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Conditional Denoising Diffusion Probabilistic
Model for Ground-roll Attenuation

Yuanyuan Li, Hao Zhang, Jianping Huang and Zhenchun Li

Abstract—Ground-roll attenuation is a challenging seismic
processing task in land seismic survey. The ground-roll coherent
noise with low frequency and high amplitude seriously contam-
inate the valuable reflection events, corrupting the quality of
seismic data. The transform-based filtering methods leverage the
distinct characteristics of the ground roll and seismic reflections
within the transform domain to attenuate the ground-roll noise.
However, the ground roll and seismic reflections often share over-
laps in the transform domain, making it challenging to remove
ground-roll noise without also attenuating useful reflections. We
propose to apply a conditional diffusion denoising probabilistic
model (c-DDPM) to attenuate the ground-roll noise and recover
the reflections efficiently. We prepare the training dataset by
using the finite-difference modelling method and the convolution
modelling method. After the training process, the c-DDPM can
generate the clean data given the seismic data as condition. The
ground roll obtained by subtracting the clean data from the
seismic data might contain some residual reflection energy. Thus,
we further improve the c-DDPM to allow for generating the clean
data and ground roll simultaneously. We then demonstrate the
feasibility and effectiveness of our proposed method by using the
synthetic data and the field data. The methods based on the local
time-frequency (LTF) transform and U-Net are also applied to
these two examples for comparing with our proposed method.
The test results show that the proposed method perform better
in attenuating the ground-roll noise from the seismic data than
the LTF and U-Net methods.

Index Terms—conditional denoising diffusion probabilistic
model, ground-roll attenuation, deep generative model.

I. INTRODUCTION

Ground roll is often dominated by Rayleigh surface waves,
generated from seismic sources near the Earth’s surface [1].
In land seismic survey, ground roll is a typical coherent noise
with the main characteristics of low frequency, low velocity,
high amplitude [2]–[4]. Dispersion is also observed in ground
roll, that is, different frequency components propagate at dif-
ferent velocities and arrive at the receiver at different times [5].
Thus, ground roll usually appears as fan-shaped distribution
with downward oblique straight lines in seismic recording. The
ground-roll noise will corrupt the useful reflections, and thus
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needing to be attenuated for improving the quality of seismic
data and the fidelity of seismic reflection imaging [6], [7].

The transform-based filtering methods play an important
role for suppressing ground roll in seismic data processing.
Since ground roll typically has lower frequency than seismic
reflection signals, low-cut filters or high-pass filters can be
applied to remove the low-frequency noise associated with
ground roll. However, they also remove the low-frequency
components of seismic signals. Thus, a variety of transform-
based seismic processing methods are developed to suppress
ground-roll noise while preserving valuable seismic signals.
These methods leverage the distinct characteristics of ground
roll and seismic reflections within the transform domain,
such as frequency-wavenumber (f − k) transform [8], [9],
local time-frequency (LTF) transform [10], Radon transform
[11], [12], wavelet transform [13]–[15], S-transform [16], [17]
and Karhunen-Loeve (KL) transform [3], [18], [19]. These
transforms provides a different representation of seismic data,
enabling the identification and attenuation of ground roll
in the transformed seismic data. However, the ground roll
and reflections can have significant overlap in the transform
domain in complex real data scenario. This will make it very
challenging to separate ground roll from seismic reflections.

Deep learning (DL) has received widespread attention in
the field of geophysics, involving various tasks in seismic
processing, inversion, and interpretation [20]–[25]. In recent
years, the DL methods are increasingly applied for attenuating
ground roll [26]–[31]. Li et al. applied a Convolutional Neural
Network (CNN) for learning the features of scattered ground-
roll noise and then removing the learned noise from shot
gathers [26]. Kaur et al. applied the LTF and regularized
non-stationary regression to a few shot gathers to prepare the
labeled data for training a Generative Adversarial Network
(GAN) for ground-roll attenuation [32]. Yuan et al. also
adopted the GAN to attenuate ground roll in seismic data
[33]. Oliveira et al. combined a CNN and a conditional GAN
to build the self-supervised two-step scheme for attenuating
ground-roll noise [34]. To avoid the preparation for clean data
as training labels, Liu et al. designed the blind-fan networks
to suppress the coherent ground-roll noise in seismic data in
a self-supervised manner, but a careful selection of the mask
structure is really needed [35].

