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Solid materials that deviate from the harmonic crystal paradigm exhibit characteristic anomalies
in the specific heat and vibrational density of states (VDOS) with respect to Debye’s theory pre-
dictions. The boson peak (BP), a low-frequency excess in the VDOS over Debye law g(ω) ∝ ω2,
is certainly the most famous among them; nevertheless, its origin is still subject of fierce debate.
Recent simulation works provided strong evidence that localized one-dimensional string-like excita-
tions (stringlets) might be the microscopic origin of the BP. In this work, we study the dynamics of
acoustic phonons interacting with a bath of vibrating 1D stringlets with exponentially distributed
size, as observed in simulations. We show that stringlets strongly renormalize the phonon propa-
gator and naturally induce a BP anomaly in the vibrational density of states, corresponding to the
emergence of a dispersionless BP flat mode. Additionally, phonon-stringlet interactions produce a
strong enhancement of sound attenuation and a dip in the speed of sound near the BP frequency,
consistent with experimental and simulation data. The qualitative trends of the BP frequency and
intensity are predicted within the model and shown to be in good agreement with previous obser-
vations. In summary, our results substantiate with a simple theoretical model the recent simulation
results by Hu and Tanaka claiming the origin of the BP from stringlet dynamics.

I. INTRODUCTION

The low-energy properties of crystalline solids with
long-range order can be rationalized within the Debye’s
paradigm [1], and explained by the harmonic dynamics
of acoustic propagating phonon modes, the Goldstone
modes of translational symmetry [2]. The most funda-
mental result of Debye’s theory is that the low-frequency
vibrational density of states (VDOS) of ideal crystals fol-
lows a power law g(ω) ∝ ωd−1 [3], where d is the number
of spatial dimensions.

Notably, amorphous solid materials [4], but interest-
ingly also several crystalline compounds with minimal
or absent structural disorder [5–8], defy this paradigm.
For three-dimensional amorphous systems, the VDOS re-
duced by Debye’s power law, g(ω)/ω2, is not a constant
at low frequencies but it rather shows a pronounced peak
which is known as the “boson peak” (BP). Despite the
uncountable simulation and experimental observations of
this phenomenon, which are impossible to be all listed
here (see [4] for a recent book on the topic), a general
consensus on its microscopic origin has not been achieved
yet and several theoretical models have been proposed in
the past, e.g., [9–24].

Among the various frameworks, a common interpre-
tation is based on the presence of quasi-localized modes
which coexist with phonons [25–29], and that are possi-
bly, but not necessarily, emerging because of the under-
lying structural disorder.

Along these lines, recent simulation results in 2D and
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3D model glasses [30, 31], and in heated glass-forming
liquids as well [32–36], have revealed the crucial role of
localized one-dimensional string-like excitations, termed
“stringlets”, that have been ascribed as the microscopic
origin of the BP.

Importantly, there is experimental evidence from low-
frequency Raman scattering data that the excess modes
responsible for the BP are predominantly of transverse
nature and one-dimensional [37, 38], consistent with the
stringlet description. The idea that dislocation-like de-
fects might have an important function in glasses is not
new [39–42], but it has recently re-emerged in the dis-
cussion regarding the origin of the BP and also in the
challenge of identifying the plastic mediators and “soft
spots” in amorphous solids [43–49].

Inspired by the original elastic string model by Granato
and Lücke [51], Lund and collaborators have extensively
studied the problem of the interplay between elastic
phonons and dislocation-like line defects [52–57], and
even pushed it forward as a possible explanation for
glassy anomalies [58]. In its simplest incarnation, the the-
ory models the defects as a collection of one-dimensional
vibrating lines pinned at their extremes and whose length
l is distributed according to an unknown function p(l).
At the time of Ref. [58], no simulation data for p(l) were
available; therefore, Lund et al. [58] through reverse en-
gineering used experimental data for glycerol and silica
to extract p(l) and found that a gaussian-shaped distri-
bution would give impressive agreement with the data.

