dj(t

⋆
δ))ψn,2,ι0 (gδ,j(ω(ε, rn))) .

F.9 Proof of Lemma B.9

We only prove (B.7), since (B.8) can be verified in the same vein. We define the following events:

E1 =
{
D̂n (t

⋆
δ + ε, 0, 0) ⩾ δ +∆n

}
; E2 =

{
maxj |η̂1 (x1,j)− η1 (x1,j)| ⩽ ε

8p1

}
;

E3 =
{
maxj |η̂0 (x0,j)− η0 (x0,j)| ⩽ ε

8p0

}
; E4 =

{∣∣∣ n
n1

− 1
p1

∣∣∣ ⩽ ε
5p1

}
;

E5 =
{∣∣∣ n

n0
− 1

p0

∣∣∣ ⩽ ε
5p0

}
; E6 =

{
Dn,−

(
t⋆δ +

ε
2

)
< δ +∆n

}
.

When E2 and E4 hold with ε ⩽ 1/4, we have, with t⋆δ and T ⋆
δ,a from (3.5),

1

n1

n1∑
j=1

I

(
η̂1 (x1,j) > 1/2 +

n (t⋆δ + ε)

2n1

)
=

1

n1

n1∑
j=1

I

(
η̂1 (x1,j) > T ⋆

δ,1 +
ε

2p1
+
t⋆δ + ε

2

(
n

n1
− 1

p1

))

⩽
1

n1

n1∑
j=1

I

(
η1 (x1,j) > T ⋆

δ,1 +
ε

2p1
− (1 + ε)ε

10p1
− |η̂1 (x1,j)− η1 (x1,j)|

)

⩽
1

n1

n1∑
j=1

I

(
η1 (x1,j) > T ⋆

δ,1 +
ε

4p1

)
.

Similarly, when Ea,3 and Ea,5 hold with ε ⩽ 1/4,

1

n0

n0∑
j=1

I

(
η̂0 (x0,j) > 1/2− n (t⋆δ + ε)

2n0

)
⩾

1

n0

n0∑
j=1

I

(
η0 (x0,j) ⩾ T ⋆

δ,0 −
ε

4p0

)
.

This implies that, when E2, . . . , E6 hold with ε ⩽ 1/4, we have

D̂n (t
⋆
δ + ε, 0, 0) =

1

n1

n1∑
j=1

I

(
η̂1 (x1,j) > 1/2 +

n (t⋆δ + ε)

2n1

)
−

n0∑
j=1

I

(
η̂0 (x0,j) > 1/2− n (t⋆δ + ε)

2n0

)

⩽
1

n1

n1∑
j=1

I

(
η1 (x1,j) > T ⋆

δ,1 +
ε

4p1

)
− 1

n0

n0∑
j=1

I

(
η0 (x0,j) ⩾ T ⋆

δ,0 −
ε

4p0

)
= Dn,−

(
t⋆δ +

ε

2
, 0, 0

)
< δ +∆n.

It follows that P⊗n(∩6
j=1Ej) = 0 and

P⊗n
(
D̂n (t

⋆
δ + ε, 0, 0) > δ

)
⩽ P⊗n

(
∩6
j=1Ej

)
+

6∑
j=2

P⊗n
(
Ec

j

)
=

6∑
j=2

P⊗n
(
Ec

j

)
.

Next, we bound P⊗n(Ec
2), . . . ,P⊗n(Ec

6) in order. First, as (η̂1, η̂0) are (ϕn,1, ϕn,0)n⩾1-pointwise convergent,
by (6.1), we have, for 8Lη(p1ϕn,1 ∨ p0ϕn,0) < ε < 8Uη(p1 ∧ p0), i.e., when Lηϕn,a < ε/(8pa) < Uη for
a ∈ {0, 1}, that

P⊗n(Ec
2) ⩽ c1,η exp

(
− c2,η
64p21

(
ε

ϕn,1

)2
)

and P⊗n(Ec
3) ⩽ c1,η exp

(
− c2,η
64p20

(
ε

ϕn,0

)2
)
.
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Second, using (B.3) of Lemma B.5 and that ϕn,a ⩾ cµn
−1/2, for 0 < ε ⩽ 5, so that ε/(5pa) ⩽ 1/pa, we have

P⊗n (Ec
4) ⩽ 2 exp

(
−np

2
1ε

2

50

)
⩽ 2 exp

(
−
c2µp

2
1

50

(
ε

ϕn,1

)2
)
, and P⊗n (Ec

5) ⩽ 2 exp

(
−
c2µp

2
0

50

(
ε

ϕn,0

)2
)
.

Finally, to bound P⊗n(Ec
6), denote cδ = δ −D−(t

⋆
δ) and note that

P⊗n (Ec
6) = P⊗n

(
Dn,−

(
t⋆δ +

ε

2

)
⩾ δ +∆n

)
= P⊗n

(
(Dn,− −D−)

(
t⋆δ +

ε

2

)
⩾ δ +∆n −D−

(
t⋆δ +

ε

2

))
⩽ 8 exp

(
−
n(p1 ∧ p0)

(
δ +∆n −D−

(
t⋆δ +

ε
2

))2
4

)
= 8 exp

(
−
n(p1 ∧ p0)

(
cδ +∆n + gδ,−

(
ε
2

))2
4

)

⩽ 8I (δ = D−(t
⋆
δ)) exp

(
−
n(p1 ∧ p0)

(
∆n + gδ,−

(
ε
2

))2
4

)
+ 8 exp

(
−n(p1 ∧ p0)c

2
δ

4

)
.

For ε ⩽ 5cδ/
√
2(p1 ∨ p0), this can be upper bounded by

8I (δ = D−(t
⋆
δ)) exp

(
−
n(p1 ∧ p0)

(
∆n + gδ,−

(
ε
2

))2
4

)
+ 8 exp

(
−n(p1 ∧ p0)

2ε2

50

)

⩽ 8I (δ = D−(t
⋆
δ)) exp

(
−
n(p1 ∧ p0)

(
∆n + gδ,−

(
ε
2

))2
4

)
+ 8 exp

(
−
c2µ(p1 ∧ p0)2

50

(
ε

ϕn,1 ∨ ϕn,0

)2
)
.

In conclusion, by taking Lt1 = 8Lη(p1 ∨ p0) and Ut1 = (8p1Uη)∧ (8p0Uη)∧ (5cδ/
√

2(p1 ∨ p0))∧ (1/4), we
have that, for Lt1(ϕn,1 ∨ϕn,0) < ε < Ut1 , (B.7) holds with ψn,1,t1(ε) = c1,t1 exp(−c2,t1(ε/[ϕn,1 ∨ϕn,0])2) and
ψn,2,t1(ε) = c3,t1 exp

(
−c4,t1nε2

)
, where c1,t1 = 2c1,η + 12, c2,t1 = (c2,η ∧ c2µ(p1 ∧ p0)2)/(64(p1 ∨ p0)2 ∨ 50),

c3,t1 = 8, and c4,t1 = (p1 ∧ p0)/4.

F.10 Proof of Lemma B.10

Here, we only prove (B.9) and (B.10), since (B.11) and (B.12) can be verified similarly. To prove (B.9), we
define the following events:

E1 =
{
D̂n (t

⋆
δ + ε, 0, 0) ⩽ δ −∆n

}
; E2 =

{
maxj |η̂1 (x1,j)− η1 (x1,j)| ⩽ ε

4p1

}
;

E3 =
{
maxj |η̂0 (x0,j)− η0 (x0,j)| ⩽ ε

4p0

}
; E4 =

{∣∣∣ n
n1

− 1
p1

∣∣∣ ⩽ ε
4p1

}
;

E5 =
{∣∣∣ n

n0
− 1

p0

∣∣∣ ⩽ ε
4p0

}
; E6 = {Dn,l (t

⋆
δ + 2ε) > δ −∆n} .

Following the arguments used for proving (B.7), we have the following facts:

(1) With ε ⩽ 1, P⊗n
(
D̂n (t

⋆
δ + ε, 0, 0) ⩽ δ −∆n

)
⩽
∑6

j=2 P⊗n
(
E

c

j

)
.

(2) For 4Lη(p1ϕn,1 ∨ p0ϕn,0) < ε < 4Uη(p1 ∧ p0), i.e., when Lηϕn,a < ε/(4pa) < Uη for a ∈ {0, 1},

P⊗n(E
c

2) ⩽ c1,η exp

(
− c2,η
16p21

(
ε

ϕn,1

)2
)

and P⊗n(E
c

3) ⩽ c1,η exp

(
− c2,η
16p20

(
ε

ϕn,0

)2
)
.

(3) For 0 < ε ⩽ 4, so that ε/(4pa) ⩽ 1/pa,

P⊗n
(
E

c

4

)
⩽ 2 exp

(
−
c2µp

2
1

32

(
ε

ϕn,1

)2
)

and P⊗n
(
E

c

5

)
⩽ 2 exp

(
−
c2µp

2
0

32

(
ε

ϕn,0

)2
)
.
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Now, to bound P⊗n(E
c

6), since D−(t
⋆
δ) = δ, we have

δ −∆n −D− (t⋆δ + 2ε) = D−(t
⋆
δ)−D− (t⋆δ + 2ε)−∆n = gδ,− (2ε)−∆n.