Denoising Diffusion Probabilistic Model (DDPM) is an
advanced generative model with superior ability to generate
high-quality, diverse and complex samples [36]. Considering
the powerful performance of DDPM, Durall et al. introduced a
DDPM to handle seismic data processing tasks, including de-
multiple, denoising and interpolation [37]. Conditional DDPM
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(c-DDPM) further extends the capability of standard DDPM
by guiding the generation process with the condition [38].
Thus, we propose to apply the c-DDPM to suppress ground-
roll noise in seismic data.

Typically, we can design the clean data as the target data
distribution for the c-DDPM. Once the c-DDPM is trained, we
can generate the clean data corresponding to the conditioning
seismic data, contaminated by ground-roll noise. The ground
roll can then be obtained by subtracting the generated clean
data from the seismic data. However, the obtained ground roll
usually contains some reflection residuals due to the inaccurate
prediction of the clean data. Thus, we propose an improved
c-DDPM to predict the ground roll with higher accuracy.
Here, we adjust the forward and reverse processes of the
diffusion model and modify the network architecture. Given
the conditioning seismic data, the improved c-DDPM is able
to generate the clean data and ground roll simultaneously.

To the best of our knowledge, this is the first work that
applies c-DDPM to ground-roll attenuation task, showing
promising results compared with the methods based on LTF
and U-Net. The rest of the paper is organized as follows.
First, we introduce the theory of the conventional c-DDPM and
our improved c-DDPM. Secondly, we introduce the network
architecture and how to prepare the training dataset and train
the model. In the Examples section, we use test the synthetic
and field data to test our proposed method. The LTF and U-
Net methods are also applied to these data for comparing with
the proposed method. At the end, we make discussions and
conclusion.

II. C-DDPM

A. Conventional c-DDPM

For conventional c-DDPM, the target data distribution
should be either clean data or ground roll data. Once one
of them is obtained by the c-DDPM, the other one can
be obtained by subtracting it from the noisy data. In the
conventional c-DDPM, we typically set the clean data x0 as
the target distribution and the noisy data y as the condition.
Correspondingly, the ground roll z0 can be obtained by
subtracting the generated clean data from the noisy data. The
forward process for the c-DDPM is defined on a Markov chain
within T timesteps:

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1), (1)

where x0 is sampled from the training datasets q(x0|y),
x1, ..,xT are the latent variables fixed on the Markov chain.
q(xt|xt−1) is the pre-defined Gaussian translation and obtains
xt by adding random noise to xt−1:

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI), (2)

where βt ∈ (0, 1) is a predefined variance schedule that
increases with timestep t. The property of the Markov chain
enables:

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I). (3)

A more explicit form of Eq. 3 is:

xt =
√
ᾱtx0 +

√
1− ᾱtϵx, ϵx ∼ N (0, I), (4)

where αt = 1 − βt and ᾱt =
∏t

s=1 αs. At timestep T ,
xt converges to a prior distribution, i.e, a standard normal
distribution. Thus, the forward process is a diffusion process
that gradually converts a clean image to a pure noise image.

The reverse process is also defined on a Markov chain,
which converts pure noise xT ∼ N (0, I) to the data distri-
bution x0, under the guidance of y:

pθ(x0:T |y) = p(xT )

T∏
t=1

pθ(xt−1|xt,y), (5)

where the Gaussian translation pθ(xt−1|xt,y) has learned
mean µθ and fixed variance Σθ = σt

2:

pθ(xt−1|xt, y) = N (xt−1;µθ (xt,y, t) ,Σθ(xt,y, t)). (6)

For the detailed inference of the formulas, see [36]. The
optimization function of the network is:

Et,xt,ϵ

[
|ϵ− ϵθ(xt,y, t)|

]
. (7)

After training the network, we can gradually generate the clean
data x̂0 with the sampling step in c-DDPM:

x̂t−1 =
1

√
αt

(
x̂t −

1− αt√
1− ᾱt

ϵθ(x̂t,y, t)

)
+ σtϵx, (8)

where x̂t is the estimated latent variable in the sampling
process.

