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Abstract

We study interacting theories of N left-moving and N right-moving Floreanini-

Jackiw bosons in two dimensions. A parameterized family of such theories is shown

to enjoy (non-manifest) Lorentz invariance if and only if its Lagrangian obeys a flow

equation driven by a function of the energy-momentum tensor. We discuss the canon-

ical quantization of such theories along classical stress tensor flows, focusing on the

case of the root-TT deformation, where we obtain perturbative results for the de-

formed spectrum in a certain large-momentum limit. In the special case N = N , we

consider the quantum effective action for the root-TT -deformed theory by expanding

around a general classical background, and we find that the one-loop contribution

vanishes for backgrounds with constant scalar gradients. Our analysis can also be

interpreted via dual U(1) Chern-Simons theories in three dimensions, which might be

used to describe deformations of charged AdS3 black holes or quantum Hall systems.
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1 Introduction

In physics, we are frequently interested in parameterized families of classical or quantum

field theories. The tangent vectors to these families often have an interpretation as operators

within a given theory. One familiar example appears in the study of conformal field theories,

which may possess certain exactly marginal operators. Deforming a CFT by a marginal
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operator generates motion on the conformal manifold, which is one such family of theories.

Another simple one-parameter family generated from any quantum field theory is the

well-known renormalization group flow. We can interpret this as a curve of theories labeled

by an energy scale µ. For a CFT, this curve degenerates to a single point, but for other

QFTs, one finds an infinite family of theories connecting two RG fixed points at the UV

and IR ends of this flow. The operator that plays the role of the tangent vector to this

curve is the trace of the energy-momentum tensor, which generates scale transformations.

The renormalization group example is especially useful because it is universal : any

translation-invariant field theory admits an energy-momentum tensor Tµν , so we may al-

ways deform by the trace T µµ to flow toward the infrared. It is natural to explore other

deformations constructed from the stress tensor, which are also universal. These stress

tensor deformations generate a larger class of flows, which includes the renormalization

group flow as a special case, but which also includes other famous examples such as the TT

deformation of two-dimensional quantum field theories [1–3].

Even at the classical level, stress tensor flows often give rise to interesting parameterized

families of theories. For instance, consider classical theories of a single Abelian gauge field

Aµ whose Lagrangians depend on the field strength Fµν but not its derivatives. Construct

the parameterized family which contains the Maxwell theory, L = −1
4
FµνF

µν , and all

other theories that can be reached from the Maxwell theory by deformations involving the

energy-momentum tensor. This family is precisely the collection of theories of non-linear

electrodynamics which are invariant under electric-magnetic duality rotations [4], which is

of interest in its own right.1

Another example concerns theories of a two-form gauge potential Aµν with a self-dual

three-form field strength Fµνρ in six spacetime dimensions. Any family of such theories

– e.g., the collection of interacting chiral tensor theories which describe the worldvolume

theory on an M5-brane, labeled by a parameter T that controls the tension of the brane

– also obeys a stress tensor flow equation [6]. We say that both 4d theories of duality-

invariant electrodynamics and 6d chiral tensor theories are closed under stress tensor flows,

in the sense that deforming any member of one of these classes of theories by a Lorentz

scalar constructed from Tµν produces another member of the same class.

In this paper, we will investigate another space of theories, which is also closed under

deformations involving the energy-momentum tensor. The theories that we consider here

1Strictly speaking, there are some isolated points in this space such as the Bialynicki-Birula theory [5]

which are not connected to Maxwell, so to be precise we should say that the family generated in this way

gives one connected component in the space of duality-invariant theories.
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describe the dynamics of a collection of N chiral and N anti-chiral bosonic fields in two

spacetime dimensions. The simplest member of this class, N = 1 and N = 0, is the theory

of a single chiral boson which is described by the Floreanini-Jackiw action [7], namely

SFJ =
1

2

∫
d2x (∂tϕ∂θϕ− ∂θϕ∂θϕ) . (1.1)

Here we work in a 2d spacetime with coordinates (t, θ). As is well-known, it is not straight-

forward to write a manifestly Lorentz-invariant Lagrangian for a field that obeys a chirality

(or self-duality) constraint. One approach, which we will follow in this work, is to sacrifice

manifest Lorentz invariance and work with actions of the form (1.1) that explicitly single

out a preferred time coordinate t; we will then need to impose that the theory enjoy a

non-manifest Lorentz symmetry. Another strategy is to introduce one or more auxiliary

fields to restore manifest Lorentz invariance, which is the tactic used to describe chiral ten-

sor theories in six dimensions using, e.g., the Pasti-Sorokin-Tonin (PST) formulation [8–10]

(and later extended to higher dimensions [11]). A related technique was used to present a

manifestly Lorentz invariant description of the Floreanini-Jackiw action in [12].

For a single chiral (or anti-chiral) boson, it is known that no Lorentz-invariant self-

interactions are possible [11, 13], so (1.1) is the only allowed theory with N = 1. In this

work, we will give a new interpretation of this fact: all Lorentz-invariant interacting chiral

boson theories are generated from stress tensor deformations, but (1.1) is a fixed point of

all such flows, and, therefore, there is no way to deform it to include interactions. However,

for a theory with N ≥ 1 chiral and N ≥ 1 anti-chiral bosons, such self-interactions are

possible, and it is natural to describe them with an interaction function V (∂θϕ
i, ∂θϕ

i) that

depends on the spatial derivatives of the fields:

Sint =
1

2

∫
d2x

(
∂tϕ

i∂θϕ
i − ∂tϕi∂θϕi − V (∂θϕ

i, ∂θϕ
i)
)
. (1.2)

In this expression, i = 1, . . . , N runs over the chiral fields and i = 1, . . . , N labels the anti-

chiral fields. We will be primarily interested in theories that are invariant under the O(N)×
O(N) symmetry rotating the chiral and anti-chiral bosons among themselves, although we

will give some results that do not make this assumption; we will see that it is also possible

to promote (1.2) to include a target-space metric Gij, Gij for the bosons, or couplings to

an antisymmetric tensor field Bij, Bij, (which in general breaks O(N) × O(N)) without

significantly changing our analysis. Because the Lagrangian appearing in (1.2) is first-order

in time derivatives, the function V can also be interpreted as the Hamiltonian of the model.

This structure is similar to that of the PST description of a 6d chiral tensor theory, after
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gauge-fixing the auxiliary field vµ of this formalism to the value vµ = δ0µ, whose action is

SPST, gauge-fixed =

∫
d6x

(
1

4
Bij∂0A

ij −H(s, p)
)
. (1.3)

Here s = 1
4
BijBklδikδjl and p =

√
pipi, where pi =

1
8
εijklmB

jkBlm, are two SO(5)-invariant

quantities constructed from the “magnetic field” Bij, where E
ij and Bij are related to the

fundamental field F3 = dA2 as E
ij = F ij0, Bij = F̃ ij0, and F̃ denotes the Hodge dual of F .

This gauge-fixed form of the PST action is closely related to the Perry-Schwarz formalism

[14]. In our two-dimensional example, the role of the magnetic components Bij of the

three-form field strength is played by the spatial derivatives ∂θϕ
i and ∂θϕ

i of the bosons.

Although we will not consider other formulations of chiral boson theories in this work, let

us briefly mention that several other approaches have been used to describe such models.

One presentation, due to Sen [15, 16], introduces an additional “spectator” field which

decouples from the dynamics; TT flows within this formalism have been studied in [17–

19].2 Another presentation introduced by Mkrtchyan includes an additional auxiliary scalar

field R and reduces to the PST form of the chiral boson action after integrating out R [21].

See [22] for a comparison of some of these formulations and the realization of chiral bosons

via a 3d Chern-Simons theory. Finally, a notable presentation by Siegel [23] expresses the

chiral boson action in terms of a symmetric and traceless auxiliary tensor field λαβ:

SSiegel = −
1

4

∫
d2x

[
∂αϕ∂

αϕ+ λαβ (∂αϕ− ϵασ∂σϕ) (∂βϕ− ϵβρ∂ρϕ)
]

=

∫
dtdθ

[
1

4
(∂tϕ∂tϕ− ∂θϕ∂θϕ) +

λ01 − λ00
2

(∂tϕ− ∂θϕ)2
]
.

(1.4)

Siegel’s action (1.4) is classically equivalent to the Floreanini-Jackiw action (1.1) assuming

one can gauge the two independent components of λαβ to (λ00, λ01) = (1
4
,−1

4
) [24]. For

applications extending Siegel’s action to gravity and string theory, see [25–30]. The study

of chiral bosons and other self-dual fields has a long history, and we refer the reader to an

incomplete sampling [31–37] of earlier work, and references therein, for other results.

Our motivation for studying this class of interacting chiral boson theories in this work

is twofold. The first reason is purely classical: we would like to characterize the space of all

such interacting theories, each of which is determined by an interaction function V , which

enjoy non-manifest Lorentz invariance. As we will see, this condition will require that the

function V satisfy a certain partial differential equation which is very similar to those that

2The latter analysis also illuminates a surprising connection between the solvability of TT -like deforma-

tions and that of another deformation of quantum mechanics involving a cosh(p) kinetic term [20].
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appear in the cases of 4d duality-invariant electrodynamics [4] and 6d chiral tensor theories

[6]. The space of solutions to this partial differential equation is intimately connected to

stress tensor flows. More precisely, given any parameterized family of Lorentz-invariant

theories with interaction functions V (λ) labeled by a parameter λ, we will show that ∂λV
(λ)

can always be written as a function of the stress tensor T
(λ)
µν of the theory at the same value

of the parameter λ. Conversely, any flow equation of the form

∂λV
(λ) = f

(
T (λ)
µν , λ

)
, lim

λ→0
V (λ) = V (0) , (1.5)

along with a Lorentz-invariant initial condition V (0), gives rise to a one-parameter family of

Lorentz-invariant theories. Therefore, families of Lorentz-invariant interacting chiral boson

theories are in one-to-one correspondence with stress tensor flows. These statements are

the precise 2d analogs of the 4d and 6d results in [4] and [6].

The second motivation for this study concerns quantization. The general form (1.2)

of an interacting theory is convenient for canonical quantization, since the dependence on

time derivatives is fixed and thus the definition of the conjugate momenta is unaffected

by the interaction function. One can study the quantization of theories in this class in a

uniform way, at least for cases that admit a controlled perturbative expansion which makes

calculations tractable. When we consider the quantization of a one-parameter family of

theories defined by interaction functions V (λ) that satisfy a differential equation of the form

(1.5), we will say that we are studying “quantization along the classical flow.”

We will be especially interested in quantization along the flow driven by the function

∂γV
(γ) = R [Tµν ] =

1√
2

√
T µνTµν −

1

2
(T µµ )

2 , (1.6)

where we suppress the dependence of Tµν on the flow parameter γ. This non-analytic

combination R is the two-dimensional root-TT operator [38], which is the unique marginal

combination of stress tensors that defines a classical flow equation which commutes with the

irrelevant TT flow in 2d. The root-TT deformation shares some of the remarkable properties

of the TT deformation, such as preserving classical integrability in many examples [39]

and admitting a holographic interpretation in terms of modified boundary conditions for

AdS3 gravity [40]. It also plays a role in classical flows for 3d gauge theories [41] and has

connections to BMS3 symmetry and ultra/non-relativistic limits of 2d CFTs [42–44].

Another motivation for studying this operator is that the corresponding commuting TT -

like and root-TT -like flows in four spacetime dimensions, with the initial condition given

by the free Maxwell Lagrangian, were shown in [45–49] to produce an interesting family of
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gauge theories referred to as ModMax-Born-Infeld, which was first written down in [13].

This family depends on two parameters λ and γ. When γ is taken to zero, the theory reduces

to the 4d Born-Infeld model which gives an effective description of the gauge dynamics on a

D3-brane. As λ→ 0, one recovers the so-called Modified Maxwell or ModMax theory, which

is the unique conformally invariant and electric-magnetic duality-invariant extension of the

Maxwell theory [50]. This theory can be supersymmetrized [51–53] and the entire class of

ModMax-Born-Infeld theories can be lifted to a similar family of 6d chiral tensor theories

[13] which also satisfies commuting stress tensor flow equations [6]. For an introduction to

these and other theories of non-linear electrodynamics, see the lecture notes [54].

Although several classical aspects of the ModMax theory (and its ModMax-Born-Infeld

extension) have been studied [55–59], the quantization of this model appears to be more

subtle because the Lagrangian is non-analytic around Fµν = 0. One strategy is to perform

perturbative quantization of this theory around a non-zero background for the field strength

[60].3 Another approach is to look for lower-dimensional analogs of the ModMax theory,

which one might hope are simpler to quantize. The most extreme case is to dimensionally

reduce the Modified Maxwell theory all the way down to (0 + 1) spacetime dimensions,

which yields a theory of particle mechanics known as the ModMax oscillator [62, 63] that

can be quantized exactly [64]. An intermediate case is to reduce ModMax from 4d to 2d,

which was done in [48], and this reduction yields precisely the same theory that one obtains

by deforming a collection of free scalars by the 2d root-TT flow [38, 65]. This “Modified

Scalar” theory is the model whose quantization we consider in the present work.

For one non-chiral boson, or one left-moving and one-right moving chiral boson, the

Modified Scalar theory collapses to a free massless scalar with a re-scaled kinetic term, but

for multiple scalars, the theory is non-trivial. As we will see later, the Modified Scalar

theory with a general number of scalars may also be related to a free theory by a series

of more complicated, non-local field redefinitions; similar field redefinitions, and related

non-local “dressed” operators, have also played a role in the study of TT flows [66–70].

One of our goals in studying the quantization of this model is to test a flow equation

for certain energies in a root-TT deformed CFT, which was obtained via a holographic

analysis in [40]. Under some assumptions, this equation predicts that the deformed energy

3Another approach would be to use heat kernel techniques. We are grateful to Sergei Kuzenko and

Dmitri Sorokin for discussions on this topic and for informing us of their unpublished results. See also [61]

for a Master’s thesis which computes the one-loop effective action for ModMax using such techniques.
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Eγ associated with a seed CFT state that has undeformed energy E0 and momentum P0 is

Eγ = E0 cosh(γ) +
√
E2

0 − P 2
0 sinh(γ) . (1.7)

This formula was derived for states dual to BTZ black holes in AdS3 with mass M ≥ 0 and

spin |J | ≤M , which correspond to constant stress tensor backgrounds. We will, therefore,

refer to the flow equation (1.7) as the “zero-mode energy formula” since it applies to states

of a CFT on a cylinder whose stress tensors are constant along the circular direction (that

is, the formula applies to the zero mode of the stress tensor). It would be quite unusual

if this energy formula held universally, even for states whose stress tensors are spatially

varying. And indeed, we will see explicitly in this work that the zero-mode energy formula

fails for states with such spatial gradients. One might therefore think of (1.7) as the first

term in a gradient expansion, which is corrected by terms that depend on derivatives ∂T .4

The key ingredient in our check of the energy formula (1.7), which allows us to resolve the

square root and perform a perturbative analysis, is to consider a certain large-momentum

limit and expand in powers of 1
p
. Although this approach involves a specific choice of

background around which to expand, one could expand around any field configuration for

which the gradients of the scalars are non-vanishing, since the combination of stress tensors

(1.6) which appears in the classical Lagrangian for the Modified Scalar theory is only non-

analytic around zero-energy configurations. We will also present a related analysis which

involves expanding around a general classical background for N = N , in which case the

equal number of chiral and anti-chiral bosons can be assembled into a manifestly Lorentz

invariant theory of N non-chiral bosons, and compute loop corrections to the Modified

Scalar action. This offers further insight into the perturbative quantization of this model.

This paper is organized as follows. In section 2, we compute the stress tensor for a

generic interacting chiral boson theory and study classical properties of flows driven by

functions of Tµν , such as preservation of the Lorentz invariance condition. We then give a

complementary perspective on such chiral boson theories in section 3, interpreting them as

the boundary duals to U(1) Chern-Simons gauge theories, and we show that deformations

such as root-TT can be implemented using certain modified boundary conditions for the

bulk gauge fields. In section 4, we review general machinery for the canonical quantization

of first-order systems like (1.2) along classical stress tensor flows using a mode expansion; we

then specialize to quantization along the root-TT flow and study the cases of
(
N,N

)
= (1, 1)

4The idea of performing such a gradient expansion is philosophically similar to the strategy adopted in

hydrodynamics or the fluid-gravity correspondence [71] (see [72] for a review).
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and
(
N,N

)
= (2, 1) in detail. In section 5, we perform a diagrammatic analysis of quantum

corrections along the root-TT flow for a deformed theory of N = N non-chiral bosons, using

the background field method. Finally, section 6 summarizes our results and outlines some

interesting future directions. An order-by-order analysis for more general stress tensor flows

is presented in appendix A, and the computational steps used to evaluate certain Feynman

diagrams in dimensional regularization have been relegated to appendix B.

2 Classical Stress Tensor Flows for Chiral Boson Theories

In this section, we will discuss some generalities about classical deformations of interacting

chiral boson theories which are driven by functions of the energy-momentum tensor. Quite

generally, we refer to any differential equation for the Lagrangian which takes the form

∂L(λ)

∂λ
= f

(
T

(λ)
αβ , λ

)
, (2.1)

along with an initial condition L(λ=0) = L(0), as a stress tensor flow. We emphasize that

the function f is a Lorentz scalar constructed from the Hilbert stress tensor associated with

the Lagrangian L(λ), and not with the undeformed theory L(0). For theories that can be

coupled to gravity using only the metric tensor gαβ, the stress tensor is given by

Tαβ = − 2√−g
δS

δgαβ
= −2 ∂L

∂gαβ
+ gαβL . (2.2)

However, for theories involving fermions or the chiral bosons of interest in this work, the

standard definition (2.2) is not sufficient. We will instead need to work in a tetrad formalism,

introducing vielbein fields (or frame fields) Ea
α so that

gαβ = Ea
αE

b
βηab . (2.3)

We will use Greek symbols such as α and β to refer to curved5 indices in the two-dimensional

spacetime with metric gαβ on which our fields are defined, in contrast with early Latin letters

like a and b which refer to the flat tangent-space indices that are raised and lowered with

the Minkowski metric ηab. These are not to be confused with the lowercase middle Latin

symbols like i, j which are used to index the chiral scalars ϕi, or their antichiral variants i,

j which are decorated with a bar and label the anti-chiral scalars ϕi.