Unfortunately, as we now know from various works
[30–36], a gaussian-shaped distribution is not compati-
ble with the simulation data that, on the contrary, show
a monotonically decreasing exponential distribution of
lengths p(l) ∼ exp(−l/λ), with possible power-law cor-
rections [59]. Additionally, without the direct input of
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FIG. 1: Phonon dynamics in stringlets-land. Acoustic
waves interacting with localized 1D string-like objects with
exponentially distributed size – “stringlets”. The background
of this figure is taken from [50].

p(l) from simulations, the theory in Ref. [58] cannot be
fully predictive since p(l) has to be fitted from the data
themselves. In [24], we have revisited Lund’s model [58]
by assuming the correct exponential distribution for the
stringlet length and we have found remarkable quantita-
tive agreement with the simulation data of [30, 31] using
a parameter-free theoretical formula for the BP frequency
in the low-temperature glassy phase.

Nonetheless, in [24], for simplicity, we have considered
phonons and stringlets as independent entities and de-
rived the low-frequency excess anomaly uniquely consid-
ering the contribution to the vibrational density of states
from the stringlets. Technically, this assumption implies
that the total vibrational density of states is just the sum
of a Debye phononic contribution and an independent
term arising from the stringlet modes. This decoupling
of the modes seems to break down at large frequencies
where hybridization takes place (see, e.g., [26]), and it is
possibly the responsible for the large uncertainties found
when compared to the data at large temperatures, well
above the phenomenological glass transition temperature
Tg (see [24] for details).

In this work, we extend the theoretical model presented
in [24] by considering the interplay between stringlets and
phonons. Among the various advantages of this route, we
are now able to predict the effects of the stringlets on the
phonon properties such as their propagation speed and
their attenuation constant.

II. THEORETICAL MODEL

The theoretical model considered in this work was in-
troduced by Lund and collaborators in a series of works
[52–58]. For simplicity, we will use a simplified version

of Lund’s model that does not take into account the dif-
ferent phonon polarizations (transverse and longitudinal)
and other complications related to the properties of the
dislocation-like line defects. In a sense, our model is
more similar to the scalar elasticity theory proposed by
Granato and Lücke [51]. Moreover, we will consider the
computation of the phonon self-energy only at leading
order in the potential induced by the interactions with
the stringlets. As we will explicitly prove, this simplified
model is enough to capture the salient physical features.
At the same time, its generalization is straightforward
and indeed already built by Lund and collaborators in
the aforementioned works. Finally, before starting our
exposition, we emphasize that the main difference be-
tween our analysis on glassy anomalies and the one in
[58] relies on the distribution of the stringlet lengths p(l).
In [58], the distribution p(l) was not taken as an input of
the theory, but rather fitted from the data, leading to an
incorrect final result. On the other hand, it is now de-
rived explicitly thanks to the recent simulation progress
[30–36] that allow for a direct determination of p(l). This
also strongly improves the degree of predictability of the
theoretical model, as already confirmed in [24].
The main idea of this theoretical description, visu-

alized in Fig.2, is that the elastic medium contains
one-dimensional string-like defects (stringlets), pinned
at their endpoints, that are excited by incoming sound
waves and vibrate as a consequence of that. As in a
chain reaction, sound waves in the medium now propa-
gate in a bath of vibrating one-dimensional defects that
strongly renormalize sound propagation, and the prop-
erties of phonons, with crucial consequent effects for the
vibrational dynamics of the medium.
As explained in [58], this is equivalent to considering

the propagation of sound in a medium with a frequency
dependent index of refraction induced in this concrete
case by the presence of the stringlets. Neglecting the
different longitudinal and transverse polarizations (see
Appendix A in [58] for a more complete treatment), the
phonon Green function can be written as

G(k, ω) = 1

−ω2 + v2k2 − iωγk2 − Γ(ω, k)
, (1)

where Γ(ω, k) is the self-energy including the effects com-
ing from the stringlets and v, γ are respectively the bare
speed of sound and phonon damping. Additionally, ω, k
are the frequency and wave-vector of the phonon. Eq.(1)
is the result of a Dyson’s equation,

G(ω, k) =
[
G0(ω, k)

−1 − Γ(ω, k)
]−1

, (2)

where G0(ω, k) is the “bare” phonon Green’s function

G0(k, ω) =
1

−ω2 + v2k2 − iωγk2
. (3)

Here, with the label “bare” we mean the phonon propa-
gator before taking into account stringlet-phonon interac-
tions, but taking into account other sources of damping,
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FIG. 2: A representation of the theoretical model for stringlet-phonon interactions. An incoming sound wave excites
a stringlet that starts vibrating around its equilibrium position. Consequently, sound waves propagate in a bath of vibrating
stringlets that strongly renormalize their properties as described by Eq.(1).

e.g., phonon-phonon interactions giving rise to Akhiezer
damping [60].

