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Abstract. Energy-efficient spikformer has been proposed by integrat-
ing the biologically plausible spiking neural network (SNN) and artificial
Transformer, whereby the Spiking Self-Attention (SSA) is used to achieve
both higher accuracy and lower computational cost. However, it seems
that self-attention is not always necessary, especially in sparse spike-form
calculation manners. In this paper, we innovatively replace vanilla SSA
(using dynamic bases calculating from Query and Key) with spike-form
Fourier Transform, Wavelet Transform, and their combinations (using
fixed triangular or wavelets bases), based on a key hypothesis that both of
them use a set of basis functions for information transformation. Hence,
the Fourier-or-Wavelet-based spikformer (FWformer) is proposed and
verified in visual classification tasks, including both static image and
event-based video datasets. The FWformer can achieve comparable or
even higher accuracies (0.4%-1.5%), higher running speed (9%-51% for
training and 19%-70% for inference), reduced theoretical energy con-
sumption (20%-25%), and reduced GPU memory usage (4%-26%), com-
pared to the standard spikformer. Our result indicates the continuous
refinement of new Transformers, that are inspired either by biological
discovery (spike-form), or information theory (Fourier or Wavelet Trans-
form), is promising.

Keywords: spiking neural network · Transformer · visual classification

1 Introduction

Spiking neural network (SNN) is considered the third generation of artificial
neural networks [27] for its biological plausibility of event-driven characteristics.
It has also received extensive attention in the computation area of neuromorphic
hardware [6], exhibiting a remarked lower computational cost on various machine
learning tasks, including but not limited to, visual classification [50], temporal
auditory recognition [36], and reinforcement learning [34]. The progress in SNN
is contributed initially by some key computational modules inspired by the bi-
ological brain, e.g., the receptive-field-like convolutional circuits, self-organized
plasticity propagation [47], and other multi-scale inspiration from the single neu-
ron or synapse to the network or cognitive functions. Simultaneously, the SNN
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also learns from the artificial neural network (ANN) by borrowing some mathe-
matical optimization algorithms, e.g., the approximate gradients in backpropa-
gation (BP), various types of loss definitions, and regression configurations.

Even though various advanced architectures have been proposed and con-
tributed ANN to a powerful framework, the efforts to promote its training speed
and computational consumption have never been stopped. As the well-known
Transformer for example, it contains a rich information representation formed
by multi-head self-attention, which calculates Query, Key, and Value from the
inputs to connect each token in a sequence with every other token. Although hav-
ing achieved rapid and widespread application, the O(N2) complexity (with N
representing the sequence length) results in a huge training cost in Transformer
that can not be neglected. Many works have tried to solve this problem, including
but not limited to, replacing self-attention with unparameterized transform for-
mats, for example, using Fourier Transform (FNet [23]) or Gaussian Transform
(Gaussian attention [45]). Another attempt is to integrate some key features
of ANNs and SNNs to exhibit their advantages, such as the higher accuracy
performance in ANNs and the lower computational cost in SNNs.

The spikformer [50] explores self-attention in SNN for more advanced deep
learning. It introduces a spike-form self-attention called Spiking Self-Attention
(SSA). In SSA, the floating Query, Key, and Value signals are sent to leaky-
integrated and fire (LIF) neurons to generate spike sequences that only contain
binary and sparse 0 and 1 vision information, which results in non-negativeness
spiking attention map. This special map doesn’t require the complex softmax
operation anymore for further normalization, which means a lower computational
consumption is needed compared to that in vanilla Self-Attention. However, even
though many efforts have been made, it seems that the SSA still exhibits an
O(N2) complexity, whereby further refinement is necessary. Given binary and
sparse spikes for information representation, we here question whether it is still
necessary to retain the original complex structure of Self-Attention in spikformer.
Here, we give a hypothesis that although Self-Attention with learning parameters
has been generally considered more flexible, it is still not suitable in the spike
stream context, since the correlation between sparse spike trains is too weak to
form closed similarity. Hence, an intuitive approach is to convert these sparse
spike trains in spatial domains to the equivalent frequency domains with the
help of Fourier transformation.

Here we propose a new hypothesis: Just like the Fourier Transform, Self-
Attention can also be thought of as using a set of basis frequency functions for
information representation. The main difference between these two methods is
that the Fourier Transform uses fixed triangular basis functions to transform
signals into the frequency domain, while on the contrary, the Self-Attention
calculates higher-order signal representation from compositions of the input to
produce more complex basis functions (Query×Key). This understanding may
explain why FNet [23] performs well, since fixed basis functions may also work in
some cases by offering structured prior information. Following this perspective,
an intuitive plan is to integrate all these key features together, towards a reduced
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computational cost and accelerated running speed, including unparameterized
transforms (e.g., Fourier Transform and Wavelet Transform), and spike-form
sparse representation. Our main contributions can be summarized as follows:

We propose a key hypothesis that the Self-Attention in Transformer
works by using a set of basis functions to transform information from
Query, Key, and Value sequences, which is very similar to the Fourier
Transform. Hence, after jointly considering the shortcomings of spik-
former, we replaced SSA with spike-form Fourier Transform and Wavelet
Transform. Mathematical analysis indicates a reduced time complexity
from O(Nd2) or O(N2d), to O(N logN) or O(D logD) + O(N logN),
under the same accuracy performance.