Since ∆n ≍ (log log n)−1 and ε < rn ≍ (log n)−1, we have from Condition 4.3 that when n is large enough,

(log log n)−1 ≍ ∆n − Uγ2
γεγ < ∆n − gδ,−(2ε) <

√
(p1 ∧ p0)/2.

Then, by Lemma B.7,

P⊗n
(
E

c

6

)
= P⊗n (Dn,− (t⋆δ + 2ε) ⩽ δ −∆n) = P⊗n ((Dn,− −D−) (t

⋆
δ + 2ε) ⩽ δ −∆n −D− (t⋆δ + 2ε))

= P⊗n ((Dn,− −D−) (t
⋆
δ + 2ε) ⩽ − (∆n − gδ,−(2ε))) ⩽ 8 exp

(
−n(p1 ∧ p0) (∆n − gδ,−(2ε))

2

4

)
.

In conclusion, by taking Lt2 = 4Lη(p1 ∨ p0) and Ut2 = (4p1Uη) ∧ (4p0Uη) ∧ 1, we have that,
for Lt2(ϕn,1 ∨ ϕn,0) < ε < Ut2 , (B.9) holds with ψn,1,t2(ε) = c1,t2 exp(−c2,t2(ε/[ϕn,1 ∨ ϕn,0])

2) and
ψn,2,t2(ε) = c3,t2 exp

(
−c4,t2nε2

)
, where c1,t2 = 2c1,η + 4, c2,t2 = (c2,η ∧ c2µ(p1 ∧ p0)2)/(16(p1 ∨ p0)2 ∨ 32),

c3,t2 = 8, and c4,t2 = (p1 ∧ p0)/4.
Next, to prove (B.10), we define the following events:

Ẽ1 =
{
D̂n (t

⋆
δ + ε, 0, 0) ⩾ δ −∆n

}
; Ẽ2 =

{
maxj |η̂1 (x1,j)− η1 (x1,j)| ⩽ ε

4p1

}
;

Ẽ3 =
{
maxj |η̂0 (x0,j)− η0 (x0,j)| ⩽ ε

4p0

}
; Ẽ4 =

{∣∣∣ n
n1

− 1
p1

∣∣∣ ⩽ ε
4p1

}
;

Ẽ5 =
{∣∣∣ n

n0
− 1

p0

∣∣∣ ⩽ ε
4p0

}
; Ẽ6 = {Dn,l (t

⋆
δ) < δ −∆n} .

Again, by the arguments used in proving (B.7), we obtain the following facts:

(1) With ε ⩽ 1, P⊗n
(
D̂n (t

⋆
δ + ε, 0, 0) ⩾ δ −∆n

)
⩽
∑6

j=2 P⊗n
(
Ẽc

j

)
.

(2) For 4Lη(p1ϕn,1 ∨ p0ϕn,0) < ε < 4Uη(p1 ∧ p0), i.e., when Lηϕn,a < ε/(4pa) < Uη for a ∈ {0, 1},

P⊗n(Ẽc
2) ⩽ c1,η exp

(
− c2,η
16p21

(
ε

ϕn,1

)2
)

and P⊗n(Ẽc
3) ⩽ c1,η exp

(
− c2,η
16p20

(
ε

ϕn,0

)2
)
.

(3) For 0 < ε ⩽ 4, so that ε/(4pa) ⩽ 1/pa,

P⊗n
(
Ẽc

4

)
⩽ 2 exp

(
−
c2µp

2
1

32

(
ε

ϕn,1

)2
)

and P⊗n
(
Ẽc

5

)
⩽ 2 exp

(
−
c2µp

2
0

32

(
ε

ϕn,0

)2
)
.

Now, to bound P⊗n(Ẽc
6), let cδ = δ −D−(t

⋆
δ). For ∆n < cδ/2 and ε ⩽ cδ

√
2/(p1 ∨ p0), by Lemma B.7,

P⊗n
(
Ẽc

6

)
= P⊗n (Dn,− (t⋆δ) ⩾ δ −∆n) = P⊗n ((Dn,− −D−) (t

⋆
δ) ⩾ δ −∆n −D− (t⋆δ))

= P⊗n
(
(Dn,− −D−) (t

⋆
δ) ⩾

cδ
2

)
⩽ 8 exp

(
n(p1 ∧ p0)c2δ

16

)
⩽ 8 exp

(
−n(p1 ∧ p0)

2ε2

32

)
⩽ 8 exp

(
−
c2µ(p1 ∧ p0)2

32

(
ε

ϕn,1 ∨ ϕn,0

)2
)
.

In conclusion, by taking Lt2 = 4Lη(p1 ∨ p0) and Ut2 = (4p1Uη) ∧ (4p0Uη) ∧ cδ
√

2/(p1 ∨ p0) ∧ 1, we have
that, for Lt2(ϕn,1 ∨ ϕn,0) < ε < Ut2 , (B.10) holds with ψn,1,t2(ε) = c1,t2 exp(−c2,t2(ε/[ϕn,1 ∨ ϕn,0])2), where
c1,t2 = 2c1,η + 12 and c2,t2 = (c2,η ∧ c2µ(p1 ∧ p0)2)/(16(p1 ∨ p0)2 ∨ 32).

56



F.11 Proof of Lemma B.11

Proof. Here, we only prove (B.13), (B.14) and (B.15) as the other three claims can be verified similarly:
(B.16) is analogous to (B.14), (B.17) and (B.18) are analogous to (B.15).

For (B.13), recalling the definition of t̂δ,∆n,min and t̂δ,mid in (5.3), we have 0 ⩽ t̂δ,∆n,min ⩽ t̂δ,mid and{
t̂δ,mid > rn

}
⊂ {D̂n(rn, 0, 0) ⩾ δ}. Now, t⋆δ = 0 if and only if D−(0) ⩽ δ. Further, take Lr = Lt1 and

Ur = Ut,1. By Lemma B.9, when Lr < rn < Ur, we have, with ci,r = ci,t1 , i ∈ [4], that

P⊗n
(
t̂δ,mid − t̂δ,∆n,min > rn

)
⩽ P⊗n

(
t̂δ,mid > rn

)
⩽ P⊗n

(
D̂n(rn, 0, 0) ⩾ δ

)
⩽ ψn,1,r(rn) + I(δ = D−(t

⋆
δ))ψn,2,r

(
gδ,−

(rn
2

))
.

For (B.14), by the definition of t̂δ,∆n,min and t̂δ,mid, we have 0 ⩽ t̂δ,∆n,min ⩽ t̂δ,mid, as well as{
t̂δ,∆n,min < t⋆δ −

rn
2

}
⊂
{
D̂n

(
t⋆δ −

rn
2
, 0, 0

)
⩽ δ +∆n

}
and

{
t̂δ,mid > t⋆δ +

rn
2

}
⊂
{
D̂n

(
t⋆δ +

rn
2 , 0, 0

)
⩾ δ
}
.

Take Lr = 2(Lt1 ∨Lt2), Ur = 2(Ut,1 ∧Ut,2) and U∆1
= (D+(t

⋆
δ)− δ)/2. By Lemmas B.9 and B.10, when

Lb(ϕn,1 ∨ ϕn,0) < rn < Ur and gδ,+(4rn) < ∆n < U∆,r, we have, with c1,r = c1,t1 + c1,t2 , c2,r = c2,t1 ∧ c2,t2 ,
c3,r = c3,t2 and c4,r = c4,t1 that

P⊗n
(
t̂δ,mid − t̂δ,∆n,min > rn

)
⩽ P⊗n

(
t̂δ,∆n,min < t⋆δ −

rn
2

)
+ P⊗n

(
t̂δ,mid > t⋆δ +

rn
2

)
⩽ P⊗n

(
D̂n

(
t⋆δ −

rn
2
, 0, 0

)
⩽ δ +∆n

)
+ P⊗n

(
D̂n

(
t⋆δ +

rn
2
, 0, 0

)
⩾ δ
)

⩽ ψn,1,t2

(rn
2

)
+ ψn,1,t1

(rn
2

)
+ I(δ = D−(t

⋆
δ))ψn,2,t1

(
gδ,−

(rn
4

))
⩽ ψn,1,r

(rn
2

)
+ I(δ = D−(t

⋆
δ))ψn,2,r

(
gδ,−

(rn
4

))
.

For (B.15), again by the definition of t̂δ,∆n,min and t̂δ,mid, we have 0 ⩽ t̂δ,∆n,min ⩽ t̂δ,mid, as well as{
t̂δ,∆n,min > t⋆δ − 2rn

}
⊂
{
D̂n (t

⋆
δ − 2rn, 0, 0) ⩾ δ +∆n

}
and

{
t̂δ,mid < t⋆δ − rn

}
⊂
{
D̂n (t

⋆
δ − rn, 0, 0) ⩽ δ

}
.