By assuming that the length of the stringlets follow a
statistical distribution p(l), and working at leading or-
der in the stringlet potential, one obtains the following
expression for the self-energy,

Γ(ω, k) = µ2k2
∫ ∞

0

l p(l)Gs(ω, l) dl, (4)

where Gs(k, ω) is the bare stringlet Green’s function:

Gs(ω, l) =
1

−ω2 + v2s(π/l)
2 − iωγs

. (5)

Here we have assumed, as in [24], that the stringlets vi-

brate only at their fundamental frequency, ω
(l)
s ≡ πv/l,

and neglected all higher harmonics. In Eq.(4), vs and
γs are the stringlet propagation speed and attenuation
constant that, for the moment, are taken as independent
parameters. Moreover, µ is a phenomenological param-

eter with units
[√

L/t2
]
that parametrizes the strength

of the interactions between stringlets and phonons, and
that can be eventually related to microscopic physics ob-
servables [58]. For simplicity, in this work, we will take
it as an adjustable parameter. To avoid clutter, we do
not repeat the derivation of Eq.(4) here but refer the
Readers to Appendix A of [58]. Our equation (4) can be
directly compared with Eq.(A.14) therein by identifying
f(ω)k2 ≡ Γ(ω, k), v2f0 ≡ µ2, and by neglecting the term
proportional to ω3 in the denominator of Eq.(A.14) that
comes from second order perturbation theory.

Having the renormalized Green’s function, several
other properties of phonons in “stringlet-land” follow.
More precisely, the dynamic structure factor can be then
obtained as,

S(ω, k) =
1

π
Im[G(ω, k)]. (6)

The phonon vibrational density of states (VDOS) is then
given by,

g(ω) =
2ω

k3Dπ

∫ kD

0

Im[G(ω, k)]k2dk, (7)

where kD is the Debye wave-vector. Finally, the real and
imaginary parts of the self-energy Γ(ω, k) renormalize the
bare speed of sound v and the bare attenuation constant
γ respectively. Even more drastically, the renormalized
Green’s function in Eq.(1) will contain a more complex
pole structures than its bare counterpart, leading to the
presence of a flat BP mode.

Before continuing with the results, let us establish our
main assumption that is an exponential distribution of
the stringlet lengths given by:

p(l) = p0e
−l/λ, (8)

where p0 is a normalization factor and λ the average
stringlet length λ ≡ ⟨l⟩. We notice that Eq.(8) is con-
sistent with several simulation results [30–36], and has
already been successfully used in the prediction of the
BP frequency in the low-temperature glassy state [24].
Let us clarify that the stringlet length l does not vary
in the interval [0,∞] but presents a natural IR cutoff
in the sample size L, and a natural UV cutoff in the
atomic distance a. As a consequence, the stringlet size
distribution in Eq.(8) has to be limited within the range
a ≪ l ≪ L. However, in realistic situations, the aver-
age stringlet length, that will set the boson peak scale, is
of the order of nanometers, far away from both cutoffs.
This implies that the effects of the cutoffs become impor-
tant only for frequencies much smaller and much larger
than the BP frequency, and are therefore irrelevant for
the present discussion.

III. RESULTS

A. Phonon self-energy

Our theoretical analysis starts with a detailed inves-
tigation of the phonon self-energy Γ(ω, k). To limit the
number of unknown parameters, we neglect the effects of
the phonon damping γ, and we set it to zero if not indi-
cated otherwise. Moreover, to simplify the presentation,
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FIG. 3: The phonon self energy. (a) The real part of the

reduced self energy Γ̃(ω) as a function of the frequency for
vs = 1, λ = 5 and different values of γs = 0, 0.05, 0.1, 0.2, 0.3
from dark to light red. The inset shows the frequency of the
maximum ω1 as a function of the average stringlet frequency
ωs for γs = 0, 0.03, 0.05. The black lines are the fits discussed
in the main text. (b) The imaginary part of Γ̃(ω) as a function
of ω for the same values of γs as in the top panel. The inset
shows the frequency of the maximum ω2 as a function of the
stringlet damping γs.