The results validate that our method achieves superior accuracy on
event-based video datasets (improved by 0.3%-1.2%) and comparable
performance on spatial image datasets, compared to spikformer with
SSA. Furthermore, it exhibits significantly enhanced computational effi-
ciency, reducing memory usage by 4%-26%, reducing theoretical energy
consumption by 20%-25%, and achieving approximately 9%-51% and
19%-70% improvements in training and inference speeds, respectively.

We further analyze the orthogonality of self-attention as a set of basis
functions. We find during training, that the orthogonality is continuously
decreasing, which inspires us to use combined different wavelet bases with
nonlinear, learnable parameters as coefficients to form structured non-
orthogonal basis functions. In the second round of experiments, the ex-
periments show even better accuracy performance on event-based video
datasets (improved by 0.4%-1.5% compared to spikformer).

2 Related Work

Vision Transformers The vanilla Transformer architecture, initially designed for
natural language processing [35], has then demonstrated remarkable success in
various other computer-vision tasks, including image classification [9], semantic
segmentation [37], object detection [1], and low-level image processing [3]. The
critical component that contributes to the success of the Transformer is the self-
attention mechanism. In Vision Transformer (ViT), self-attention can capture
global dependencies between image patches and generate meaningful representa-
tions by weighting the features of these patches, using the dot-product operation
between Query and Key, followed by the softmax normalization [19]. The struc-
ture of ViT also fits for conventional SNNs, offering potential Transformer-type
architectures for achieving higher accuracy performance.

Spiking Neural Networks In contrast to traditional ANNs that employ continu-
ous floating-point values to convey information, SNNs utilize discrete spike se-
quences for communication, offering a promising energy-efficient and biologically
plausible alternative for computation. The critical components of SNNs encom-
pass spiking neuron models, optimization algorithms, and network architectures.
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Spiking neurons serve as the fundamental non-linear spatial and temporal infor-
mation processing units in SNNs, responsible for receiving from continuous in-
puts and converting them to spike sequences. Leaky Integrate-and-Fire (LIF) [7],
PLIF [11], Izhikevich [17] neurons are commonly used dynamic neuron models
in SNNs for their efficiency and simplicity. There are primarily two optimization
algorithms employed in deep SNNs: ANN-to-SNN conversion and direct train-
ing. In ANN-to-SNN conversion [32], a high-performance pre-trained ANN is
converted into an SNN by replacing Rectified Linear Unit (ReLU) activation
functions with spiking neurons. However, the converted SNN requires significant
time steps to accurately approximate the ReLU activation, leading to substan-
tial latency [14]. In direct training, SNNs are unfolded over discrete simulation
time steps and trained using backpropagation through time [33]. Since the event-
triggered mechanism in spiking neurons is non-differentiable, surrogate gradients
are employed to approximate the non-differentiable parts during backpropaga-
tion by using some predefined gradient values to replace infinite gradients [22].

With the advancements in ANNs, SNNs have improved their performance by
incorporating advanced architectures from ANNs. These architectures include
Spiking Recurrent Neural Networks [26], ResNet-like SNNs [16], and Spiking
Graph Neural Networks [42]. Recently, exploring Transformer in the context of
SNNs has received a lot of attention. For example, temporal attention has been
proposed to reduce redundant simulation time steps [43]. Additionally, an ANN-
SNN conversion Transformer has been introduced, but it still retains vanilla
self-attention that does not align with the inherent properties of SNNs [29].
Furthermore, spikformer [50] investigates the feasibility of implementing self-
attention and Transformer in SNNs using a direct training manner.

In this paper, we argue that the artificial Transformer can be well integrated
into SNNs for higher performance, while at the same time, the utilization of SSA
in spiking Transformer (spikformer) can be further replaced by a special module
based on Fourier Transform or Wavelet Transform, which to some extent, indi-
cating an alternative more efficient effort to achieve fast, efficient computation
without affecting the accuracy.

3 Preliminaries

3.1 Spiking Neuron Model

The spiking neuron serves as the fundamental unit in SNNs. It receives the
current sequence and accumulates membrane potential, which is subsequently
compared to a threshold to determine whether a spike should be generated. In
this paper, we consistently employ LIF at all Spiking Neuron Layers.