5We use the term “curved” for spacetime indices, even when we set the spacetime metric gαβ to the flat

Minkowski metric ηαβ , to distinguish them from “flat” tangent space indices like those on ηab.
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We also define E = det (Ea
α) =

√
|g|. Because this determinant is non-vanishing, the

matrix Ea
α has an inverse, which we refer to as the inverse vielbein and write as Eα

a . This

inverse frame field obeys

Ea
αE

α
b = δab , Eα

aE
a
β = δαβ , (2.4)

and similarly

Eα
aE

β
bgαβ = ηab . (2.5)

Within the tetrad formalism, the appropriate generalization of the Hilbert stress tensor

with one curved and one flat index is defined by

T a
β = − 1

E

δS

δEβ
a

. (2.6)

All tangent space indices can be converted to spacetime indices, or vice-versa, by contracting

with vielbeins or inverse vielbeins as needed. For instance, the conventional stress tensor

with two curved indices is then

Tαβ = T a
α Eγ

agγβ . (2.7)

The tetrad formalism will allow us to compute the energy-momentum tensor and define

stress tensor flows for an arbitrary interacting chiral boson theory of the type in equation

(1.2). We will perform the coupling to vielbeins in such a way that the stress tensor is

automatically symmetric, Tαβ = Tβα, but this is not sufficient to guarantee that the theory

is invariant under boosts; for a generic choice of the interaction function V , the theory is

not Lorentz-invariant. In this work, we will be primarily interested in theories which do

enjoy Lorentz invariance, although this Lorentz symmetry will not be manifest within this

formalism. Therefore, we will now pause to discuss the non-manifest Lorentz invariance of

these models, including the conditions this imposes upon the interaction function V and

the connection between Lorentz symmetry and stress tensor flows.

2.1 Lorentz invariance

We begin by reviewing one way to see the non-manifest Lorentz invariance of the simplest

theory within the class of interest, the Floreanini-Jackiw action describing a single chiral

boson. Although this is a well-known story, the discussion will fix our notation and set the

stage for the analysis of Lorentz invariance with more general interaction functions.
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One free chiral boson

Much like the electric-magnetic duality invariance of the 4d Maxwell theory, which is a

symmetry of the equations of motion but not of the action itself, the Lorentz symmetry

of the chiral boson theories we study here will be easier to understand at the level of the

equations of motion. We illustrate this simple principle beginning with the action (1.1),

which we rewrite for convenience:

S =
1

2

∫
d2x

(
ϕ̇ϕ′ − ϕ′2

)
. (2.8)

Here, we have defined

ϕ̇ = ∂tϕ =
∂ϕ

∂x0
, ϕ′ = ∂θϕ =

∂ϕ

∂x1
, (2.9)

to ease notation. Now consider an infinitesimal Lorentz boost Λαβ = δαβ + ωαβ with

parameter ω01 = −ω10 = ϵ. In this section, we work in Lorentzian signature with spacetime

metric ηαβ = [ −1 0
0 1 ]. The change in the components of ∂αϕ is

δ (∂αϕ) = ωαβ∂
βϕ , (2.10)

and thus the components of the covector ∂αϕ = (ϕ̇, ϕ′) transform as

ϕ̇→ ϕ̇+ ϵϕ′ , ϕ′ → ϕ′ + ϵϕ̇ . (2.11)

The change in the action (2.8) is therefore

δS =
ϵ

2

∫
d2x

(
ϕ̇− ϕ′

)2
+O(ϵ2) . (2.12)

This is not an off-shell total derivative, so it is not manifest that this transformation is a

symmetry of the theory. However, this property is more transparent if we work directly

with the equations of motion. The Euler-Lagrange equation associated with (2.8) is

ϕ̇′ − ϕ′′ = 0 , (2.13)

where ϕ̇′ = ∂t∂θϕ. This equation of motion can be expressed as ∂θ

(
ϕ̇− ϕ′

)
= 0, which

means that the quantity ϕ̇− ϕ′ is independent of the spatial coordinate θ:

ϕ̇− ϕ′ = f(t) . (2.14)
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The time-dependent function f(t) can be thought of as a choice of gauge, which is not

physically meaningful. Indeed, suppose that we transform the function ϕ by

δϕ = h(t) (2.15)

for a general time-dependent function h. Then δϕ̇ = ḣ and δϕ′ = 0, so the change in the

Floreanini-Jackiw action is

δS =
1

2

∫
d2x

(
ḣϕ′
)
=

1

2

∫
d2x ∂θ

(
ḣϕ
)
, (2.16)

which is an integral of a total spatial derivative, and thus the action is unchanged. There-

fore, given any solution to the equations of motion which takes the form (2.14), we are

always free to perform a gauge transformation (2.15) with

h(t) =

∫ t

f(t′) dt′ , ḣ(t) = f(t) , (2.17)

which has the effect of eliminating the function f(t) on the right side of (2.14), and thus

brings the equation of motion to the form

ϕ̇− ϕ′ = 0 . (2.18)

We will always work in the gauge (2.18) in what follows. If we write equation (2.18) as

E(ϕ̇, ϕ′) = 0 , E = ϕ̇− ϕ′ , (2.19)

then acting with a Lorentz transformation on this quantity E gives

δE = δ
(
ϕ̇− ϕ′

)
= −ϵ

(
ϕ̇− ϕ′

)
= −ϵE . (2.20)

That is, the variation of the equation of motion is proportional to the equation of motion

itself. This means that, on the mass shell, the equations of motion are invariant under

Lorentz transformations, which we write as

δE ≃ 0 , (2.21)

where the symbol ≃ means “equal when the fields satisfy their equations of motion.” This

is sufficient for the theory to enjoy Lorentz invariance.

From this simple exercise, we see that the Floreanini-Jackiw theory of a single chiral

boson does indeed exhibit non-manifest Lorentz invariance. This discussion also motivates

a couple of definitions. We say that any function O of the fields and their derivatives is a

Lorentz-invariant function if δO ≃ 0, that is, if the quantity O is invariant under Lorentz

transformations when the fields satisfy their equations of motion. Likewise, we say that a

Lagrangian L defines a Lorentz-invariant theory if the Euler-Lagrange equations associated

with L can be written as E = 0 where E is a Lorentz-invariant function.

11



Multiple interacting bosons

We now promote the action to depend on N chiral bosons ϕi and N anti-chiral bosons ϕi.

A general theory with interactions that depend on spatial derivatives of the fields is6

S =

∫
d2x

(
1

2
(ϕ̇iϕ′ i − ϕ̇i ϕ′ i)− V (ϕ′, ϕ′)

)
, (2.22)

where we suppress indices on the fields in the argument of the interaction function V .

Following the notation of the N = 1 analysis above, we can write the equations of motion

for this model as a collection of equations E i = 0 and E i = 0, where

E i = ϕ̇i − ∂V

∂ϕ′ i , E i = ϕ̇i +
∂V

∂ϕi
. (2.23)

Note that we do not distinguish between upstairs and downstairs i, j and i, j indices on

the scalars, instead choosing index placement for typographical convenience. In expressing

the equations of motion as the vanishing of the quantities (2.23), we have also implicitly

chosen the analog of the gauge h(t) = 0, as in the discussion around equation (2.18) for the

case of one chiral boson.

Let us again consider a Lorentz boost parameterized by ω01 = −ω10 = ϵ. All of the

fields transform in the same way as before:

ϕ̇i → ϕ̇i + ϵϕ′ i , ϕ′ i → ϕ′ i + ϵϕ̇i , ϕ̇i → ϕ̇i + ϵϕ′ i , ϕ′ i → ϕ′ i + ϵϕ̇i . (2.24)

We now ask: under what conditions on the interaction function V will the action (2.22)

define a Lorentz-invariant theory, which means that δE i ≃ 0 and δE i ≃ 0 under this Lorentz

transformation? The variation of the chiral equations of motion is

δE i = δϕ̇i − ∂2V

∂ϕ′ i ∂ϕ′ j δϕ
′ j − ∂2V

∂ϕ′ i ∂ϕ′ j δϕ
′ j

= ϵϕ′ i − ϵVijϕ̇j − ϵVijϕ̇j

≃ ϵ
[
ϕ′ i − VijVj + VijVj

]
, (2.25)

where in the second step we have introduced the notation

Vi =
∂V

∂ϕ′ i , Vij =
∂2V

∂ϕ′ i ∂ϕ′ j , Vij =
∂2V

∂ϕ′ i ∂ϕ′ j , (2.26)

6In this paper, we do not consider higher-derivative interactions.
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and so on, and in the third line, we have replaced the time derivatives ϕ̇i, ϕ̇j using the equa-

tions of motion and therefore used the on-shell equality symbol ≃. An identical calculation

for the anti-chiral equations of motion gives

δE i ≃ ϵ
[
ϕ′ i − VijVj + VijVj

]
. (2.27)

Therefore, for the quantities E i and E i to be Lorentz-invariant functions, we must impose

the two conditions

ϕ′ i + VijVj = VijVj , ϕ′ i + VijVj = VijVj . (2.28)

It is convenient to write these two equations in terms of the derivatives of products,

ϕ′ i +
1

2
∂i
(
VjVj

)
=

1

2
∂i (VjVj) , ϕ′ i +

1

2
∂i (VjVj) =

1

2
∂i
(
VjVj

)
, (2.29)

where the repeated j, j indices are summed and where ∂i =
∂

∂ϕ′ i
, ∂i =

∂

∂ϕ′ i
.

We can now integrate the first of the equations (2.29) with respect to ϕ′ i and the second

with respect to ϕ′ i to find

(
ϕ′ i)2 + VjVj = VjVj + Ci(ϕ′ k ̸=i, ϕ′ k) ,

(
ϕ′ i
)2

+ VjVj = VjVj + Ci(ϕ′ k, ϕ′ k ̸=i) . (2.30)

Here we have introduced two integration constants, Ci which is independent of ϕ′ i and Ci

which is independent of ϕ′ i. Also note that equation (2.30) holds separately for each fixed

i and i; the quantity (ϕ′ i)
2
is the square of one such fixed ϕ′ i, and is not summed on i. We

can fix these integration constants by noting that the choice of interaction function

V (ϕ, ϕ) =
1

2

(
ϕ′ jϕ′ j + ϕ′ jϕ′ j

)
, (2.31)

which is just a sum of non-interacting chiral and anti-chiral bosons, must necessarily satisfy

the Lorentz-invariance condition. This will be true if we choose

Ci = ϕ′ jϕ′ j +
∑

k ̸=i
ϕ′ kϕ′ k, Ci = ϕ′ jϕ′ j +

∑

k ̸=i

ϕ′ kϕ′ k , (2.32)

which means that the two equations in (2.30) are proportional to one another, and we are

left with the single condition

ϕ′ jϕ′ j − ϕ′ jϕ′ j = VjVj − VjVj , (2.33)
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for Lorentz invariance. Suppose that we now further assume that the interaction function

is invariant under O(N) rotations of the N chiral fields and O(N) rotations of the N anti-

chiral fields. This means that we can parameterize V as a function of the two invariants7

S =
1

2

(
ϕ′ jϕ′ j + ϕ′ jϕ′ j

)
, P =

1

2

(
ϕ′ jϕ′ j − ϕ′ jϕ′ j

)
. (2.34)

Note that, for the theory defined by the free interaction function (2.31), the quantities S

and P represent the total Hamiltonian density and momentum density, respectively. In

terms of these variables, the condition (2.33) can be written as

V 2
S +

2S

P
VSVP + V 2

P = 1 . (2.35)

Partial differential equations of the schematic form (2.35) have appeared in many contexts.

Most directly relevant for this analysis, precisely the same differential equation appears

as the condition for Lorentz invariance of the phase space actions for theories of self-dual

electrodynamics in d = 4 or for chiral tensor theories in d = 6; see, for instance, sections

2.2 and 2.3 of [13] for these two cases, respectively. Our condition (2.35) is merely the 2d

version of these results, in the case where one considers arbitrary numbers of chiral and

anti-chiral bosons. Note that, in the case N = 0 which describes only chiral bosons, the

two invariants (2.34) collapse to

S = P , (2.36)

so that V is a function of one variable, and the constraint (2.33) simplifies to

ϕ′ jϕ′ j = VjVj , (2.37)

or in terms of the variable S = 1
2
ϕ′ jϕ′ j,

VS = 1 . (2.38)

This means that the only solution is the free case, V = S = 1
2
ϕ′ jϕ′ j, in accordance with

known results. The same conclusion holds for only anti-chiral bosons, N = 0 but N > 0.

A similar partial differential equation, which differs only by signs, occurs as the condition

for a Lagrangian for 4d non-linear electrodynamics to have equations of motion that are

invariant under electric-magnetic duality rotations. In this case, the appropriate PDE reads

L2
S −

2S

P
LSLP − L2

P = 1 , (2.39)

7The invariant S should not be confused with the action S =
∫
d2xL; we trust that the reader can

distinguish between the two based on context.
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where now S = −1
4
FµνF

µν and P = −1
4
FµνF̃

µν are the two independent Lorentz scalars

that can be constructed from the field strength Fµν , and F̃µν denotes the Hodge dual of

Fµν . This version of the differential equation, with the signs as in (2.39), also appears as

the condition for a certain class of non-linear sigma models in d = 2 to have equations of

motion which are equivalent to the flatness of a Lax connection which takes a prescribed

form [39] (see equations (7.3) - (7.5) of [4] for the definitions of S and P in this case).

In either presentation, with the choice of signs in (2.35) or the one in (2.39), this

differential equation has many solutions besides the free one. For instance, equation (2.35)

admits the two-parameter family of solutions

V (S, P ; γ, λ) =
1

λ

(√
1 + 2λ

(
cosh(γ)S + sinh(γ)

√
S2 − P 2

)
+ λ2P 2 − 1

)
. (2.40)

This family of interaction functions is the 2d chiral boson analog of the two-parameter

family of 4d ModMax-Born-Infeld gauge theories, which we mentioned in the introduction.

As in the 4d case, the function V of equation (2.40) satisfies two commuting flow equations

which relate ∂λV and ∂γV to an irrelevant TT -like and a marginal root-TT -like operator

built from the energy-momentum tensor of the model, respectively:

∂V

∂λ
= −OTT = −1

4

(
TαβTαβ − (Tαα )

2) , ∂V

∂γ
= −R = − 1√

2

√
TαβTαβ −

1

2
(Tαα )

2 .

(2.41)

This example illustrates that, at least in this case, solutions to the differential equation

(2.35) can be obtained by deforming the interaction function by Lorentz-invariant quanti-

ties, such as Lorentz scalars constructed from Tµν . This statement applies quite generally

to any deformation of V by a Lorentz-invariant function, as we describe next.

Lorentz-invariant functions

In the preceding discussion, we derived a condition on the function V (equation (2.35))

which guarantees that this interaction function describes a Lorentz-invariant theory. By

definition, this means that the equations of motion E i, E i are Lorentz-invariant functions.

One might ask, more generally, given an arbitrary function O(S, P ) which depends on the

two combinations S and P defined in (2.34), under what conditions is O a Lorentz-invariant

function? That is, for which operators O is δO ≃ 0, where δ is a Lorentz transformation?
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This question can be answered using a similar calculation as the one above. One has

δO(S, P ) = OSδS +OP δP
= OS

(
ϕ′ j δϕ′ j + ϕ′ j δϕ′ j

)
+OP

(
ϕ′ jδϕ′ j − ϕ′ j δϕ′ j

)
, (2.42)

where subscripts represent partial derivatives with respect to the argument. On-shell, one

has the variations

δϕ′ j = ϵϕ̇j ≃ ϵVj , δϕ′ j = ϵϕ̇j ≃ −Vj , (2.43)

and thus one finds

δO ≃ ϵOS
(
ϕ′ jVj − ϕ′ jVj

)
+ ϵOP

(
ϕ′ jVj + ϕ′ jVj

)
. (2.44)

Expressing the derivatives of V in terms of VS and VP using

Vj = (VS + VP )ϕ
′ j , Vj = (VS − VP )ϕ′ j , (2.45)

we conclude that δO ≃ 0 if and only if

VSOS +
S

P
(VSOP + VPOS) + VPOP = 0 . (2.46)

It is easy to see that the condition (2.46) is identical to the constraint that one finds by

expanding the Lorentz-invariance condition (2.35) for a perturbed interaction function

V (S, P )→ V (S, P ) + λO(S, P ) , (2.47)

assuming that V itself satisfies the Lorentz-invariance condition, and then demanding that

the deformed interaction function preserve this condition (2.35) to leading order in λ.

We conclude that linearized Lorentz-preserving deformations of a boost-invariant theory

of chiral bosons, described by an interaction function V , are in one-to-one correspondence

with Lorentz-invariant functions O within this same theory defined by V . Again, this

result is the 2d analog of the corresponding statements about linearized deformations which

preserve electric-magnetic duality invariance in 4d [4] or PST gauge invariance in 6d [6].

As in those contexts, this extends to an all-orders result: given a one-parameter family of

interaction functions V (λ) with an initial condition V0 = V (λ = 0) which satisfies (2.35),

the entire family of functions V (λ) satisfies the Lorentz invariance condition if and only if

∂V (λ)

∂λ
= O(λ) , (2.48)
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where at each value of λ, the function O(λ) obeys the constraint (2.46) with respect to the

interaction function V (λ) at the same value of λ.

There are several ways to prove this claim, which we will not present in detail since they

are similar to the 4d and 6d cases. One strategy is to first argue that any such family of

Lorentz-invariant functions O(λ) can be expressed in terms of Lorentz scalars constructed

from T
(λ)
µν , as we will show shortly, and then to show that an all-orders flow of the form

(2.48) driven by a function of the stress tensor preserves the Lorentz-invariance condition,

by following an inductive argument like that in appendix A.1 of [4].

