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MIXED VARIATIONAL FORMULATION OF COUPLED PLATES

JUN HU, ZHEN LIU, RUI MA, AND RUISHU WANG

Abstract

This paper proposes a mixed variational formulation for the problem of two coupled plates
with a rigid junction. The proposed mixed formulation introduces the union of stresses and
moments as an auxiliary variable, which are commonly of great interest in practical applications.
The primary challenge lies in determining a suitable space involving both boundary and junction
conditions of the auxiliary variable. The theory of densely defined operators in Hilbert spaces is
employed to define a nonstandard Sobolev space without the use of trace operators. The well-
posedness is established for the mixed formulation. Besides, continuity conditions for stresses
and moments under certain regularity assumptions are presented. Based on these conditions, this
paper provides a framework of conforming mixed finite element methods. Numerical experiments
are given to validate the theoretical results.
Keywords: Coupled Plates, Mixed Formulation, Plane Elasticity, Kirchhoff Plate

1. Introduction

Elastic multi-structures are multidimensional assemblies composed of bodies, plates,
and rods through suitable junctions. These structures are extensively utilized in au-
tomotive and aerospace engineering, see, e.g., [7, 38]. Based on the principle of mini-
mum potential energy, Feng and Shi [16] proposed the mathematical theory of multi-
structures, involving displacements as fundamental variables. Huang, Shi, and Xu [29]
derived the mathematical model in vector forms and proved a generalized Korn’s inequal-
ity for elastic multi-structures consisting of bodies, plates, and rods. There are some
other studies which employ asymptotic analysis to investigate junctions and equations
of multi-structures, see, e.g., [13, 15,32].

This paper considers a specific multi-structure: two coupled plates with a rigid junc-
tion. The elastic plate model consists of a plane elasticity model in the longitudinal
direction and a Kirchhoff plate model in the transverse direction. Mathematical models
of two coupled plates with rigid and elastic junctions were considered in [8,14,31,39,40].
Most of those results focus on formulating the two coupled plates model in terms of
displacements. In [37], a mixed formulation which can preserve the continuity of bend-
ing moments with the normal direction on standard H1 spaces for Kirchhoff shells was
proposed. By introducing the union of stresses and moments as an auxiliary variable,
this paper establishes a new mixed variational formulation for two coupled plates with a
rigid junction. There are several reasons behind considering the new mixed formulation.
Firstly, stresses and moments are often of higher interest in applications. The mixed
formulation allows for the direct calculation of these variables. Secondly, based on the
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prior researches [8,39,40], it is known that the junction conditions contain certain conti-
nuity requirements of stresses and moments. The mixed formulation considered in this
paper precisely preserves this continuity.

For the plane elasticity model of a single plate, the Hellinger-Reissner variational
principle has been widely used which seeks stresses in H(div,S) [5]. Recently, a mixed
formulation which seeks moments in H(divDiv,S) for the Kirchhoff plate model has
been proposed in [4,35]. The mixed variational formulation of two coupled plates is not
a straightforward generalization of a single plate. The main challenge lies in providing
an appropriate Sobolev space for the union of stresses and moments in the mixed for-
mulation. The junction conditions for stresses and moments need to be included in the
definition of the nonstandard Sobolev space, except for the clamped and free boundary
conditions. By extending the idea presented in [36], this issue is indirectly addressed
by employing the theory of densely defined operators within Hilbert spaces. This ap-
proach avoids the technical complexities of directly using trace operators in nonstandard
Sobolev spaces. The well-posedness of the mixed variational problem is proven by utiliz-
ing the equivalence to the variational problem based on displacements [8,39]. Moreover,
continuity conditions of stresses and moments are provided under certain regularity as-
sumptions, which are consistent with [8, 29].

This paper provides a framework of conforming mixed finite element methods based on
the continuity conditions of stresses and moments. Under this framework, various finite
elements can be chosen. For finite elements of H(div,S), see [5,25] on triangular meshes
and [2,12,21] on rectangular meshes. For finite elements of H(divDiv,S), see [11,23,41]
on triangular meshes and [17] on rectangular meshes. Mixed finite elements in higher
dimensions can be found in [1, 3, 6, 20, 21, 24, 26, 27] of H(div,S) and in [10, 11, 22, 23]
of H(divDiv,S). To easily implement the continuity conditions, this paper uses the
H(div,S) element [25] and the H(divDiv,S) element [10] to approximate stresses and
moments, respectively. Numerical experiments are provided to validate the theoretical
results. Interested readers can refer to [8, 19, 28–30, 33, 34, 39, 40] for finite element
methods of the variational formulation based on displacements.

The contents of this paper can be outlined as follows. Section 2 recalls the plane
elasticity model and the Kirchhoff bending model. The variational formulations of two
coupled plates based on displacements and its well-posedness are presented. Section 3
proposes the mixed variational formulation of two coupled plates with the nonstandard
Sobolev space. The well-posedness of the mixed formulation is provided. Section 4 gives
a framework of conforming mixed finite element methods. Numerical experiments are
performed to validate the theory.

2. Preliminaries

This section presents the model assumptions and notation conventions in this paper.
By considering the deformation of a single plate, common symbols in linear elasticity are
introduced. Following that, the mathematical descriptions for the deformation of two
coupled plates are given. In the end, the displacement-based variational formulation of
two coupled plates model with a rigid junction is provided.

2.1. Hypotheses and notations. LetHm(D;X) denote the Sobolev space of functions
within domain D, taking values in space X, of L2(D;X) whose distributional derivatives
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up to the order m also belong to L2(D;X). Similarly, let Cm(D;X) denote the space
of m-times continuously differentiable functions and Pl(D;X) denote the set of all the
polynomials with the total degree no greater than l, taking values in X. In this paper,
X could be R,R2, M or S, where M denotes the set of all R2×2 matrices while S denotes
the set of all symmetric R

2×2 matrices. If X = R, then Hm(D) abbreviates Hm(D;X),
similarly for Cm(D). The standard Sobolev norm ‖ • ‖m,D will be taken. When m =
0,H0(D;X) is exactly L2(D;X). The L2 inner product is denoted by (•, •)D for the
scalar, vector-valued, and tensor-valued L2 spaces over D. In particular, on the tensor-
valued L2 space,

(σ, τ )D :=

∫

D
σ : τdx =

∫

D

2
∑

i,j=1

σijτijdx, ∀σ, τ ∈ L2(D;M).