Take Lr = Lt1 ∨ (Lt2/2), Ur = (Ut,1 ∧Ut,2)/2 and U∆,r =
√
(p1 ∧ p0)/2∧ ((δ −D−(t

⋆
δ))/2). By Lemmas

B.9 and B.10, when Lr(ϕn,1 ∨ ϕn,0) < rn < Ur and gδ,+(4rn) < ∆n < U∆1
, we have, with c1,r = c1,t1 + c1,t2 ,

c2,r = c2,t1 ∧ c2,t2 , c3,r = c3,t1 + c3,t2 and c4,r = c4,t1 ∧ c4,t2 that

P⊗n
(
t̂δ,mid − t̂δ,∆n,min < rn

)
⩽ P⊗n

(
t̂δ,mid > t⋆δ − 2rn

)
+ P⊗n

(
t̂δ,mid < t⋆δ − rn

)
⩽ P⊗n

(
D̂n (t

⋆
δ − 2rn, 0, 0) ⩾ δ +∆n

)
+ P⊗n

(
D̂n (t

⋆
δ − rn, 0, 0) ⩽ δ

)
⩽ ψn,1,t2(2rn) + ψn,2,t2 (∆n − gδ,+ (4rn)) + ψn,1,t1(rn) + ψn,2,t1

(
gδ,+

(rn
2

))
⩽ ψn,1,r(rn) + ψn,2,r

(
(∆n − gδ,+ (4rn)) ∧ gδ,+

(rn
2

))
⩽ ψn,1,r(rn) + ψn,2,r

(
gδ,+

(rn
2

))
.

The last inequality holds since, when ∆n > 2gδ,+(4rn), ∆n − gδ,+(4rn) > gδ,+(4rn) > gδ,+(rn/2).

F.12 Proof of Lemma B.12

Here, we only prove the first claim with a = 1, since the other results can be derived with the same
argument. During the proof, we use C,C1, C2, etc., to represent constants that may vary from line to line.
Let 0 < CJ < 1/4 be a constant determined later. For Jn = ⌊CJ · log2 n⌋ and 1 ⩽ j ⩽ Jn, with Lη, Uη and
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(ϕn,1, ϕn,0)n⩾1 from Definition 6.1, LT and UT from Corollary 6.3, D− from (3.3), D+ from (3.3), t⋆δ from
(3.5), δ from (5.9), and γ from the γ-exponent condition in the upper bound from Definition 4.4, we denote

an,j = 2j(Lη ∨ LT )(ϕn,1 ∨ ϕn,0), (F.4)

bn,j =

{
22+j/γL

−1/γ
γ n−1/2γ , t⋆δ > 0 and D−(t

⋆
δ) = D+(t

⋆
δ) = δ;

0, otherwise,
(F.5)

dn,j = an,j + bn,j + ℓn,1. (F.6)

Here, we set CJ such that dn,Jn < ∆n ≍ (log n)−1. From Definition 6.1, it follows that

P⊗n

(
|η̂1 − η⋆1 | >

1

2
an,j−1

)
⩽ c1,η exp

(
−c2,η(Lη ∨ LT )

222j−2
)
⩽ C1 exp

(
−C22

2j
)
,

where in the second inequality we have defined the constants C1, C2 appropriately. We first handle the case
where t⋆δ > 0 and D−(t

⋆
δ) = D+(t

⋆
δ) = δ, and then consider the complement of this case.

Scenario 1: t⋆δ > 0 and D−(t
⋆
δ) = D+(t

⋆
δ) = δ.

In this case, we have

dn,j = an,j + bn,j + ℓn,1 ⩽ C
(
2j(ϕn,1 ∨ ϕn,0) + 2j/γn−1/2γ + ℓn,1

)
.

Moreover, by the margin condition (4.4) from Definition 4.4,, we have

gδ,−

(
bn,j
2

)
∧ gδ,+

(
bn,j
2

)
⩾ Lγ2

−2γbγn,j = 2jn−
1
2 .

By Corollary 6.3, and using appropriate parts of 1/2 · an,j−1 + bn,j−1 in the upper bound,

P⊗n
(
T̂δ,1 − T ⋆

δ,1 > 1/2 · an,j−1 + bn,j−1

)
⩽ c1,T exp

(
−c2,T

(
an,j−1

2(ϕn,1 ∨ ϕn,0)

)2
)

+ c3,T exp

(
−c4,Tn

(
gδ,−

(
bn,j
2

)
∧ gδ,+

(
bn,j
2

))2
)

⩽ c1,T exp
(
−c2,T 22(j−2)(Lη ∨ LT )

2
)
+ c3,T exp

(
−c4,T 22j

)
⩽ C1 exp

(
−C22

2j
)
.

Thus, we have

P⊗n
(
T̂δ,1 − T ⋆

δ,1 > an,j−1/2 + bn,j−1

)
⩽ C1 exp

(
−C22

2j
)
. (F.7)

Scenario 2: Other cases.

In this case, we have dn,j = an,j + ℓn,1 ⩽ C
(
2j(ϕn,1 ∨ ϕn,0) + ℓn,1

)
. By the margin condition (4.4) from

Definition 4.4, we have, for j ∈ {−,+} that gδ,j(rn/4) > Lγ2
−2γrγn. It follows that,

I(δ = D−(t
⋆
δ))ψn,2,T

(
gδ,−

(rn
4

))
+ I(δ = D+(t

⋆
δ))ψn,2,T

(
gδ,+

(rn
4

))
⩽ 2ψn,2,T

(
Lγ2

−2γrγn
)
.

When rn ≍ (log log n)−1, we have nr2γn ⩾ Cn
1
2 ⩾ C22Jn . Then, by Corollary 6.3, we have

P⊗n
(
T̂δ,1 − T ⋆

δ,1 > an,j−1/2 + bn,j−1

)
= P⊗n

(
T̂δ,1 − T ⋆

δ,1 > an,j−1/2
)

⩽ ψn,1,T (an,j−1/2) + 2ψn,2,T (Lγ2
−2γrγn)

= c1,T exp
(
−c2,T 22(j−2)(Lη ∨ LT )

2
)
+ 2c3,T exp

(
−c3,TnL2

γ2
−4γr2γn

)
⩽ C1 exp

(
−C22

2j
)
.
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Now, we consider the disjoint sets

C0 =
{
η1 > T ⋆

δ,1 + dn,Jn , η̂1 ⩽ T̂δ,1 + ℓn,1

}
; C1 =

{
T ⋆
δ,1 < η1 ⩽ T ⋆

δ,1 + dn,1, η̂1 ⩽ T̂δ,1 + ℓn,1

}
;

Cj =
{
T ⋆
δ,1 + dn,j−1 < η1 ⩽ T ⋆

δ,1 + dn,j , η̂1 ⩽ T̂δ,1 + ℓn,1

}
, j ⩾ 2.

Clearly,
{
x : η1(x) > T ⋆

δ,1, η̂1(x) ⩽ T̂δ,1 + ℓn,1

}
⊂ ∪Jn

j=0Cj . We bound the quantity of interest over the sets

Cj individually.

On C1: Since C1 ⊂ {0 < |η1 − T ⋆
δ,1| ⩽ dn,1}, using the margin condition from Definition 4.4, we have

E⊗n

[∫
C1

∣∣η1(x)− T ⋆
δ,1

∣∣ dPX|A=1(x)

]
⩽ dn,1PX|A=1

(
T ⋆
δ,1 < η1(X) ⩽ T ⋆

δ,1 + dn,1
)
⩽ Uγd

1+γ
n,1 .

On Cj for 2 ⩽ j ⩽ Jn: For j ⩾ 2, we have due to the definitions from (F.4), Cj ⊂ Cj,1 ∪ Cj,2 with

Cj,1 =

{
|η̂1 − η1| >

1

2
an,j−1

}
∩
{
T ⋆
δ,1 < η1(x) ⩽ T ⋆

δ,1 + dn,j
}
,

and

Cj,2 =

{
T̂δ,1 − T ⋆

δ,1 >
1

2
an,j−1 + bn,j−1

}
∩
{
T ⋆
δ,1 < η1(x) ⩽ T ⋆

δ,1 + dn,j
}
.

Using Fubini’s theorem, the margin condition from Definition 4.4, and (F.7),

E⊗n

[∫
Cj

∣∣η1(x)− T ⋆
δ,1

∣∣ dPX|A=1(x)

]

⩽ E⊗n

[∫
Cj,1

∣∣η1(x)− T ⋆
δ,1

∣∣ dPX|A=1(x)

]
+ E⊗n

[∫
Cj,2

∣∣η1(x)− T ⋆
δ,1

∣∣ dPX|A=1(x)

]

= dn,j

∫ [
P⊗n

(
|η̂1(x)− η1(x)| >

1

2
an,j−1

)
+ P⊗n

(
T̂δ,1 − T ⋆

δ,1 >
1

2
an,j−1 + bn,j−1

)]
· I
(
T ⋆
δ,1 < η1(x) ⩽ T ⋆

δ,1 + dn,j
)
dPX|A=1(x)

⩽ dn,jC1 exp
(
−C22

2j
)
PX|A=1(T

⋆
δ,1 < T̂δ,1 ⩽ T ⋆

δ,1 + dn,j) ⩽ C1Uγd
γ+1
n,j exp

(
−C22

2j
)
.