The dynamic model of the LIF neuron is described as follows:

H[t] = V [t− 1] +
1

τ
(X[t]− (V [t− 1]− Vreset )) , (1)

S[t] = G (H[t]− Vth) , (2)
V [t] = H[t](1− S[t]) + Vreset S[t], (3)
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where τ represents the membrane time constant, and X[t] denotes the input
current at time step t. When the membrane potential H[t] exceeds the firing
threshold Vth, the spiking neuron generates a spike S[t]. The Heaviside step
function G(v) is defined as 1 when v ≥ 0 and 0 otherwise. The membrane po-
tential V [t] will transition to the reset potential Vreset if there is a spike event,
or otherwise it remains unchanged as H[t].

3.2 Spiking Self-Attention

The spikformer utilizes the SSA as its primary module for extracting sparse
visual features and mixing spike sequences. Given input spike sequences denoted
as X ∈ RT×N×D, where T , N , and D represent the time steps, sequence length,
and feature dimension, respectively, SSA incorporates three key components:
Query (Q), Key (K), and Value (V ). These components are initially obtained
by applying learnable matrices WQ,WK ,WV ∈ RD×D to the input sequences
X. Subsequently, they are transformed into spike sequences through Spiking
Neuron Layers, formulated as:

Q = SN (BN(XWQ)),K = SN (BN(XWK)),V = SN (BN(XWV )), (4)

where SN denotes the Spiking Neuron Layer, BN denotes Batch Normalization
and Q,K,V ∈ RT×N×D. Inspired by vanilla Self-Attention [35], SSA adds a
scaling factor s to control the large value of the matrix multiplication result,
defined as:

SSA(Q,K,V ) = SN
(
Q KT V ∗ s

)
,

X ′ = SN (BN(Dense(SSA(Q,K,V )))),
(5)

where X ′ ∈ RT×N×D are the updated spike sequences. It should be noted that
SSA operates independently at each time step. In practice, T represents an
independent dimension for the SN layer. In other layers, it is merged with the
batch size. Based on Equation (4), the spike sequences Q and K produced by the
SN layers SNQ and SNK , respectively, naturally have non-negative values (0
or 1). Consequently, the resulting attention map is also non-negative. Therefore,
according to Equation (5), there is no need for softmax normalization to ensure
the non-negativity of the attention map, and direct multiplication of Q, K and V
can be performed. This approach significantly improves computational efficiency
compared to vanilla Self-Attention.

However, it is essential to note that SSA remains an operation with a com-
putational complexity of O(N2).3 Within the spike-form frameworks, we firmly
believe that SSA is not essential, and there exist simpler sequence mixing mech-
anisms that can efficiently extract sparse visual features as alternatives.

3 Although SSA can be decomposed with an O(N) attention scaling, this complexity
hides large constants, causing limited scalability in practical applications. For more
detailed analysis, refer to Time Complexity Analysis of FW vs. SSA Section.
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3.3 Fourier Transform

The Fourier Transform (FT) decomposes a function into its constituent frequen-
cies. For an input spike sequence x ∈ RN×D at a specific time step in X, we
utilize the FT to transform information from different dimensions, including
1D-FT and 2D-FT.

The discrete 1D-FT along the sequence dimension Fseq to extract sparse
visual features is defined by the equation:

x′
n = Fseq(xn) =

N−1∑
k=0

xke
− 2πi

N kn, n = 0, ..., N − 1, (6)

where i represents the imaginary unit. For each value of n, the discrete 1D-FT
generates a new representation x′

n ∈ RD as a sum of all of the original input
spike features xn ∈ RD.4

Similarly, the discrete 2D-FT along the feature and sequence dimensions
Fseq(Ff) is defined by the equation:

x′
n = Fseq(Ff(xn)), n = 0, ..., N − 1. (7)

Notably, equations (6) and (7) only consider the real part of the result. Therefore,
there is no need to modify the subsequent MLP sub-layer or output layer to
handle complex numbers.

3.4 Wavelet Transform

Wavelet Transform (WT) is developed based on Fourier Transform to overcome
the limitation of Fourier Transform in capturing local features in the spatial
domain.

The discrete 1D-WT along the sequence dimension Wseq to extract sparse
visual features is defined by the equation:

x′
n = Wseq(xn) =

1√
N

[
Tφ(0, 0) ∗ φ(xn) +

J−1∑
j=0

2j−1∑
k=0

Tψ(j, k) ∗ ψj,k(xn)
]
, (8)

Tφ(0, 0) =
1√
N

N−1∑
k=0

xk ∗ φ(xk), Tψ(j, k) =
1√
N

N−1∑
k′=0

xk′ ∗ ψj,k(xk′), (9)

where n = 0, ..., N − 1, N = 2J (N is typically a power of 2), ∗ denotes element-
wise multiplication, Tφ(0, 0) are the approximation coefficients, Tψ(j, k) are the
detail coefficients, φ(x) is the scaling function, and ψj,k(x) = 2j/2ψ(2jx − k) is