Let 〈•, •〉U∗×U denote the duality product in U∗ ×U for a Hilbert space U with its dual
U∗. For scalar functions v, vector-valued functions ψ, and matrix-valued functions N
with all components inH1(Ω), the first-order differential expressions∇v,∇ψ,∇sψ,divψ
and DivN are defined as follows

(2.1)

∇v :=

(

∂1v
∂2v

)

, ∇ψ :=

(

∂1ψ1 ∂2ψ1

∂1ψ2 ∂2ψ2

)

, ∇sψ :=
1

2
(∇ψ +∇ψT ),

divψ := ∂1ψ1 + ∂2ψ2, DivN :=

(

∂1N11 + ∂2N12

∂1N21 + ∂2N22

)

.

Define the following nonstandard Sobolev spaces

H(div,D;R2) := {ψ ∈ L2(D;R2) : divψ ∈ L2(D)},

H(Div,D;S) := {N ∈ L2(D;S) : DivN ∈ L2(D;R2)},

H(divDiv,D;S) := {N ∈ L2(D;S) : divDivN ∈ L2(D)}.

The differential operators in (2.1) hold in the weak sense on the corresponding spaces
H1(D),H1(D;R2),H1(D;R2),H(div,D;R2),H(Div,D;S).

Let Ω ⊂ R
3 be a thin plate whose midsurface is denoted as S and lies in the x-y plane.

For simplicity, assume that S is clamped on ∂S0 ⊂ ∂S, with nonzero measure, and is
free on the complementary part which is denoted as ∂S1, i.e., ∂S = ∂S0 ∪ ∂S1, ∂S0 ∩
∂S1 = ∅. The load in S is assumed to be a distributed load (f , f3) := (f1, f2, f3).
Note that problems with other boundary conditions can be treated similarly. In this
paper, the deformations are assumed to be small and governed by the equations of
linear elasticity, and the material is supposed to be homogeneous and isotropic. Based
on those assumptions, the deformation of S applies to the superposition principle [14].
This means that the external force can be decomposed into in-plane and out-of-plane
components as shown in Figure 2.1.

For the in-plane part, the equilibrium equations with boundary conditions can be
written as follows

(2.2)

−DivN = f , in S,

u = 0, on ∂S0,

Nn = 0, on ∂S1,
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f1

f2f3

(a) Undeformed state

f1

f2

(b) In-plane deformation

f3

(c) Out-of-plane deformation

Figure 2.1. (A) illustrates the shape and force distribution under the
underformed state; (B) and (C) depict the deformed shapes when sub-
jected solely to in-plane and out-of-plane loads, respectively.

where n is the unit outer normal vector of ∂S, u = (u1, u2)
T is the displacement vector,

and N ∈ S is the stress tensor. It follows from the linear elasticity assumptions that

e = ∇su =
1

2
(∇u+ (∇u)T ),

N = C1e :=
Ee

1− ν2
((1− ν)e+ νtr(e)I),

where e ∈ S is the strain tensor, I is the identity tensor, C1 and tr(•) are the linear
compliance tensor and the trace operator, respectively. Here e,E, and ν denote the
thickness of the plate Ω, the Young’s modulus, and the Poisson ratio of the material,
respectively.

For the out-of-plane part, taking the Kirchhoff assumptions [8], the deformation is
governed by the following equilibrium equation with boundary conditions

(2.3)

− divDivM = f3, in S,

u3 = 0, ∂nu3 = 0, on ∂S0,

T = 0, Mnn = 0, on ∂S1,

JMntKx = 0, at x ∈ V∂S1
,

with the deflection u3 and the moment tensor M ∈ S. The behaviour law of S is
described by

K =K(u3) := −∇2u3,

M = C2K :=
Ee3

12(1 − ν2)
((1− ν)K + νtr(K)I),

where K ∈ S is the curvature tensor. Let t denote the unit tangential vector of ∂S,
∂t(•) := ∇(•) · t and ∂n(•) := ∇(•) · n be the tangential and normal derivatives, re-
spectively. Define the Kirchhoff shear force (cf. [16]), the normal and twisting moments
by

(2.4) T := (DivM) · n+ ∂t((Mn) · t), Mnn := (Mn) · n, Mnt := (Mn) · t.

The set V∂S1
contains all points x where exist two adjacent edges e1, e2 ∈ ∂S1 satisfying

e1 ∩ e2 = x. These edges do not meet an angle of π and possess different tangential and
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normal vectors t1,n1 and t2,n2 respectively. The jump term at x is defined by

(2.5) JMntKx := (Mn1) · t1(x)− (Mn2) · t2(x), for x ∈ V∂S1
.

2.2. Two coupled plates model. This subsection presents the mathematical descrip-
tion of two coupled plates. Throughout this paper, let (

˜
•) denote the quantities related

to the plate
˜
Ω with the same physical meaning as those in Ω without exception. For

example, (
˜
f ,

˜
f3) is the distributed load in

˜
S. Without loss of generailty, assume that the

material parameters
˜
e,
˜
E,

˜
ν of the plate

˜
Ω take the same value as e,E, ν of the plate Ω

for the sake of narrative.
Let Ω be coupled with

˜
Ω on part of its boundary ∂Ω. Figure 2.2 depicts the distinct

middle surfaces S and
˜
S coupled along a common rectilinear junction Γ := ∂S ∩∂

˜
S. Let

∂S1 and ∂
˜
S1 be the free boundary of the middle surfaces S and

˜
S, respectively. Then

it holds that ∂S = ∂S0 ∪ ∂S1 ∪ Γ, ∂
˜
S = ∂

˜
S1 ∪ Γ. Let l = n × t. It follows that (n, t, l)

defined on Γ ⊂ ∂S constitutes a local direct orthonormal reference system of S. By
taking the opposite direction

∼
t = −t on Γ, the local direct orthonormal reference system

in
˜
S can be defined by (

˜
n,

∼
t,
˜
l) on Γ ⊂ ∂

˜
S. Define the angle θ between two plates shown

in Figure 2.2 by cos θ = n ·
˜
n. It is easy to verify

(2.6)
˜
n = n cos θ − l sin θ,

∼
t = −t,

˜
l = −n sin θ − l cos θ.

When the plates are coplanar, the angle is equal to π, and when the plates coincide, the
angle is equal to 0. This paper deals with the case 0 < θ < π.

Γ

˜
S

S n

tl

˜
n

˜
t

˜
l

n
˜
n

θ

Figure 2.2. The local coordinate systems of two coupled plates.