On C0: Finally,
C0 ⊂ {|η̂1 − η1| > an,Jn/2} ∪

{
T̂δ,1 − T ⋆

δ,1 > an,Jn/2 + bn,Jn

}
.

Using that for all x, |η1(x) − T ⋆
δ,1| ⩽ 1, by Fubini’s theorem, and by the margin condition from Definition

4.4, and (F.7), we obtain that

E⊗n

(∫
C0

∣∣η1(x)− T ⋆
δ,1

∣∣ dPX|A=1

)
⩽ E⊗nPX|A=1 (C0)

⩽ P⊗n

(
|η̂1 − η1| >

1

2
an,Jn

)
+ P⊗n

(
T̂δ,1 − T ⋆

δ,1 >
1

2
an,Jn

+ bn,Jn

)
⩽ 2C1 exp

(
−C22

2Jn
)
= 2C1 exp

(
−C2n

2CJ
)
⩽ C

(
ϕn,1 ∨ ϕn,0 ∨ ℓn,1 ∨ n−

1
2γ

)γ
.

To conclude, we have

E⊗n

∫
η1(x)>T⋆

δ,1,η̂1(x)⩽T̂δ,1+ℓn,1

|η1(x)− T ⋆
1 |dPX|A=1(x) ⩽

Jn∑
j=0

E⊗n

∫
Cj

|η1(x)− T ⋆
1 |dPX|A=1(x)

⩽ Uγd
1+γ
n,1 +

Jn∑
j=2

C1Uγd
γ+1
n,j exp

(
−C22

2j
)
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⩽

 C
∑Jn

j=1 exp
(
−C22

2j
) (

2j(ϕn,1 ∨ ϕn,0) + 2j/γn−
1
2γ + ℓn,1

)γ+1

, 0 < D−(t
⋆
δ) = δ = D+ (t⋆δ) ;

C
∑Jn

j=1 exp
(
−C22

2j
) (

2j(ϕn,1 ∨ ϕn,0) + ℓn,1
)γ+1

, otherwise,

⩽ C
(
(ϕn,1 ∨ ϕn,0 ∨ ℓn,1)γ+1

+ I (0 < D−(t
⋆
δ) = δ = D+ (t⋆δ)) · n

− γ+1
2γ

)
.

This finishes the proof.

F.13 Proof of Lemma B.13

By the definition of δ̃ from and δ̂, we have

P⊗n
(
δ̂ ̸= δ̃

)
=

 P⊗n
(
D̂n(rn, 0, 0) ⩾ δ +∆n

)
, D−(0) ⩽ δ;

P⊗n
(
D̂n(rn, 0, 0) < δ +∆n

)
, D−(0) > δ.

We consider the two cases in order:

• Case (1): D−(0) ⩽ δ.

In this case, we have t⋆δ = 0. By (B.7) of Lemma B.9, with Lt1 , Ut1 and ci,t1 , i ∈ [4] from Lemma B.9,
we have, for Lt1 (ϕn,1 ∨ ϕn,0) < rn < Ut1 and ∆n > 0,

P⊗n
(
D̂n(rn, 0, 0) ⩾ δ +∆n

)
⩽ ψn,1,t1(rn) + ψn,2,t1(∆n).

Thus, (B.19) holds with ci,δ = ci,t1 , i ∈ [4].

• Case (2): D−(0) > δ.

In this case, we define the following events:

Ê1 =
{
D̂n (rn, 0, 0) < δ +∆n

}
; Ê2 =

{
maxj |η̂1 (x1,j)− η1 (x1,j)| ⩽ rn

2p1

}
;

Ê3 =
{
maxj |η̂0 (x0,j)− η0 (x0,j)| ⩽ rn

2p0

}
; Ê4 = {Dn,− (2rn) ⩾ δ +∆n} .

Follow the same arguments for proving (B.7), we have the following facts:

(1) with ∆n > 0,

P⊗n
(
D̂n (rn, 0, 0) < δ +∆n

)
⩽ P⊗n

(
D̂n (rn, 0, 0) < D−(0)−∆n

)
⩽

4∑
j=2

P⊗n
(
Êc

j

)
.

(2) for 2Lη(p1ϕn,1 ∨ p0ϕn,0) < rn < 2Uη(p1 ∧ p0), i.e., when Lηϕn,a < ε/(2pa) < Uη for a ∈ {0, 1},

P⊗n(Êc
4) ⩽ c1,η exp

(
−c2,η
4p21

(
ε

ϕn,1

)2
)

and P⊗n(Êc
3) ⩽ c1,η exp

(
−c2,η
4p20

(
ε

ϕn,0

)2
)
.

Now, to bound P⊗n(Êc
4). We have t⋆δ > 0 when D−(0) > δ. For rn < t⋆δ/4,

δ +∆n −D− (2rn) ⩽ D+(t
⋆
δ) + ∆n −D− (t⋆δ/2) ⩽ ∆n.

Then, for ∆n ⩽
√
(p1 ∧ p0)/2, by Lemma B.7,

P⊗n
(
Êc

4

)
= P⊗n (Dn,− (2rn) ⩾ δ +∆n) = P⊗n ((Dn,− −D−) (2rn) ⩾ δ +∆n −D− (2rn))

= P⊗n ((Dn,− −D−) (2rn) ⩾ ∆n) ⩽ 8 exp

(
n(p1 ∧ p0)∆2

n

4

)
.

In conclusion, by taking Lδ = 2Lη(p1∨p0), Uδ = (t⋆δ/4)∧(2Uγ(p1∧p0)) and U∆,δ =
√

(p1 ∧ p0)/2,
we have that, for Lδ(ϕn,1 ∨ ϕn,0) < rn < Uδ and 0 < ∆n < U∆,δ, (B.19) holds with with
c1,δ = 2c1,η, c2,δ = c2,η/(4(p1 ∨ p0)2), c3,δ = 8 and c4,δ = (p1 ∧ p0)/4.
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F.14 Proof of Lemma B.14

During the proof, we denote Eπ,a = ψn,1,π (ℓn,a) +
∑

j∈{−,+} I(δ = Dj(t
⋆
δ))ψn,2,π (ξ (ℓn,a, rn)) . For the first

two terms of (B.21), note that

I
(
ηa(x) > T ⋆

δ,1 + ℓn,a + |η̂a(x)− ηa(x)|+ |T̂δ,a − T ⋆
δ,a|
)

⩽ I
(
η̂a(x) > T̂δ,a + ℓn,a

)
= I

(
ηa(x) > T ⋆

δ,a + ℓn,a + ηa(x)− η̂a(x) + T̂δ,a − T ⋆
δ,a

)
(F.8)

⩽ I
(
ηa(x) > T ⋆

δ,a + ℓn,a − |η̂a(x)− ηa(x)| − |T̂δ,a − T ⋆
δ,a|
)
.

Using the margin condition from Definition 4.4, it follows that, on the event that supx∈Ω |η̂a(x) − ηa(x)| ⩽
ℓn,a/2 and |T̂δ,a − T ⋆

δ,a| ⩽ ℓn,a/2,

PX|A=a(ηa(X) > T ⋆
δ,a)− Uγ(4paℓn,a)

γ ⩽ PX|A=a(η̂a(X) > T̂δ,a + ℓn,a) ⩽ PX|A=a(ηa(X) > T ⋆
δ,a). (F.9)

Thus, if we take Lπ1
= Lt, Uπ1

= UT and U∆,π1
= U∆,T , by Corollary 6.3 and as (η̂1, η̂0) are (ϕn,1, ϕn,0)-

pointwise convergent, there exist constants ci,π > 0.i ∈ [4] such that, for Lπ1(ϕn,1 ∨ ϕn,0) < rn < Uπ1 ,
2 (gδ,−(4rn) ∨ gδ,+(4rn)) < ∆n < U∆,π1 , ε > Uγ(4paℓn,a)

γ and Lπ1(ϕn,1 ∨ ϕn,0) < ℓn,a/2 < rn, with the
functions ψn,j,ι from (6.2),

P⊗n(π̂a,+ > π⋆
a,+ + ε) ⩽ P⊗n(π̂a,+ > π⋆

a,+)

⩽ P⊗n

(
sup
x∈Ω

|η̂a(x)− ηa(x)| >
ℓn,a
2

)
+ P⊗n

(
|T̂δ,a − T ⋆

δ,a| >
ℓn,a
2

)
⩽ ψn,1,η

(
ℓn,a
2

)
+ ψn,1,T

(
ℓn,a
2

)
+

∑
j∈{−,+}

I(δ = Dj(t
⋆
δ))ψn,2,T

(
ξ

(
ℓn,a
2
, rn

))
⩽ ψn,1,π (ℓn,a) +

∑
j∈{−,+}

I(δ = Dj(t
⋆
δ))ψn,2,π (ξ (ℓn,a, rn)) = Eπ,a.

Similarly,

P⊗n(π̂a,+ < π⋆
a,+ − ε) ⩽ P⊗n(π̂a,+ < π⋆

a,+ − Uγ(4paℓn,a)
γ) ⩽ Eπ,a.