4 It is important to note that the weights in Equation (6) are fixed constant and can
be pre-calculated for all spike sequences.
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the wavelet function. Here, we use the Haar scaling function and Haar wavelet
function for example, which is defined by the equation:

φ(x) =

{
1 0 ≤ x < 1

0 otherwise
, ψ(x) =


1 0 ≤ x < 0.5

− 1 0.5 ≤ x < 1

0 otherwise

, (10)

Similarly, the discrete 2D-WT along the feature and sequence dimensions
Wseq(Wf) is defined by the equation:

x′
n = Wseq(Wf(xn)), n = 0, ..., N − 1, (11)

In the subsequent experimental section, we also delve into the exploration of
different basis functions as well as their potential combinations.

4 Method

Following a standard Vision Transformer architecture, the vanilla spikformer in-
corporates several key components, including the Spiking Patch Splitting (SPS)
module, Spikformer Encoder Layers, and a Classification head for visual classi-
fication tasks. Here, we directly replace vanilla SSA head with the FW head to
efficiently manage spike-form features.

In the following sections, we provide an overview of our proposed FWformer
in Figure 1, followed by a detailed explanation of the FW head. Finally, we
compare the time complexity of both of these two heads.

4.1 Overall Architecture

We provide Figure 1 for an overview of our FWformer. First, for a given 2D
image sequence I ∈ RT×C×H×W ,5 the goal of the Spiking Patch Splitting (SPS)
module is to linearly project it into a D-dimensional spike-form feature and split
this feature into a sequence of N flattened spike-form patches P ∈ RT×N×D.
Following the approach of the vanilla spikformer, the SPS module employs con-
volution operations to introduce inductive bias [41].

Second, to generate spike-form Relative Position Embedding (RPE), the Con-
ditional Position Embedding (CPE) generator [4] is utilized in the same manner
as the spikformer. The RPE is then added to the patch sequence P , resulting in
X0 ∈ RT×N×D.

Third, the L-layer FW Encoder is designed to manage X0. Different from
spikformer encoder layer with SSA head, our FW Encoder Layer consists of an
FW sub-layer and an MLP sub-layer, both with batch normalization and Spiking
5 In the event-based video datasets, the data shape is I ∈ RT×C×H×W , where T , C,
H, and W denote the time step, channel, height, and width, respectively. In static
datasets, a 2D image Is ∈ RC×H×W needs to be repeated T times to form an image
sequence.
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Fig. 1: The overall architecture of our proposed FWformer. It mainly consists of three
components: (1) Spiking Patch Splitting (SPS) module, (2) FWformer Encoder Layer,
and (3) Classification Layer. Additionally, we highlight the similarities between the
FW head and SSA head at a single time step, which inspires us to choose the former
as an exploration for more efficient calculations within the spike-form framework.

Neuron Layer. Residual connections are also applied to both the modules. The
FW head in FW sub-layer serves as a critical component in our encoder layer,
providing an efficient method for spike-form sparse representation. We have pro-
vided two implementations for FW head, including Fourier Transform (FT) and
Wavelet Transform (WT). Many works in the past have used FT and WT to al-
ternate between the spatial and frequency domains, allowing for efficient analysis
of signals. While in this paper we treat them as structured basis functions with
prior knowledge for information transformation. These implementations will be
thoroughly analyzed in the next section.

Finally, following the processing in spikformer, a Global Average-Pooling
(GAP) operation is applied to the resulting spike features, generating a D-
dimensional feature. The feature is then fed into the Classification module con-
sisting of a spiking fully-connected (SFC) layer, which produces the prediction
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Y . The formulation of our FWformer can be expressed as follows:

P = SPS (I) , (12)
RPE = CPE(P ), (13)
X0 = P + RPE, (14)
X ′
l = SN (BN(FW(Xl−1))) +Xl−1, (15)

Xl = SN (BN(MLP(X ′
l))) +X ′

l , (16)
Y = SFC(GAP(XL)), (17)

where I ∈ RT×C×H×W , P ∈ RT×N×D, RPE ∈ RT×N×D, X0 ∈ RT×N×D,
X ′
l ∈ RT×N×D, Xl ∈ RT×N×D and l = 1, ..., L.
Moreover, the Membrane Shortcut (MS), which has been applied in many

existing works [2,44], is also utilized in our model for comparison. It establishes
a shortcut between the membrane potential of spiking neurons in various layers
to enhance performance and increase biological plausibility [44].