Let φ := (u, u3;
˜
u,

˜
u3) and F := (f , f3,

˜
f ,

˜
f3) denote the displacement and external

distribute force of the middle surfaces S ∪
˜
S, respectively. Assume that two plates are

coupled with a rigid junction. Then the equilibrium equations of two coupled plates,
see [8, 39] for instance, can be written as follows

(2.7)
DivN + f = 0, divDivM + f3 = 0 in S,

˜
Div

˜
N +

˜
f = 0,

˜
divDiv

˜
M +

˜
f3 = 0 in

˜
S,

with boundary conditions

u = 0, u3 = 0, u3,n = 0, on ∂S0,(2.8a)

Nn = 0, T = 0, Mnn = 0, on ∂S1, JMntKx = 0, ∀ x ∈ V∂S1
,(2.8b)

˜
N

˜
n = 0,

˜
T = 0,

˜
M

˜
n
˜
n = 0, on ∂

˜
S1, J

˜
M

˜
n
˜
tKx = 0, ∀ x ∈ V∂

˜
S
1
,(2.8c)
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the junction conditions

u3,n = −
˜
u3,

˜
n, on Γ,(2.9a)

u1 =
˜
u1 cos θ −

˜
u3 sin θ, u2 = −

˜
u2, u3 = −

˜
u1 sin θ −

˜
u3 cos θ, on Γ,(2.9b)

˜
M

˜
n
˜
n =Mnn, on Γ,(2.9c)

˜
N

˜
n
˜
n = −Nnn cos θ + T sin θ,

˜
N

˜
n
˜
t = Nnt,

˜
T = Nnn sin θ + T cos θ, on Γ,(2.9d)

and the corner conditions

(2.10) JMntKx sin θ(x) = 0, J
˜
M

˜
n
˜
tKx − JMntKx cos θ(x) = 0, ∀ x ∈ EΓ.

Here EΓ denotes the collection of two end points of Γ. For x ∈ EΓ, the jump terms
JMntKx and J

˜
M

˜
n
˜
tKx are defined in a similar way as in (2.5) while the two adjacent edges

e1 ∩ e2 = x are not in Γ simultaneously. In this case, the sign in (2.5) depends on the
local coordinate systems of the quantity in the bracket.

2.3. Variational formulation based on displacements. This subsection recalls some
results from [8,39]. Introduce the following Hilbert spaces:
(2.11)
V := {ψ = (v, v3;

˜
v,
˜
v3) : (v, v3) ∈ L2(S;R2)× L2(S), (

˜
v,
˜
v3) ∈ L2

(

˜
S;R2

)

× L2 (
˜
S)
}

,

H := {ψ = (v, v3;
˜
v,
˜
v3) : (v, v3) ∈ H1(S;R2)×H2(S), (

˜
v,
˜
v3) ∈ H1

(

˜
S;R2

)

×H2 (
˜
S)
}

,

with norms

‖ψ‖V :=
(

‖v‖20,S + ‖v3‖
2
0,S + ‖

˜
v‖20,

˜
S + ‖

˜
v3‖

2
0,
˜
S

)
1

2

,(2.12)

‖ψ‖H :=
(

‖v‖21,S + ‖v3‖
2
2,S + ‖

˜
v‖21,

˜
S + ‖

˜
v3‖

2
2,
˜
S

)
1

2

.(2.13)

Let (•, •)V denote the L2 inner product in V corresponding to the norm ‖ • ‖V . Define

(2.14) W := {ψ = (v, v3;
˜
v,
˜
v3) ∈ H : ψ satisfies (2.8a), (2.9a), and (2.9b)} .

It is easy to verify that the subspace W is closed in H. For ψ ∈W , let ‖ψ‖W = ‖ψ‖H .
Given φ,ψ ∈W , define

(2.15)

D(φ,ψ) :=

∫

S
N(u) : e(v)dS +

∫

S
M(u3) :K(v3)dS

+

∫

˜
S ˜
N(

˜
u) :

˜
e(
˜
v)d

˜
S +

∫

˜
S ˜
M(

˜
u3) :

˜
K(

˜
v3)d

˜
S.

Then the variational formulation for two coupled plates with an angle θ reads as follows.

Problem 1. Given F ∈ V, find φ ∈W such that

D(φ,ψ) = (F,ψ)V , ∀ ψ ∈W.

Lemma 2.1 (Well-posedness [39, Lemma 2.2]). The bilinear form D(•, •) defined in
(2.15) is continuous and coercive on W ×W . Moreover, the solution φ depends contin-
uously on F with a constant c, namely,

(2.16) ‖φ‖W ≤ c‖F‖V .
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3. Mixed Variational Formulation

This section introduces a mixed formulation of two coupled plates. The existence
and uniqueness of the solution of the mixed variational formulation is established, by
showing the equivalence to the variational formulation based on displacements. To derive
mixed finite element methods for the mixed formulation, this section provides continuity
conditions related to the newly introduced space.

3.1. Spaces and operators. This paper introduces Φ := (N ,M ;
˜
N ,

˜
M), the union of

the stresses and moments in (2.7), as an auxiliary variable for the mixed formulation
of two coupled plates. To establish the mixed variational formulation, the main chal-
lenge lies in determining a suitable space for Φ that incorporates boundary and junction
conditions. Given a stress tensor N ∈ H(div,S) on S, its trace belongs to H−1/2(∂S).

However, since H−1/2(∂S) is defined as a dual space, its elements cannot be restricted
simply on the junction Γ [9, Section 2.5]. Similar considerations apply to functions in
H(divDiv,S) [18]. Instead of directly tackling this issue, a new nonstandard Sobolev
space is proposed through the application of adjoint operator theory.

Define an operator

(3.1) B := (−∇s,∇
2;−

˜
∇s,

˜
∇2),

on W in (2.14). The first and the second differential operators are defined in the context
of classical weak derivatives. To give a precise definition of the operator (Div,divDiv;

˜
Div,

˜
divDiv) acting on Φ, employ methodology analogous to that presented in [36],

which uses the theory of adjoint operators for unbounded operators. This approach
helps in identifying an appropriate function space that satisfies boundary conditions in
a weaker sense.

Recall the following classical theory for densely defined unbounded operators, see,
e.g., [9]. Let X and Y be Hilbert spaces such thatW is dense in X, and X and Y will be
specified later. Let the operator B act onX to the dual space of Y as B : W ⊂ X −→ Y ∗.
Define the operator B∗ : D (B∗) ⊂ Y → X∗, where D (B∗) is the domain of definition
of B∗, as follows: y ∈ D (B∗) if and only if y ∈ Y and there exists a linear functional
G ∈ X∗ such that

〈Bx, y〉Y ∗×Y = 〈G,x〉X∗×X , for all x ∈W.

Define B∗y = G. Note that 〈B∗y, x〉 is well-defined for x ∈ X and y ∈ D (B∗) and

〈B∗y, x〉X∗×X = 〈Bx, y〉Y ∗×Y , for all x ∈W,y ∈ D (B∗) .