we define a renormalized self-energy

Γ̃(ω) ≡ Γ(ω, k)

µ2k2
, (9)

which now depends only on the frequency ω and it is
independent of the coupling strength µ. The real and
imaginary parts of this renormalized self-energy are plot-
ted as a function of frequency in Fig.3 for various values
of the stringlet damping parameter γs. For further dis-
cussion, we define with

ω1 ≡ max
{ω}

ReΓ̃(ω), ω2 ≡ max
{ω}

ImΓ̃(ω), (10)

the values of the frequency at which the real and imag-
inary parts of the renormalized self-energy attain their
maximum. The imaginary part of Γ̃ displays a peak that,
in the limit of zero stringlet damping, is analytically given
by the following expression

ω2(γs = 0) =
πvs
4λ

=
ωs

4
. (11)

Interestingly, this expression coincides exactly with the
theoretical prediction for the BP frequency in the
stringlet model of [24], which resulted in good agreement
with the simulation data at low temperature (where the
damping mechanisms can be neglected). This peak is
consistently broadened by increasing the stringlet damp-
ing and its position follows a non-monotonic function
shown in the inset of the bottom panel of Fig.3.
The behavior of the real part of the renormalized self-

energy Γ̃ as a function of frequency is more complex.
Its trend is characterized by a constant zero frequency
value, a possible intermediate peak and high-frequency
regime in which the function takes negative values. In
the limit of zero stringlet damping, the intermediate peak
frequency ω1 is a linear function of the average stringlet
frequency ωs ≡ vπ/λ. More in general, we find that
the intermediate peak frequency in first approximation
follows

ω1 ≈
√
ω2
s − ζ, (12)

where ζ is a phenomenological parameter that vanishes in
absence of stringlet damping, and grows with the latter.
We notice that this functional form implies a crossover
from an underdamped regime in which the real part of Γ̃
shows a distinct and sharp maximum, to an overdamped
regime in which it decays monotonically with the fre-
quency ω.

B. Dynamic structure factor

Starting from the self-energy, we can directly derive
the phonon Green function, Eq.(1), and consequently the
dynamic structure factor, Eq.(6).
If we neglect the interactions between the stringlet de-

grees of freedom and the acoustic phonons, i.e., µ = 0,
the dynamic structure factor simply reads

S(ω, k)µ=0 =
ω γ k2

π
[
(ω2 − v2k2)

2
+ γ2ω2 k4

] . (13)

This case is shown in panel (a) of Fig.4. The linear dis-
persion of the damped acoustic phonon is evident.
By increasing the interaction strength µ, the stringlets

start dressing the phonon propagator as progressively
shown moving from panel (a) to panel (d) in Fig.4. For
large enough coupling, panel (d) in Fig.4, a dispersionless
flat mode emerges below the phonon frequency. As we
will see in the next section, the energy of this flat mode
coincides with the BP frequency in the reduced density
of states. Because of this reason, we label this mode “the
BP mode”.
In order to confirm the existence and properties of the

BP mode, in Fig.5, we show several cuts of the dynamic
structure factor at fixed wave-vector k and varying fre-
quency using the same parameters as in panel (d) of
Fig.4. The existence of a dispersionaless mode, in ad-
dition to the propagating acoustic phonon, is clear from
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FIG. 4: Emergence of a BP flat mode. The dynamical
structure factor S(ω, k) for µ = 0, 0.01, 0.02, 0.03 from (a)
to (d). From red to blue the intensity is stronger. Other
parameters involved here are v = vs = 1, λ = 5, γ = γs =
10−8. The vertical dashed line in panel (d) highlights the flat
dispersion of the BP mode that is confirmed by constant k
cuts of S(ω, k) shown in Fig.5.

that representation. Let us also notice that the BP mode
exists only for frequencies below the phonon frequency.
Its flat dispersion ends on the linear dispersion of the
acoustic phonon.