B. Improved c-DDPM

One limit of the conventional c-DDPM is that the ground
roll ẑ0 obtained by subtracting the predicted clean data x̂0

from the noisy data y usually suffer from some leakage of
reflections because of the inaccurate prediction of x̂0. Thus,
we design two target distribution, clean data and ground roll, in
the improved c-DDPM given the noisy data as condition. The
forward and reverse processes for the improved c-DDPM are
shown in Fig. 1. In detail, the forward process in the improved
c-DDPM is

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1), (9)

q(z1:T |z0) =
T∏

t=1

q(zt|zt−1), (10)

where x0 and z0 refer to the clean data and ground roll,
respectively. The reverse process is formulated as:

pθ(x̂0:T |ẑ0:T ,y) = p(x̂T )

T∏
t=1

pθ(x̂t−1|x̂t, ẑt,y), (11)

pθ(ẑ0:T |x̂0:T ,y) = p(ẑT )

T∏
t=1

pθ(ẑt−1|x̂t, ẑt,y). (12)
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Fig. 1. An illustration of the forward and reverse process in the improved c-DDPM. The improved c-DDPM sets the clean data
and ground roll data as two target data distributions. The dashed line indicates the forward process, which gradually converts
a clean image to a pure noise image. The solid line indicates the reverse process, which gradually converts a pure noise image
to the clean image.

Correspondingly, the optimization function becomes

Et,xt,zt,y,ϵ

[
|ϵx − ϵθ,x(xt, zt,y, t)|+ |ϵz − ϵθ,z(xt, zt,y, t)|

]
,

(13)
where ϵθ,x(xt, zt,y, t) and ϵθ,z(xt, zt,y, t) represents the
estimated noise for sampling xt−1 and zt−1 respectively. Note
that, both the noise are jointly estimated from xt and zt with
the network. Once the training process is finished, we can
gradually generate the clean data x̂t and the ground roll ẑt
with the noisy data as condition:

x̂t−1 =
1

√
αt

(
x̂t −

1− αt√
1− ᾱt

ϵθ,x(x̂t, ẑt,y, t)

)
+ σtϵx, ϵx ∼ N (0, I),

(14)

ẑt−1 =
1

√
αt

(
ẑt −

1− αt√
1− ᾱt

ϵθ,x(x̂t, ẑt,y, t)

)
+ σtϵz, ϵz ∼ N (0, I).

(15)

The proposed training process and sampling process of the
improved c-DDPM are shown in Algorithm 1 and Algorithm
2, respectively.

III. NETWORK ARCHITECTURE AND TRAINING

We adopt the modified U-Net architecture, an adaptation of
the network used by [39], as the backbone for the c-DDPM.
The only difference between the two U-Nets used for the
conventional and improved c-DDPM is the channel numbers of
the input and output layers. According to Eq. 7, the U-Net used
in the conventional c-DDPM takes the condition y and noisy
clean data xt as input and produces the estimated noise ϵθ,x

Algorithm 1 Training of the improved c-DDPM

Input: prepared dataset q(x0, z0,y) (x0 and z0 is the clean
data and the ground roll data respectively. y is the noisy
input), diffusion time steps T

1: while not converged do
2: sample x0, z0, y from q(x0, z0,y)
3: sample t from Uniform({1, ..., T})
4: sample ϵx, ϵz from N (0, I),
5: zt =

√
ᾱtz0 +

√
1− ᾱtϵx

xt =
√
ᾱtx0 +

√
1− ᾱtϵz

6: optimise Et,xt,zt,y,ϵ

[
|ϵx − ϵθ,x(xt, zt,y, t)| + |ϵz −

ϵθ,z(xt, zt,y, t)|
]

in network θ
7: end while

as output. We concatenate y and xt in the input layer with 2
channels. The input and output layer for the U-Net used in con-
ventional c-DDPM is shown in Fig. 2a. Compared with the U-
Net in the conventional c-DDPM, we include the noisy ground
roll data zt as an additional input channel and the estimated
noise ϵθ,z as an additional output channel in the improved c-
DDPM (Eq. 13). Fig. 2b shows the input and output layers
for the U-Net used in improved c-DDPM. For convenience,
we refer to the conventional c-DDPM and the improved c-
DDPM as ”DDPM-1c” and ”DDPM-2c”, respectively. The
architecture of the U-Net used jointly for the DDPM-1c and
the DDPM-2c is shown in Fig. 3. The U-Net consists of
the encoder and decoder. The skip connection in the U-Net
enables conveying the information from the encoder to the
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Algorithm 2 Sampling of the improved c-DDPM