The domain D (B∗) is a Hilbert space with the graph norm

‖y‖D(B∗) :=
(

‖y‖2Y + ‖B∗y‖2X∗

)
1

2

.

Introduce the L2 space
(3.2)
Vs := {Ψ = (τ ,κ;

˜
τ ,

˜
κ) : (τ ,κ) ∈ L2(S;S)× L2(S;S), (

˜
τ ,

˜
κ) ∈ L2(

˜
S;S)× L2(

˜
S;S)

}

,

with the norm

(3.3) ‖Ψ‖Vs :=
(

‖τ‖20,S + ‖κ‖20,S + ‖
˜
τ‖20,

˜
S + ‖

˜
κ‖20,

˜
S

)
1

2

.
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Let (•, •)Vs denote the L2 inner product in Vs related to the norm ‖ • ‖Vs . This paper
considers the case X = V and Y = Vs. Obviously, W ⊂ V and W is dense in V . The
operator B is then a densely defined linear operator. It follows from (2.12) and (3.3)
that V ∗ = V, V ∗

s = Vs and 〈•, •〉V ∗×V = (•, •)V , 〈•, •〉V ∗

s ×Vs = (•, •)Vs . Define a subspace
of Vs as follows

(3.4)
Hs := {Ψ = (τ ,κ;

˜
τ ,

˜
κ) : (τ ,κ) ∈ H(Div, S;S)×H(divDiv, S;S),

(
˜
τ ,

˜
κ) ∈ H(

˜
Div,

˜
S;S)×H(

˜
divDiv,

˜
S;S)}.

According to the previous theory, Φ ∈ D(B∗) if and only if Φ ∈ Vs, and there exists
a linear functional G ∈ V such that

(3.5) (Bψ,Φ)Vs = (G,ψ)V , ∀ ψ ∈W.

Note that C∞
0 (S;R2) × C∞

0 (S) × C∞
0 (

˜
S;R2) × C∞

0 (
˜
S) is contained in W . This, the

definition of (3.4), and (3.5) show that Φ ∈ Hs for any Φ ∈ D(B∗) and

(3.6) B∗ = (Div,divDiv;
˜
Div,

˜
divDiv).

Let Σ := D(B∗) be the space for the introduced auxiliary variable. Then the following
equality holds

(3.7) (B∗Φ, ψ)V = (Bψ,Φ)Vs , ∀ ψ ∈W,Φ ∈ Σ.

The nonstandard Sobolev space Σ can be explicitly given by

(3.8) Σ = {Φ ∈ Hs : ∃c > 0, such that |(Bψ,Φ)Vs | ≤ c‖ψ‖V ,∀ψ ∈W} ,

equipped with the norm ‖Φ‖Σ =
(

‖Φ‖2Vs + ‖B∗Φ‖2V
)1/2

, i.e.,

‖Φ‖Σ =
(

‖Φ‖2Vs + ‖DivN‖20 + ‖divDivM‖20 + ‖
˜
Div

˜
N‖20 + ‖

˜
divDiv

˜
M‖20

)1/2
.

3.2. Mixed formulation and its well-posedness. The results in the previous sub-
section of densely defined operator B and its adjoint B∗ together with their definition
of domain motivate the new mixed formulation as follows. Let C := (C1, C2; C1, C2) be

C(e,K;
˜
e,

˜
K) := (C1e, C2K; C1

˜
e, C2

˜
K).

Problem 2. Given F ∈ V , find (Φ, φ) ∈ Σ× V such that
{

(Φ,Ψ)C−1 + (B∗Ψ, φ)V = 0, ∀ Ψ ∈ Σ,

(B∗Φ, ψ)V = − (F,ψ)V , ∀ ψ ∈ V,

with

(Φ,Ψ)C−1 := (C−1
1 N , τ )S + (C−1

2 M ,κ)S + (C−1
1 ˜
N ,

˜
τ )

˜
S + (C−1

2 ˜
M ,

˜
κ)

˜
S .

It is easy to verify that (Φ,Ψ)C−1 is a symmetric, nonnegative bilinear form. Then it
follows from Brezzi’s theory (see, e.g., [9]) that the well-posedness of Problem 2 holds if
and only if the following conditions are satisfied:

(1) (Φ,Ψ)C−1 is bounded: There exists a constant a > 0 such that

|(Φ,Ψ)C−1 | ≤ a‖Φ‖Σ‖Ψ‖Σ, ∀ Φ,Ψ ∈ Σ.

(2) (B∗Ψ, ψ)V is bounded: There exists a constant b > 0 such that

|(B∗Ψ, ψ)V | ≤ b‖Ψ‖Σ‖ψ‖V , ∀ Ψ ∈ Σ, ψ ∈ V.
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(3) (Φ,Ψ)C−1 is coercive on the kernel of B: There exists a constant α > 0 such that

(Φ,Ψ)C−1 ≥ α‖Ψ‖2Σ, ∀ Ψ ∈ KerB,

with

KerB = {Ψ ∈ Σ : (B∗Ψ, ψ)V = 0, for all ψ ∈ V }.

(4) (B∗Ψ, ψ)V satisfies the inf-sup condition: There exists a constant β > 0 such
that

inf
06=ψ∈V

sup
06=Ψ∈Σ

(B∗Ψ, ψ)V
‖Ψ‖Σ‖ψ‖V

≥ β.

These conditions are known as Brezzi’s conditions with constants a, b, α, and β.
The following theorem shows that the solution to Problem 1 is also a solution to

Problem 2. It can be utilized to prove the inf-sup condition of Problem 2.

Theorem 3.1. Let φ ∈W be the solution of Problem 1 for F ∈ V . Then Φ = −CBφ ∈ Σ
and (Φ, φ) solves Problem 2.

Proof. Recall the L2 space Vs in (3.2). It follows from φ ∈ W that Φ = −CBφ ∈ Vs.
Note that φ is the solution of Problem 1, then it holds

(Bψ,Φ)Vs = −

∫

S
∇sv :NdS +

∫

S
∇2v3 :MdS −

∫

˜
S ˜
∇s

˜
v :

˜
Nd

˜
S +

∫

˜
S ˜
∇2

˜
v3 :

˜
Md

˜
S

= −

(

∫

S
e(v) :NdS +

∫

S
K(v3) :MdS +

∫

˜
S ˜
e(
˜
v) :

˜
Nd

˜
S +

∫

˜
S ˜
K(

˜
v3) :

˜
Md

˜
S

)

= −D(φ,ψ) = − (F,ψ)V , ∀ ψ ∈W.