All the aforementioned properties of the flat BP mode
are consistent with what observed in simulations by Hu
and Tanaka [31]. The existence of a flat mode, respon-
sible for the BP anomaly, has also been experimentally
observed, see for example [61]. As a general remark, we
highlight that from a macroscopic perspective (but cer-
tainly not from a microscopic point of view) the existence
of such a flat mode is similar to the appearance of low-
energy optical modes, that have been identified as the
origin of the BP in several crystalline materials [8, 62, 63].

C. Density of states and boson peak

The most direct way to study the properties of BP is to
investigate the reduced VDOS, g(ω)/ωd−1, where ωd−1

is the scaling predicted by Debye law and d the spatial
dimension of system.

In Fig.6, we show the reduced VDOS as a function of
the frequency for different values of the stringlet-phonon
coupling µ. The gray line shows the result of the pure
Debye model with ωD = 1. By increasing the coupling
strength µ, two phenomena are evident. First, the De-
bye level at low frequency increases. This is simply the

FIG. 5: The BP mode in the dynamical structure fac-
tor. The dynamical structure factor for k = 0.2, 0.4, 0.6, 0.8
from dark to light color. Other parameters are same as Fig.4
(d). The vertical dashed line indicates the position of the
dispersionless BP mode coinciding with ωBP. The peak cor-
responding to the acoustic phonon is also indicated.

consequence of the renormalization of the phonon speed
of propagation, that gets smaller by enhancing the in-
teractions with the stringlets acting as scatterers. Sec-
ond, and most importantly, a clear BP excess anomaly
emerges. The position of this anomaly, ωBP, coincides ex-
actly with the energy of the flat mode reported in Fig.4
and Fig.5. The intensity of this anomaly becomes larger
by increasing the coupling strength, while its position
is only mildly dependent on it. The position is indeed
mostly controlled by the average stringlet length (that is
kept fixed in Fig.6) and the phonon propagation speed
(also fixed therein).
The theoretical model at hand allows for a broad inves-

tigation of the BP properties as a function of the various
parameters. In Fig.7, we show some of these properties
as a function of the phonon-stringlet strength and the
phonon speed of propagation. In particular, we focus on
the BP frequency, defined as the maximum in the reduced
VDOS g(ω)/ω2 and the BP intensity IBP,

IBP =
g(ω)

ω2
|ωBP . (14)

To reduce the number of parameters, the speed of
stringlet propagation vs is always considered to be same
as the speed of sound v. At the same time, the damp-
ing parameters γ, γs are kept fixed to a small value (see
caption of Fig.7 for details).
In panel (a) of Fig.7, we observe that the BP frequency

decreases monotonically by increasing the stringlet-
phonon coupling µ. Nevertheless, its value depends only
mildly on µ and it is mostly controlled by the average
stringlet length λ and the stringlet speed vs, consistent
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FIG. 6: The boson peak. The Debye reduced VDOS
for different values of the stringlet-phonon coupling µ =
0.03, 0.05, 0.07, 0.09, 0.11 (from blue to yellow). The parame-
ters are fixed to v = vs = 1, kD = 1, λ = 5 and γ = γs = 10−8.
The gray line is the result for µ = 0 displaying the case of the
pure Debye model. The inset shows the trend of the BP fre-
quency as a function of µ.

with the findings in [24].

FIG. 7: BP properties. The BP frequency and intensity as
a function of the stringlet-phonon coupling µ, panels (a) and
(c), and the propagation speed v = vs, panels (b) and (d). In
panels (a) and (d) we fix v = vs = 1, kD = 1, λ = 5, γ = 10−3

and γs = 10−2. In panels (b) and (d) we fix µ = 0.02 and
v = vs is taken as a free parameter.

On the contrary, as shown in panel (b) of Fig.7, ωBP

grows monotonically by increasing the speed of sound v,
which is taken to coincide with the stringlet speed v = vs.
In panels (c)-(d) of Fig.7, we show how the BP inten-

sity, defined in Eq.(14), depends on the same parameters.
We observe that the coupling strength µ and the propa-
gation speed v have an opposite effect on IBP. The BP
signal becomes stronger by increasing µ, while it gets

weaker by increasing v. We notice that this last behavior
is consistent with the trend of the experimental data, e.g.
[64].
Finally, we find that by increasing the damping param-

eters γ, γs (data not shown in Fig.7), the BP frequency
is also softened, in agreement with the results in [24].