Input: y, T
Output: Clean data x̂0 and Ground roll data ẑ0

1: Sample xT , zT from N (0, I)
2: for t = T, ..., 1 do
3: if t > 1 then
4: sample ϵx, ϵz from N (0, I)
5: else
6: ϵx = ϵz = 0
7: end if
8: predict ϵθ,x(xt,y, t),ϵθ,z(xt,y, t) through trained net-

work θ
9: x̂t−1 = 1√

αt

(
x̂t − 1−αt√

1−ᾱt
ϵθ,x(x̂t, ẑt, t)

)
+ σtϵz

ẑt−1 = 1√
αt

(
ẑt − 1−αt√

1−ᾱt
ϵθ,z(x̂t, ẑt, t)

)
+ σtϵz

10: end for

U-net
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U-net
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(b)

Fig. 2. A graphic illustration of the input layers and output
layers for the conventional c-DDPM and improved c-DDPM.
(a) The conventional c-DDPM. (b) The improved c-DDPM.

decoder. Our U-Net mainly includes 5 Resnet blocks in both
the encoder and decoder, a MidAtten block that connects the
encoder and decoder, a time-embedding block and an output
block. The self-attention mechanism is introduced into the
MidAtten block to help the U-Net to learn the features of the
image [40].Furthermore, the time embedding block introduces
position encoding to inform the U-Net of the current time step
in the reverse step [40].

Given the network architecture, we then prepare the training
dataset for training the network. In a supervised manner, the
training dataset should include noisy seismic data as input and
corresponding clean data as label. There are various methods,
such as finite difference modeling and convolution modeling,

Time 

Embeding

Time 

Embeding

Input Output

t

Fig. 3. A general illustration of the U-net used for the
conventional c-DDPM and improved c-DDPM.

(a) (b) (c)

(d) (e) (f)

Fig. 4. Examples of the training datasets. (a) and (d) are
two examples of seismic clean data using finite difference
modelling. (b) and (c) are the ground roll data using covolution
modelling. (c) and (f) are the noisy data, after a summation
of (a) and (b), (d) and (c), respectively

for preparing the datasets.
Finite difference modeling is capable of generating seismic

data with excellent dynamic features, but it is computationally
intense. Convolution modeling is computationally simple and
efficient and allows for flexible adjustment of the location,
amplitude, and frequency of seismic events. However, the con-
volution modeling often fails to capture the dynamic features
of seismic data. To balance the cost and accuracy of the
data generation, we apply the finite difference modelling to
produce the clean data accurately, while using the convolution
modelling to generate coherent ground-roll noise efficiently.
Similar strategy is also used in [33].

To prepare the clean data for training, we first simulate
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(a) (b) (c)

Fig. 5. A 2D slice of SEAM Arid model: (a)vp, (b)vs and (c)ρ.

792 shot gathers by using various layered velocity models and
then extract 792 shot gathers from the 2007 BP Anisotropic
Velocity Benchmark datasets. We generate the ground roll
randomly by adjusting the location of linear reflectivity and
the frequency and amplitude of the wavelet in the convolution
modeling. To adapt the trained network to the data of the
example section, we need to select a reasonable frequency
range in the convolution modelling. When the ground roll
are much stronger than the clean data, the performance of
the network greatly deteriorates. Thus, we set the average
amplitude of the ground roll to be 1.5-3 times larger than the
clean data. We then make the summation of the clean data and
ground roll as the noisy data. The dimension of each sample
of the training datasets is fixed to 640 in the time direction
and 224 in the horizontal. The volume of our training datasets
is 1584. Two examples of the prepared datasets are shown in
Figure 4.

We train the DDPM-1c and DDPM-2c with 63 epochs and
the batch size of 4. We use an Adam optimization with an
initial learning rate of 0.0001. As a comparison, we use the
same training parameters to train the U-Net in a supervised
fashion, where the noisy and clean data are used as the input
and output of this U-Net, respectively. Then, we directly use
the trained models in the synthetic and field data examples.