Since F ∈ V , this implies Φ ∈ Σ by the definition of Σ in (3.8), and that the second
equation of Problem 2 is satisfied by noting that W is dense in V .

For any Ψ ∈ Σ, it follows from (3.7) that

(B∗Ψ, φ)V = (Bφ,Ψ)Vs

= −

∫

S
∇su : τdS +

∫

S
∇2u3 : κdS −

∫

˜
S ˜
∇s

˜
u :

˜
τd

˜
S +

∫

˜
S ˜
∇2

˜
u3 :

˜
κd

˜
S

= −

∫

S
C−1
1 N : τdS −

∫

S
C−1
2 M : κdS −

∫

˜
S
C−1
1 ˜
N :

˜
τd

˜
S −

∫

˜
S
C−1
2 ˜
M :

˜
κd

˜
S

= −(Φ,Ψ)C−1 .

This proves the first equation of Problem 2 and completes the proof. �

Theorem 3.2. The Brezzi’s conditions (1)–(4) hold for Problem 2.

Proof. Define λmin(Ci) and λmax(Ci) as the minimum and the maximum eigenvalue of Ci
for i = 1, 2, respectively. Let

λmin(C) := min{λmin(C1), λmin(C2)}, λmax(C) = max{λmax(C1), λmax(C2)}.

The verification of Brezzi’s conditions (1)–(3) is straightforward, by assigning constants
a = 1/λmin(C), b = 1 and α = 1/λmax(C). To prove the inf-sup condition (4), let φψ

be the solution of Problem 1 with the right-hand side Fψ = −ψ ∈ V for a fixed but
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arbitrary ψ ∈ V . Theorem 3.1 shows that Φψ = −CBφψ ∈ Σ, and
(

Φψ, φψ
)

is a solution
of Problem 2. It follows from the second equation of Problem 2 that

(3.9) (B∗Φψ, ψ)V = −(Fψ, ψ)V = (ψ,ψ)V = ‖ψ‖2V ,

and

‖B∗Φψ‖V = sup
q∈V

(

B∗Φψ, q
)

‖q‖V
= sup

q∈V

(ψ, q)V
‖q‖

= ‖ψ‖V .

Additionally, one can obtain

‖Φψ‖2Vs = ‖C1∇u
ψ‖20,S + ‖C2∇

2uψ3 ‖
2
0,S + ‖C1

˜
∇
˜
uψ‖20,

˜
S + ‖C2

˜
∇2

˜
uψ3 ‖

2
0,
˜
S

≤ λmax(C)D(φψ , φψ) = λmax(C)(F
ψ , φψ)V .

Lemma 2.1 shows ‖φψ‖W ≤ c‖Fψ‖W ∗ . Let c′ = cλmax(C). Then

‖Φψ‖2Vs ≤ λmax(C)‖F
ψ‖W ∗‖φψ‖W ≤ c′‖Fψ‖2W ∗ ≤ c′‖Fψ‖2V = c′‖ψ‖2V .

Hence,

(3.10) ‖Φψ‖2Σ = ‖Φψ‖2Vs + ‖B∗Φψ‖2V ≤ (1 + c′)‖ψ‖2V .

Combining (3.9) and (3.10) can get

sup
06=Ψ∈Σ

(B∗Ψ, ψ)V
‖Ψ‖Σ

≥

(

B∗Φψ, ψ
)

V

‖Φψ‖Σ
≥ (1 + c′)−1/2‖ψ‖V ,

which completes the proof with β = (1 + c′)−1/2. �

Theorem 3.3. For F ∈ V , Problem 1 and Problem 2 are equivalent in the follow-
ing sense: If φ solves Problem 1, then Φ = −CBφ ∈ Σ and (Φ, φ) solves Problem 2.
Conversely, if (Φ, φ) solves Problem 2, then φ ∈W and solves Problem 1.

Proof. Both Problem 1 and 2 are uniquely solvable due to Lemma 2.1 and Theorem
3.2. Thus, it suffices to demonstrate that the solution to one of the problems is also a
solution to the other, which is already proven in Theorem 3.1. �

3.3. Continuity conditions. For finite element computations, it is necessary to specify
the continuity conditions of smooth functions in Σ. Introduce the space

Cs := {Ψ = (τ ,κ;
˜
τ ,

˜
κ); (τ ,κ) ∈ C0(S̄;S)× C1(S̄;S), (

˜
τ ,

˜
κ) ∈ C0(¯

˜
S;S)× C1(¯

˜
S;S)}.

Here S̄ denotes the closure of S. This theorem shows that the natural conditions in Prob-
lem 1 become essential conditions in Problem 2, which are hidden within the definition
of Σ in (3.8) and can be explicitly extracted for smooth enough functions Φ.

Theorem 3.4. Let Φ ∈ Vs∩Cs. Then Φ ∈ Σ if and only if Φ satisfies the free boundary
conditions (2.8b)–(2.8c), the junction conditions (2.9c)–(2.9d), and the corner conditions
(2.10).

Proof. For Φ ∈ Vs ∩ Cs, define the linear functional G acting on ψ ∈W as

(3.11) (G,ψ)V := (Bψ,Φ)V .
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It follows from the definition of B in (3.1) that

(3.12)

(Bψ,Φ)V = IS + I
˜
S

:=

(

−

∫

S
N : ∇svdS +

∫

S
M : ∇2v3dS

)

+

(

−

∫

˜
S ˜
N :

˜
∇s

˜
vd

˜
S +

∫

˜
S ˜
M ·

˜
∇
˜
v3d

˜
S

)

.

An integration by parts and Φ ∈ Cs show

(3.13)

∫

S
N : ∇svdS = −

∫

S
DivN · vdS +

∫

∂S
Nn · vds,

∫

S
M : ∇2v3dS =

∫

S
divDivMv3dS −

∫

∂S
DivM · nv3ds

+

∫

∂S
Mnn∂nv3ds−

∫

∂S
∂tMntv3ds+

∑

x∈V∂S

JMntv3Kx.

Substituting (3.13) into IS defined in (3.12) gives

(3.14) IS =

∫

S
DivN · vdS +

∫

S
divDivMv3dS + I1 + I2 + I3 + I4,

with

(3.15)

I1 := −

∫

∂S
Nn · vds = −

∫

∂S1

Nn · vds−

∫

Γ
Nn · vds,

I2 :=

∫

∂S
Mnn∂nv3ds =

∫

∂S1

Mnn∂nv3ds+

∫

Γ
Mnn∂nv3ds,

I3 := −

∫

∂S
Tv3ds = −

∫

∂S1

Tv3ds−

∫

Γ
Tv3ds,

I4 :=
∑

x∈V∂S

JMntv3Kx =
∑

x∈V∂S1

JMntv3Kx +
∑

x∈EΓ

JMntv3Kx.