D. Sound attenuation and effective phonons speed

The effective dispersion relation of the acoustic
phonons can be obtained by considering the poles of the
dressed propagator Eq.(1),

−ω2 + v2k2 − iωγk2 − µ2k2Γ̃(ω) = 0. (15)

We treat the wavevector k as a complex number and
we set the frequency ω to be a real number. Then, the
equation above can be recasted as,

k2
(
v2 − iωγ − µ2Γ̃(ω)

)
− ω2 = 0. (16)

Therefore, the effective dispersion relation is

k(ω) =
ω√

v2 − iωγ − µ2Γ̃(ω)
≡ k1(ω) + ik2(ω). (17)

Following standard definitions, the effective speed of
sound can be obtained as:

veff(ω) =

(
dk1(ω)

dω

)−1

, (18)

and the sound attenuation length is defined as the inverse
of imaginary part of the wave-vector,

l(ω) =
1

k2(ω)
. (19)

In absence of stringlet-phonon interactions, µ = 0,

k1(ω) =
ω cos

(
1
2 arg

(
v2 − iγω

))
4
√
v4 + γ2ω2

, (20)

k2(ω) = −
ω sin

(
1
2 arg

(
v2 − iγω

))
4
√
v4 + γ2ω2

. (21)

In that case, γ = 0 implies that k2(ω) = 0 and k1(ω) =
ω/v as expected. Two examples of l(ω) and veff(ω) fol-
lowing from Eqs.(20)-(21) are shown in Fig.8 in gray
color.
In Fig.8 we show the sound attenuation length and the

effective sound velocity as a function of the frequency by
dialing the stringlet-phonon coupling µ. The first visible
feature is that the sound attenuation length diverges at
ω = 0. This is simply the consequence of the absence
of any scattering or damping mechanism that remains
active in the limit of zero frequency. In other words,
the imaginary part of the phonon propagator vanishes
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at ω = 0. A second property is that the larger µ the
shorter attenuation length, that is compatible with µ de-
termining the amount of interaction/scattering between
stringlets and phonons.

More in general, we observe that the stringlets renor-
malize strongly the phonon properties only in a frequency
window around the BP energy. The sound attenuation
length is strongly decreased slightly above the BP fre-
quency, in the interval ωBP < ω < 0.4 in Fig.8.

The effective phonon velocity is also strongly modified
by the coupling with the stringlets. In particular, as
evident from the inset in Fig.8, the speed of sound is
decreased slightly below the BP frequency and increased
slightly above it.

Finally, for large frequencies, the interactions with the
stringlets become subleading and both the sound attenu-
ation and the effective speed approach their µ = 0 values.

The picture just presented is consistent with the re-
sults of [58], proving that this phenomenology is quite
insensitive to the precise form of the stringlet size dis-
tribution, aside from the information about the average
length λ.
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FIG. 8: Phonon propagation in stringlet-land. The
sound attenuation length l(ω) and effective speed of propaga-
tion veff(ω) as a function of the frequency for increasing values
of the stringlet-phonon coupling µ. The gray lines correspond
to the results for µ = 0. The other parameters involved here
are the same as Fig.6 (the color scheme is also matched).

E. The length scale associated to the boson peak

The idea of associating a length-scale to the BP is cer-
tainly not new and has been explored in various direc-
tions, e.g., [65–71].

From a macroscopic perspective, in the spirit of hetero-
geneous elasticity theory [72], the BP scale can be iden-
tified from the disordered distribution of the shear mod-

ulus. In other words, the length scale is the average size
of the shear modulus fluctuations in the disordered solid.
From a more microscopic perspective, the same length
scale can be thought as arising from quasi-localized struc-
tures coexisting with phonons in amorphous materials
[73]. In this context, the length scale corresponds to
the average size of these “defects” that punctuate the
otherwise homogeneous elastic medium. Interestingly, a
direct quantitative relation between the scales defined us-
ing these two approaches has been confirmed in certain
glass models [74], providing a possible “peace treaty” be-
tween the two parts.
According to the stringlet theory of the boson peak