For the last two terms of (B.21), on the event that supx∈Ω |η̂1(x)−η1(x)| ⩽ ℓn,1/2 and |T̂δ,1−T ⋆
δ,1| < ℓn,1/2,

I(η1(x) = T ⋆
δ,1) ⩽ I(|η̂1(x)− T̂δ,1| ⩽ ℓn,1) ⩽ I(|η1(x)− T ⋆

δ,1| ⩽ ℓn,1 + |η̂1(x)− η1(x)|+ |T̂δ,1 − T ⋆
δ,1|).

Again, by the margin condition from Definition 4.4, on the event that supx∈Ω |η̂1(x) − η1(x)| ⩽ ℓn,1/2 and

|T̂δ,1 − T ⋆
δ,1| < ℓn,1/2,

PX|A=1(η1(x) = T ⋆
δ,1) + 2Uγ(4p1ℓn,1)

γ ⩾ PX|A=1(|η̂1(x)− T̂δ,1| ⩽ ℓn,1) ⩾ PX|A=1(η1(x) = T ⋆
δ,1).

Thus, by Corollary 6.3 and the fact that (η̂1, η̂0) are (ϕn,1, ϕn,0)-pointwise convergent, we have, for Lπ1
(ϕn,1∨

ϕn,0) < rn < Uπ1
, 2 (gδ,−(4rn) ∨ gδ,+(4rn)) < ∆n < U∆,π1

, ε > Uγ(4paℓn,a)
γ and (Lη ∨ LT )(ϕn,1 ∨ ϕn,0) <

ℓn,a/2 < rn that

P⊗n(π̂1,= > π⋆
1,= + ε) ⩽ P⊗n(π̂1,= > π⋆

1,= + 2Uγ(4p1ℓn,1)
γ) ⩽ Eπ,a

and P⊗n(π̂1,= < π⋆
1,= − ε) ⩽ P⊗n(π̂1,= < π⋆

1,=) ⩽ Eπ,a, finishing the proof.

F.15 Proof of Lemma B.15

During the proof, we denote,

E ′
π,a = ψn,1,π (ℓn,a) +

∑
j∈{,+

I(δ = Dj(t
⋆
δ)) · ψn,2,π (gδ,j(ℓn,a)) + 4 exp

(
−npaε

2

4

)

61



For a ∈ {0, 1}, define the following events:

Ea,1 =

{
max
j∈[na]

|η̂a(xa,j)− ηa(xa,j)| ⩽ ℓn,a/2

}
, Ea,2 =

{
|T̂δ,a − T ⋆

δ,a| ⩽ ℓn,a/2
}
,

Ea,3 =

 1

na

na∑
j=1

I
(
ηa(xa,j) > T ⋆

δ,a

)
− PX|A=a

(
ηa(X) > T ⋆

δ,a

)
⩽ ε

 ,

Ea,4 =

 1

na

na∑
j=1

I(ηa(xa,j) ⩾ T ⋆
δ,a + 2ℓn,a)− PX|A=a(ηa(X) > T ⋆

δ,a + 2ℓn,a) ⩾ −ε
2

 ,

Ea,5 =

 1

na

na∑
j=1

I(|ηa(xa,j)− T ⋆
δ,a| ⩽ 2ℓn,a)− PX|A=a(|ηa(X)− T ⋆

δ,a| ⩽ 2ℓn,a) ⩽
ε

2

 ,

Ea,6 =

 1

na

na∑
j=1

I(ηa(xa,j) = T ⋆
δ,a)− PX|A=a(ηa(X) = T ⋆

δ,a) ⩾ −ε

 .

We recall the functions ψn,j,ι from (6.2), for j ∈ {1, 2}, defined by constants ci,ι with ι ∈ {η, T, π} and i ∈ [4].
For the first two terms in (B.22), we have from (F.8) with x = xa,j that, when Ea,i, i ∈ [3] hold,

π̂n,a,+ =
1

na

na∑
j=1

I
(
η̂a(xa,j) > T̂δ,a + ℓn,a

)
⩽

1

na

na∑
j=1

I
(
ηa(xa,j) > T ⋆

δ,a

)
⩽ PX|A=1

(
ηa(X) > T ⋆

δ,a

)
+ ε = π⋆

a,+ + ε.

Moreover, when Ea,1, Ea,2 and Ea,4 hold with ε ⩾ 4Uγ(4paℓn,a)
γ , by the margin condition from Definition

4.4 and the definition of π⋆
a,+ from (B.20),

π̂n,a,+ =
1

na

na∑
j=1

I
(
η̂a(xa,j) > T̂δ,a + ℓn,a

)
⩾

1

na

na∑
j=1

I
(
ηa(xa,j) > T ⋆

δ,a + 2ℓn,a
)

⩾ PX|A=1

(
ηa(X) > T ⋆

δ,a + 2ℓn,a
)
− ε

2
⩾ π⋆

a,+ − ε

2
− PX|A=a

(
T ⋆
δ,a < ηa(X) ⩽ T ⋆

δ,a + 2ℓn,a
)

⩾ π⋆
a,+ − ε

2
− Uγ(4paℓn,a)

γ ⩾ π⋆
a,+ − ε.

Thus, by Corollary 6.3, Lemma B.6, Lemma B.8 and the fact that (η̂1, η̂0) are (ϕn,1, ϕn,0)-pointwise
convergent, we have, for Lπ1(ϕn,1 ∨ ϕn,0) < rn < Uπ1 , 2 (gδ,−(4rn) ∨ gδ,+(4rn)) < ∆n < U∆,π1 ,

4Uγ(4paℓn,a)
γ ⩽ ε ⩽

√
pa/2 and Lπ1

(ϕn,1 ∨ ϕn,0) ⩽ ℓn,a/2 ⩽ rn, with ci,π > 0, i ∈ [4], that

P⊗n(π̂n,a,+ > π⋆
a,+ + ε) ⩽

3∑
j=1

P⊗n(Ec
a,j)

⩽ ψn,1,η

(
ℓn,a
2

)
+ ψn,1,T

(
ℓn,a
2

)
+

∑
j∈{−,+}

I(δ = Dj(t
⋆
δ) · ψn,2,T

(
gδ,jξ

(
ℓn,a
2
, rn

))
+ 4 exp

(
−npaε2

)
⩽ ψn,1,π (ℓn,a) +

∑
j∈{−,+}

I(δ = Dj(t
⋆
δ)ψn,2,π (gδ,j (ξ (ℓn,a, rn))) + 4 exp

(
−npaε2

)
= E ′

π,a.

Similarly,

P⊗n
(
π̂n,a,+ < π⋆

a,+ − ε
)
⩽

∑
j=1,2,4

P⊗n(Ec
a,j) ⩽ E ′

π,a.

For the last two terms in (B.22), note that

I
(
|ηa(x)− T ⋆

δ,a| ⩽ ℓn,a − |η̂a(x)− ηa(x)| − |T̂δ,a − T ⋆
δ,a|
)
⩽ I

(
|η̂a(x)− T̂δ,a| ⩽ ℓn,a

)
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⩽ I
(
|ηa(x)− T ⋆

δ,a| ⩽ ℓn,a + |η̂a(x)− ηa(x)|+ |T̂δ,a − T ⋆
δ,a|
)
.

When Ea,1, Ea,2 and Ea,5 hold with ε > 4Uγ(4paℓn,a)
γ , by the margin condition from Definition 4.4,

π̂n,a,= =
1

na

na∑
j=1

I
(
|η̂a(xa,j)− T̂δ,a| ⩽ ℓn,a

)
⩽

1

na

na∑
j=1

I
(
|ηa(xa,j)− T ⋆

δ,a| ⩽ 2ℓn,a
)

⩽ PX|A=1

(
|ηa(X)− T ⋆

δ,a| ⩽ 2ℓn,a
)
+
ε

2
= π⋆

a,= +
ε

2
+ PX|A=1

(
0 < |ηa(X)− T ⋆

δ,a| ⩽ 2ℓn,a
)

⩽ π⋆
a,= +

ε

2
+ 2Uγ(4paℓn,a)

γ ⩽ π⋆
a,= + ε.

and when Ea,1, Ea,2 and Ea,6 hold,

π̂n,a,= =
1

na

na∑
j=1

I
(
|η̂a(xa,j)− T̂δ,a| > ℓn,a

)
⩾

1

na

na∑
j=1

I
(
ηa(xa,j) = T ⋆

δ,a

)
⩾ PX|A=1

(
ηa(X) = T ⋆

δ,a

)
− ε = π⋆

a,= − ε.

Thus, we have, for Lπ1
(ϕn,1 ∨ ϕn,0) < rn < Uπ1

, 2 (gδ,−(4rn) ∨ gδ,+(4rn)) < ∆n < U∆,π1
, 4Uγ(4paℓn,a)

γ ⩽
ε ⩽

√
pa/2 and (Lη ∨ LT )(ϕn,1 ∨ ϕn,0) ⩽ ℓn,a/2 ⩽ rn, with ci,π > 0, i ∈ [4] that

P⊗n
(
π̂n,a,= > π⋆

a,= + ε
)
⩽ P⊗n(Ec

a,1) + P⊗n(Ec
a,2) + P⊗n(Ec

a,5) ⩽ E ′
π,a.