Note that (3.15) relies on ∂S = ∂S0∪∂S1∪Γ and the definition ofW in (2.14). Similarly,
due to ∂

˜
S = ∂

˜
S1 ∪ Γ, it holds

(3.16) I
˜
S =

∫

˜
S ˜
Div

˜
N ·

˜
vd

˜
S +

∫

˜
S ˜
divDiv

˜
M

˜
v3d

˜
S +

˜
I1 +

˜
I2 +

˜
I3 +

˜
I4,

with

˜
I1 := −

∫

∂
˜
S
1
˜
N

˜
n ·

˜
vd

˜
s−

∫

Γ ˜
N

˜
n ·

˜
vd

˜
s,

˜
I2 :=

∫

∂
˜
S
1
˜
M

˜
n
˜
n
˜
∂
˜
n
˜
v3d

˜
s+

∫

Γ ˜
M

˜
n
˜
n
˜
∂
˜
n
˜
v3d

˜
s,

˜
I3 := −

∫

∂
˜
S
1
˜
T
˜
v3d

˜
s−

∫

Γ ˜
T
˜
v3d

˜
s,

˜
I4 :=

∑

x∈V∂
˜
S
1

J
˜
M

˜
n
˜
t
˜
v3Kx +

∑

x∈EΓ

J
˜
M

˜
n
˜
t
˜
v3Kx.

It should be emphasized that the integral directions on Γ for S and
˜
S are opposite, as

dictated by the definition of local coordinate systems in Section 2.1. Recall that ψ ∈W
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satisfies

(3.17) ∂nv3+
˜
∂
˜
n
˜
v3 = 0, v1 =

˜
v1 cos θ−

˜
v3 sin θ, v2 = −

˜
v2, v3 = −

˜
v1 sin θ−

˜
v3 cos θ.

Substituting (3.14) and (3.16) into (3.12) and using (3.17) lead to

(3.18) (G,ψ)V = Id + Ib + Ij + Ic,

with

Id :=

∫

S
DivN · vdS +

∫

S
divDivMv3dS +

∫

˜
S ˜
Div

˜
N ·

˜
vd

˜
S +

∫

˜
S ˜
divDiv

˜
M

˜
v3d

˜
S,

Ib := −

∫

∂S1

Nn · vds+

∫

∂S1

Mnn∂nv3ds−

∫

∂S1

Tv3ds+
∑

x∈V∂S1

JMntv3Kx

−

∫

∂
˜
S
1
˜
N

˜
n ·

˜
vd

˜
s+

∫

∂
˜
S
1
˜
M

˜
n
˜
n
˜
∂
˜
n
˜
v3d

˜
s−

∫

∂
˜
S
1
˜
T
˜
v3d

˜
s+

∑

x∈V∂
˜
S
1

J
˜
M

˜
n
˜
t
˜
v3Kx,

Ij :=

∫

Γ
(−Nnn cos θ −

˜
N

˜
n
˜
n + T sin θ)

˜
v1ds+

∫

Γ
(Nnt −

˜
N

˜
n
˜
t)
˜
v2ds

+

∫

Γ
(Nnn sin θ + T cos θ −

˜
T )

˜
v3ds+

∫

Γ
(Mnn −

˜
M

˜
n
˜
n)
˜
∂
˜
n
˜
v3ds,

Ic :=
∑

x∈EΓ

JMntKx
˜
v1(x) sin θ +

∑

x∈EΓ

(

JMntKx − J
˜
M

˜
n
˜
tKx cos θ

)

˜
v3(x).

The only if implications follow immediately from (3.18). To be specific, assume that Φ
satisfies the boundary conditions (2.8b)–(2.8c), (2.9c)–(2.9d), and (2.10), then it follows
that

(G,ψ)V = Id = (B∗Φ, ψ)V ≤ ‖B∗Φ‖V ‖ψ‖V , ∀ ψ ∈W.

Hence, G is a linear functional on V and Φ ∈ Σ.
For the if implications, assume Φ ∈ Σ, then the functional G given by (3.11) is

bounded with respect to the V -norm, for all ψ ∈W . Introduce the space

W̄ =
{

Ψ = (v, v3;
˜
v,
˜
v3) : Ψ ∈ H, and v, v3, ∂nv3 = 0 on ∂S, and

˜
v,
˜
v3, ∂

˜
n
˜
v3 = 0 on ∂

˜
S
}

.

It is easy to verify that W̄ ⊂W and W̄ is dense in W with respect to the V -norm. For
ψ ∈ W̄ , it follows from (3.18) that

(3.19) (G,ψ)V = Id, ∀ ψ ∈ W̄.

Then one can obtain that (3.19) holds for ψ ∈W . This implies together with (3.18) that

Ib + Ij + Ic = 0, ∀ ψ ∈W.

This and standard arguments lead to (2.8b)–(2.8c), (2.9c)–(2.9d), and (2.10). �

4. Mixed finite element methods

This section presents a framework of conforming mixed finite element methods for solv-
ing Problem 2. The well-posedness and error estimates of the discrete mixed variational
problem are demonstrated. Numerical examples are provided to verify the theoretical
results.
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4.1. Mixed finite element methods. Let Th and
˜
Th be a shape regular triangulation

of S and
˜
S, respectively, which satisfy the compatibility conditions on junction Γ. Let

h be the maximum of the diameters of all the elements K ∈ Th and
˜
K ∈

˜
Th. Recall

the space V in (2.11), the space Hs in (3.4), and the continuty conditions for sufficient
smooth functions in Theorem 3.4. Provided two conforming finite element spaces

Σh ⊂ {Ψh = (τh,κh;
˜
τh,

˜
κh) ∈ Hs : τh|K ∈ Pk1(K,S),κh|K ∈ Pk2(K,S),∀K ∈ Th,

˜
τh|

˜
K ∈ Pk1(

˜
K,S),

˜
κh|

˜
K ∈ Pk2(

˜
K,S),∀

˜
K ∈

˜
Th,

Ψ satisfies the conditions in Theorem 3.4},

and

Vh = {ψh = (vh, v3h;
˜
vh,

˜
v3h) ∈ V : vh|K ∈ Pk3(K;R2), v3h|K ∈ Pk4(K),∀K ∈ Th,

˜
vh|

˜
K ∈ Pk3(

˜
K;R2),

˜
v3h|

˜
K ∈ Pk4(

˜
K),∀

˜
K ∈

˜
Th}

for some integers k1, k2, k3, k4 such that B∗Σh ⊆ Vh, the discrete mixed formulation of
Problem 2 can be written as follows.