4.2 The FW head

Given input spike sequences X ∈ RT×N×D, these features are then transformed
into spiking sequences X ′ ∈ RT×N×D through a SN layer. The formulation can
be expressed as:

FW(X) = FT(X) or WT(X),

X ′ = SN (BN((FW(X)))),
(18)

In contrast to the SSA head in Equation (5), the FW head does not involve
any learnable parameters or Self-Attention calculations. Here, we can choose
from Fourier Transform (FT) and Wavelet Transform (WT) with fixed basis
functions. We can also combine different wavelet bases to form a superior func-
tion, which is defined as follows:

Base = a ·Base1 + b ·Base2 + c ·Base3,
FW(X) = Base(X),

(19)

where a, b, c are learnable parameters, and Base1, Base2, Base3 are selected
bases. Since Wavelet Transform is a linear transformation, Equation 19 can also
be written as:

FW(X) = a ·Base1(X) + b ·Base2(X) + c ·Base3(X) (20)

Further analysis and experiments will be conducted based on the proposed
FW head in the following sections.

4.3 Time Complexity Analysis of FW vs. SSA

We make a time complexity analysis between SSA, Fourier Transform (FT), and
Wavelet Transform (WT). The results are presented in Table 1. In the subsequent
experimental section, we also conduct a more specific comparison of the training
and inference speeds between FW and SSA under the same conditions.
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Table 1: The time complexity for
different methods. We have N =
64, D = 384 or 256, and d = 32.

Methods Time Complexity

SSA [50] O(N2d) or O(Nd2)
1D-FFT O(N logN)
2D-FFT O(D logD) +O(N logN)
2D-WT O(D logD) +O(N logN)

In SSA (Equation (5)), since there is no
softmax operation, the order of calculation be-
tween Q, K, and V can be changed: either
QKT followed by V , or KTV followed by Q.
The former has a time complexity of O(N2d),
while the latter has O(Nd2), where d is the
feature dimension per head.6 The second com-
plexity, O(Nd2), cannot be simply considered
as O(N) due to the large constant d2 involved.
Only when the sequence length N is signifi-
cantly larger than the feature dimension per
head d does it demonstrate a significant computational efficiency advantage over
the first complexity, O(N2d).

In our implementation, we utilize the Fast Fourier Transform (FFT) algo-
rithm to compute the discrete FT. Specifically, we employ the Cooley-Tukey al-
gorithm [5], which recursively expresses the discrete FT of a sequence of length
N = N1N2 in terms of N1 smaller discrete FTs of size N2, reducing the time
complexity to O(N logN) for discrete 1D-FT along the sequence dimension.
Similarly, for discrete 2D-FT first along the feature dimension and then along
the sequence dimension, the time complexity is O(D logD) + O(N logN). In
general, the complexity of WT is comparable to that of FFT [13].

5 Experiments

We conduct experiments on event-based video datasets (CIFAR10-DVS and Dvs-
Gesture), as well as static image datasets (CIFAR10 and CIFAR100). The FW-
former is trained from scratch and compared with existing methods, including
spikformer with SSA and its variant. More analyses are also given about the
effects of different wavelet bases and their combinations.

5.1 Experiment Settings

To ensure a fair comparison, we ensure the same configurations of spikformer
with SSA for datasets, implementation details, and evaluation metrics. To con-
duct the experiments, we implement the models using PyTorch and Spiking-
Jelly [10]7. All experiments are conducted on NVIDIA A100 GPU.

Event-based Video Datasets For the CIFAR10-DVS and DvsGesture datasets,
which have an image size of 128 × 128, we employ the Spiking Patch Splitting
(SPS) module with a patch size of 16× 16. This configuration splits each image
into a sequence with a length N of 64 and a feature dimension D of 256. We
utilize 2 FWformer encoder layers and set the time step of the spiking neuron to
6 In practice, the SSA in Equation (5) can be extended to multi-head SSA. In this

case, d = D/H, where H is the number of heads.
7 https://github.com/fangwei123456/spikingjelly

https://github.com/fangwei123456/spikingjelly
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16. The training process consists of 106 epochs for CIFAR10-DVS and 200 epochs
for DvsGesture. We employ the AdamW optimizer with a batch size of 16. The
learning rate is initialized to 0.1 and reduced using cosine decay. Additionally,
data augmentation techniques, as described in [25], are applied specifically to
the CIFAR10-DVS dataset.

Static Image Datasets For the CIFAR10/100 datasets featuring an image size of
32× 32, we employ the SPS module with a patch size of 4× 4, which splits each
image into a sequence of length N = 64 and a feature dimension of D = 384. For
the FWformer Encoder, we use 4 layers, and the time-step of the spiking neuron
is set to 4. During training, we utilize the AdamW optimizer with a batch size
of 128. The training process spans 400 epochs, with a cosine-decay learning rate
starting at 0.0005. Following the approach outlined in [46], we apply standard
data augmentation techniques such as random augmentation, mixup, and cutmix
during training.