2.2 Stress tensor for general interacting theory

We now turn to the computation of the energy-momentum tensor for a generic member

of our class of chiral boson theories. Contractions built from this stress tensor, such as

T µµ and T µνTµν , are canonical examples of the Lorentz-invariant functions which yield

Lorentz-preserving deformations (2.48) of the interaction function – and, in fact, any such

deformation can be expressed in terms of such stress tensor scalars, as we will see.

In order to calculate the stress tensor defined in (2.6), we will couple a general the-

ory of chiral bosons to gravity in the vielbein formulation following the approach of [73],

which demonstrated how to perform this coupling for the standard Floreanini-Jackiw boson

with interaction function V (S, P ) = S. In the case of a general interaction function, the

corresponding Lagrangian including the vielbein couplings takes the form

L =
1

2

(
Gijϕ̇

iϕ′ j −Gijϕ̇iϕ
′j)−

(
E−
θ E

+
t + E−

t E
+
θ

)
P − EV (S, P ) + Ltop , (2.49)

where now S and P are coupled to the frame fields as

S = − 1

4E−
θ E

+
θ

(
Gijϕ

′ iϕ′ j +Gijϕ
′iϕ′j

)
, P = − 1

4E−
θ E

+
θ

(
Gijϕ

′ iϕ′ j −Gijϕ
′iϕ′j

)
.

(2.50)

A few remarks are in order. We work in light-cone coordinates xa = x± for the tangent

space indices, so the vielbeins and inverse vielbeins carry one (+,−) index and one (t, θ)

index. After varying with respect to the vielbeins, we will set them to their flat-space values

E+
t = −E+

θ = E−
θ = E−

t =
1√
2
, (2.51)

at the end of the calculation, which is appropriate for the light-cone tangent space metric

ηab =
[

0 −1
−1 0

]
. We have also introduced general target-space metrics Gij(ϕ) and Gij(ϕ) for
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the chiral and anti-chiral bosons, which does not affect the computation of the stress tensor.

In equation (2.49), we have allowed for the inclusion of a general topological term Ltop, which

does not couple to the frame fields and which therefore drops out of the computation of Tµν .

An example of such a topological term is a coupling to a target-space antisymmetric tensor

field Bij, Bij. In manifestly Lorentz-invariant notation, which is perhaps more familiar,

such a coupling would be expressed as Bijϵ
αβ∂αϕ

i∂βϕ
j, and is independent of the metric.

Note that, in the special case Gij = δij, Gij = δij, Ltop = 0, and with the vielbeins equal

to their flat-space values (2.51), the Lagrangian (2.49) reduces to

L =
1

2
(ϕ̇iϕ′ i − ϕ̇i ϕ′ i)− V (S, P ) , (2.52)

which agrees with (2.52), and the quantities S and P become

S =
1

2

(
ϕ′ jϕ′ j + ϕ′ jϕ′ j

)
, P =

1

2

(
ϕ′ jϕ′ j − ϕ′ jϕ′ j

)
, (2.53)

which agrees with (2.34).

It may come as a surprise that the kinetic terms in (2.49), which involve ϕ̇iϕ′ j and

ϕ̇iϕ′j, are independent of the vielbeins, and do not even include a factor of E which plays

the role of
√
g that usually accompanies any scalar within a spacetime integral. This is a

consequence of the specific method for coupling the chiral boson to gravity developed in

[73], which first introduces an unconstrained bosonic field and then incorporates auxiliary

fields P and b which enforce the chirality constraint. This combined system is then coupled

to gravity, and then integrating out the auxiliary fields P and b has the effect of eliminating

the factor of E that normally multiplies the kinetic term. We will see in section 3 that

the absence of vielbein dependence in these terms has a natural interpretation in the dual

Chern-Simons description of chiral boson theories.

We can now explicitly perform the variation with respect to the vielbeins to compute

the stress tensor T β
a , as defined in equation (2.6), or more usefully, the version Tαβ with

two spacetime indices:

Ttt = V (S, P ) ,

Ttθ = −P = Tθt ,

Tθθ = −V + 2 (SVS + PVP ) . (2.54)

Note that the off-diagonal terms of Tαβ are therefore identical and both proportional to P ,

which has the interpretation of the momentum along the θ circle. This is a consequence of
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the way we have coupled to the vielbeins in the second term of (2.49), which is proportional

to P but which vanishes in the flat-space limit.

In principle, one could consider more general couplings of these chiral boson theories

to vielbeins, which would lead to stress tensors that may not be symmetric and which

are related to (2.54) by an improvement transformation. However, we find the choice of

coupling that we have made here to be physically motivated for the problem of studying flow

equations of the form (2.48) which are connected to the free interaction function (2.31). For

instance, in the quantum theory, the momentum along a circle of radius R is quantized in

units of 1
R
, and, therefore, cannot flow with any deformation parameterized by a continuous

λ. The coupling to frame fields which leads to (2.54) makes this manifest, even at the level of

the classical stress tensor, since for any interaction function V (S, P ), the linear momentum

along the circle is fixed to its value Ttθ = −P in the free theory.

The trace of the stress tensor,

Tr(T ) = Tαα = −2 (V − SVS − PVP ) , (2.55)

vanishes if the interaction function V is a homogeneous function of degree 1 in its arguments,

which is equivalent to the scale invariance of the theory as expected. The other Lorentz

invariant that one can construct from the stress tensor is

Tr
(
T 2
)
= T µνTµν = V 2 − 2P 2 + (V − 2 (SVS + PVP ))

2 . (2.56)

One can check by explicit computation that the two invariants (2.55) and (2.56) each satisfy

the condition (2.46), assuming that the interaction function V itself obeys the condition

(2.35). In fact, more is true: given either of these two Lorentz-invariant functions T µµ

and T µνTµν , locally and away from exceptional points, we can implicitly express any other

Lorentz-invariant function f in terms of this stress tensor invariant. To see this, let f(S, P )

and g(S, P ) be any two functions that satisfy the Lorentz-invariance condition (2.46). Con-

sider the Jacobian for the change of variables from (S, P ) to (f, g), namely

J =

[
fS fP

gS gP

]
, (2.57)

and, in particular, its determinant,

det(J) = fSgP − fPgS . (2.58)
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Since f and g each satisfy equation (2.46), we can solve this equation to express one of the

partial derivatives of each function in terms of the other. For instance, we can choose

fS = −fP (PVP + SVS)

SVP + PVS
, gS = −gP (PVP + SVS)

SVP + PVS
. (2.59)

Substituting these into the determinant (2.58), we find

det(J) = −fPgP (PVP + SVS)

SVP + PVS
+
fPgP (PVP + SVS)

SVP + PVS
= 0 . (2.60)

Because det(J) = 0, this change of variables is singular, which means that there exists a

functional relation of the form F (f, g) = 0. By the implicit function theorem, under some

assumptions on the derivatives of F , we can locally express f(S, P ) as a function of g(S, P ),

or vice-versa. Thus, ignoring exceptional points, any pair of Lorentz-invariant functions are

functionally dependent. Since the quantities T µνTµν and T
µ
µ are examples of such invariant

quantities, it follows that any other Lorentz-invariant function – again, away from singular

points, and excluding trivial examples such as the case where one of the functions is a

constant – can be expressed as a function of the stress tensor.

Combining this conclusion with the previous statement around equation (2.48), it also

follows that, given any parameterized family of interaction functions V (λ) for Lorentz-

invariant theories, one can write

∂V (λ)

∂λ
= O(λ) ≡ f(T (λ)

µν , λ) , (2.61)

where in the last step we have used that O(λ) can be implicitly expressed as a function of

the stress tensor, given that this O(λ) satisfies the Lorentz-invariance condition (2.46).

Therefore, the stress tensor flows that we have introduced in equation (2.1) are quite

generic: any family of Lorentz-invariant interaction functions obeys a differential equation

of this form, and conversely, any such flow equation (along with a Lorentz-invariant initial

condition) defines a family of Lorentz-invariant interacting chiral boson theories.

Interesting examples of such flows are the ones defined in equation (2.41), which are

driven by the operators OTT and R. We can express these two operators in terms of the

interaction function V and its derivatives using the general results (2.55) and (2.56):

OTT = V (SVS + PVP )−
1

2

(
V 2 + P 2

)
, R =

√
(SVS + PVP + P ) (SVS + PVP − P ) .

(2.62)
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One can check directly that the two-parameter family of interaction functions (2.40) solves

the flow equations driven by the two operators given in (2.62).8 The root-TT flow equation

can also be solved in more generality. Suppose we begin from the flow equation

∂V (γ)

∂γ
= −R = −

√
(SVS + PVP + P ) (SVS + PVP − P ) , (2.63)

and we furthermore assume that the function V satisfies the Lorentz-invariance condition

(2.35) everywhere along the flow (which it is guaranteed to do, assuming the initial condition

is Lorentz-invariant). Then the general solution to the differential equation (2.63) with

initial condition V (γ = 0, S, P ) = V0(S, P ) is

V (γ, S, P ) = V0

(
cosh(γ)S + sinh(γ)

√
S2 − P 2, P

)
. (2.64)

That is, we simply replace all occurrences of the variable S in the initial condition V0(S, P )

with the combination cosh(γ)S + sinh(γ)
√
S2 − P 2, while leaving all occurrences of P un-

changed. The result is a solution to (2.63) with the correct initial condition at γ = 0.

Let us point out that the formulas (2.54) for the stress tensor components are valid

when N ≥ 1 and N ≥ 1. In the case of all chiral bosons (N = 0), or all anti-chiral bosons

(N = 0), the two invariants S and P become proportional to one another, so some of the

structures in the Lagrangian collapse. For instance, for a theory of all chiral bosons, we

have S = P and the components of the stress tensor are

Ttt = V (S) ,

Ttθ = −S = Tθt ,

Tθθ = −V (S) + 2SV ′(S) . (2.65)

We have seen that the only solution to the Lorentz-invariance condition (2.35) for all chiral

bosons is V = S, and the stress tensor for this theory is

Tαβ =
1

2
ϕ′jϕ′j

[
1 −1
−1 1

]
. (2.66)

Here one has Tαα = 0 and TαβTαβ = 0. The same conclusion holds for all anti-chiral bosons,

where we have S = −P rather than S = P , but again one finds Tr(T ) = 0 = Tr(T 2). For

8When γ = 0, one recovers the theory of TT -deformed Floreanini-Jackiw bosons, which also appears in

the boundary graviton action for AdS3 gravity at a finite radial cutoff; see equation (3.70) of [69].
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either of these scenarios, since both Lorentz scalars constructed from the stress tensor are

vanishing, the theory is a fixed point of all Lorentz-preserving stress tensor deformations.9

This gives another way to understand the fact that no Lorentz-invariant interactions

are possible between only chiral bosons, or only anti-chiral bosons. Indeed, if a family

of such interacting theories did exist, they would necessarily satisfy a stress tensor flow

equation. But no such flow can exist which includes the free theory V = S, as this theory

is left invariant by any stress tensor deformation. Since a theory of only chiral bosons

has the Hamiltonian H = S = P , one can view it as a 2d version of the 4d theory of

Bialynicki-Birula electrodynamics, which is also a fixed point of all stress tensor flows.

2.3 Self-duality and chirality

To conclude this section, we will point out one additional feature of the chiral boson models

considered here. Although this property is trivially satisfied for any interacting chiral boson

theory, regardless of the interaction function V (S, P ), the analogous property for theories

in the dual Chern-Simons description will play an important role in the next section.

Suppose that we begin with a general action of the form that we have been considering,

which we repeat here for convenience:

S =

∫
d2x

(
1

2
(ϕ̇iϕ′ i − ϕ̇i ϕ′ i)− V (S, P )

)
. (2.67)

We would like to exchange the gradients ∂αϕ
i = (ϕ̇i, ϕ′i) of the scalar fields for a vector field

Aα = (A0, A1), and likewise for the anti-chiral scalars. To do this, we introduce a collection

of Lagrange multiplier fields λiα and λiα, and write the equivalent action

S =

∫
d2x

(
1

2

(
Ai0A

i
1 − Ai0Ai1

)
− V (SA, PA) +

1

2
λαi(Aiα − ∂αϕi)−

1

2
λαi(Aiα − ∂αϕi)

)
.

(2.68)

Here the variables SA and PA are defined by replacing instances of ϕ′i with Ai1 and replacing

ϕ′i with Ai1:

SA =
1

2

(
Ai1A

i
1 + Ai1A

i
1

)
, PA =

1

2

(
Ai1A

i
1 − Ai1Ai1

)
. (2.69)

9Another way to see this is by considering complex coordinates (w,w), with T = Tww and T = Tww.

A theory of all chiral bosons has T = 0 and a theory of all anti-chiral bosons has T = 0. In either case,

the product TT vanishes, and the trace vanishes by conformal invariance, so any Lorentz-preserving stress

tensor flow is trivial. Of course, one could generate non-trivial interacting models by breaking Lorentz

invariance and studying, for example, f(T ) (or f(T )) flows, but we will not pursue this option here.

22



If one integrates out the auxiliary fields λαi and λαi in the action (2.68), these fields simply

act as Lagrange multipliers which set Aiα = ∂αϕ
i and Aiα = ∂αϕ

i, and the action then

reduces to (2.67).

However, suppose that we wish to proceed in the opposite direction, instead integrating

out the fields Aiα and Aiα. To do this, we vary the action with respect to the fields Aiα and

Aiα to obtain their equations of motion, whose solutions take the form

Ai0 = −λ1i − 2(VSA
+ VPA

)λ0i , Ai1 = −λ0i ,
Ai0 = −λ1i + 2(VSA

− VPA
)λ0i , Ai1 = −λ0i . (2.70)

Integrating out Aiα and Aiα by replacing them with their on-shell values (2.70) then gives

S =

∫
d2x

(
1

2

(
λ0iλ1i − λ0iλ1i

)
− V (Sλ, Pλ) +

1

2

(
ϕi∂αλ

αi − ϕi∂αλαi
))

, (2.71)

where we have integrated by parts to move the derivatives on the final two terms, and

where now Sλ and Pλ are defined as

Sλ =
1

2

(
λ0iλ0i + λ0iλ0i

)
, Pλ =

1

2

(
λ0iλ0i − λ0iλ0i

)
. (2.72)

Note that (2.72) involve the time components of the λ fields, rather than the spatial compo-

nents. We see that the fields ϕi and ϕi act as Lagrange multipliers to enforce the constraints

∂αλ
αi = 0 = ∂αλ

αi , (2.73)

which admit the general solutions

λαi = ϵαβ∂βψ
i , λαi = ϵαβ∂βψ

i , (2.74)

for some scalar fields ψi, ψi. Here we use the conventions ϵ01 = 1, so

λ0i = ∂xψ
i = ψ′i , λ1i = −∂tψi = −ψ̇i , λ0i = ∂xψ

i = ψ′i , λ1i = −∂tψi = −ψ̇i .
(2.75)

After integrating out ϕi and ϕi and replacing λαi, λαi in favor of ψi, ψi, we arrive at the

dual form of the action

S =

∫
d2x

(
1

2
(ψ̇iψ′ i − ψ̇i ψ′ i)− V (Sψ, Pψ)

)
, (2.76)
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where, according to the map in equation (2.75), the dualization has replaced time compo-

nents with space components in the definition of the S and P variables,

Sψ =
1

2

(
ψ′ iψ′ i + ψ′ iψ′ i

)
, Pψ =

1

2

(
ψ′ iψ′ i − ψ′ iψ′ i

)
. (2.77)

The result (2.76) is in fact identical to our starting point (2.67). Therefore, any interacting

chiral boson theory is “self-dual” in the sense that the theory is left invariant under the

process of introducing auxiliary fields and then integrating out to express the theory in

terms of the “dual” ψ variables rather than the original ϕ variables.

Versions of this simple argument are well-known in various contexts. The observation

that the standard Floreanini-Jackiw action with V (S, P ) = S exhibits this self-duality

appeared in [74], which we have simply generalized to the interacting case. Similar ma-

nipulations also appear, for instance, when discussing T-duality in string theory from the

worldsheet point of view.

However, we would like to emphasize two aspects of this observation. The first is

that, unlike Lorentz invariance – which only holds for interaction functions which satisfy

the differential equation (2.35) – this self-duality holds for any system of interacting chiral

bosons, regardless of the form of V (S, P ). We will therefore take the view that the property

of self-duality should be part of the definition of a theory of chiral bosons. Since we have

seen that any chiral boson theory enjoys self-duality in the sense described here when

presented in the Floreanini-Jackiw formulation, we will demand that any other description

of chiral bosons should also have a corresponding self-duality property. That is, we will

take self-duality as a necessary condition for a theory to describe chiral degrees of freedom.

The second observation is that, if one rewrites the action (2.68) as

S =

∫
d2x

(
LA +

1

2
λαi(Aiα − ∂αϕi)−

1

2
λαi(Aiα − ∂αϕi)

)
,

LA =
1

2

(
Ai0A

i
1 − Ai0Ai1

)
− V (SA, PA) , (2.78)

then the equations of motion for the fields Aiα and Aiα are

λαi = −2∂LA
∂Aiα

, λαi = 2
∂LA
∂Aiα

. (2.79)

Therefore, in a sense, one can think of the fields λ, λ as the duals (or conjugates) of the

fields A and −A. Since the fields Aiα = ∂αϕ
i and Aiα = ∂αϕ

i are given by derivatives of a

scalar field on-shell, one can also view the relations (2.79) as a sort of Legendre transform.

From this perspective, the self-duality of chiral boson models is the statement that such

24



theories are invariant under a Legendre transform, or that one is free to rotate the fields

Aα, Aα into their duals λα and −λα. This is very similar to the structure of theories of

duality-invariant nonlinear electrodynamics in four dimensions, which are invariant under

rotations mixing the field strength Fµν with a certain dual field strength tensor Gµν . We

will review this structure in more detail around equation (3.10) in the next section.