Problem 3. Given F ∈ V , find Φh := (Nh,Mh;
˜
Nh,

˜
Mh) ∈ Σh and φh := (uh, u3h;

˜
uh,

˜
u3h) ∈

Vh such that

(4.1)

{

(Φh,Ψh)C−1 + (B∗Ψh, φh)V = 0, ∀ Ψh ∈ Σh,

(B∗Φh, ψh)V = − (F,ψh)V , ∀ ψh ∈ Vh.

Instead of analyzing specific conforming finite elements, this paper provides a frame-
work of conforming mixed finite element methods based on the following assumptions.

Assumption (A1): For all ψh ∈ Vh, there exists Φ ∈ Σ̃ ⊂ Σ equipped with the norm
‖ • ‖Σ̃ with extra regularity compared to Σ such that B∗Φ = ψh.

Assumption (A2): There exists a Fortin operator Πh : Σ̃ → Σh such that QhB
∗Φ =

B∗ΠhΦ, where Qh is the L2 projection from V to Vh, namely,

(B∗Φ, ψh)V = (B∗ΠhΦ, ψh)V , ∀ ψh ∈ Vh.

The stability ‖ΠhΦ‖Σ ≤ C‖Φ‖Σ̃ holds with a constant C.

Theorem 4.1. Problem 3 is well-posedness under Assumptions (A1)–(A2).

Proof. It is easy to verify that (Φh,Ψh)C−1 is a symmetric, nonnegative bilinear form.
It remains to show the Brezzi’s conditions hold for (4.1), which can be derived from
the continuous counterpart with the help of a Fortin operator, e.g., [9]. The proof is
completed by Assumptions (A1)–(A2) and Theorem 3.2. �

Following the standard procedures in [9], the well-posedness of Problem 3 allows the
following error estimate.

Theorem 4.2. Let (Φ, φ) ∈ (Σ, V ) be the solution of Problem 2 and (Φh, φh) ∈ (Σh, Vh)
be the solution of Problem 3. Then there exists a constant C independent of mesh-size
h such that

‖Φ− Φh‖Σ + ‖φ− φh‖V ≤ C infΨh∈Σh,ψh∈Vh(‖Φ−Ψh‖Σ + ‖φ− ψh‖V ).
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Assume φ,Φ are smooth on S and
˜
S. Let IhΦ denote the canonical interpolation of Φ

into Σh and let k = min{k1 − 1, k2 − 2, k3, k4}. It holds

‖Φ − Φh‖Σ + ‖φ− φh‖V ≤ C(‖Φ− IhΦ‖Σ + ‖φ−Qhφ‖V ) ≤ Chk+1.

Any finite element method that satisfies Assumptions (A1) and (A2) can be utilized
to solve Problem 3. Recall the continuity conditions in (2.9c) and (2.9d) from Theorem
3.4 as follows

˜
M

˜
n
˜
n =Mnn,

˜
N

˜
n
˜
n = −Nnn cos θ + T sin θ,

˜
N

˜
n
˜
t = Nnt,

˜
T = Nnn sin θ + T cos θ, on Γ.

It can be observed that the junction conditions contain the terms Nnn, Nnt,Mnn and
T . For ease of programming implementation, two finite element pairs contain degrees
of freedom of these terms are chosen, for instance, the conforming H(div,S) × L2(R2)
mixed elements in [25] and the conforming H(divDiv,S) × L2 mixed elements in [10].
Recall that T = (DivM) ·n+ ∂t((Mn) · t), it follows from the construction of Σh that
the condition k2 = k1 + 1 is necessary for (2.9d) to hold strictly. Figure 4.1 and 4.2
display the degrees of freedom for these two pairs of k1 = 3, k3 = 2 and k2 = 4, k4 = 2,
respectively. As shown on the left of Figure 4.1, except nine H(div,S)-bubble functions,
the other degrees of freedom of P3-H(div,S) include: the values of N at three vertices,
the normal and tangential components of Nn at two distinct points in the interior of
each edge. They are indicated by black points and double arrows respectively. On the
left of Figure 4.2, the degrees of freedom include the values of M at three vertices, the
values of Mnn at three distinct points in the interior of each edge, and the values of T
at four distinct points in the interior of each edge (denoted by arrows).

+9

⇓

⇓

⇓ ⇓

⇓

⇓

Figure 4.1. Left and Right are degrees of freedom for a P3-H(div,S)
element and a discontinous vectorial P2 element, respectively.

For each midsurface S and
˜
S, the implementation follows the similar procedures of

mixed finite element methods for a single plate. As mentioned in Theorem 3.4, the only
difference is to deal with the junction conditions (2.9c)–(2.9d) and corner conditions
(2.10). For the junction condition (2.9c), i.e., Mnn =

˜
M

˜
n
˜
n on Γ. The restriction of these

functions to Γ are polynomials of degree four in one variable. Thus, it suffices to satisfy
(2.9c) at the three points inside the edge together with the endpoints. For the junction
conditions (2.9d), similarly, it suffices to satisfy these conditions at the points related to
the degrees of freedom.
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+15

Figure 4.2. Left and Right are degrees of freedom for a P4-H(divDiv,S)
element and a discontinous P2 element, respectively.

4.2. Numerical test. Two numerical experiments are carried out in this subsection to
verify the theoretical results established in Theorem 4.2.

Example 4.3. Consider two coupled plates shown in Figure 2.2 with two local coor-
dinates (n, t, l) and (

˜
n,

˜
t,
˜
l) located at the middle point of Γ. The domain in local

coordinates are S = (−1, 0) × (−1, 1),
˜
S = (−1, 0) × (−1, 1) and the angle θ = π/2. In

this example, E = 3000, ν = 0, e = 0.124. Let the exact solution be chosen as

(4.2)
(u, u3) = (−(1− x2)2(1− y2)2, (1− x2)2(1− y2)2, (1 − x2)2(1− y2)2).

(
˜
u,

˜
u3) = (−(1−

˜
x2)2(1−

˜
y2)2,−(1−

˜
x2)2(1−

˜
y2)2, (1−

˜
x2)2(1−

˜
y2)2).

The external force F , the boundary forces, and moments in equations (2.8b)–(2.8c) can
be determined through straightforward calculations. It can be verified that the solution
(4.2) satisfies the clamped boundary condition (2.8a) on ∂S0 and junction conditions
(2.9a)–(2.9c) on Γ. Nevertheless, this solution fails to satisfy the homogenous junction
condition Nnt −

˜
N

˜
n
˜
t = 0, while it does satisfy Nnt −

˜
N

˜
n
˜
t = 2Nnt. Consequently, the

jump condition in this example is nonhomogenous.