Similarly,

P⊗n
(
π̂n,a,= < π⋆

a,= − ε
)
⩽ P⊗n(Ec

a,1) + P⊗n(Ec
a,2) + P⊗n(Ec

a,6) ⩽ E ′
π,a.

F.16 Proof of Lemma B.16

Recalling the function ρ from (5.8), we consider the following three cases in order: (1) a ⩾ b > 0; (2)
a ⩽ 0 < b. and (3) 0 < a < b.

Case 1: If a ⩾ b > 0, we have ρ(a/b) = 1. Moreover, with 0 < ε < b/2, (a+ 2ε)/(b− ε) > 1 and
(a− 2ε)/(b+ ε)− 1 = (a− b− 3ε)/(b+ ε) > −3ε/b > −6ε/b. It follows that, with 0 < ε < b/2:

ρ

(
a+ 2ε

b− ε

)
− ρ

(a
b

)
= 0 <

6ε

b
and ρ

(
a− 2ε

b+ ε

)
− ρ

(a
b

)
> −6ε

b
.

Case 2: If a ⩽ 0 < b, we have ρ(a/b) = 0. Moreover, with 0 < ε < b/2, (a+ 2ε)/(b− ε)m4ε/b < 6ε
b and

(a− 2ε)/(b+ ε) < 0. It follows that, with 0 < ε < b/2:

ρ

(
a+ 2ε

b− ε

)
− ρ

(a
b

)
⩽

4ε

b
and ρ

(
a− 2ε

b+ ε

)
− ρ

(a
b

)
= 0 ⩾ −6ε

b
.

Case 3: If 0 < a < b, we have ρ(a/b) = a/b. Moreover, with 0 < ε < b/2,

a+ 2ε

b− ε
− a

b
=

(a+ 2b)ε

b(b− ε)
⩽

3bε

b(b− ε)
⩽

6ε

b

and
a− 2ε

b+ ε
− a

b
=

(−a− 2b)ε

b(b+ ε)
⩾

−3bε

b(b+ ε)
⩾ −3ε

b
⩾ −6ε

b
.

Hence (B.23) follows.
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F.17 Proof of Lemma B.17

We consider the following two cases for π⋆
a,= from (5.10): (1) π⋆

a,= = 0 and (2) π⋆
a,= > 0.

Case (1): When π⋆
a,= = 0, since by (5.5), 0 ⩽ τ̂δ,a ⩽ 1 and since π̂a,= ⩾ 0 for π̂a,= from (B.20), for any

ε > 0, we have
P⊗n

(
π̂a,=τ̂δ,a < π⋆

a,=τ
⋆
δ,a − ε

)
⩽ P⊗n (π̂a,= < 0) = 0.

Moreover, if we take Lπ = Lπ1
, Uπ = Uπ1

Lε,π = 22+2γUγ(p1 ∨ p0)
γ and U∆,π = U∆,π1

, by (B.21) from
Lemma B.14, for Lπ1

(ϕn,1 ∨ ϕn,0) < rn < Uπ1
, 2 (gδ,−(4rn) ∨ gδ,+(4rn)) < ∆n < U∆, π1, Lε,π(ℓn,1 ∨ ℓn,0)γ ⩽

ε ⩽
√
pa/2 and (Lη ∨ LT )(ϕn,1 ∨ ϕn,0) ⩽ ℓn,a/2 ⩽ rn, we have

P⊗n
(
π̂a,=τ̂δ,a > π⋆

a,=τ
⋆
δ,a + ε

)
= P⊗n (π̂a,=τ̂δ,a > ε) ⩽ P⊗n

(
π̂a,= > π⋆

a,= + ε
)

⩽ ψn,1,π (ℓn,a) +
∑

j∈{−,+}

I(δ = Dj(t
⋆
δ))ψn,2,π (gδ,jω(ℓn,a, rn)) .

Thus, (B.24) holds with c5,π = c6,π = 0.
Case (2): When π⋆

a,= > 0, we distinguish the following two cases:

(A). When δ̂ = δ̃, π̂n,a,+ ⩾ π⋆
a,+−π⋆

a,=ε/12, π̂n,1−a,+ ⩽ π⋆
1−a,++π⋆

a,=ε/12, π̂n,a,= ⩾ π⋆
a,=−π⋆

a,=ε/12 and

π̂a,= ⩽ π⋆
a,= + ε/2, recalling δ̂a from Algorithm 1, and using Lemma B.16, we have

π̂a,=τ̂δ,a = π̂a,=ρ

(
π̂n,1−a,+ − π̂n,a,+ + δ̂

π̂n,a,=

)
⩽
(
π⋆
a,= +

ε

2

)
ρ

(
π⋆
1−a,+ − π⋆

a,+ + δ̃ + επ⋆
a,=/6

π⋆
a,= − επ⋆

a,=/12

)

⩽
(
π⋆
a,= +

ε

2

)(
ρ

(
π⋆
1−a,+ − π⋆

a,+ + δ

π⋆
a,=

)
+
ε

2

)
⩽ π⋆

a,=τ
⋆
δ,a + ε;

Thus, if we take Lπ = Lπ1
∨ Lδ, Uπ = Uπ1

∧ Uδ, Lε,π = 48Uγ

(
((4p1)

γ/π⋆
1,=) ∨ ((4p0)

γ/π⋆
0,=)

)
and U∆,π =

U∆,π1
∧ U∆,δ, by Lemmas B.13, B.14 and B.15, we have, with Lπ(ϕn,1 ∨ ϕn,0) < rn < Uπ, ∆n < U∆,π,

2(Lπ1
∨ Lδ)(ϕn,1 ∨ ϕn,0) < ℓn,1, ℓn,0 < 2rn, and Lε,π(ℓn,1 ∨ ℓn,0)γ < ε ⩽

√
pa/2, that

P⊗n

(
π̂a,=ρ

(
π̂n,1−a,+ − π̂n,a,+ + δ̂a

π̂n,a,=

)
> π⋆

a,=ρ

(
π⋆
1−a,+ − π⋆

a,+ + δ

π⋆
a,=

)
+ ε

)

⩽ P⊗n

(
π̂n,a,+ < π⋆

a,+ −
π⋆
a,=ε

12

)
+ P⊗n

(
π̂n,1−a,+ > π⋆

1−a,+ +
π⋆
a,=ε

12

)
+ P⊗n

(
π̂n,a,= < π⋆

a,= −
π⋆
a,=ε

12

)
+ P⊗n

(
π̂a,= > π⋆

a,= +
ε

2

)
⩽ 4ψn,1,π (ℓn,a) + 4

∑
j∈{−,+}

I(δ = Dj(t
⋆
δ))ψn,2,π (gδ,jω(ℓn,a, rn)) + 12 exp

(
−
npa(π

⋆
a,=)

2ε2

576

)
.

Choosing c5,π = 12 and c6,π = paπ
⋆2
a,=/576 proves the first claimed inequality.

(B). When π̂n,a,+ ⩽ π⋆
a,+ + π⋆

a,=ε/12, π̂n,1−a,+ ⩾ π⋆
1−a,+ − π⋆

a,=ε/12, π̂n,a,= ⩽ π⋆
a,= + π⋆

a,=ε/12 and
π̂a,= ⩾ π⋆

a,= − ε/2, we have

π̂a,=ρ

(
π̂n,1−a,+ − π̂n,a,+ + δ̂a

π̂n,a,=

)
⩾
(
π⋆
a,= − ε

2

)
ρ

(
π⋆
1−a,+ − π⋆

a,+ − δ − επ⋆
a,=/6

π⋆
a,= + επ⋆

a,=/12

)
⩾
(
π⋆
a,= − ε

2

)(
ρ

(
π⋆
1−a,+ − π⋆

a,+ − δ

π⋆
a,=

)
− ε

2

)
⩾ π⋆

a,=ρ

(
π⋆
1−a,+ − π⋆

a,+−δ
π⋆
a,=

)
− ε.

Thus, similarly to case (A),

P⊗n

(
π̂a,=ρ

(
π̂n,1−a,+ − π̂n,a,+ + δ̂a

π̂n,a,=

)
< π⋆

a,=ρ

(
π⋆
1−a,+ − π⋆

a,+−δ
π⋆
a,=

)
− ε

)

64



⩽ P⊗n

(
π̂n,a,+ > π⋆

a,+ +
π⋆
a,=ε

12

)
+ P⊗n

(
π̂n,1−a,+ < π⋆

1−a,+ −
π⋆
a,=ε

12

)
+ P⊗n

(
π̂n,a,= > π⋆

a,= +
π⋆
a,=ε

12

)
+ P⊗n

(
π̂a,= < π⋆

a,= − ε

2

)
,

and the second claimed inequality follows as in case (A).