3 Deformations of Dual Chern-Simons Theories

The chiral boson theories that we have considered in section 2 often arise as the edge modes,

or boundary duals, associated with the dynamics of Chern-Simons gauge fields in 3d bulk

theories [75–77]. For instance, physical descriptions of a quantum Hall droplet often involve

a gauge field defined on a disk whose circular boundary supports edge modes modeled by

chiral bosons [78–80]. Another example is found in AdS3 holography, where a collection of

U(1) Chern-Simons gauge fields in the bulk are dual to a corresponding collection of chiral

currents in the 2d boundary. The addition of such bulk Chern-Simons terms to the action

for AdS3 gravity allows BTZ black hole solutions to carry U(1) charges [81–83].

In this section, we will show how stress tensor deformations of 2d chiral boson theories

can be interpreted from the perspective of 3d bulk Chern-Simons gauge theories. We will

begin by making some preliminary observations about the behavior of such 3d Chern-Simons

theories in the presence of general boundary terms.

3.1 U(1) Chern-Simons theories with general boundary terms

Throughout this section, we will consider gauge theories defined on a bulk spacetime mani-

foldM3 with boundary ∂M3. We will not specify whether ∂M3 is a true physical boundary

or a conformal boundary, since our results apply uniformly in both cases.

Let us give a concrete example for each of these two cases to keep in mind as applications.

In the former case, with a physical boundary, an example is furnished by the spacetime

manifoldM3 = H+
2 × Rt, where

H+
2 = {(x, y) | x, y ∈ R , y ≥ 0} (3.1)

is the upper half-plane, viewed as a spatial manifold, and the factor of Rt represents a

non-compact time direction. In this case, the boundary is ∂M3 = Rx×Rt, where Rx is the

spatial boundary ∂H+
2 = {(x, 0) | x ∈ R} and Rt is again the time direction.

An example of the latter case, with a conformal boundary, is a three-dimensional nega-

tively curved bulk manifoldM3, which asymptotically approaches an AdS3 spacetime that
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is characterized by a length scale ℓAdS3 . The metric on M3 plays almost no role in this

example, since the bulk Chern-Simons action is topological, but it is convenient to use the

structure of the metric to characterize the conformal boundary ∂M3. The most general

asymptotically AdS3 metric can be written in the form of a Fefferman-Graham expansion

ds2 =
ℓ2AdS3

4ρ2
dρ2 +

(
g
(0)
αβ (x

γ)

ρ
+ g

(2)
αβ (x

γ) + ρg
(4)
αβ (x

γ)

)
dxα dxβ . (3.2)

The important point about this asymptotic form is that it determines a conformal bound-

ary ∂M3 for our spacetime, located near ρ = 0, which has a boundary metric g
(0)
αβ (x

γ)

determined by the leading term in the expansion (3.2). Here ρ has the interpretation of a

bulk radial coordinate whereas xα label the two coordinates on the conformal boundary.

From now onwards, we will not distinguish between the two qualitatively different cases

above, using the notation ∂M3 for either type of boundary. We will describe the 2d

boundary in Euclidean signature using coordinates xα = (w,w) and the flat metric

ds2 = gαβ dx
α dxβ = dw dw . (3.3)

Although this signature and coordinate choice differs from the ones used in section 2, it

allows for easier comparison with the holographic analysis of the root-TT deformation in

[40]. We will also use the convention that

√
g =

√√√√det

([
0 1

2
1
2

0

])
=
i

2
, (3.4)

which will introduce some unfamiliar factors of i in various places.

Our primary interest is to study the dynamics of Abelian gauge fields defined on the

bulk manifold M3. Consider a collection of U(1) gauge fields Ai, i = 1, . . . , N , and Ai,

i = 1, . . . , N . Of course, the standard kinetic term for such gauge fields is the Maxwell term

F i
αβF

αβ
i where F i = dAi is the field strength associated with the gauge field F i. However,

as we are in three spacetime dimensions, it is also possible to write down a Chern-Simons

term which takes the form Ai ∧ dAi for the gauge fields Ai. The Maxwell term involves

two derivatives and two factors of Ai, whereas the Chern-Simons term has only a single

derivative and two factors of Ai. Therefore, by power counting, we see that the infrared

behavior of the theory will be dominated by the Chern-Simons terms.

This motivates us to study the gauge theory with purely Chern-Simons couplings for

the gauge fields Ai and Ai, which we parameterize as

ICS =
i

8π

∫ (
kijAi ∧ dAj − kijAi ∧ dAj

)
, (3.5)
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where kij and kij are constant matrices which we assume are symmetric and have positive

eigenvalues.10 These matrices will play the role of the metrics Gij and Gij of section 2.

In addition to the Chern-Simons term (3.5), one can add a boundary term of the form

Ibdry = −
1

8π

∫

∂M3

d2x
√
gLbdry

(
Aiα, Aiα

)
, (3.6)

where Lbdry is a Lorentz scalar constructed from the quantities Aiα, Aiα, which are the

restrictions of the three-dimensional gauge fields to the boundary ∂M3. The full description

of the theory is then given by the combined action

I = ICS + Ibdry . (3.7)

The standard choice of boundary term is the one which corresponds to the free interaction

function V (ϕ, ϕ) given in equation (2.31), and is written as

Ibdry = −
1

16π

∫

∂M3

d2x
√
g gαβ

(
kijAiαAjβ + kijAiαAjβ

)
. (3.8)

However, in this section we will be interested in studying more general choices of boundary

term, especially those which arise by deformations of the conventional boundary term (3.8).

It may seem strange that one can write down a general boundary term (3.6) which is an

arbitrary function of the variables Aiα and Aiα, or after assuming Lorentz invariance and

O(N) × O(N) symmetry under rotations of the gauge fields, an arbitrary function of the

two combinations

S =
1

2

(
kijAαi A

j
α + kijAα

i
Ajα

)
, P =

1

2

(
kijAαi A

j
α − kijAαi Ajα

)
. (3.9)

Any such boundary term Lbdry(S, P ) is manifestly compatible with boundary Lorentz in-

variance. This is in contrast with the analysis of section 2, where only interaction functions

V (S, P ) which obey the differential equation (2.35) yield Lorentz-invariant theories.

The resolution to this tension is that the Floreanini-Jackiw and Chern-Simons descrip-

tions of Lorentz-invariant chiral boson theories make different aspects of the models mani-

fest. In the Floreanini-Jackiw description of section 2, it is manifest that the bosons ϕi are

chiral since the theory is automatically self-dual (which we take as part of the definition of

chirality) as we saw in section 2.3. However, it is not manifest that the Floreanini-Jackiw

equations of motion respect Lorentz invariance, and requiring boost symmetry imposes a

10Throughout this section we will use the symbol I rather than S for actions to emphasize that we are

in Euclidean signature.
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condition on V (S, P ). Conversely, in the Chern-Simons description, it is manifest that the

boundary theory enjoys Lorentz invariance since Lbdry is a Lorentz scalar. However, it is

not manifest that the theory describes chiral edge modes, which in particular requires that

the theory be self-dual under the appropriate notion of duality transformation. Demanding

chirality, or self-duality, will yield a constraint on Lbdry, to be given in equation (3.35).

An analogy with electrodynamics is apt. Suppose that one wishes to describe a theory

of an Abelian gauge field Aµ in four spacetime dimensions, whose Lagrangian L depends on

the field strength Fµν but not its derivatives. We assume that the equations of motion of

this theory are invariant under both Lorentz transformations and under electric-magnetic

duality rotations δθ which act as

δθFµν = θGµν(F ) , (3.10)

where Gµν = −1
2
εµνρτ G̃

ρτ is the Hodge dual of G̃µν , which is itself defined as

G̃µν = 2
∂L
∂F µν

. (3.11)

One option for describing such a theory is by giving the Lagrangian L itself. As the La-

grangian is a Lorentz scalar, this description makes Lorentz invariance manifest. However,

invariance under duality rotations (3.10) is not automatic, and requires that the Lagrangian

satisfy the differential equation (2.39).

Another option is to describe the theory in terms of its Hamiltonian H(D⃗, B⃗), where

D⃗ = ∂L
∂E⃗

is the electric displacement. In these variables, the duality transformation (3.10)

acts as an SO(2) rotation which mixes the vectors D⃗ and B⃗. The most general duality-

invariant Hamiltonian can be written as a function of the two variables

s =
1

2

(
|D⃗|2 + |B⃗|2

)
, p = |D⃗ × B⃗| . (3.12)

These quantities s and p are invariant under SO(3) rotations of the spatial coordinates and

under duality rotations, so any Hamiltonian H(s, p) is manifestly duality-invariant. How-

ever, because the canonical formulation has singled out a time direction as special, Lorentz

invariance is no longer manifest. Imposing boost symmetry requires that the Hamiltonian

satisfy the differential equation

H2
s +

2s

p
HsHp +H2

p = 1 . (3.13)

The upshot is that, in the electrodynamics example, either Lorentz invariance or duality

invariance can be made manifest, and then imposing a partial differential equation will

ensure that the remaining non-manifest symmetry will be respected.
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In the chiral boson version of this story, the Floreanini-Jackiw formulation is analogous

to the Hamiltonian presentation of 4d duality-invariant electrodynamics, since any theory of

Floreanini-Jackiw bosons is automatically self-dual although Lorentz invariance is not man-

ifest. The Chern-Simons presentation, on the other hand, is analogous to the Lagrangian

description, since Lorentz invariance is manifest but self-duality is not guaranteed.

To understand the condition which must be imposed upon the Chern-Simons boundary

term to ensure self-duality, which is the subject of section 3.2, it will first be useful to study

the currents obtained from varying the boundary gauge fields.

Boundary currents

Quite generically, we expect that gauge fields couple to conserved currents. In the case of

the 3d Chern-Simons theory, although we have not coupled the bulk gauge fields to any

sources inM3, the variation of the on-shell action localizes to a boundary term, so we can

therefore define boundary currents that live in ∂M3. We normalize these currents as

Jαi = −2πi√
g

δI

δAiα

∣∣∣
on-shell

, Jα
i
= −2πi√

g

δI

δAiα

∣∣∣
on-shell

. (3.14)

We would like to compute these currents in a Chern-Simons theory with a general boundary

term that is an arbitrary function of the O(N) × O(N) invariant combinations S and P .

To do this, we consider a general variation of the action. The Chern-Simons term varies as

δICS =
i

8π

∫

M3

(
kij (δAi ∧ dAj + Ai ∧ dδAj)− kij

(
δAi ∧ dAj + Ai ∧ dδAj

))

=
i

4π

∫

M3

(
kijδAi ∧ dAj − kijδAi ∧ dAj

)
− i

8π

∫

M3

d
(
kijAi ∧ δAj − kijAi ∧ δAj

)
.

(3.15)

The first term vanishes after imposing the bulk equations of motion dAj = 0 = dAj, while

the second term localizes to a boundary contribution,

δICS

∣∣∣
on-shell

= − i

8π

∫

∂M3

(
kijAiα δA

j
β − kijAiα δAjβ

)
dxα ∧ dxβ . (3.16)

Since we are assuming that Lbdry takes the form

Lbdry = f(S, P ) , (3.17)

the variation of the boundary term can be written as

δIbdry = −
1

8π

∫

∂M3

√
g
(
(fS + fP ) k

ijAαi δAjα + (fS − fP ) kijAαi δAjα
)
. (3.18)
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In coordinates (w,w), after raising the indices using Awi = 2Awi and Awi = 2Awi, the

variation of the combined action is then

δI
∣∣∣
on-shell

= − i

8π

∫

∂M3

(
kij
(
Aiw δA

j
w − Aiw δAjw

)
− kij

(
Aiw δA

j
w − Aiw δAjw

))

− 1

4π

∫

∂M3

√
g
(
kij (fS + fP )

(
AiwδA

j
w + AiwδA

j
w

)
+ kij (fS − fP )

(
AiwδA

j
w + AiwδA

j
w

))
.

(3.19)

Using
√
g = i

2
, we can therefore read off the currents (3.14),

Jwi =
i

2
kij (fS + fP − 1)Ajw , Jwi =

i

2
kij (fS + fP + 1)Ajw ,

Jw
i
=
i

2
kij (fS − fP + 1)Ajw , Jw

i
=
i

2
kij (fS − fP − 1)Ajw . (3.20)

These can also be written more covariantly as

Jαi =
i

4
kij
(
gαβ(fS + fP ) +

1

2
ϵαβ

)
Aβj ,

Jα
i
=
i

4
kij
(
gαβ(fS − fP )−

1

2
ϵαβ

)
Aβ
j
, (3.21)

which agrees with (3.20) for gww = 1
2
, ϵww = 1 = −ϵww.

We note that variation of the total on-shell action has two qualitatively different con-

tributions. The terms in the first line of (3.19) are “universal” in the sense that they are

present for any Chern-Simons theory and do not depend on the details of the boundary term

f(S, P ). These universal terms are also independent of the boundary metric, since they

come from the integral of a 2-form. In contrast, the terms on the second line of (3.19) are

“model-dependent” as they make explicit reference to the choice of boundary term f(S, P ).

Furthermore, these terms are metric-dependent and include an overall factor of
√
g.

These two types of terms are analogous to those in the Lagrangian (2.49) which couples

a generic chiral boson theory to gravity. In that setting, the role of the “universal” and

metric-independent contributions is played by the kinetic termsGijϕ̇
iϕ′ j andGijϕ̇

iϕ
′j
, which

as we explained below equation (2.53), do not include a factor of E. The Chern-Simons

perspective gives another way to understand the metric-independence of these terms, since

they may be viewed as the duals of contributions which arise from a topological bulk

term. Similarly, the remaining metric-dependent and interaction-function-dependent terms

in (2.49) can be viewed as the analogs of the second line of (3.19).

The expressions for the Jαi and Jα
i
also determines the boundary conditions on the gauge

fields which we impose in order to have a well-defined variational principle. In general, the
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on-shell variation of the action can be written as

δI
∣∣∣
on-shell

∼
∫

∂M3

(
Jαi δA

i
α + Jα

i
δAiα

)
. (3.22)

We must ensure that the quantity (3.22) vanishes to have a good variational principle. To

do this, we impose boundary conditions which hold fixed some particular combination of

the boundary gauge fields Aiα and Aiα. Schematically, this constraint takes the form

F
(
Aiα
)
= 0 , F

(
Aiα

)
= 0 , (3.23)

where the precise form of the functions F and F depend on the case under consideration.

In particular, this means that the allowed variations of the gauge fields must be constrained

to satisfy the equations

∂F

∂Aiα
δAiα = 0 ,

∂F

∂Aiα
δAiα = 0 . (3.24)

For instance, if both of the boundary variations δAiw and δAiw are non-zero, the constraints

(3.24) can in principle be inverted to express one of these two boundary variations in terms

of the other. This means that only one combination of the boundary gauge fields is free to

fluctuate, while the other is held fixed. This is in agreement with the general expectation

that imposing Dirichlet boundary conditions on both components of the gauge field is too

strong, and one would not find smooth solutions to the equations of motion for generic

choices of the fixed gauge fields.

We also note that these boundary conditions will restrict the class of bulk gauge transfor-

mations that are permissible. A general gauge transformation Ai → Ai+dΛi, Ai → Ai+dΛi

in the bulk leads to a variation of the Chern-Simons term which takes the form

δICS =
i

8π

∫

∂M3

(
kijdAi ∧ Λj − kijdAi ∧ Λj

)
, (3.25)

which, for general choices of the gauge parameters, will not be compatible with our choice of

boundary conditions. We must therefore allow only a subclass of bulk gauge transformations

which preserve the desired boundary conditions. Physically, one can think of this restriction

as giving rise to physical degrees of freedom on the boundary.

To give a specific example illustrating the general observations above, let us consider

the standard boundary term f = S. In this case, evaluating the currents (3.20) gives

J iw = 0 , J iw =
i

2
kijAjw , J iw =

i

2
kijAjw , J iw = 0 . (3.26)
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Therefore, with the conventional boundary term, the currents J iα are purely holomorphic

and the currents J iα are purely anti-holomorphic. The variation of the on-shell action is

δI
∣∣∣
on-shell

∼
∫

∂M3

(
J iw δA

i
w + J iw δA

i
w

)
. (3.27)

The variation (3.27) vanishes if we require that δAiw = 0 and δAiw = 0, which is equivalent

to imposing Dirichlet boundary conditions on the components Aiw and Aiw at the boundary

∂M3. For instance, one can demand that these components are both set to zero, which

corresponds to the choice of functions F , F in (3.23) given by

F
(
Aiα
)
= Aiw = 0 , F

(
Aiα

)
= Aiw = 0 . (3.28)

We must then allow only bulk gauge transformations which do not change the values of Aiw

and Aiw on the boundary, and this restriction gives rise to boundary degrees of freedom.

To see why these degrees of freedom are chiral, it is convenient to think of the holomorphic

currents as J iw = ∂φi and the anti-holomorphic currents as J iw = ∂φi, where the φi are

c = 1 free bosons. Then it is clear that the J iw play the role of the left-moving chiral half

of a non-chiral boson, and the J iw act as the right-moving anti-chiral parts.

3.2 Self-duality condition for Chern-Simons theories

Let us now consider the question of self-duality for Chern-Simons theories. As we argued

in section 2.3, self-duality should be viewed as a necessary condition to impose on the

theory so that it describes chiral degrees of freedom. In the Floreanini-Jackiw description,

self-duality meant that we could express the action either in terms of the original variables

Aiα = ∂αϕ
i, or in terms of the dual variables λiα = ϵαβ∂

βψi. The relationship between Aα

and λα, as expressed around equation (2.79) is very similar to the relationship between the

boundary Chern-Simons gauge field Aα and the corresponding current. Let us compare

them side-by-side. In section 2.3, we had the relations

λαi = −2 ∂L
∂Aiα

, λαi = 2
∂L
∂Aiα

, (3.29)

where in this formula the symbol Aα refers to the vector field appearing in the action (2.68).