5.2 Accuracy Performance

We evaluate the accuracy performance on visual classification tasks, utilizing
Top-1 accuracy (Top-1 acc.) as the performance metric. The results of our FW-
former, spikformer with SSA, and other existing methods (both SNNs and ANNs,
including the spikformer variant [44]) on event-based video datasets as well as
static image datasets are presented in Table 2.

Table 2: Accuracy performance comparison of our method with existing methods
on CIFAR10-DVS (DVS10), DvsGesture (DVS128), CIFAR10, and CIFAR100. Our
FWformer (∗ means we replace vanilla residual connection with Membrane Shortcut
(MS)) outperforms spikformer with SSA on event-based video datasets in terms of Top-
1 acc. and achieves comparable accuracy on static datasets (the text in bold indicates
the best results). It is necessary to mention that 2-256 signifies a configuration with 2
encoder layers and a feature dimension of 256.

Methods Architecture Time Step
(DVS10/128)

Top-1 acc.
(DVS10/128)

LIAF [40] LIAF-Net 10/60 70.4/97.6
TA-SNN [43] TA-SNN 10/60 72.0/98.6
Rollout [21] – 48/240 66.8/97.2

DECOLLE [18] – – /500 – /95.5
tdBN [49] ResNet-19 10/40 67.8/96.9
PLIF [11] – 20/20 74.8/97.6

D-ResNet [12] Wide-7B-Net 16/16 74.4/97.9
Dspike [24] – 10/ – 75.4/–
SALT [20] – 20/ – 67.1/–
DSR [28] – 10/ – 77.3/–

SDSA [44] Spikformer-2-256 16/16 80.0/99.3
SSA [50] Spikformer-2-256 16/16 80.9/98.3

1D-FFT FWformer-2-256 16/16 80.5/99.0
2D-FFT FWformer-2-256 16/16 80.6/98.4

2D-WT-Haar FWformer-2-256 16/16 81.0/98.5
1D-FFT* FWformer-2-256 16/16 80.8/99.5
2D-FFT* FWformer-2-256 16/16 80.7/98.2

2D-WT-Haar* FWformer-2-256 16/16 81.2/99.1

Methods Architecture Time
Step

Top-1 acc.
(CIFAR10/100)

Hybrid training [31] VGG-11 125 92.22/67.87
Diet-SNN [30] ResNet-20 10/5 92.54/64.07

STBP [38] CIFARNet 12 89.83/–
STBP NeuNorm [39] CIFARNet 12 90.53/–

Dspike [24] – 6 94.3/74.2
TSSL-BP [48] CIFARNet 5 91.41/–

STBP-tdBN [49] ResNet-19 4 92.92/70.86
TET [8] ResNet-19 4 94.44/74.47

ANN Methods ResNet-19 1 94.97/75.35
Transformer-4-384 1 96.73/81.02

SDSA [44] Spikformer-4-384 4 95.6/78.4
SSA [50] Spikformer-4-384 4 95.51/78.21

1D-FFT FWformer-4-384 4 94.9/77.3
2D-FFT FWformer-4-384 4 95.1/77.9

2D-WT-Haar FWformer-4-384 4 95.2/78.1
1D-FFT* FWformer-4-384 4 95.5/78.0
2D-FFT* FWformer-4-384 4 95.0/78.3

2D-WT-Haar* FWformer-4-384 4 95.6/78.2
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Our FWformer achieves remarkable accuracy, reaching 81.2% on CIFAR10-
DVS with 2D-WT-Haar, and an impressive 99.5% on DvsGesture with 1D-FFT.
The performances surpass the spikformer with SSA by 0.3% and 1.2%, respec-
tively. While on static datasets, our FWformer variants demonstrate comparable
Top-1 accuracy. The results demonstrate the advantage of our methods, partic-
ularly on event-based video datasets.

5.3 Computational Costs and Speed Performance

Furthermore, we conduct a comprehensive comparison between existing works
and our FWformer in terms of GPU memory usage, training speed, and inference
speed, ensuring identical operating conditions. The training speed represents the
time taken for the forward and back-propagation of a batch of data, while the
inference speed denotes the time taken for the forward-propagation of a batch of
data in milliseconds (ms). To minimize variance, we calculate the average time
spent over 100 batches. The results are presented in Table 3 (DWT-C means
2D-WT combination with learnable parameters, which will be discussed in the
next subsection). We also provide an analysis of energy efficiency in Appendix.

In the case of event-based video datasets, our FWformer achieves a signif-
icant reduction in the number of parameters, approximately 20%, under iden-
tical hyperparameter configurations and operating conditions. This reduction,
attributed to the absence of learnable parameters, translates to around 4%-5%
memory savings. Moreover, our FWformer demonstrates remarkable improve-
ments in both training and inference speeds, showing increases of approximately
9%-51% and 33%-70%, respectively, compared to SSA. While in the case of static
datasets, our FWformer also shows several advantages under identical hyperpa-
rameter configurations and operating conditions. It achieves a notable reduction
in the number of parameters, approximately 25%, leading to memory savings of
around 26%. Furthermore, our FWformer enhances both training and inference
speeds by approximately 18%-29% and 19%-61%, respectively.