IV. EXAMPLES

A. SEAM Arid synthetic example

We first test the proposed methods DDPM-1c and DDPM-
2c on the synthetic data example. Besides, we also apply the
LTF and U-Net to the synthetic data as comparison. Fig. 5
shows the 2D slice of the SEAM Arid model. To provide
the benchmark for comparison, we can directly obtain the
clean data and the ground roll by applying the elastic finite-
difference modeling method to the modified velocity model.
We use the vp and ρ model shown in Fig. 5a and 5c but
set vs to zero to simulate the clean data, while we retain the
near-surface part above 600 m of Fig. 5 but make the model
beneath 600 m homogeneous to simulate the ground roll.
The 25-Hz Ricker wavelet is used to simulate these seismic
data. The simulated clean data and ground roll are shown in
Fig. 6b and Fig. 6c, respectively. The simulated data has a
total of 640 traces and 224 time samples per trace, with a
time sampling interval of 0.004 s. We first apply automatic
gain control (AGC) to these simulated data. Then, we add
the weighted ground-roll data to the clean data to obtain the

noisy data shown in Fig. 6a. The weighting factor for the
ground roll can be used to adjust the SNR of noisy data.
We can see from Fig. 6a that the coherent ground-roll noise
corrupts the shallow reflections at near offsets and deeper
reflections at far offsets. We use our proposed method (DDPM-
1c, DDPM-2c), LTF and U-Net to remove the ground roll
from the noisy data. Fig. 6d and 6e show the clean data and
ground roll obtained by the LTF method, respectively. We can
obviously see some ground-roll noise in the denoising result.
The clean data and ground roll corresponding to the U-Net
method are shown in Fig. 6f and 6g. We can still see that
the ground roll is not removed completely, especially for the
part pointed by the red box. Besides, the energy leakage of
reflections is observed in Fig. 6g. The clean data predicted
by using DDPM-1c is shown in Fig. 6h. As pointed by the
red box, the ground-roll energy leakage is relatively weak.
The separated ground-roll data by using DDPM-1c is shown
in Fig. 6i. We can see that the energy leakage of reflections
is less visible compared with LTF and U-Net. Fig. 6j and 6k
show the predicted clean data and ground roll with DDPM-
2c. We can see that the predicted clean data is comparable
to the simulated clean with very slight contamination from
ground roll. As pointed by the red box, the ground roll is
completely removed, and the masked reflections are recovered
well. In addition, there is obviously less remaining reflection
energy in the predicted ground roll compared with the result of
DDPM-1c. The comparison between these figures tell us that
the proposed DDPM-2c shows better performance in ground-
roll attenuation than LTF, U-Net and DDPM-1c.

We apply the F-K plane analysis to further evaluate the
performance of the ground-roll attenuation methods. The F-K
spectra corresponding to the data in Fig. 6a and Fig. 6b are
shown in Fig. 7a and 7b, respectively. From the spectra, we
observe that the clean data and ground roll have overlap in the
frequency band of 20 - 35Hz. Fig. 7c displays the F-K spectra
of the predicted clean data in Fig. 6d, containing some residual
ground-roll energy. Fig. 7d, 7e, and 7f show the F-K spectra
corresponding to the predicted clean data in Fig. 6f, 6h, and
6j, respectively. The F-K spectra corresponding to DDPM-2c
has less residual ground roll and looks closer to that of the
simulated clean data.

Moreover, we utilize amplitude spectra to assess the per-
formance of these methods for attenuating ground roll in
noisy data. The amplitude spectra of the true clean data
and the predicted clean data in Fig. 6 are illustrated in Fig.
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Fig. 6. Examples on the Arid synthetic data. (a) Noisy data. (b) True clean data. (c) True ground roll data. (d) Predicted clean
data using LTF . (e) Predicted ground roll data using LTF. (f) Predicted clean data using U-Net. (g) Predicted ground roll data
using U-Net. (h) Predicted clean data using DDPM-1c. (i) Predicted ground roll data using DDPM-1c. (j) Predicted clean data
using DDPM-2c. (k) Predicted ground roll data using DDPM-2c.