In the Chern-Simons setting, we instead have the schematic relations

Jαi = −2πi√
g

δI

δAiα

∣∣∣
on-shell

= −2πi√
g

∂Lon-shell

∂Aiα
,

Jαi = −2πi√
g

δI

δAiα

∣∣∣
on-shell

= −2πi√
g

∂Lon-shell

∂Aiα
, (3.30)
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where now the symbol Aα refers to the boundary Chern-Simons gauge field.11 Insofar as

the gauge field acts as a good proxy for the gradient of the Floreanini-Jackiw bosons, this

suggests that the role of the dual variable λiα is now played by

λiα = −1

2
J iα , λiα =

1

2
J iα , (3.31)

where the sign difference is due to the relative sign in (2.79), which itself originates from

the difference in signs between the kinetic terms for chiral and anti-chiral bosons.

This analogy leads us to propose a notion of self-duality for Chern-Simons theories.

We will phrase this condition via an infinitesimal transformation, rather than a finite one.

That is, in section 2.3, the duality transformation was a Z2 action which replaced the

fields Aα with the fields λα. In the present context, we will instead propose a continuous

transformation which infinitesimally rotates the fields Aiα, A
i
α into their duals J iα, −J iα.

We say that a Chern-Simons theory with boundary term f(S, P ) is self-dual if the

on-shell variation of the action identically vanishes under the transformation

δAiα = ϵJ iα , δAiα = −ϵJ iα . (3.32)

To see why this is the right notion of self-duality, let us find the condition on the boundary

term f(S, P ) under which the transformation (3.32) is a symmetry. By equation (3.22),

under this variation the change in the on-shell action is

δI
∣∣∣
on-shell

∼
∫

∂M3

(
Jαi δA

i
α + Jα

i
δAiα

)

= ϵ

∫

∂M3

(
Jαi J

i
α − Jαi J iα

)
, (3.33)

so the rotation (3.32) is a symmetry if and only if

J iwJ
i
w − J iwJ iw = 0 . (3.34)

Using the general expression (3.20) for the currents, and expressing the condition in terms

of S and P , we find that (3.34) is equivalent to the condition

f 2
S +

2S

P
fSfP + f 2

P = 1 . (3.35)

Remarkably, the Chern-Simons boundary term is self-dual if and only if it satisfies pre-

cisely the same differential equation (2.35) which the Floreanini-Jackiw interaction func-

tion V (S, P ) must satisfy in order to guarantee Lorentz invariance. Because of the identical

11In equation (3.30), the partial derivatives of the Lagrangian Lon-shell are understood to be defined as

the integrands of corresponding variations of the on-shell action in the middle expression of each line.
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structure of the constraints on f(S, P ) and V (S, P ), some of our observations from section

2 can be immediately translated to analogous statements in the Chern-Simons setting.

For instance, if N = 0 so that the theory features only a collection of unbarred gauge

fields Aiα but no barred fields Aiα, the two invariants collapse as S = P and the only solution

to the constraint (3.35) is f(S, P ) = S. This is consistent with the comments around

equation (2.38) in the Floreanini-Jackiw formulation, namely that no Lorentz-invariant

interactions are possible for a system of purely chiral (or purely anti-chiral) bosons. Here

we are seeing the Chern-Simons counterpart of this statement: although we can write down

any boundary term f(S) that we like, and still respect boundary Lorentz invariance, only

the choice f(S) = S will respect chirality (or self-duality) of the boundary theory.

In the remainder of this section, we will view the differential equation (3.35) as a consis-

tency condition which a boundary term f(S, P ) must satisfy to describe chiral bosons. One

can also understand this constraint as an analog of electric-magnetic duality invariance for

3d Chern-Simons theories. Of course, the conventional form of electric-magnetic duality is

inapplicable for 3d gauge theories, since the Hodge dual of a two-form field strength F2 in

three spacetime dimensions is a one-form, which is interpreted as the field strength of a

dual scalar rather than a dual 1-form. However, demanding invariance under the duality

rotation (3.32) is closely related to imposing invariance under the rotations (3.10); in both

cases, the symmetry exchanges the field appearing in the Lagrangian with a certain “dual”

that is defined via the derivative of the Lagrangian with respect to this field.

Linear and non-linear self-duality constraints for currents

One typically describes a free chiral p-form field in 2p dimensions, where p is odd, as a form

which satisfies a linear Hodge self-duality constraint. For instance, a free chiral 3-form

field F3 in six dimensions obeys ∗F3 = F3. Likewise, the Floreanini-Jackiw bosons ϕi, ϕi

with free interaction function V (S, P ) = S are self-dual and anti-self-dual, respectively.

Introducing interactions for such p-forms then modifies this constraint to a non-linear self-

duality condition, which can be viewed as determining the self-dual part of the p-form as a

function of the anti-self-dual part, or vice-versa.

We would now like to see how these self-duality constraints can be understood from

the Chern-Simons description of chiral bosons. Since we are working in a two-dimensional

Euclidean spacetime, the appropriate self-duality conditions for a one-form are imaginary

self-duality or anti-self-duality, since the definition of the Hodge star,

(∗V )β =
√
gV αϵαβ , (3.36)
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includes a factor of i
2
from the measure

√
g. With these conventions, the dual of a general

one-form Vα with components Vw, Vw is

(∗V )α = (−iVw, iVw) . (3.37)

Thus a holomorphic one-form Vα = (Vw, 0) obeys an imaginary anti-self-duality condition

∗V = −iV , (3.38)

whereas a purely anti-holomorphic one-form Vα = (0, Vw) is imaginary-self-dual,

∗V = iV . (3.39)

We therefore see that all of the currents Ji and J i of equation (3.26), which correspond to the

standard boundary term f(S, P ) = S, satisfy ∗Ji = −iJi and ∗J i = +iJ i. This can also be

expressed by defining the projectors onto imaginary-self-dual and imaginary-anti-self-dual

parts of a one-form,

P± =
1

2
(1∓ i∗) . (3.40)

In terms of these projectors, the fact that the Jαi are purely holomorphic can be expressed

as P−Jαi = Jαi , and the fact that the Jα
i
are purely anti-holomorphic is equivalent to the

statement that P+J
α
i
= Jα

i
. Therefore, by adding the boundary term f(S, P ) = S to the

Chern-Simons action, we obtain chiral currents which obey a linear self-duality condition.

This is the image of the usual statement that free chiral p forms in 2p dimensions, for p

odd, obey linear self-duality constraints.

Next we would like to understand how a more general boundary term gives rise to a

non-linear self-duality constraint, which corresponds to an interacting system of boundary

chiral bosons. In this case, rather than obeying the standard chirality constraints

P−J
α
i = Jαi , P+J

α
i
= Jα

i
, (3.41)

which correspond to (linear) Hodge imaginary-self-duality or imaginary-anti-self-duality,

∗Ji = −iJi , ∗J i = iJ i , (3.42)

the currents will satisfy more general, non-linear or twisted self-duality conditions, each

characterized by an operator T (i) or T (i):

∗Ji = T (i)Ji , ∗J i = T (i)J i . (3.43)
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In the case where T (i) = −i I and T (i) = i I are both proportional to the identity operator

I, this reduces to the standard chirality condition (3.42). In the more general case we allow

T (i), T (i) to be non-trivial operators which can depend on the fields.

Twisted self-dual boundary conditions characterized by operators of this form have been

considered in [22, 84], primarily in the setting of non-Abelian Chern-Simons theories. In

the Abelian case, which is the focus of this work, no non-trivial operator T exists for a

system obeying (3.35) with either N = 0 or N = 0 (i.e. a self-dual theory which only

describes fields Aα
i
but no Aαi , or with only Aαi but none of the Aα

i
, respectively). This is

again related to the statement, which we have seen in section 2.1, that there are no possible

Lorentz-invariant interactions for a system of purely chiral (or purely anti-chiral) bosons.12

However, in a theory which features both chiral and anti-chiral bosons – or both Aαi and

A
α

i , from the Chern-Simons perspective – such Lorentz-invariant interactions are possible,

which manifests as the existence of allowable operators T besides the identity.

It is easy to see that, for a general boundary term Lbdry = f(S, P ), the currents

J iw =
i

4
kij (fS + fP + 1)Ajw , J iw =

i

4
kij (fS + fP − 1)Ajw , (3.44)

satisfy the non-linear self-duality condition

(
∗J i
)
α
=
(
T (i)

) β

α
J iβ ,

T (i) = −i


 1 0

−2kijA
j
w

kikA
k
w

fS+fP−1
fS+fP+1

1


 . (3.45)

This expression gives the components of the matrix T (i) with respect to its Lorentz indices

α, β = w,w, where i is a fixed internal index. When fS = 1 and fP = 0, we see that T (i)

reduces to −i I, which expresses the usual imaginary-anti-self-duality constraint.

Similarly, the general currents

J iw =
i

4
kij (fS − fP − 1)Ajw , J iw =

i

4
kij (fS − fP + 1)Ajw , (3.46)

satisfy the non-linear self-duality condition

(
∗J
)i
α
=
(
T (i)

) β

α
J iβ ,

T (i) = i


1 −

2k
i
jA

j
w(1+fP−fS)

k
i
kA

k
w(−1+fP−fS)

0 1


 . (3.47)

12Alternatively, this is because there are no solutions to the self-duality equation (3.35) besides the trivial

solution f(S, P ) = S when either N = 0 or N = 0.
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Likewise, when fS = 1 and fP = 0, we see that T (i) = i I so this reduces to the usual

imaginary-self-duality condition ∗J i = iJ i.

We should point out that, in other studies of twisted self-duality in Chern-Simons the-

ories such as [22, 84], the twisting operator T commutes with the Hodge star operation.

As a result, acting with the Hodge star operator on each side of the twisted self-duality

constraint ∗J = T J , one has

∗ ∗ J = ∗T J = T ∗ J = T 2J . (3.48)

Since the Hodge star is an anti-involution, ∗∗ = −I, in two Euclidean dimensions, one

therefore arrives at the constraint

T 2 = −I . (3.49)

In Lorentzian signature, this would instead give the constraint T 2 = I.
However, in our case the twisting operators T (i) and T (i) have non-trivial structure in

their Lorentz indices and therefore do not commute with the Hodge star. This is why, in

our case, these twisting operators do not satisfy an anti-involutive constraint like (3.49).

One can now proceed as in the linear case and define projection operators

P
(i)
+ =


 0 0

− kijA
j
w

kikA
k
w

fS+fP−1
fS+fP+1

1


 , P

(i)
+ =


0

k
i
jA

j
w(1+fP−fS)

k
i
kA

k
w(−1+fP−fS)

0 1


 ,

P
(i)
− =


 1 0
kijA

j
w

kikA
k
w

fS+fP−1
fS+fP+1

0


 , P

(i)
− =


1 −

k
i
jA

j
w(1+fP−fS)

k
i
kA

k
w(−1+fP−fS)

0 0


 , (3.50)

which satisfy the expected properties of orthogonal projectors,

(
P

(i)
±

)2
= P

(i)
± ,

(
P

(i)
±

)2
= P

(i)
± , P

(i)
± P

(i)
∓ = 0 = P

(i)
± P

(i)
∓ , (3.51)

along with the chirality conditions

P
(i)
− J i = J i , P

(i)
+ J i = 0 , P

(i)
+ J

i = J i , P
(i)
− J

i = 0 . (3.52)

Therefore, even in the interacting case, one can view the currents as satisfying an appro-

priate non-linear self-duality constraint. This expresses, in Chern-Simons language, the

equations of motion (2.23) for interacting Floreanini-Jackiw bosons.

We should point out that this construction has now produced two separate pairs of

projection operators P
(i)
± , P

(i)
± for each fixed choice of indices i, i, or equivalently, two
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separate twist operators T (i) and T (i). This is in contrast with the linear-self duality

constraint, which is described by only two projectors P± = 1
2
(1∓ i∗), where

P+ = P+ P− = P− . (3.53)

In the linear case, there are relations that cause these four operators to collapse to just two

independent projectors, and it is clear that these operators project onto one-dimensional

eigenspaces which represent physically opposite chiralities.

In the non-linear case, there are also relations (albeit more complicated ones) between

the two twist operators. For instance, one can see that T (i) can be obtained from T (i) by

simultaneously transposing the matrix in its Lorentz indices and interchanging all barred

and unbarred quantities. That is, one exchanges

kij ←→ kij , Ai ←→ Ai w ←→ w , (3.54)

which also has the effect of sending P → −P (and thus fP → −fP ). This relation holds

regardless of the choice of boundary term. When the function f(S, P ) satisfies the self-

duality condition (3.35) necessary to describe chiral modes, there are further constraints

between the twist operators. To see one such constraint, we can rewrite (3.35) as

J i ∧ ∗J i = J i ∧ ∗J i . (3.55)

Since ∗J i = T (i)J i and ∗J i = T (i)J i, this relation can also be expressed as

J i ∧ T (i)J i = J i ∧ T (i)J i . (3.56)

Equation (3.56) is a consequence of the fact that, when the boundary term obeys the self-

duality constraint, the chiral and anti-chiral twist operators are “compatible” in a sense

which generalizes the statements that T (i) = −T (i), or that the projection operators satisfy

(3.53), in the linear case.

3.3 Current deformations of boundary terms

We will now consider flow equations which modify the boundary term Lbdry of a bulk

Chern-Simons theory.13 In particular, we are interested in differential equations for Lbdry

which are driven by conserved quantities. We will refer to any such flow equation as a

13Although we focus on U(1) Chern-Simons theories in this work, stress tensor deformations of the

boundary term for SL(2)× SL(2) Chern-Simons have been considered in [85–87].
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“current deformation” regardless of whether the conserved currents driving the flow are the

objects J iα and J iα defined in equation (3.14), or the energy-momentum tensor Tαβ, which

is another type of conserved current in the theory.

Let us first study deformations which involve the spin-1 currents J iα and J iα. A general

flow equation in this class takes the form

∂Lbdry

∂λ
= O

(
J iα, J

i
α, λ
)
, (3.57)

where O is a Lorentz scalar and O(N) × O(N) singlet constructed from the currents.

Within this class, there are fewer interesting possibilities. The most natural deformation

to consider is to begin with the conventional boundary term Lbdry = S and deform by a

marginal combination of the form

O = kijJ
i
αJ

αj , or O = kijJ
i
αJ

αj . (3.58)

However, by virtue of the chirality of the currents given in equation (3.26), both of these

operators vanish. One might instead construct a deforming operator which mixes the

currents on the two sides, such as

O = CijJ
i
αJ

αj , (3.59)

where Cij is a constant tensor with mixed indices. For instance, in the case N = N , we

do not need to distinguish between barred and unbarred indices, and can choose Cij =

δij ≡ δij.
14 Let us consider the effect of this deformation with the simplifying assumption

kij = kij = δij. In this case, at leading order in the deformation parameter, one finds a

deformed boundary term

L(1)
bdry =

1

2

(
Aαi A

i
α + Aαi A

i
α

)
+ λAαi A

i
α , (3.60)

up to the normalization of λ. That is, such an operator has introduced an off-diagonal

mixing between the barred and unbarred gauge fields. Ignoring possible subtleties about

quantization of the Chern-Simons levels, such a quadratic mixing can always be undone

by performing a Bogoliubov-like field redefinition. Indeed, note that beginning with the

undeformed boundary term

L(0)
bdry =

1

2

(
Aαi A

i
α + Aαi A

i
α

)
(3.61)

14Of course, when N ̸= N , a deformation of this form does not preserve O(N) × O(N) symmetry. For

instance, a deformation by
∑M

i=1 J
i
αJ

iα, where M = min(N,N), treats the currents asymmetrically.
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and then performing a change of variables to

Aiα = cosh(µ)Bi
α + sinh(µ)Bi

α , Aiα = cosh(µ)Bi
α + sinh(µ)Bi

α , (3.62)

gives the transformed boundary term

L(0)
bdry = cosh(2µ)

[
1

2

(
Bα
i B

i
α +Bα

i B
i
α

)
+ tanh(2µ)Bα

i B
i
α

]
. (3.63)

Up to an overall rescaling, this is equivalent to the deformed boundary term (3.60) if we

identify tanh(2µ) = λ. Therefore, the marginal JJ deformation of equation (3.59) can be

viewed as inducing a rotation between the fields Aiα and Aiα. We will see later that the root-

TT deformation, in the case N = N = 1, is qualitatively similar to this JJ deformation.

In principle, one could consider more general operators constructed from the currents

J and J , such as powers of the form O =
(
J iαJ

αi
)n

or other structures such as O =(
J iαJ

i
βJ

αjJβj
)m

, both of which preserve O(N) × O(N) symmetry. These operators are

irrelevant for n > 1 and m > 1
2
, respectively. However, we will now instead turn our

attention to deformations which are constructed from the energy-momentum tensor,

∂Lbdry

∂λ
= O

(
T

(λ)
αβ , λ

)
. (3.64)

The first choice that one must make in defining such a flow is which stress tensor to use.

There are generally many definitions of the energy-momentum tensor which are all con-

served but which differ by improvement transformations. One natural choice is the Hilbert

stress tensor defined by varying the metric. Of course, neither the Chern-Simons action

(3.5) nor the boundary action (3.6) depend on the bulk metric, but the term Ibdry does

depend on the boundary metric. One can therefore define a boundary stress tensor,

Tαβ = − 2√
g

δI

δgαβ
= − 2√

g

δIbdry
δgαβ

. (3.65)

However, this stress tensor is qualitatively different from the one obtained in equation (2.54)

by coupling a chiral boson theory to vielbeins. In that context, the coupling to vielbeins

treated chiral and anti-chiral modes differently, and as a result the stress tensor component

Ttθ = −P is sensitive to the difference between chiral and anti-chiral fields. Exchanging the

fields ϕ with ϕ, and vice-versa, reverses the sign of P and therefore changes Ttθ.