G Bayes-optimal Classifier for Data Distribution from Section 7.1

In this section, we derive the δ-fair Bayes optimal classifier and its misclassification rate for the data
distribution proposed in Section 7.1. Let pa = P (A = 1) be the probability of A being 1, let µa the
conditional density function of (X1, X2) given A = a, and let ηa(X1, X2) be the probability of Y = 1 given
A = a and X1, X2. According to the construction, for a ∈ {0, 1} and (x1, x2) ∈ [−1, 1]2,

(1) pa =
1

2
, (2) µa(x1, x2) ≡

1

4
and (3) ηa(x1, x2) =

1 + (2a− 1)s1
2

+
s2 · sign(x1)

2
(|x1|(1− |x2|))β . (G.1)

In the following, we define the half cubes B2
+ and B2

− as

B2
+ =

{
x = (x1, x2) ∈ [−1, 1]2, x1 ⩾ 0

}
and B2

− =
{
x = (x1, x2) ∈ [−1, 1]2, x1 < 0

}
,

respectively. As (|x1|(1− |x2|))β ∈ [0, 1] on [−1, 1]2, we have
ηa(x1, x2) ∈

[
1+(2a−1)s1

2 , 1+(2a−1)s1+s2
2

]
on B2

+;

ηa(x1, x2) ∈
[
1+(2a−1)s1−s2

2 , 1+(2a−1)s1
2

]
on B2

−.

(G.2)

In order to derive D−(t), we first calculate PX1,X2|A=1(η1(X1, X2) > 1/2 + t) and
PX1,X2|A=0(η0(X1, X2) > 1/2 − t). For PX1,X2|A=1(η1(X1, X2) > 1/2 + t), we consider two cases: (1)
(s1 − s2)/2 ⩽ t ⩽ s1/2 and (2) s1/2 < t ⩽ (s1 + s2)/2.

• Case (1): (s1 − s2)/2 ⩽ t ⩽ s1/2.

In this case, we have (1 + s1 − s2)/2 ⩽ 1/2 + t ⩽ (1 + s1)/2. By (G.2),{
η1(x1, x2) >

1

2
+ t

}
∩ B2

+ = B2
+, (G.3)

and

{
η1(x1, x2) >

1

2
+ t

}
∩ B2

− =

{
sign(x1) (|x1| (1− |x2|))β >

2t− s1
s2

}
∩ B2

−

=

{
− (−x1 (1− |x2|))β >

2t− s1
s2

}
∩ B2

− =

{
−x1 (1− |x2|) <

(
s1 − 2t

s2

) 1
β

}
∩ B2

−

=

{
(1− |x2|) < − 1

x1

(
s1 − 2t

s2

) 1
β

}
∩ B2

− =

{
−1 ⩽ x1 < 0, 1 +

1

x1

(
s1 − 2t

s2

) 1
β

< |x2| ⩽ 1

}

=

{
−1 ⩽ x1 ⩽ −

(
s1 − 2t

s2

) 1
β

, 1 +
1

x1

(
s1 − 2t

s2

) 1
β

< |x2| ⩽ 1

}

∪

{
−
(
s1 − 2t

s2

) 1
β

< x1 < 0, |x2| ⩽ 1

}
. (G.4)
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Here, the last equality holds since the event
{
|x2| > 1 + ((s1 − 2t)/s2)

(1/β)/x1
}
is implied by −((s1 −

2t)/s2)
(1/β) < x1 < 0. Then, by (G.1),

PX1,X2|A=1

(
η1(X1, X2) >

1

2
+ t

)
=

∫
{η1(x1,x2)>

1
2+t}

µ1(x1, x2)dx1dx2

=
1

4

(∫
{η1(x1,x2)>

1
2+t}∩B2

+

dx1dx2 +

∫
{η1(x1,x2)>

1
2+t}∩B2

−

dx1dx2

)

=
1

2
+

1

4

∫ 0

−
(

s1−2t
s2

) 1
β

(∫ 1

−1

dx2

)
dx1 +

1

4

∫ −
(

s1−2t
s2

) 1
β

−1

(∫
1+ 1

x1

(
2t−s1

s2

) 1
β <|x2|⩽1

dx2

)
dx1

=
1

2
+

1

2

∫ 0

−
(

s1−2t
s2

) 1
β
dx1 +

1

2

∫ −
(

s1−2t
s2

) 1
β

−1

(
− 1

x1

(
s1 − 2t

s2

) 1
β

)
dx1

=
1

2
+

1

2

(
s1 − 2t

s2

) 1
β

− 1

2

(
s1 − 2t

s2

) 1
β

ln(−x1)

∣∣∣∣∣
−
(

s1−2t
s2

) 1
β

−1


=

1

2
+

1

2

(
s1 − 2t

s2

) 1
β
(
1− 1

β
ln

(
s1 − 2t

s2

))
.

• Case (2): s1/2 ⩽ t ⩽ (s1 + s2)/2.

In this case, we have (1 + s1)/2 < 1/2 + t < (1 + s1 + s2)/2. Again, by (G.2),{
η1(x1, x2) >

1

2
+ t

}
∩ B2

− = ∅, (G.5)

and {
η1(x1, x2) >

1

2
+ t

}
∩ B2

+ =

{
sign(x1) (|x1| (1− |x2|))β >

2t− s1
s2

}
∩ B2

+

=

{
x1 (1− |x2|) >

(
2t− s1
s2

) 1
β

}
∩ B2

+ =

{
(1− |x2|) >

1

x1

(
2t− s1
s2

) 1
β

}
∩ B2

+

=

{
0 ⩽ x1 ⩽ 1, |x2| < 1− 1

x1

(
2t− s1
s2

) 1
β

}

=

{(
2t− s1
s2

) 1
β

⩽ x1 ⩽ 1, |x2| < 1− 1

x1

(
2t− s1
s2

) 1
β

}
. (G.6)

Here, the last equality holds since the set
{
|x2| < 1− ((2t− s1)/s2)

(1/β)/x1
}
is empty set when 0 ⩽

x1 < (2t− s1)/s2)
(1/β). Thus,

PX1,X2|A=1

(
η1(X1, X2) >

1

2
+ t

)
=

∫
{η1(x1,x2)>t}

µ1(x1, x2)dx1dx2

=
1

4

(∫
{η1(x1,x2)>t}∩B2

+

dx1dx2 +

∫
{η1(x1,x2)>t}∩B2

−

dx1dx2

)

=
1

4

∫
{η1(x1,x2)>t}∩B2

+

dx1dx2 =
1

4

∫ 1(
2t−s1

s2

) 1
β

∫ 1− 1
x1

(
2t−s1

s2

) 1
β

1
x1

(
2t−s1

s2

) 1
β −1

dx2

 dx1

=
1

2

∫ 1(
2t−s1

s2

) 1
β

(
1− 1

x1

(
2t− s1
s2

) 1
β

)
dx1
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=
1

2

(
1−

(
2t− s1
s2

) 1
β

)
− 1

2

(
2t− s1
s2

) 1
β

lnx

∣∣∣∣∣
1

(
2t−s1

s2

) 1
β


=

1

2
− 1

2

(
2t− s1
s2

) 1
β
(
1− 1

β
ln

(
2t− s1
s2

))
.

In summary, we have,

PX1,X2|A=1

(
η1(X) >

1

2
+ t

)
=



1, t ⩽ s1−s2
2 ;

1
2 + 1

2

(
s1−2t
s2

) 1
β
(
1− 1

β ln
(

s1−2t
s2

))
, s1−s2

2 < t ⩽ s1
2 ;

1
2 − 1

2

(
2t−s1
s2

) 1
β
(
1− 1

β ln
(

2t−s1
s2

))
, s1

2 ⩽ t ⩽ s1+s2
2 ;

0, t > s1+s2
2 .

(G.7)

To find PX1,X2|A=0

(
η0(X1, X2) ⩾ 1

2 − t
)
, we note that η0(x1, x2) = η1(x1, x2) − s1 and µ0(x1, x2) ≡

µ1(x1, x2). Thus,

PX1,X2|A=0

(
η0(X1, X2) ⩾

1

2
− t

)
=

∫
{η0(x1,x2)>

1
2−t}

µ0(x1, x2)dx1dx2

=

∫
{η1(x1,x2)>

1
2+s1−t}

µ1(x1, x2)dx1dx2 = PX1,X2|A=1

(
η1(X) >

1

2
+ s1 − t

)

=



1, s1 − t ⩽ s1−s2
2 ;

1
2 + 1

2

(
2t−s1
s2

) 1
β
(
1− 1

β ln
(

2t−s1
s2

))
, s1−s2

2 < s1 − t ⩽ s1
2 ;

1
2 − 1

2

(
s1−2t
s2

) 1
β
(
1− 1

β ln
(

s1−2t
s2

))
, s1

2 < s1 − t ⩽ s1+s2
2 ;

0, s1 − t > s1+s2
2 ,

=



0, t ⩽ s1−s2
2 ;

1
2 − 1

2

(
s1−2t
s2

) 1
β
(
1− 1

β ln
(

s1−2t
s2

))
, s1−s2

2 < t ⩽ s1
2 ;

1
2 + 1

2

(
2t−s1
s2

) 1
β
(
1− 1

β ln
(

2t−s1
s2

))
, s1

2 < t ⩽ s1+s2
2 ;

1, t > s1+s2
2 .