8a. We compute the spectra of these data over the same
time and space window. Obviously, the U-Net result has an
increased energy from 10 to 40 Hz, arising from the inaccurate
amplitude of the predicted clean data. On the other hand, the
clean data predicted by LTF, DDPM-1c and DDPM-2c have
consistent frequencies with the true clean data. Furthermore,
the amplitude spectra of the true noise data and the separated
ground-roll data in Fig. 6 are shown in Fig. 8b. We can see that
amplitude spectra corresponding to DDPM-2c shows the best
consistency with the target spectra. Although the prediction of
DDPM-1c slightly degrades, it is still better than the LTF and

TABLE I. Evaluations for the predicted clean data

Methods MAE MSE SSIM PSNR

LTF 0.0229 0.0014 0.7463 28.4057
U-Net 0.0328 0.0026 0.7272 25.7754

DDPM-1c 0.0189 0.0009 0.7426 30.3792
DDPM-2c 0.0191 0.0009 07807 30.1405

U-Net methods.
For a quantitation assessment, we then use four evaluation

metrics, including Mean absolute error (MAE), mean square
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Fig. 7. F-K planes of the Arid synthetic data in Fig. 6. (a)
Noisy data. (b) True clean data. (c) Predicted clean data using
LTF. (d) Predicted clean data using U-Net. (e) Predicted clean
data using DDPM-1c. (f) Predicted clean data using DDPM-
2c.

TABLE II. Evaluations for the predicted noise data

Methods MAE MSE SSIM PSNR

LTF 0.0229 0.0014 0.5991 28.4307
U-Net 0.0328 0.0026 0.4516 25.7766

DDPM-1c 0.0188 0.0009 0.6084 30.4044
DDPM-2c 0.0174 0.0008 0.7038 30.5280

error (MSE), peak signal-to-noise ratio (PSNR) and structural
similarity index measure (SSIM) to measure the difference be-
tween the ground truth and predicted results. You are referred
to Appendix A for more details about these evaluation metrics.
The lower the values of MAE and MSE, and the higher the
values of PSNR and SSIM, the closer the predicted data is
to the target. Considering that the DDPMs has the inherent
generative diversity, we perform the sampling process for the
DDPM-based methods five times and compute the mean value
of the metrics. The evaluation results for the clean data and
ground roll predicted by different methods are summarized in
Table. I and II, respectively. We can see from Table. I that our
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Fig. 8. Amplitude spectra comparison of the Arid synthetic
data example in Fig. 6. (a) The clean data. (b) The ground
roll data.

proposed methods (DDPM-1c and DDPM-2c) perform better
than the LTF and U-Net methods in predicting clean data.
Meanwhile, Table. II illustrates that DDPM-2c has superior
performance in predicting ground roll.

B. Field data example

We then apply the c-DDPM method to the field data with no
needs to re-train the model. Fig. 9a shows a shot gather from
the Line 001 dataset after AGC and down-sampling. The trace
number is 640, and the recording length is 224 with a time
sampling of 0.0047 s. The ground-roll noise is predominantly
located at near offset and seriously contaminates the reflection
events. The denoising result of the LTF method is shown in
Fig. 9b. We can see that the reflections are still masked by
strong ground-roll residuals. The ground roll corresponding
to the LTF method is shown in Fig. 9c. There is obvious
leakage of reflections at the masked area of the ground roll and
reflections. The predicted clean data using U-Net is shown in
Fig. 9d. As shown by the red box, the reflections are partially
recovered, but the ground roll still obviously contaminates the
seismic data. Fig. 9e shows the corresponding ground roll.
We can see the ground roll is more complete, while there are
some leakage of reflections as pointed by the red arrows. The
clean data predicted by DDPM-1c and DDPM-2c are shown in
Fig. 9f and Fig. 9h, respectively. As pointed by the red box,
the reflections are recovered better than the LTF and U-Net
methods. The predicted ground roll by using DDPM-1c and
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DDPM-2c are shown in Fig. 9g and Fig. 9i, respectively. As
pointed out by the red arrows, we can see the slight reflection
energy in the result of DDPM-1c, while the result of DDPM-2c
has no visible reflections. These figures show that the DDPM-
2c has better performance on the field data than the LTF, U-Net
and DDPM-1c methods.

We also show the f-k spectra of the original seismic data
and the denoising results of different methods in Fig. 10. The
amplitude spectra of the original seismic data and denoising
results are shown in Fig. 11a. We can see that the LTF does
not attenuate the ground roll with frequency from 8 Hz to 15
Hz effectively. The amplitude spectra of the original seismic
data and the predicted ground roll in Fig. 9 are shown in Fig.
11b. We can see that DDPM-1c and DDPM-2c predicts the
ground roll with frequency from 10 to 20 Hz very well.