Table 3: Memory usage and speed performance comparison of our method with ex-
isting methods on CIFAR10-DVS (DVS10), DvsGesture (DVS128) and CIFAR-static
(CIFAR10 and CIFAR100). Our FWformer outperforms spikformer with SSA [50] and
its variant [44] when comparing GPU memory usage, training speed and inference speed
under identical operating conditions.

Methods Param
(M)

Memory
(DVS10/128)

(GB)

Training Speed
(DVS10/128)
(ms/batch)

Inference Speed
(DVS10/128)
(ms/batch)

STBP-tdBN [49] 12.63 25.86/25.87 65/194 27/98
TET [8] 12.63 36.13/36.17 71/203 22/77

SDSA [44] 2.59 9.02/9.03 73/245 29/101
SSA [50] 2.59 9.02/9.03 76/246 30/105

1D-FFT 2.06 8.67/8.71 51/121 11/32
2D-FFT 2.06 8.54/8.74 55/135 21/37

2D-WT-Haar 2.06 8.70/8.73 62/139 21/46
DWT-C 2.06 8.55/8.74 69/158 23/48

Methods Param
(M)

Memory
(CIFAR-static)

(GB)

Training Speed
(CIFAR-static)

(ms/batch)

Inference Speed
(CIFAR-static)

(ms/batch)

STBP-tdBN [49] 12.63 8.02 155 20
TET [8] 12.63 8.19 148 23

SDSA [44] 9.32 11.69 162 33
SSA [50] 9.32 11.69 166 31

1D-FFT 6.96 8.61 118 12
2D-FFT 6.96 8.75 122 13

2D-WT-Haar 6.96 9.33 121 19
DWT-C 6.96 9.86 136 25
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Fig. 2: (A) We treat spiking self-attention as a set of basis functions and proceed to
measure the changes in their orthogonality throughout the training process. (B) A
diagram visualizing how the basis functions, spanning a feature space, are transformed
from orthogonal to non-orthogonal, with only two axes used for simplification. (C) A
diagram visualizing our endeavor to employ fixed non-orthogonal bases.

5.4 From orthogonal to non-orthogonal bases

In the previous experiments, the Haar base was used as the default choice for
Wavelet Transform. We have also compared the performance of some other
wavelet bases including Db1, Bior1.1, and Rbio1.1, each having different func-
tions for deconstructing the spike-form feature while maintaining orthogonality.
The results on CIFAR10-DVS and DvsGesture are presented in Table 4. In-
terestingly, most alternative basis functions yield similar Top-1 accuracy. Their
performance is comparable to or even better than that of spikformer. It is essen-
tial to highlight that Wavelet Transform offers numerous different basis function
options, and our exploration has not been exhaustive. Investigating the influence
of more basis function choices on accuracy, as well as the possibility of identifying
superior basis functions, is an avenue for future research.

However, a more interesting question arises: Is it always necessary to pur-
sue orthogonality? Although in many cases, orthogonality signifies sparse and
efficient information representation, neural networks may show the opposite phe-
nomenon in the actual training process, that is, parameters naturally tend toward
overlapping representations, and SSA is no exception. To illustrate this, we treat
SSA as basis functions as proposed in the previous sections, and then quanti-
tatively measure changes in their orthogonality during training. We calculate
the inner product of each row vector (one base) in Q × K with others (other
bases) and sum them in each training step. The variation trend is shown in Fig-
ure 2 (A). Initially, network parameters are nearly orthogonal at initialization,
but their orthogonality is continuously decreasing during training. A diagram
visualizing how the basis functions change during training is provided in Fig-
ure 2 (B). Inspired by this phenomenon, we further explore the combination of
different wavelet bases to form fixed non-orthogonal basis functions, as depicted
in Figure 2 (C). We assume that the pre-trained dynamic bases may serve an
equivalent function to the fixed non-orthogonal bases.
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Here we choose Bior1.1, Haar, and Db1 for further exploration. To search for
the proper coefficients of their combinations, we set an initial set of learnable
coefficients first and then conduct training. The new FW head will have three
parameters to learn, which exert minimal influence on the overall computation of
the network but play a crucial role in finding suitable combinations. The results
are presented in Table 4. Consistent with our hypothesis, the use of fixed non-
orthogonal basis functions further improves accuracy performance (0.4%-1.5%
improvements on event-based video datasets, compared to vanilla spikformer).

Table 4: Accuracy performance of
different wavelet bases as well as
their combination with learnable
parameters (DWT-C) on DVS10
and DVS128 datasets (∗ means re-
placing vanilla residual connection
with Membrane Shortcut (MS)).