In contrast, since both the barred gauge fields and unbarred gauge fields couple to the

boundary metric in the same way, the Hilbert stress tensor (3.65) treats the fields Aiα and

Aα
i
on equal footing. Unlike (2.54), the Hilbert stress tensor associated with the standard
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boundary Lagrangian Lbdry = S is unchanged under the process of exchanging barred and

unbarred gauge fields. To make this point explicit, let us write this boundary term as

Lbdry =
1

2
S α
α , Sαβ = kijAiαAjβ + kijAiαAjβ . (3.66)

With this definition, one has S α
α = 2S. The Hilbert stress tensor computed from (3.66),

after rescaling to eliminate the overall prefactor of − 1
16π

in Ibdry, is

Tαβ = −Sαβ + gαβS . (3.67)

Deforming the standard boundary term by a generic function of the stress tensor (3.67),

which necessarily involves the single independent non-vanishing Lorentz invariant TαβTαβ,

will introduce dependence on the new variable

S2 = SαβS
αβ . (3.68)

Note that S2 is functionally independent from the invariant P = 1
2

(
kijAαi A

j
α − kijAαi A

j

α

)
.

Therefore, the class of boundary terms that can be described by functions f(S, P ) is not

closed under deformations by the Hilbert stress tensor. Instead, to describe flows driven by

this choice of stress tensor, we should instead parameterize the boundary term as a function

of different invariants:

Lbdry = f(S1, S2) , (3.69)

where

S1 = Tr(S) = S α
α = 2S , S2 = Tr

(
S2
)
= SαβS

αβ . (3.70)

The structure of Hilbert stress tensor deformations of the class of functions (3.69) is identical

to the structure of such flows for a collection of non-chiral bosons. Indeed, as was worked

out in [38], a general Lagrangian for a collection of N non-chiral bosons φi with target

space metric Gij is a function of the matrix

X β
α = Gij∂αφ

i∂βφj , (3.71)

which has two independent traces,

x1 = Tr(X) = X α
α , x2 = Tr

(
X2
)
= X β

α X α
β . (3.72)

All higher traces can be expressed in terms of x1 and x2 using identities derived from

the Cayley-Hamilton theorem for 2 × 2 matrices. Precisely the same results apply in the
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Chern-Simons context, except replacing the matrix X β
α with S β

α and thus replacing the

invariants x1, x2 with S1, S2. For instance, the Hilbert stress tensor associated with a

general boundary term (3.69) is

Tαβ = −2 ∂f
∂S1

Sαβ − 4
∂f

∂S2

SαγS
γ
β + gαβf . (3.73)

One can then construct deformations of the boundary term which depend on the two

independent traces of the stress tensor, which can be written as

TαβTαβ = 2

(
f + 2S2

1

∂f

∂S2

)(
f − 2S1

(
∂f

∂S1

+ S1
∂f

∂S2

))
+ 8S2

2

(
∂f

∂S2

)2

+ 4S2

((
∂f

∂S1

)2

+ 6S1
∂f

∂S1

∂f

∂S2

− 2
∂f

∂S2

(
f − 2S2

1

∂f

∂S2

))
, (3.74)

Tαα = −2S1
∂f

∂S1

− 4S2
∂f

∂S2

+ 2f . (3.75)

All of the results concerning stress tensor flows for non-chiral bosons in two dimensions

(see, for instance, [38] and section 4 of [49]) therefore immediately apply to deformations

of Chern-Simons boundary terms which take the form (3.69).

One way to think about this class of deformations, using the parameterization (3.69)

and the Hilbert stress tensor, is the following. In the case N = N – when the unbarred

gauge fields Aiα and barred gauge fields Aiα are dual to equal numbers of chiral bosons

ϕi and anti-chiral bosons ϕi, respectively – one can collect these fields into a collection of

non-chiral bosons φi as

φi =
1√
2

(
ϕi + ϕi

)
. (3.76)

We will revisit the quantization of the boundary theory after performing this repackaging

of the field content into non-chiral fields in section 5. We claim that deformations using

the Hilbert stress tensor and the parameterization (3.69) are appropriate for understanding

flows in which the bosons are assembled into non-chiral fields in this way. This is why such

flows are naturally studied using the invariants (S1, S2), which have the same structure as

the ones appearing in TT -like deformations of non-chiral bosons, rather than the invariants

(S, P ), which we have used in section 2 to understand stress tensor flows for chiral bosons.

One might ask whether there is a different presentation of stress tensor deformations

for the boundary term whose structure is more similar to that of flows in the Floreanini-

Jackiw description of section 2. This brings us to the second natural choice of stress tensor,
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besides the Hilbert definition in equation (3.65). Rather than coupling the boundary theory

to a metric on ∂M3, one could instead couple to vielbeins in the same way as we did in

equation (2.49) for chiral boson theories. To do this, we again introduce frame fields Ea
α ,

although now the flat indices will be raised or lowered with the Euclidean tangent-space

metric ηab = [ 0 1
1 0 ]. In this case, the appropriate flat-space values for the vielbeins are

E+
w = E−

w =
1√
2
, E+

w = E−
w = 0 , (3.77)

whose inverses produce the desired spacetime metric ds2 = dw dw,

Ea
αE

b
βηab = gαβ =

[
0 1

2
1
2

0

]
. (3.78)

One can then couple the Chern-Simons boundary term Ibdry to vielbeins as

Ibdry = −
i

16π

∫

∂M3

d2x
(
2
(
E+
wE

−
w − E+

wE
−
w

)
P + 2Ef(S, P )

)
, (3.79)

where we include factors of 2 since, in the conventions of this section, E = 1
2
. Likewise, the

overall factor of i in (3.79) arises because
√
g = i

2
but E = 1

2
. To compare with equation

(2.49), note that in the conventions of section 2, we instead had E = 1. Now S and P are

coupled to vielbeins as

S =
1

4
(
E+
wE

−
w + E−

wE
+
w + E+

wE
−
w + E+

wE
−
w

)
(
kijAiwA

j
jw + kijAiwA

j
w

)
,

P =
1

4
(
E+
wE

−
w + E−

wE
+
w + E+

wE
−
w + E+

wE
−
w

)
(
kijAiwA

j
w − kijAiwAjw

)
, (3.80)

in such a way that they reduce to their flat-space values when the vielbeins are given by

(3.77). Because these expressions are written with explicit (w,w) indices, the resulting

coupling to gravity is not manifestly Lorentz-invariant. However, this is to be expected

since we are performing the equivalent of the procedure used in equation (2.49) for coupling

Floreanini-Jackiw bosons to gravity, which is also not manifestly Lorentz-invariant.

We now compute the stress tensor (2.6) using this coupling to the frame fields. In order

to make comparison with the results of section 2 easier, we will re-scale the stress tensor by

an overall factor to absorb the multiplicative constant of − i
16π

in the boundary term (3.79),

as well as the relative factor of 2 due to the conventions for the vielbein in this section.

Therefore we instead compute

T a
β = −8πi

E

δS

δEβ
a

, (3.81)
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and convert to spacetime indices to find

Tww = −1

4
(2SVS + 2P (1 + VP )) ,

Tww = Tww =
1

2
(V − SVS − PVP ) ,

Tww =
1

2
(P − PVP − SVS) . (3.82)

The two Lorentz scalars that we use for constructing flows are therefore

Tαα = 2 (V − SVS − PVP ) ,
TαβTαβ = V 2 − 2P 2 + (V − 2 (SVS + PVP ))

2 , (3.83)

which exactly matches equations (2.55) and (2.56).

It now follows that all of our comments about stress tensor flows in section 2 immediately

apply to deformations of Chern-Simons boundary terms which are constructed using the

stress tensor (3.81) obtained from coupling to vielbeins, as opposed to the standard Hilbert

stress tensor. For instance, any deformation by a function of the vielbein stress tensor

(3.81) necessarily preserves the condition (3.35). This means that, if one begins with

a seed Chern-Simons boundary term which is invariant under the symmetry (3.32) that

guarantees the chirality (or self-duality) of the theory, and then deforms this seed by any

function of the energy-momentum tensor, the resulting deformed boundary term will also

be invariant under the same symmetry. Furthermore, any one-parameter family of Chern-

Simons boundary terms which are all invariant under the duality rotation (3.32) must satisfy

a differential equation driven by a function of the vielbein stress tensor.

It also follows that the closed-form solutions to flow equations driven by functions of

the stress tensor discussed in section 2 – such as the two-parameter family of solutions

(2.40) to the commuting TT and root-TT flow equations – also have obvious analogs for

deformations of Chern-Simons boundary terms. Besides solving these differential equations

directly, a complementary way to analyze stress tensor deformations is by performing a

perturbative expansion which computes the deformed action order-by-order in the flow

parameter. This approach is discussed in appendix A for deformations by various functions

of the energy-momentum tensor, using the version of Tαβ defined by coupling to vielbeins.

To conclude this section, let us summarize and mention some applications. We have

seen that the boundary term of a bulk U(1) Chern-Simons theory can be deformed either

by functions of the Hilbert stress tensor or by functions of the vielbein stress tensor (3.81).

The former deformations lead to a class of modified boundary terms Lbdry(S1, S2) with the
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same properties as Lagrangians obtained by stress tensor deformations of non-chiral boson

theories. Conversely, the latter flows generate a family of boundary terms Lbdry(S, P ) with

the same structure as the Lagrangians in section 2 arising from stress tensor deformations

of chiral boson theories. We have thus described two complementary ways to view defor-

mations of Chern-Simons boundary terms by functions of the energy-momentum tensor.

These results provide a general framework for studying three-dimensional U(1) Chern-

Simons theories subject to boundary deformations. Throughout our discussion, we have

been agnostic as to the specific setting in which such Chern-Simons terms arise, but let

us briefly mention two specific applications of the formalism we have developed. One

context in which these results could be useful is when considering AdS3/CFT2 holography

with U(1) gauge fields. One could use our machinery to derive flow equations for various

observables under stress tensor deformations, just as [87] found expressions for TT -deformed

Wilson lines and loops, and [40] obtained formulas for the masses of BTZ black holes

under a boundary root-TT deformation. For instance, one could use the results of this

section to analyze the dependence of the U(1) charges of charged BTZ black holes as a

function of the deformation parameter for boundary TT or root-TT deformations. Another

possible application of these results is to study quantum Hall systems subject to boundary

deformations, which we will briefly describe in the conclusion of this paper.

4 Quantization Along Classical Flows

In this section, we will consider the quantization of a member of the general class of inter-

acting chiral boson models. We will work purely within the Floreanini-Jackiw description,

described by an action of the form (2.22), rather than in the Chern-Simons formulation

of section 3. We will also work in Lorentzian signature with spacetime coordinates (t, θ).

Although in the preceding discussion we have been agnostic as to the spacetime topol-

ogy, within this section we will assume that θ is compact and subject to the identification

θ ∼ θ + 2π. We focus on the case of a compact spatial manifold because our primary

observable of interest is the finite-volume spectrum of energy levels En, and in particular

how these energies depend on a deformation parameter along a stress tensor flow.

The most well-studied example of a stress tensor deformation for which the deformed

cylinder spectrum can be determined is the TT deformation. Under the TT flow, the energy

levels of the deformed theory obey the inviscid Burgers’ equation,

∂En
∂λ

= En
∂En
∂R

+
P 2
n

R
, (4.1)
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where R is the radius of the cylinder and En, Pn are the energy and momentum of the

eigenstate under consideration [1–3].15

This example is remarkable because the flow equation (4.1) can be proven directly at

the quantum level using the properties of the local TT operator, which is defined by

OTT (x) = lim
y→x

(
Tαβ(x)Tαβ(y)− Tαα (x)T ββ (y)

)
. (4.2)

It was demonstrated in [1] that the coincident point limit on the right side of (4.2) actually

gives rise to a well-defined local operator, up to total derivative ambiguities which can be

ignored. One can therefore prove results about a TT -deformed quantum field theory at the

quantum level using the properties of this operator; for instance, an argument involving a

certain factorization property of OTT and the interpretation of the components of the stress

tensor in terms of energy and momentum lead to the flow equation (4.1).

This is in contrast with a different method for attempting to learn about the quantum

mechanical properties of a stress tensor deformation, which we refer to as quantization along

a classical flow. In this case, one first finds the solution to a differential equation of the

form (2.1) for the Lagrangian of a deformed theory, and then attempts to quantize this

deformed Lagrangian directly.

Assuming that a given classical deformation can be rigorously defined at the quantum

level, we do not expect that quantization along the classical flow will give accurate infor-

mation about all aspects of the deformed quantum field theory. Indeed, this is already true

for the TT deformation. For instance, it can be shown that the S-matrix of a TT -deformed

quantum field theory is equal to the S-matrix of the undeformed theory multiplied by a cer-

tain momentum-dependent phase known as a CDD factor [89, 90]. However, if one studies

scattering using quantization along the classical TT flow, one finds that this CDD factor

is not reproduced unless one adds specific counter-terms which are engineered to obtain

the expected scattering behavior [18, 91, 92]. Therefore, quantization along the classical

flow is not sufficient to fully characterize the properties of the TT -deformed theory without

additional input from the quantum definition.16

Despite this, one may hope that quantization of a classical deformed Lagrangian will

still give some information about the corresponding deformation at the quantum level, at

least in particular limiting cases. For instance, the solution to the classical TT flow equation

15One can also study various generalizations of this flow for the spectrum, such as the energy levels of

tensor product theories where the factors are sequentially deformed by multiple TT flows [88].
16Another argument for this conclusion is that quantization of theories with fermions along the classical

TT flow can give different Hilbert spaces depending on which definition of the stress tensor one uses [93, 94].
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beginning from a seed theory of free scalars is the Nambu-Goto action of string theory, and

one generically expects that string theories exhibit a high-energy density of states which is

Hagedorn rather than Cardy. This predicted Hagedorn scaling agrees with an analysis of

the high-energy behavior of a TT -deformed CFT at the quantum level, which can be seen

either from the energies [3] or the partition function [95, 96]. Thus certain limiting features

of the quantum theory can still be inferred from the TT -deformed classical Lagrangian.

For other stress tensor deformations, like the root-TT flow, it is not yet known whether

one can give a rigorous definition of the deforming operator at the quantum level. Therefore,

we do not yet have any exact data about the deformed quantum theory against which to

compare results obtained by other methods. However, extrapolating from the TT case, one

might perform quantization along a classical root-TT flow in the hope that this procedure

will still give useful information in certain limits. Our goal in this section is to carry out

this quantization procedure for root-TT -deformed theories of chiral bosons and examine

the behavior of the deformed spectrum in such limiting cases.

One regime for which we have additional data about the root-TT -deformed spectrum is

the limit of a large-c holographic CFT which admits a bulk AdS3 dual. When restricting to

states for which the stress tensor is approximately constant (which are dual to BTZ black

holes), one obtains the formula (1.7) for the root-TT deformed spectrum [40]. We will see

that our analysis using quantization along the classical flow agrees with this “zero mode

formula” for states that correspond to constant stress tensor backgrounds. However, we will

also be able to probe other limits of a root-TT -deformed theory, such as a large-momentum

limit which is not close to a constant stress tensor configuration for which the zero mode

formula is expected to apply. This result may therefore give novel information about the

behavior of a putative root-TT -deformed field theory in a different regime.

4.1 Generalities on quantization

Let us now study the quantum mechanics of interacting chiral boson models such as (2.22).

This Floreanini-Jackiw form of the Lagrangian, although it is not manifestly Lorentz-

invariant, is nonetheless convenient for quantization because it is first-order in time deriva-

tives. This allows us to perform canonical quantization in a uniform way which does not

depend on the details of the interaction function V (S, P ).

We begin by reviewing some basic features of quantization of first-order systems in the

simpler setting of (0 + 1)-dimensional theories, i.e. particle mechanics.
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Quantization of first-order particle mechanics

We will first consider a collection of (0 + 1)-dimensional fields qi(t), whose time derivatives

will be denoted q̇i(t). A general first-order Lagrangian for such a system takes the form

L =
1

2
Cijqiq̇j − V (q) , (4.3)

where Cij is a non-singular constant matrix. Without loss of generality, we may assume

that Cij is antisymmetric. Indeed, if we instead split Cij = C [ij]+C(ij) into symmetric and

anti-symmetric parts, the Lagrangian would be

L =
1

2
C [ij]qiq̇j +

1

2
C(ij) d

dt
(qjqi)− V (q) , (4.4)

where the second term is a total time derivative that can be ignored.

The canonical momentum which is conjugate to qj(t) is

pj =
∂L

∂q̇j
=

1

2
Cijqi , (4.5)

and thus the Hamiltonian associated with (4.3) is

H(q, p) =
∂L

∂q̇i
q̇i − L = V (q) . (4.6)

The Hamiltonian (4.6) appears to depend only on the position variables but not on the

momenta, but this is misleading, since equation (4.5) implies that some combinations of

the qi are momenta. The Euler-Lagrange equations arising from the Lagrangian (4.3) are

Cij q̇i =
∂H

∂qj
, (4.7)

where we now use the symbols V and H interchangeably. Alternatively, by defining Cij to

be the inverse matrix (C−1)ij of C
ij, the equations of motion can be written as

q̇i = Cij
∂H

∂qj
. (4.8)

Next we consider the quantization of this model. Ordinarily, for Lagrangians which are

quadratic in time derivatives, one would impose the canonical commutation relations

[xi, pj] = iδij . (4.9)

However, imposing the relations (4.9) for a first-order system like (4.3) gives results that

differ from the correct commutation relations by a factor of 2. To arrive at the correct rela-

tions, we follow the prescription outlined in appendix A of [7], and further justified in [97],
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which is to define commutators so that the Heisenberg-picture time evolution of operators

in the quantum theory takes the same form as the classical Euler-Lagrange equations.17

In general, the Heisenberg equation of motion for an operator O reads Ȯ = i[H,O]. In
the case of the operator O = qi, we have

q̇i = i[H, qi] = i
∂H

∂qj
[qj, qi] . (4.10)

Comparing (4.10) to (4.8), we find that the two take the same form if we identify

[qi, qj] = iCij . (4.11)

As we mentioned, since pj = 1
2
Cijqi, this differs from the canonical prescription (4.9) which

would give [qi, qj] = 2iCij. The errant factor of 2 is due to the fact that, in a first-order

system, there is a constraint on the phase space.