In this specific example, the chosen solution (4.2) is smooth enough on each middle
surface. Therefore, Theorem 4.2 shows the following result

‖Φ − Φh‖Σ + ‖φ− φh‖V ≤ Ch3.

It is observed from Table 4.1 and Table 4.2 that the convergence rates of (N ,M) and
(u, u3) for the middle surface S are both O(h3) in Σ and V norms, respectively. More-
over, the rates of (N ,M) in L2 norms are O(h4) and O(h5), both of which are optimal.
The mesh is uniformly refined. For the middle surface

˜
S, the similar conclusion can

be derived from Table 4.3 and Table 4.4. These numerical results concide with the
theoretical result in Theorem 4.2.
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Mesh ‖N −Nh‖0 Order ‖u− uh‖0 Order ‖N −Nh‖H(div) Order

1 3.85439E+01 - 6.31904E−02 - 1.37373E+02 -
2 3.86755E+00 3.32 1.02984E−02 2.62 2.07569E+01 2.73
3 2.69636E−01 3.84 1.36836E−03 2.91 2.76788E+00 2.91
4 1.71509E−02 3.97 1.73916E−04 2.98 3.51847E−01 2.98
5 1.07473E−03 4.00 2.18326E−05 2.99 4.41676E−02 2.99

Table 4.1. Errors for the in-plane pair on S.

Mesh ‖M −Mh‖0 Order ‖u3 − u3h‖0 Order ‖M −Mh‖H(divDiv) Rate

1 1.83015E−01 - 4.27046E−02 - 3.18201E+00 -
2 7.75092E−03 4.56 7.24994E−03 2.56 4.34361E−01 2.87
3 2.70767E−04 4.84 9.67331E−04 2.91 5.53801E−02 2.97
4 8.35573E−06 5.02 1.22977E−04 2.98 6.95601E−03 2.99
5 2.50436E−07 5.06 1.54381E−05 2.99 8.70545E−04 3.00

Table 4.2. Errors for the out-of-plane pair on S.

Mesh ‖
˜
N −

˜
Nh‖0 Order ‖

˜
u−

˜
uh‖0 Order ‖

˜
N −

˜
Nh‖H(

˜
div) Order

1 3.04348E+01 - 6.18553E−02 - 2.23788E+02 -
2 3.16175E+00 3.27 1.02746E−02 2.59 4.34492E+01 2.36
3 2.22673E−01 3.83 1.36833E−03 2.91 6.04352E+00 2.85
4 1.42905E−02 3.96 1.73919E−04 2.98 7.75373E−01 2.96
5 8.97872E−04 3.99 2.18328E−05 2.99 9.75505E−02 2.99

Table 4.3. Errors for the in-plane pair on
˜
S.

Mesh ‖
˜
M −

˜
Mh‖0 Order ‖

˜
u3 −

˜
u3h‖0 Order ‖

˜
M −

˜
Mh‖H(

˜
divDiv) Order

1 3.88066E−01 - 4.25016E−02 - 3.18201E+00 -
2 1.61729E−02 4.58 7.24375E−03 2.55 4.34361E−01 2.87
3 4.39241E−04 5.20 9.67361E−04 2.90 5.53801E−02 2.97
4 1.18672E−05 5.21 1.22980E−04 2.98 6.95601E−03 2.99
5 3.66826E−07 5.02 1.54382E−05 2.99 8.70545E−04 3.00

Table 4.4. Errors for the out-of-plane pair on
˜
S.

Example 4.4. This example considers two coupled plates with the rigid junction Γ
shown in Figure 4.3. Given the global coordinate (X,Y,Z), the left one S is clamped
on ∂S0 while the right one is loaded along one edge of

˜
∂
˜
S1 by a line density of forces



MIXED VARIATIONAL FORMULATION OF COUPLED PLATES 17

Pz = −1 lb/in in global coordinate. In this example, E = 3 × 107 psi, ν = 0, α = 30◦,
e = 0.124 in. The length and width of the plates are shown in Figure 4.3. Cal-
culate the displacements of points A(0, 2.52 cos α), B(1/3, 2.52 cos α), C(2/3, 2.52 cos α),
and D(1, 2.52 cos α) in the global Z-axis. Figure 4.4 shows the first mesh and the mesh
is uniformly refined.

D

C

B

A
Γ

∂S0

α α

1.0 in

1.26 in1.26 inZ

Y

X

Figure 4.3. The coupled plates with the rigid junction of Example 4.4.

Z

Y

X

Figure 4.4. The first mesh of Example 4.4.

In [8], the conforming finite element pair, reduced Hermite element and reduced HCT
element, are used. It provides the result ZB = −8.37166E-4 in and ZC = −8.37274E-4
in on the first mesh. Table 4.5 shows the results of the mixed pairs at the beginning
of this subsection. It follows from Table 4.5 that the displacements are convergence
to −8.395E-4 in. Table 4.6 shows the results of the nonconforming finite element pair,
linear Lagrange element and Morley element, which can be found in [39]. It can be seen
from Table 4.6 that the displacements are convergence to −8.396E-4 in. These results
show the displacements of the cantilever plate by mixed method are in good agreement
with the results from the methods based on displacements.
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Displacement in the global Z-axis
Mesh A B C D
1 -8.35998E-4 -8.38402E-4 -8.40832E-4 -8.43207E-4
2 -8.37679E-4 -8.38905E-4 -8.40137E-4 -8.41361E-4
3 -8.38579E-4 -8.39198E-4 -8.39819E-4 -8.40438E-4
4 -8.39040E-4 -8.39351E-4 -8.39663E-4 -8.39974E-4
5 -8.39273E-4 -8.39429E-4 -8.39585E-4 -8.39741E-4

Table 4.5. Results by mixed finite element pairs.

Displacement in the global Z-axis
Mesh A B C D
1 -8.56525E-4 -8.56744E-4 -8.56745E-4 -8.56525E-4
2 -8.43746E-4 -8.43816E-4 -8.43816E-4 -8.43746E-4
3 -8.40565E-4 -8.40584E-4 -8.40584E-4 -8.40564E-4
4 -8.39771E-4 -8.39776E-4 -8.39776E-4 -8.39771E-4
5 -8.39573E-4 -8.39574E-4 -8.39574E-4 -8.39573E-4

Table 4.6. Results by noncomforming finite element pairs.
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