[74], the length-scale associated with the BP is the av-
erage stringlet size, determined by the stringlet length
distribution p(l). As shown by means of simulations in
[31], and now proved theoretically (see Fig.4), stringlet-
phonon interactions induce the emergence of a flat BP
mode. We notice that, because of its non-dispersive char-
acter and its low-energy compared to that of acoustic
phonons, it is conceivable to interpret such a mode as a
quasi-localised low-energy excitation. We notice that the
analysis in [31] suggests that this BP mode mode is un-
related to the quadrupolar four-leaf defects discussed in
the literature, that appear somehow at frequencies much
below the BP scale, but this debate has not been settled
yet [26].
Let us go back to the dressed phonon Green’s function

in Eq.(1). From there, we observe that the phonon speed
is renormalized by the self-energy Γ(ω, k),

ṽ2(k) = v2 − Re[Γ(ω(k), k)]

k2
. (22)

Here, we have used the dispersion relation ω(k) to make
the renormalized speed a function of only the wave-
vector k. At this point, it is straightforward to Fourier
transform ṽ2(k) back into real space and define a space-
dependent phonon speed,

ṽ2(x) = F
[
ṽ2(k)

]
. (23)

Microscopically, the heterogeneous nature of the phonon
speed of propagation is just a direct consequence of the
framework depicted in Fig.1, in which the phonons prop-
agate in a bath of vibrating stringlets with different sizes.
After a coarse-graining procedure, that is technically re-
alized via solving the Dyson’s equations and integrating
out the stringlet degrees of freedom, ṽ2(x) is one of the
macroscopic effects remaining.
In Fig.9, we provide a visual representation of this ef-

fect by using a benchmark value for the average stringlet
length λ. Red color indicates spatial regions in which
the phonon speed is large. The correlation between the
average size of the fluctuations of ṽ2(x) and λ is evi-
dent, and perhaps not surprising. This simple analysis
suggests that the ideas that the BP scale is set by the
fluctuations of heterogeneous elasticity or by the average
size of localized defects (whatever their microscopic ori-
gin is) are not incompatible. Indeed, in our view, they
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FIG. 9: From stringlets to heterogeneous dynamics.
The heterogeneous phonon speed ṽ2(x) in real space. The
color map indicates its intensity from white to red color. The
black line indicates the scale of λ used to realize this figure.

are just different approaches towards the same problem,
one more macroscopic and effective, while the other more
microscopic.

IV. OUTLOOK AND DISCUSSION

In this work, we studied the dynamical and vibrational
properties of an idealized amorphous solid modelled as an
elastic medium punctuated by pinned elastic string-like
obects (stringlets) with exponentially distributed length.
The theoretical framework is a generalization of Lund’s
theory [58] that uses an exponential stringlet size distri-
bution verified by simulations. Despite the simplicity of
the model, the results qualitatively agree with the ob-
served BP properties and, together with [24], provide a
theoretical ground for the recent simulation observations
by Hu and Tanaka [30, 31].

Several open questions remain. In particular, at

present, the emergent nature of the stringlets remains
unclear. Stringlets are certainly not fundamental vibra-
tional excitations but rather an emergent collective phe-
nomenon that arises probably because of interactions and
anharmonicity. The fundamental origin of the stringlets,
and the statistical mechanics reasoning behind their ap-
pearance itself, are still matter of investigation. More-
over, from a theoretical point of view, it is not obvious to
understand why in a 3D amorphous solid, the fundamen-
tal objects behind the BP anomaly should be of 1D na-
ture. At this moment, this seems to be only a simplifying
working assumption that needs further corroboration.

Finally, the emergence of a BP flat mode is a very
appealing feature. First, this is in common among
various theoretical approaches including heterogeneous
elasticity theory and quasi-localized modes. Second, this
feature is observed not only in simulations [31] but even
in experiments [61]. Third, from a macroscopic point of
view, this feature is strikingly similar to the existence
of low-lying optical modes that have been ascribed as
the origin of the BP anomaly in crystalline materials
[8, 62, 63], hinting toward a possible macroscopic (but
not microscopic) universal framework. Along these
lines, stringlets have been indeed already discussed as
the responsible for the BP anomaly in heated crystals
by Douglas and collaborators [33, 34]. These analogies
certainly deserve more attention in the near future.
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