Quantization of first-order field theories

Having reviewed the quantum mechanics of first-order (0+1)-dimensional systems, we now

turn to the quantization of first-order (1 + 1)-dimensional field theories, and in particular

the theories of chiral bosons which are the focus of this work.

As a simple example to set the stage, we will first consider a single chiral boson described

by the Floreanini-Jackiw Lagrangian (1.1) which we repeat here:

L =
1

2

(
ϕ′ϕ̇− ϕ′ϕ′

)
. (4.12)

As usual, we write ϕ̇ for the time derivative of ϕ and ϕ′ for the spatial derivative of ϕ. The

quantization of this system in infinite volume, i.e. with a spatial coordinate x ∈ R, was
first studied in [7]. In short, one can view x as a continuous generalization of the discrete

labels i, j in (4.3) and rewrite the first term as

1

2

∫
dx ∂xϕ(x, t)ϕ̇(x, t) =

1

2

∫
dx

∫
dy δ(x− y)∂xϕ(x, t)ϕ̇(y, t)

= −1

2

∫
dx

∫
dy [∂xδ(x− y)]ϕ(x, t)ϕ̇(y, t) .

(4.13)

The role of the constant antisymmetric matrix Cij in the particle mechanics example is

now played by the function

C(x− y) = −∂xδ(x− y) , (4.14)

17In conventional quantum systems with second-order Lagrangians, the fact that these two equations

should take the same form is the content of the Ehrenfest theorem. We demand that the same is true here.
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and the role of the inverse matrix Cij is played by the Green’s function of C(x− y). This
suggests that we impose the commutation relations

[ϕ(x), ϕ(y)] = − i
2
sgn(x− y) , (4.15)

which is the field theory analog of (4.11) and which matches the result in [7]. It is then

straightforward to use the above equal-time commutation relations to confirm the Heisen-

berg equations of motion are indeed equivalent to the Euler-Lagrange equations of the

Lagrangian (4.12), which describe a chiral boson:

∂O
∂t

= −i[O, H] =⇒ ϕ̇ = ϕ′ . (4.16)

Next we will study this theory in finite volume. We now replace the spatial coordinate x ∈ R
with an angular coordinate θ labeling a position on S1, and subject to the identification

θ ∼ θ + 2π. We will also assume that the target space is compact, which means that ϕ

likewise takes values in a circle so that ϕ ∼ ϕ + 2π. As we will see, the structure of this

theory on a cylinder is closely related to the particle mechanics example considered above.

First let us write the function ϕ(t, θ) using a mode expansion:

ϕ(t, θ) =
1

π
x(t) + p(t)θ +

1√
2π

∞∑

n=1

1√
n

(
an(t)e

inθ + a†n(t)e
−inθ) . (4.17)

We have included a zero-mode term x(t) in addition to a momentum contribution which is

linear in θ; the latter is permissible, despite not being periodic in θ, since both θ ∼ θ+2π and

ϕ ∼ ϕ+ 2π, so such a term is compatible with our identifications if p ∈ Z. The remaining

sum is the standard Fourier expansion of the periodic part of ϕ in the θ direction.

It is now necessary to distinguish between the Lagrangian density L and the Lagrangian

L =
∫
dθL. Substituting the mode expansion (4.17) into the Lagrangian density (4.12) and

performing the integral over the θ coordinate gives

L =

∫ 2π

0

dθL = pẋ− πp2 + i

2

( ∞∑

n=1

(ȧ†nan − ȧna†n)
)
−
(
1

2

∞∑

n=1

n(ana
†
n + a†nan)

)
, (4.18)

where we have dropped a term that is a total derivative in time. Because p is integer-

quantized, as we mentioned above, the first term describes the well-known quantum system

which is a particle on a ring. The Hilbert space is generated by states |p⟩ labeled by integer

p ∈ Z with energy Ep = πp2. The remaining terms are nothing but the familiar first-

order particle mechanics system discussed previously. To make this analogy clearer, it is
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convenient to define

a−n = a†n , (4.19)

so that the Lagrangian can be written as

L = pẋ− πp2 + i

2

( ∞∑

n=1

(ȧ−nan − ȧna−n)
)
−
(
1

2

∞∑

n=1

n(ana−n + a−nan)

)
. (4.20)

The an’s now play the role of qi’s, except the modes are labeled by n ∈ Z so the phase

space is infinite-dimensional. Comparing the two sums in the Lagrangian (4.20) with the

general form (4.3), we find that the two agree if we identify

Cn,m = i sgn(n)δn,−m . (4.21)

Therefore, when we promote the an from functions appearing in the expansion of the

classical field ϕ to quantum operators, the appropriate commutation relations (4.11) are

[an, am] = sgn(n)δn,−m . (4.22)

When expressed in terms of a†m, this is the familiar commutation relation of ladder operators:

[an, a
†
m] = δn,m . (4.23)

It is perhaps surprising that, if we had worked with the Fourier modes an of the field

ϕ from the beginning (rather than with the field ϕ itself), then imposing the standard

commutation relations (4.23) gives the correct result, without the errant factor of 2 which

we mentioned around equation (4.11) that occurs due to the phase space constraint on

first-order systems. The reason for this is that, after performing the mode expansion, the

positive Fourier modes an with n > 0 act as the position variables and the negative modes

an with n < 0 (or equivalently a†n) act as the conjugate momentum variables. Therefore, in

Fourier space, the separation between coordinates and momenta is automatic, and we need

not impose phase space constraints or consider commutation relations like (4.11) which

näıvely appear to involve two position variables.18

18See section 6.1.3 of [98] for a pedagogical review of the quantization of the chiral boson from this

momentum-space perspective, and later sections of this reference for applications to quantum Hall physics.
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The Hamiltonian obtained from the Legendre transform of the Lagrangian (4.20), writ-

ten in terms of a†n rather than a−n, is

H = πp2 +
1

2

∞∑

n=1

n(ana
†
n + a†nan)

= − 1

24
+ πp2 +

∞∑

n=1

na†nan , (4.24)

where we have used ana
†
n = a†nan + 1 and the well-known ζ-function regularization

∞∑

n=1

n = − 1

12
. (4.25)

It is straightforward to generalize the above discussion to the case of multiple chiral and

anti-chiral bosons. We work with a Lagrangian density for N chiral bosons ϕi, i = 1, . . . , n,

and N anti-chiral bosons ϕi, of the form (1.2) which we have been considering in section 2.

For simplicity we take trivial target-space metrics for the bosons, Gij = δij and Gij = δij.

The Lagrangian density for this system is then

L =
1

2

(
ϕ′
iϕ̇
i − ϕ′

i
ϕ̇i
)
− V (ϕ′

i, ϕ
′
i
) . (4.26)

We expand both the chiral and anit-chiral fields in modes as

ϕi(t, θ) =
1

π
xi(t) + pi(t)θ +

1√
2π

∞∑

n=1

1√
n

(
ai,n(t)e

inθ + a†i,n(t)e
−inθ

)
,

ϕi(t, θ) = −
1

π
xi(t) + pi(t)θ +

1√
2π

∞∑

n=1

1√
n

(
bi,n(t)e

−inθ + b†
i,n
(t)einθ

)
.

(4.27)

The non-zero commutation relations between the various expansion coefficients are

[xi, pj] = iδij, [xi, pj] = iδij, [ai,n, a
†
j,m] = δijδnm, [bi,n, b

†
j,m

] = δijδnm , (4.28)

with all other commutators vanishing.

Note that here we take all ϕi and ϕi to be compact with radius 2π. Therefore, the

eigenvalues of pj and pj must be integers. The Hamiltonian is given by

H =

∫ 2π

0

dθ V (ϕ′
i, ϕ

′
j
) . (4.29)

The commutation relations (4.28) allow us to build the Hilbert space of the quantum theory

for any potential V . In the next subsection, we will use this to study the spectrum of the

“Modified Scalar” theory, that is, the theory obtained by applying a root-TT deformation

to a seed theory of free chiral and anti-chiral bosons.
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4.2 Root-TT -deformed spectrum

We will now use the formalism reviewed in section 4.1 to study root-TT -deformed free boson

theories. In principle, this can be done for any numbers (N,N) of chiral and anti-chiral

bosons, respectively. However, there is a sharp distinction between the case N = N = 1,

for which the deformation is comparatively simple and can be interpreted as a re-scaling

of the target space radius for the boson, and all other cases with N ≥ 1 and N ≥ 1,

where the deformation is more non-trivial.19 We will therefore first discuss the simpler

case N = N = 1 in detail, and then as an illustrative example of the latter class, we will

study the example with N = 2 and N = 1. We expect that the qualitative features of the

deformed (N,N) = (2, 1) model will be similar to those of theories with larger N and N .

One compact boson

Let us begin by studying the root-TT deformation of a single (non-chiral) c = 1 compact

boson, or equivalently, a pair of N = 1 left-moving and N = 1 right-moving chiral bosons.

It was already mentioned in the initial work [38] that, in this case, the root-TT flow simply

rescales the kinetic term for the boson, which corresponds to a change in the radius if the

scalar is compact. We will revisit this claim by describing the deformed model in terms of

chiral bosons and determining the quantum spectrum exactly to confirm that the root-TT

deformation of a compact boson is just a change of radius.

This formalism also provides a way to realize a compact boson at an arbitrary radius –

even at irrational points where the theory does not factorize into the chiral part and anti-

chiral part – using a Lagrangian for one chiral and one anti-chiral boson with a quadratic

mixing term. Furthermore, treating this example in detail will allow us to test the “zero

mode formula” given in equation (1.7) that is expected, due to evidence from holography

[40], to describe the energies of states in root-TT -deformed CFTs for which the energy-

momentum tensor is constant in space. We will see explicitly that this zero mode formula

fails to give the energies of deformed states for which this assumption is violated.

The Lagrangian for a root-TT -deformed seed theory of one left-moving and one right-

moving chiral boson takes the form (1.2) with an interaction function V (S, P, γ) given by

the λ→ 0 limit of equation (2.40). To be pedantic, the resulting Lagrangian is technically

L(γ) =
1

2

(
ϕ′ϕ̇− ϕ′ϕ̇

)
− cosh(γ)

2

(
ϕ′2 + ϕ′2)− sinh(γ)

√
(ϕ′)2

(
ϕ′
)2
. (4.30)

19Note that, if either N = 0 or N = 0, then the theory is a fixed point of stress tensor flows so the

root-TT deformation is trivial.
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That is, because ϕ′ and ϕ̇ can take both positive and negative values the final term is

really proportional to |ϕ′| · |ϕ′|. However, we will ignore this subtlety and simply replace√
(ϕ′)2

(
ϕ′
)2

with ϕ′ϕ′. This can be justified, for instance, by restricting attention to small

fluctuations of the fields around a background for which the gradients are large and positive,

so that both ϕ′ and ϕ′ have fixed positive sign. This corresponds to a solution with large

positive values of pi and pi in the expansion of equation (4.27). We will take a similar

large-momentum limit in the analysis with several bosons below, again resolving the square

root, which is more non-trivial in that setting because of an additional term under the root.

After making this simplification, the Lagrangian we wish to study becomes

L(γ) =
1

2

(
ϕ′ϕ̇− ϕ′ϕ̇

)
− cosh(γ)

2

(
ϕ′2 + ϕ′2)− sinh(γ)ϕ′ϕ′ . (4.31)

As discussed previously, the Hilbert space factorizes into two parts: the particles on a

ring and the infinite tower of harmonic oscillators. Due to the special form of (4.31), the

Hamiltonian does not mix the two parts. Therefore, we can study them separately.

Let us first consider the sector of the Hilbert space which describes the particles on a

ring. We write the states in this Hilbert space as |p, p⟩, which are labeled by two quantized

momenta p, p ∈ Z. The corresponding Hamiltonian and the momentum operator are

H
(γ)
PR = π(p2 + p2) cosh(γ) + 2πpp sinh(γ) , P

(γ)
PR = π(p2 − p2) = P

(0)
PR , (4.32)

where we use the subscript PR to denote particles on a ring.

Because the corresponding undeformed states at γ = 0 have energies

H
(0)
PR = π(p2 + p2) , (4.33)

we see that the prediction for the deformed energies from the zero mode formula (1.7) is

E
(γ)
PR = H

(0)
PR cosh(γ) +

√(
H

(0)
PR

)2
−
(
P

(0)
PR

)2
sinh(γ)

= π(p2 + p2) cosh(γ) +

√
(π(p2 + p2))

2 − (π(p2 − p2))2 sinh(γ)
= π(p2 + p2) cosh(γ) + 2πpp sinh(γ) , (4.34)

which indeed agrees with the true deformed energies H
(γ)
PR of equation (4.32), subject to the

usual caveat that we have used the assumption
√
p2p2 = pp.

It is not too surprising that these states have deformed energies which agree with the

zero-mode formula, since the corresponding saddle points have constant stress-energy ten-

sors, and this is the assumption under which the formula (1.7) was derived in holography.
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To see this explicitly, we look for solutions to the equations of motion associated with

the deformed Lagrangian L(γ) in equation (4.31), which are

ϕ̇′ − ϕ′′ cosh(γ)− ϕ′′ sinh(γ) = 0 , ϕ̇′ + ϕ′′ cosh(γ) + ϕ′′ sinh(γ) = 0 . (4.35)

One can integrate these equations with respect to the spatial coordinate θ, up to an unde-

termined integration constant h(t) which is an arbitrary function of t. As in the discussion

around equation (2.18), one can always set h(t) = 0 by a gauge transformation. Specializing

to this h = 0 gauge, the equations of motion become

ϕ̇− ϕ′ cosh(γ)− ϕ′ sinh(γ) = 0, ϕ̇+ ϕ′ cosh(γ) + ϕ′ sinh(γ) = 0 . (4.36)

We wish to solve the equations of motion (4.36) subject to the boundary conditions

ϕ(θ + 2π, t)− ϕ(θ, t) = 2πp , ϕ(θ + 2π, t)− ϕ(θ, t) = 2πp , (4.37)

where p, p ∈ Z. The desired solutions with such periodic boundary conditions are

ϕ(γ)
p = pθ + (p cosh(γ) + p sinh(γ)) t , ϕ

(γ)
p = pθ − (p cosh(γ) + p sinh(γ)) t . (4.38)

Since these solutions ϕ
(γ)
p and ϕ

(γ)
p depend on t, θ linearly, the corresponding stress-energy

tensor is constant. Therefore, it is reasonable that the energies of these states are indeed

governed by the energy formula derived via AdS3/CFT2 holography for constant stress

tensor backgrounds, as we found around equation (4.34).20

We would also like to point out that the energies of these states agree with the energies of

momentum states for a compact boson with a different radius. To see this, it is convenient

to change variables as

w =
√
π (p+ p̄) , w̄ =

√
π (p− p̄) , R = exp

(
−γ
2

)
, (4.39)

so that the deformed Hamiltonian (4.32) can be written as

H
(γ)
PR =

1

2

(
w2

R2
+R2w̄2

)
. (4.40)

This supports the claim that the root-TT deformation, in this case, corresponds to a rescal-

ing of the target-space radius for the compact boson. However, to verify this conclusion,

20Strictly speaking, the derivation of this zero mode formula also assumes that the boundary theory is a

large-c holographic CFT for which we can trust semiclassical bulk gravity. However, this assumption does

not seem strictly necessary for the zero mode formula to hold, since the theory we study here has c = 1.
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we should also study the effect of the deformation in the other sector of the Hilbert space,

which describes an infinite tower of harmonic oscillators.

We turn to this task now. Expanding the field ϕ and ϕ as in (4.27), we find the

Hamiltonian operator and the momentum operator for this oscillator sector are given by

H
(γ)
OS =

∞∑

n=1

n(a†nan + b†nbn) cosh(γ) +
∞∑

n=1

n(a†nb
†
n + anbn) sinh(γ)−

1

12
cosh(γ) ,

P
(γ)
OS =

∞∑

n=1

n(a†nan − b†nbn) ,
(4.41)

where we have performed normal ordering as before and where OS stands for oscillators.

This Hamiltonian has exactly the same spectrum as its undeformed counterpart, which can

be made manifest by the following Bogoliubov transformation:

an = ãn cosh
(γ
2

)
− b̃†n sinh

(γ
2

)
, bn = b̃n cosh

(γ
2

)
− ã†n sinh

(γ
2

)
. (4.42)

We note that this has the same structure as the change of variables which diagonalized

the mixing term between the two Chern-Simons gauge fields in equation (3.62). This

transformation preserves the commutation relation, i.e.

[ãn, ã
†
n] = [b̃n, b̃

†
n] = 1 . (4.43)

In terms of the new oscillators, the Hamiltonian then reduces to the undeformed one,

H
(γ)
OS = − 1

12
+

∞∑

n=1

n
(
ã†nãn + b̃†nb̃n

)
, (4.44)

while the momentum operator is unchanged,

P
(γ)
OS =

∞∑

n=1

n
(
ã†nãn − b̃†nb̃n

)
. (4.45)

Hence, we conclude that the energies in the oscillator sector of the Hilbert space do not

flow under the root-TT deformation. This agrees with the effect of changing the radius for

a compact boson, which likewise does not change the energies of oscillator excitations.

Therefore, combining this result with the flow of H
(γ)
PR, we conclude that indeed the

root-TT deformation corresponds to a change of radius for a single compact boson.

We have also verified that the zero-mode energy formula (1.7) proposed in [40] does not

apply to generic states in a root-TT -deformed CFT. For instance, any state with p = p = 0

but with oscillator excitations will have an energy that is unchanged by the root-TT flow,
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whereas the formula (1.7) would predict that the energy flows with γ. This is because such

oscillator states have non-constant stress tensors and therefore violate the assumptions

under which the zero-mode formula was derived. However, we reiterate that the states

which do have constant stress tensors – namely, states with general p and p but no oscillator

excitations – indeed have energies which flow according to the zero mode formula.