V. DISCUSSION

The proposed method (DDPM-1c and DDPM-2c) shows
better performance on the synthetic and field data examples
in ground-roll attenuation than the LTF and U-Net methods.
Moreover, DDPM-2c can output the clean data and ground roll
simultaneously with high quality. To make a further investi-
gation of the proposed method, we then analyse the influence
of AGC and training dataset on the denoising performance,
along with the acceleration in diffusion denoising implicit
model(DDIM).

A. The influence of AGC

It is more challenging when the energy of ground roll is
much stronger than the reflections in the seismic data. Thus,
we perform AGC on the noisy input in the synthetic and
field data examples, to balance the amplitudes across the
whole data. AGC adjust the amplitudes of seismic data in a
window according to the mean energy within the window. The
reflections overlapped by strong ground-roll noise will have
smaller gain than the reflections unaffected by the ground-roll
noise. Thus, the predicted reflections in the strongly-affected
area tends to be weaker than the predicted reflections in the
unaffected area. This can be seen in Fig. 9f and 9h.

There are two possible solutions to this issue:
1) Improve the network so that it can work well when the

ground roll energy is dominant in the noisy data. DDPMs are
deep generative models originally made for image synthesis.
The network architecture for a range of 0-255 RGB of an
image should be carefully modified for the high-resolution task
such as seismic processing.

2) Reconstruct the clean data instead of separating it from
the noisy data after AGC. Both the DDPM-1c and DDPM-2c
are required to separate the reflection energy from the noisy
condition after AGC. The network can learn to reconstruct
the contaminated area with continuous reflection energy by
lessening the constraint of the condition. In other words,
the c-DDPM should possess more diversity to construct the
contaminated area.

B. The influence of training datasets

The preparation of training dataset is an important compo-
nent of the DL method. We applied the convolution modeling
to generate the ground roll. We configure the source wavelet
frequency for the convolution modeling to fall within a cer-
tain range, ensuring the trained model generalizes effectively
across both synthetic and field data examples. The training
dataset used above is named as ”dataset1”. To test how the
frequency of the ground roll influence the generation quality,
we enlarge the frequency range of the ground roll and generate
a new training dataset, named as ”dataset2”. The new dataset
is then used to train the DDPM-2c with the same training
parameters as before. After training, we then apply the trained
model to the noisy field data in Fig. 9a. We can see that
the residual ground-roll noise with higher frequency are also
removed, but the direct arrivals are also missing. Additionally,
there are more leakage of reflections into the predicted ground
roll when using dataset2 for training compared with the
scenario for dataset1. This is because the model trained on
dataset2 tends to generate the events with higher frequency
(which usually refer to the reflections), especially in the area
where the reflections and the ground roll heavily overlap.

We then compute the amplitude spectra of the predicted
clean data and ground roll corresponding to dataset2 to further
demonstrate the influence of the frequency band of the ground
roll for training on the data generation. The amplitude spectra
of the predicted clean data using dataset2 exhibits an obvious
decrease after 20Hz, while the amplitude spectra of the ground
roll increases after 20Hz. The experiment result demonstrates
that the frequency band of the training dataset affects the
generation quality of the ground roll and the clean data.
Thus, we should carefully prepare the training dataset with
a reasonable frequency band to improve the predicted clean
data and ground roll.

C. DDIM

We implemented a conventional sampling process of the
DDPM in the c-DDPM. This sampling process is time-
consuming because many timesteps are required. In order
to accelerate the sampling, DDIM defines both the forward
and reverse processes on a non-Markov chain instead of a
Markov chain [41]. This non-Markov chain allows DDIM
to sample within significantly reduced timesteps, making it
much more computationally efficient. However, the reduced
timesteps inevitably degrades the quality of the generation.
Therefore, we employ the conventional sampling process of
the DDPM instead of the sampling process of the DDIM. Here,
we provide a brief illustration of the sampling process of the
DDIM for reference. The sampling step in DDIM is

xτi−1
=

√
ατi−1

(
xτi −

√
1− ατiϵθ(xτi , τi)√

ατi

)
+
√

1− ατi−1
− σ2

τi · ϵθ(xτi , τi) + στiϵ,

(16)

where τi is the sampled timesteps from the original range
0 ... τ , α is the pre-defined noise schedule, and σ2

τi =
η ·

√
(1− ατi−1

)/(1− ατi)
√

(1− ατi/ατi−1
). When η = 0,
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Fig. 9. Examples on the field data. (a) Noisy data. (b) Predicted clean data using LTF. (c) Predicted ground roll data using LTF.
(d) Predicted clean data using U-Net. (e) Predicted ground roll data using U-Net. (f) Predicted clean data using DDPM-1c.
(g) Predicted ground roll data using DDPM-1c. (h) Predicted clean data using DDPM-2c. (i) Predicted ground roll data using
DDPM-2c.

there is no random noise added in every sampling step, thus the
sampling process is fixed. When η = 1, the sampling process
is the same to the DDPM, only with reduced timesteps.