Methods Architecture Top-1 acc.
DVS10/128

Db1 FWformer-2-256 81.0/98.7
Bior1.1 FWformer-2-256 80.9/98.2
Rbio1.1 FWformer-2-256 80.4/98.1

DWT-C FWformer-2-256 81.3/99.1
DWT-C* FWformer-2-256 81.2/99.8

We attempt to conduct a preliminary anal-
ysis of the situations in which our FWformer
is applicable: In contrast to conventional sig-
nal processing, complex tasks such as NLP
and ASR need the designed models to learn
diverse syntactic and semantic relationships,
which can hardly be represented simply by
fixed basis functions such as Fourier bases.
For this reason, the network has to form dy-
namic higher-order basis functions, which are
adjusted by not only the changing inputs but
also the parameter learning of the network it-
self. We can regard these basis functions in
networks as hyper-parameters that need con-
tinuous adjustment. However, this also means
each time the basis functions change, the rest
of the network has to adapt accordingly, which
is understandable in complex tasks but not
necessary in some other cases (e.g. event-based video tasks). Moreover, within
spike-form frameworks, the features are represented by such sparse spiking sig-
nals that the correlation between them is too weak to form closed similarity, so
it is more suitable to use structured fixed basis functions (e.g. Fourier bases and
Wavelet bases) containing prior knowledge to get a simplified network.

6 Conclusion

We present the FWformer that replaces SSA with spike-form FW head, based
on the hypothesis that both of them use dynamic or fixed bases to transform
information. The proposed model achieves comparable or better accuracy, higher
training and inference speed, and reduced computational cost, on both event-
based video datasets and static datasets. We analyze the orthogonality in SSA
during training and assume that the pre-trained dynamic bases serve an equiv-
alent function to the fixed bases, which inspires us to explore non-orthogonal
combined bases and get even higher accuracy. Additionally, we provide an anal-
ysis of why and under what scenarios our FWformer is effective, indicating the
promising refinement of new Transformers in the future, which is inspired by
biological discovery and information theory.
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7 Appendix

We estimate the theoretical energy consumption of FWformer mainly according
to [15,44,50]. It is calculated by the following two equations:

SOPs(l) = Rate× T × FLOPs(l), (21)

EFWformer = EMAC × EL1
Conv

+ EAC × (

K∑
k=2

SOPkConv +
M∑
m=1

SOPmFC +

N∑
n=1

SOPnFW ),
(22)

SOPs(l) means synaptic operations (the number of spike-based accumulate
(AC) operations) of layer l, Rate is the average firing rate of input spike train to
layer l, T is the time window of LIF neurons, and FLOPs(l) refers to the floating
point operations (the number of multiply-and-accumulate (MAC) operations) of
layer l. We assume that the MAC and AC operations are implemented on the
45nm hardware [15], with EMAC = 4.6pJ and EAC = 0.9pJ .

EL1
Conv represents the FLOPs of convolution module in ANNs. It is used

for the first layer to convert static images into spike trains, which can also be
written as SOP1

Conv for event-based video datasets, and SOPlNet (SOPkConv,
SOPmFC , SOPnFW ) is for the rest of FWformer.

The experimental settings are the same as in the main text. Each cell in the
table below contains results presented in the form of OPs(G)/Power(mJ), where
OPs refers to the total SOPs in a SNN model, and Power refers to the average
theoretical energy consumption when predicting one sample from the datasets.

The results indicate that our methods can achieve a reduction in energy
consumption of approximately 20%−25% compared to SSA [50], and 4%−9%
compared to its variant [44]. This is primarily due to lower computational com-
plexity of the FW head, as reflected in fewer total SOPs (OPs). Our FWformer
demonstrates enhanced energy efficiency.

Table 5: The theoretical energy consumption on DVS10 (CIFAR10-DVS), DVS128
(DvsGesture), CIFAR10 and CIFAR100 dataset. DWT-C means 2D-WT combination
with learnable parameters.

Methods DVS10
OPs(G)/Power(mJ)

DVS128
OPs(G)/Power(mJ)

SDSA [44] 1.561/0.816 1.620/0.713
SSA [50] 1.852/0.943 1.914/0.822

1D-FFT 1.547/0.752 1.608/0.650
2D-FFT 1.548/0.752 1.609/0.653
2D-WT 1.549/0.753 1.609/0.651
DWT-C 1.553/0.753 1.613/0.652

Methods CIFAR10
OPs(G)/Power(mJ)

CIFAR100
OPs(G)/Power(mJ)

SDSA [44] 0.951/0.415 1.446/0.609
SSA [50] 1.186/0.523 1.737/0.748

1D-FFT 0.942/0.392 1.438/0.578
2D-FFT 0.943/0.393 1.438/0.584
2D-WT 0.944/0.393 1.439/0.584
DWT-C 0.947/0.394 1.442/0.586
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