(G.8)

Recalling (3.3), by (G.7) and (G.8),

D− (t) = PX1,X2|A=1

(
η1(X1, X2) >

1

2
+ t

)
− PX1,X2|A=0

(
η0(X1, X2) >

1

2
− t

)

=



1, t ⩽ s1−s2
2 ;(

s1−2t
s2

) 1
β
(
1− 1

β ln
(

s1−2t
s2

))
, s1−s2

2 < t ⩽ s1
2 ;

−
(

2t−s1
s2

) 1
β
(
1− 1

β ln
(

2t−s1
s2

))
, s1

2 < t ⩽ s1+s2
2 ;

−1, t > s1+s2
2 .

Since s1 < s2, we have D−(0) =
(

s1
s2

) 1
β
(
1− 1

β ln
(

s1
s2

))
> 0. Thus, based on (A.6), the δ-fair Bayes-optimal

classifier is given, for all x, a, by

f⋆δ (x, a) = I

(
ηa(x) >

1

2
+ (2a− 1)t⋆δ

)
+ τ⋆δ,aI

(
ηa(x) =

1

2
+ (2a− 1)t⋆δ

)
,
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with t⋆δ = I(D−(0) > δ) · supt{D−(t) > δ} and (τ⋆δ,1, τ
⋆
δ,0) ∈ [0, 1]2 being arbitrary. Specifically, t⋆δ satisfies

0 ⩽ t⋆δ < s1/2 and(
s1 − 2t⋆δ
s2

) 1
β
(
1− 1

β
ln

(
s1 − 2t

s2

))
= δ ∧

[(
s1
s2

) 1
β
(
1− 1

β
ln

(
s1
s2

))]
.

For the misclassification rate of f⋆δ , we have

P(Y ̸= Ŷf ) =
∑

a∈{0,1}

pa

∫
[(1− 2ηa(x1, x2)) f

⋆
δ (x1, x2, a) + ηa(x1, x2)] dPX1,X2|A=a(x)

=
1

8

∑
a∈{0,1}

∫ 1

−1

∫ 1

−1

[(1− 2ηa(x1, x2)) f
⋆
δ (x1, x2, a) + ηa(x1, x2)] dx1dx2

=
1

8

∫ 1

−1

∫ 1

−1

[f⋆δ (x1, x2, 1) + f⋆δ (x1, x2, 1)] dx1dx2 +
1

8

∫ 1

0

∫ 1

0

[η1(x1, x2) + η0(x1, x2)] dx1dx2

− 1

4

∫
{η1(x1,x2)>

1
2+t⋆δ}

η1(x1, x2)dx1dx2 −
1

4

∫
{η0(x1,x2)>

1
2−t⋆δ}

η0(x1, x2)dx1dx2

=:(I) + (II) + (III) + (IV).

We now calculate the above four terms in turn.
For (I), denote q⋆δ = ((s1 − 2t⋆δ)/s2)

(1/β). Since 0 ⩽ t⋆δ ⩽ s1/2, by (G.7) and (G.8),

(I) =
1

2

[
PX1,X2|A=1

(
η1(X1, X2) >

1

2
+ t⋆δ

)
+ PX1,X2|A=0

(
η0(X1, X2) >

1

2
− t⋆δ

)]
=

1

4
+

1

4
q⋆δ (1− ln (q⋆δ )) +

1

4
− 1

4
q⋆δ (1− ln (q⋆δ )) =

1

2
.

Further,

(II) =
1

8

∫ 1

−1

∫ 1

−1

[
1 + s2 · sign(x1) (|x1|(1− |x|2))β

]
dx1dx2

=
1

2
+ s2

(∫ 0

−1

(−1)β+1xβ1dx1 +

∫ 1

0

xβ1dx1

)
·
∫ 1

−1

(1− |x2|)βdx2

=
1

2
+ s2 ·

(
−
∫ 1

0

xβ1dx1 +

∫ 1

0

xβ1dx1

)
·
∫ 1

−1

(1− |x2|)βdx2 =
1

2
.

For (III), by (G.3) and (G.4), we have that

(III) = −1

4

∫
{η1(x1,x2)>

1
2+t⋆δ}

η1(x1, x2)dx1dx2

= −1

4

(∫
{η1(x1,x2)>

1
2+t⋆δ}∩B2

+

η1(x1, x2)dx1dx2 +

∫
{η1(x1,x2)>

1
2+t⋆δ}∩B2

−

η1(x1, x2)dx1dx2

)

= −1

4

∫ 1

0

∫ 1

−1

η1(x1, x2)dx1dx2 −
1

4

∫ 0

−
(

s1−2t⋆
δ

s2

) 1
β

(∫ 1

−1

η1(x1, x2)dx2

)
dx1

− 1

4

∫ −q⋆δ

−1

(∫
1+

q⋆
δ

x1
<|x2|⩽1

η1(x1, x2)dx2

)
dx1

= −1

4

∫ 1

0

∫ 1

−1

1 + s1 + s2 (|x1|(1− |x2|))β

2
dx1dx2

− 1

4

∫ 0

−q⋆δ

(∫ 1

−1

1 + s1 − s2 (|x1|(1− |x2|))β

2
dx2

)
dx1

68



− 1

4

∫ −q⋆δ

−1

(∫
1+

q⋆
δ

x1
<|x2|⩽1

1 + s1 − s2 (|x1|(1− |x2|))β

2
dx2

)
dx1.

This further equals

− 1 + s1
4

− s2
8

∫ 1

0

xβ1dx1 ·
∫ 1

−1

(1− |x2|)βdx1dx2 −
1 + s1

4
q⋆δ

+
s2
8

∫ 0

−q⋆δ

(−x1)βdx1 ·
∫ 1

−1

(1− |x2|)βdx2dx1 −
1 + s1

4
q⋆δ

∫ −q⋆δ

−1

− 1

x1
dx1

+
s2
8

∫ −q⋆δ

−1

(−x1)β
(∫

1+
q⋆
δ

x1
<|x2|⩽1

(1− |x2|)βdx2

)
dx1

= −1 + s1
4

− s2
4(β + 1)2

− 1 + s1
4

q⋆δ +
s2

4(β + 1)2
(q⋆δ )

β+1
+

1 + s1
4

q⋆δ ln (q
⋆
δ )

+
s2

4(β + 1)

∫ −q⋆δ

−1

− (q⋆δ )
β+1

x1
dx1

= −1 + s1
4

(1 + q⋆δ − q⋆δ ln (q
⋆
δ ))−

s2
4(β + 1)

(
1− (q⋆δ )

β+1

β + 1
+ (q⋆δ )

β+1
ln (q⋆δ )

)
.

For (IV), by (G.5), (G.6), s1/2 ⩽ s1 − t⋆ ⩽ s1 and as η0(x1, x2) = η1(x1, x2)− s1, we have that

(IV) = −1

4

∫
{η0(x1,x2)>

1
2−t⋆δ}

η0(x1, x2)dx1dx2 = −1

4

∫
{η1(x1,x2)>

1
2+s1−t⋆δ}

(η0(x1, x2)) dx1dx2

= −1

4

∫
{η1(x1,x2)>

1
2+s1−t⋆δ}∩B2

+

η0(x1, x2)dx1dx2 −
1

4

∫
{η1(x1,x2)>

1
2+s1−t⋆δ}∩B2

−

η0(x1, x2)dx1dx2

= −1

4

∫ 1(
s1−2t⋆

δ
s2

) 1
β

∫ 1− 1
x1

q⋆δ

1
x1

(
s1−2t⋆

δ
s2

) 1
β
−1

η0(x1, x2)dx2

 dx1

= −1

4

∫ 1

q⋆δ

(∫ 1− 1
x1

q⋆δ

1
x1

q⋆δ−1

1− s1 + s2 (|x1|(1− |x2|))β

2
dx2

)
dx1

= −1− s1
4

∫ 1

q⋆δ

(
1− 1

x1
q⋆δ

)
dx1 −

s2
8

∫ 1

q⋆δ

xβ1

(∫ 1− 1
x1

q⋆δ

1
x1

q⋆δ−1

(1− |x2|)βdx2

)
dx1

= −1− s1
4

(1− q⋆δ )−
1− s1

4
q⋆δ ln (q

⋆
δ )−

s2
4(β + 1)

∫ 1

q⋆δ

(
xβ1 − 1

x1
(q⋆δ )

β+1

)
dx1

= −1− s1
4

(1− q⋆δ + q⋆δ ln (q
⋆
δ ))−

s2
4(β + 1)

(
1− (q⋆δ )

β+1

β + 1
+ (q⋆δ )

β+1
ln (q⋆δ )

)
.

Summing up, we have

R(f⋆δ ) = (I) + (II) + (III) + (IV)

=
1

2
+

1

2
− 1 + s1

4
(1 + q⋆δ − q⋆δ ln (q

⋆
δ ))−

1− s1
4

(1− q⋆δ + q⋆δ ln (q
⋆
δ ))

− s2
2(β + 1)

(
1− (q⋆δ )

β+1

β + 1
+ (q⋆δ )

β+1
ln (q⋆δ )

)

=
1

2
− s1q

⋆
δ

2
(1− ln (q⋆δ ))−

s2
2(β + 1)

(
1− (q⋆δ )

β+1

β + 1
+ (q⋆δ )

β+1
ln (q⋆δ )

)
.
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