VI. CONCLUSION

We propose to apply the c-DDPM to attenuate the ground-
roll noise in the seismic recordings. We use the finite-
difference modelling and convolution modelling methods to
prepare the training datasets. After the training process, the
c-DDPM can generate the clean data given the seismic record-
ings as condition. To improve the accuracy of prediction
for ground roll, we further improve the c-DDPM to simul-
taneously generating the clean data and ground-roll data.

Tests on one synthetic data and one field data show that the
proposed method (the conventional c-DDPM and improved c-
DDPM) performs better in ground-roll attenuation than the
other methods using LTF and U-Net. Besides, the improved
c-DDPM directly predict the ground roll with high accuracy.

VII. APPENDIX A
In the appendix, we will provide a brief introduction to

the algorithms of MAE, MSE, SSIM and PSNR. The MSE is
calculated by

MAE =
1

mn

n∑
j=1

m∑
i=1

|yi,j − ŷi,j|, (17)
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Fig. 10. F-K plane of the field data example. (a) Noisy data.
(b) Predicted clean data using LTF. (c) Predicted clean data
using U-Net. (d) Predicted clean data using DDPM-1c. (e)
Predicted clean data using DDPM-2c.

where m and n is the size of the data, yi,j is the true data,
and ŷi,j is the estimated data. The MSE is calculated by

MSE =
1

mn

n∑
j=1

m∑
i=1

(yi,j − ŷi,j)
2. (18)

The PSNR is calculated by

PSNR = 10 · log10
(
(2n − 1)2

MSE

)
. (19)

The SSIM is calculated by

SSIM(y, ŷ) =
(2µyµŷ + c1)(2σyŷ + c2)

(µ2
y + µ2

ŷ + c1)(σ2
y + σ2

ŷ + c2)
, (20)
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Fig. 11. Amplitude spectra comparison of the field data
example in Fig. 4. (a) The clean data. (b) The ground roll data.
Black, red, yellow, sky-blue, blue lines indicate the spectra
of noisy input data, separated clean data using DDPM-2c,
DDPM-1c, U-Net and LTF, respectively.

(a) (b)

Fig. 12. The clean data and ground roll predicted by the
DDPM-2c with datasets2 for training. (a) The predicted clean
data. (b) The predicted ground roll.
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Fig. 13. Amplitude spectra comparison of separated data using
dataset1 and dataset2. (a) The separated clean data. (b) The
separate ground roll data.

where µy, µŷ is the mean of the true data y and estimated
data ŷ, respectively, σy, σŷ is the variance of y and ŷ, respec-
tively, σyŷ is the covariance of y and ŷ, c1 = (k1L)

2, c2 =
(k2L)

2, where L is the dynamic scope, k1 = 0.01, k2 = 0.03.

REFERENCES

[1] G. Beresford-Smith and R. N. Rango, “Dispersive noise removal in tx
space: Application to arctic data,” Geophysics, vol. 53, no. 3, pp. 346–
358, 1988.

[2] R. Saatcilar and N. Canitez, “A method of ground-roll elimination,”
Geophysics, vol. 53, no. 7, pp. 894–902, 1988.

[3] X. Liu, “Ground roll suppression using the karhunen-loeve transform,”
Geophysics, vol. 64, no. 2, pp. 564–566, 1999.

[4] M. J. Porsani, M. G. Silva, P. E. Melo, and B. Ursin, “Ground-roll
attenuation based on svd filtering,” in SEG International Exposition and
Annual Meeting. SEG, 2009, pp. SEG–2009.

[5] M. I. Al-Husseini, J. B. Glover, and B. J. Barley, “Dispersion patterns
of the ground roll in eastern saudi arabia,” Geophysics, vol. 46, no. 2,
pp. 121–137, 1981.
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