Multiple compact bosons

Next we aim to study the spectrum for the theory of root-TT -deformed free bosons when

there are more fields, rather than just a single left-mover and a single right-mover. All

of these cases are qualitatively similar, in the sense that the argument of the square root

appearing in the Lagrangian is no longer a perfect square, and thus cannot be resolved to

a simple product of fields as in the N = N = 1 case above. For simplicity, we will therefore

focus on the first non-trivial case, which has N = 2 left-movers and N = 1 right-movers

(the case with N = 1 and N = 2 is identical, after exchanging chiral and anti-chiral fields).

The Hamiltonian for the deformed (N,N) = (2, 1) theory is

H(γ) =

∫
dθ

[
1

2

(
ϕ′2
1 + ϕ′2

2 + ϕ′2
1

)
cosh(γ) +

√
ϕ′2
1 + ϕ′2

2 ϕ
′
1 sinh(γ)

]
. (4.46)

To resolve the square root, our strategy will be to expand in large positive momenta and

compute the energies perturbatively. The mode expansion for the fields takes the form

ϕj = pjθ+
1√
2π

∞∑

n=1

1√
n

(
aj,ne

inθ + a†j,ne
−inθ

)
, ϕ1 = p1θ+

1√
2π

∞∑

n=1

1√
n

(
b†1,ne

inθ + b1,ne
−inθ

)
,

(4.47)

where j = 1, 2 and periodicity requires p1, p1, p2 ∈ Z. Substituting the expansion (4.47)

into our Hamiltonian (4.46) and expanding in large p1 and p1, to leading order we find

H(γ) =

(
π(p21 + p22 + p̄21)−

1

8
+

∞∑

n=1

n
(
N1,n +N2,n + N̄1,n

)
)
cosh(γ)

+

(
2πp1p̄1 +

∞∑

n=1

n
(
a1,nb1,n + a†1,nb

†
1,n

))
sinh(γ) + · · · ,

(4.48)

where Ni,n = a†i,nai,n and N1,n = b†1,nb1,n are number operators at level n for left- and

right-movers respectively.

We would now like to compare the spectrum of the true large-momentum Hamiltonian

(4.48) to the zero-mode formula (1.7) predicted from holography for states with constant
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stress tensors. The undeformed Hamiltonian and momentum are

H(0) = π
(
p21 + p22 + p21

)
− 1

8
+

∞∑

n=1

n
(
N1,n +N2,n + N̄1,n

)
,

P (0) = π
(
p21 + p22 − p21

)
− 1

24
+

∞∑

n=1

n
(
N1,n +N2,n − N̄1,n

)
.

(4.49)

Let us restrict to an eigenstate of both the momentum operators p1, p2, p1 and the number

operators N1,n, N2,n, N1,n, in the undeformed theory. The energy and momentum of such

a state are also given by the expressions (4.49), if we simply re-interpret each symbol

representing an operator as instead representing the corresponding eigenvalue.21

Substituting the energy and momentum eigenvalues for this state into the zero-mode

formula (1.7) then gives a predicted value for a deformed energy:

E
(γ)
zero mode =

(
π
(
p21 + p22 + p̄21

)
− 1

8
+

∞∑

n=1

n
(
N1,n +N2,n + N̄1,n

)
)
cosh(γ)

+ 2πp1p̄1 sinh(γ) + · · · . (4.50)

We should stress that equation (1.7) is a prediction for the deformed spectrum and not for

the deformed eigenstates. Therefore, even if equation (4.50) were correct, this would simply

mean that there exists some state in the deformed theory whose energy is E
(γ)
zero mode.

However, with this caveat aside, it is now easy to see why the formula (4.50) is incorrect,

and what effect it fails to take into account. Were it not for the final term in the true

Hamiltonian (4.48), which involves
∑∞

n=1 n
(
a1,nb1,n + a†1,nb

†
1,n

)
, then any eigenstate of the

undeformed theory would remain an eigenstate of the deformed theory at this order in

the momentum expansion, and its energy would indeed be given by (4.50). This is simply

because the first several terms of the true Hamiltonian (4.48) agree with the zero-mode

prediction (4.50), after replacing operators with their eigenvalues. However, the presence of

this final term in (4.48) means that an eigenstate of the undeformed Hamiltonian will not

remain an eigenstate in the deformed theory, since terms like a1,nb1,n will mix such a state

into other states with different oscillator numbers. We conclude that the zero-mode energy

formula (4.50) is not correct for the deformed spectrum, even in this large-momentum limit.

21We have chosen not to denote operators by decorating them with hats, which would distinguish between

operators N̂1 and their corresponding eigenvalues N1, to avoid cluttering the formulas.
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Possible interpretation of root-TT deformation for higher N , N

We have seen that, in the special case N = N = 1, the root-TT deformations of chiral

bosons admits a simple interpretation as a rescaling of the target-space radius. This can

also be understood from the observation that, for this case, the oscillator sector of the

deformed theory is equivalent to that of the undeformed theory due to the Bogoliubov

transformation (4.42). To conclude this section, we would like to make some speculative

remarks about possible generalizations of this interpretation to cases with higher N and N ,

which seem considerably more complicated.

First let us point out that, for the case (N,N) = (1, 1), the Bogoliubov transformation

which returns the oscillator sector of the root-TT deformed theory to its undeformed form

also has an analog at the level of the Lagrangian and Hamiltonian densities. Indeed, for

the quadratic theory (4.31), one can write the Lagrangian and Hamiltonian densities as

L =
1

2

(
Φ′Φ̇− Φ′Φ̇

)
− 1

2

(
Φ′2 + Φ′2) ,

H =
1

2

(
Φ′2 + Φ′2) ,

(4.51)

where we have made a field redefinition
(

Φ

Φ

)
=

(
cosh

(
γ
2

)
sinh

(
γ
2

)

sinh γ
2

cosh
(
γ
2

)
)(

ϕ

ϕ

)
,

(
ϕ

ϕ

)
=

(
cosh

(
γ
2

)
− sinh

(
γ
2

)

− sinh
(
γ
2

)
cosh

(
γ
2

)
)(

Φ

Φ

)
.

(4.52)

The deformed equations of motion, written in terms of the new fields Φ and Φ, are

Φ′′ = Φ̇′, Φ′′ = −Φ̇
′
, (4.53)

which take the same form as those in the undeformed theory. Again, this is analogous to

the field redefinition (3.62) in the Chern-Simons setting, which undoes a similar quadratic

mixing between the barred and unbarred fields induced by a JJ deformation.

Next let us consider how this observation might extend to multiple bosons. We focus on

the case of N = N for simplicity. The deformed Hamiltonian density for an equal number

of left- and right-moving chiral bosons is

H(µ) =
1

2

(
ϕ′
jϕ

′
j + ϕ′

j
ϕ′
j

)
cosh(γ) +

√
ϕ′
jϕ

′
jϕ

′
j
ϕ′
j
sinh(γ) . (4.54)

We now ask whether some more complicated field redefinition might return this Hamiltonian

to a quadratic one, as in the case of (4.51). When N = N = 2, at least formally, one
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can attempt to perform a change of variables that resembles a transformation to polar

coordinates in a 2d target space:

(
ϕ′
1(θ, t)

ϕ′
2(θ, t)

)
=

(
r′(θ, t) cos (Θ′(θ, t))

r′(θ, t) sin (Θ′(θ, t))

)
,

(
ϕ′
1(θ, t)

ϕ′
2(θ, t)

)
=

(
r′(θ, t) cos

(
Θ′(θ, t)

)

r′(θ, t) sin
(
Θ′(θ, t)

)
)
.

(4.55)

Here we interpret Θ′(θ, t) and r′(θ, t) as spatial derivatives of new fields which depend on

the derivatives ϕ′(θ, t) in a nonlinear way. In terms of these quantities, the Hamiltonian

density (4.54) with N = N = 2 takes the form

H(µ) =
1

2

(
ϕ′2
1 + ϕ′2

2 + ϕ′2
1 + ϕ′2

2

)
cosh (γ) +

√
(ϕ′2

1 + ϕ′2
2 )
(
ϕ′2
1 + ϕ′2

2

)
sinh (γ)

=
1

2

(
r′2 + r′2

)
cosh (γ) + r′r′ sinh (γ) ,

(4.56)

where we assumed r′r′ > 0 in order to simplify the square root. Now we perform a second

field redefinition, just as in (4.52), to a new field ρ:

(
r(θ, t)

r(θ, t)

)
=

(
cosh

(
γ
2

)
− sinh

(
γ
2

)

− sinh
(
γ
2

)
cosh

(
γ
2

)
)(

ρ(θ, t)

ρ(θ, t)

)
. (4.57)

Expressing the Hamiltonian density (4.56) in terms of the ρ variables rather than the r

variables, we conclude

H(µ) =
1

2

(
ρ′2 + ρ′2

)
. (4.58)

Therefore, again at a formal classical level, it appears that this series of field redefinitions

has returned the Hamiltonian density to that of the free theory. Furthermore, the latter

change of variables (4.57) can be interpreted as rescaling the overall target space radius r,

much as in the (N,N) = (1, 1) case. For a larger number of bosons N = N > 2, one can

perform a similar series of manipulations using higher-dimensional spherical coordinates.

Several technical issues preclude us from taking this series of field redefinitions seriously,

at least without further investigation. First, the change of variables (4.55) was at the level

of derivatives of the fields, and it is not clear that this corresponds to a sensible change

of variables for the fields themselves. Second, all of these manipulations have been purely

classical, and it is not guaranteed that one could make sense of these field redefinitions

within a path integral (which would produce Jacobian factors from each change of variables).

And third, we have not been careful about the identifications that each field is subject to.

For instance, if indeed the field Θ can be interpreted as a target-space angle in polar

coordinates, then it should be subject to the identification Θ ∼ Θ+ 2π.
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Nonetheless, it would be very interesting if an argument of this form could be used

to endow the root-TT deformation of N chiral and anti-chiral bosons with a geometrical

target-space interpretation.

5 Perturbative Quantization Using Background Field Method

In the preceding sections, we have considered interacting theories with arbitrary numbers

N,N of chiral and anti-chiral bosons, respectively, and sacrificed manifest Lorentz invari-

ance in order to use a first-order formulation which is convenient for canonical quantization.

In the special case N = N , however, we also have the option of assembling the field content

of our theory into N non-chiral bosons by summing the left-movers and right-movers:

φi =
1√
2

(
ϕi + ϕi

)
. (5.1)

Here we now use the same index i = 1, . . . , N for both the chiral and anti-chiral fields, rather

than distinct indices i and i. As this change of variables is merely a field redefinition, stress

tensor deformations of such a theory of N bosons must be equivalent, regardless of whether

the theory is presented in terms of left-movers and right-movers ϕi, ϕi, or in terms of their

non-chiral counterparts φi. Indeed, for the case of the TT deformation of a free seed theory,

this equivalence was checked explicitly in [86].

In this section, we will provide a complementary analysis of the perturbative quanti-

zation of the Modified Scalar theory using this presentation in terms of non-chiral fields

φi. For concreteness, we will focus on the case where both the fields φi and the Lorentzian

spacetime coordinates (t, x) are non-compact, and we will use middle Greek letters like µ, ν

(rather than early Greek letters like α, β, which were used in sections 2 and 3) for spacetime

indices in this section. We will write gµν for the (Minkowski) spacetime metric.

In terms of the non-chiral fields φi, the Lagrangian for the Modified Scalar theory can

be written in the manifestly Lorentz-invariant form

L =
1

2

(
cosh (γ) ∂µφ

i∂µφi + sinh (γ)

√
2 (∂µφi∂νφi) (∂νφj∂µφj)− (∂µφi∂µφi)

2

)
. (5.2)

The advantage of this representation is that one can more easily apply standard diagram-

matic techniques to compute loop corrections in the quantum theory. Of course, the second

term in the Lagrangian (5.2) is still non-analytic around the vacuum of the theory, or

around any field configuration for which

∂µφ
i = 0 . (5.3)
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We will circumvent this issue by working in a background field expansion around a field

configuration φi for the scalars which we assume has non-zero gradients and which satisfies

the classical equations of motion for the theory, but which is otherwise arbitrary.

5.1 Background field expansion and Feynman rules

Throughout this section, we will use the notation

φi = Ci +Qi , (5.4)

where Ci is a classical (background) field configuration around which we perform our ex-

pansion, and Qi is a quantum field which is allowed to fluctuate within the path integral.

This classical background Ci is the analog of the large-momentum configuration around

which we performed our expansion in section 4.2. Our goal will be to investigate the terms

which contribute to the quantum effective action, as a function of the background Ci.

To avoid cluttering the formulas, it will also be convenient to adopt the following short-

hand for spacetime derivatives of the various fields:

φ i
µ = ∂µφ

i , C i
µ = ∂µC

i , Q i
µ = ∂µQ

i . (5.5)

In our analysis of chiral boson theories, we introduced two useful quantities S and P in

equation (2.34) which were independent combinations of derivatives of the scalar fields. In

the present non-chiral analysis, let us similarly introduce the quantities

S = φ i
µ φ

µi , P 2 = φ i
µ φ

νiφ j
ν φ

µj . (5.6)

We note that these are not the precise analogs of S and P in the chiral setting; for instance,

the role of the combination S2 − P 2 in section 2 is now played by 2P 2 − S2. Therefore, in

terms of these quantities (5.6), the Modified Scalar Lagrangian (5.2) can be written as

L =
1

2

(
cosh(γ)S + sinh(γ)

√
2P 2 − S2

)
. (5.7)

We decompose S into a classical piece SC and a quantum piece SQ, along with a cross term:

S =
(
C i
µ +Q i

µ

) (
Cµi +Qµi

)

= C i
µ C

µi

︸ ︷︷ ︸
SC

+2C i
µ Q

µi +Q i
µ Q

µi

︸ ︷︷ ︸
SQ

. (5.8)

Next we will consider the splitting of S2 and P 2 into classical and quantum pieces.

Because we assume that the field configuration Ci is a solution to the classical equations of

62



motion, by definition the action is stationary to linear order when expanding around such a

solution. This means that the effective action cannot contain any terms which are linear in

the fluctuation field Qi, because the sum of all such contributions must conspire to form an

on-shell total derivative. We will therefore label all terms linear in Qµi as “on-shell deriv.”

and ignore them in what follows, although with the caveat that individual terms of this

form need not separately drop out; we are only guaranteed that the combined effect of all

such terms is to form an on-shell total derivative.

With this in mind, the quantity S2 can be expanded as

S2 = S2
C + 4SCC

i
µ Q

µi

︸ ︷︷ ︸
on-shell deriv.

+2SCSQ + 4C i
µ Q

µiC j
ν Q

νj + 4SQC
i

µ Q
µi

︸ ︷︷ ︸
O(Q3)

+ S2
Q︸︷︷︸

O(Q4)

≃ S2
C + 2SCSQ + 4C i

µ Q
µiC j

ν Q
νj , (5.9)

where the symbol ≃ means equal modulo all terms that are either linear in Qi (which will

form on-shell total derivatives) or that are of cubic order or higher in Qi (which do not

contribute to the one loop effective action). A similar computation for P 2 gives

P 2 = C i
µ C

µjC i
ν C

νj + 4C i
µ C

µjCνiQ j
ν︸ ︷︷ ︸

on-shell deriv.

+2C i
µ C

νiQ j
ν Q

µj + 2Q i
µ C

νiQ j
ν C

µj

+ 2Q i
µ C

νiC j
ν Q

µj +O
(
Q3
)

≃ C i
µ C

µjC i
ν C

νj + 2C i
µ C

νiQ j
ν Q

µj + 2Q i
µ C

νiQ j
ν C

µj + 2Q i
µ C

νiC j
ν Q

µj . (5.10)

Therefore, the combination 2P 2 − S2 under the square root in (5.7) has an expansion

2P 2 − S2 ≃ 2P 2
C − S2

C − 2SCSQ − 4C i
µ Q

µiC j
ν Q

νj + 4C i
µ C

νiQ j
ν Q

µj + 4Q i
µ C

νiQ j
ν C

µj

+ 4Q i
µ C

νiC j
ν Q

µj

≡ 2P 2
C − S2

C + 2Q1 . (5.11)

Here we introduce the shorthand Q1 which is proportional to the correction to the classical

part of (5.11) up to quadratic order in fluctuations,

Q1 = −SCSQ − 2C i
µ Q

µiC j
ν Q

νj + 2C i
µ C

νiQ j
ν Q

µj + 2Q i
µ C

νiQ j
ν C

µj + 2Q i
µ C

νiC j
ν Q

µj ,

(5.12)

which is not to be confused with Qi or Q i
µ = ∂µQ

i. Let us also define Q2 ≃ Q2
1 to be the

square of this quantity, retaining terms only up to second order in Qi, so that

Q2 = S2
CC

i
µ Q

µiC j
ν Q

νj − 8SCC
i

µ Q
µiC j

ν C
νkCρjQ k

ρ + 16
(
C j
ν C

νkCρjQ k
ρ

)2
. (5.13)
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In terms of these combinations, we can expand the square root appearing in (5.7) as

√
2P 2 − S2 ≃

√
2P 2

C − S2
C +

Q1√
2P 2

C − S2
C

− Q2

2 (2P 2
C − S2

C)
3/2

. (5.14)

Finally, we can express the Modified Scalar Lagrangian expanded to quadratic order in

fluctuations around a given classical solution as

L ≃ LC +
1

2

(
cosh(γ)SQ + sinh(γ)

(
Q1√

2P 2
C − S2

C

− Q2

2 (2P 2
C − S2

C)
3/2

))
, (5.15)

where LC represents the Lagrangian evaluated on the background solution Ci, i.e.

LC ≡
cosh(γ)

2
SC +

sinh(γ)

2

√
2P 2

C − S2
C . (5.16)

It is also convenient to write the Lagrangian for the quantum field Qi in terms of a bilinear

form. Defining the tensor

P ij
µν = −

(−SCgµνδij − 2C i
µ C

j
ν + 2C k

µ C k
ν δ

ij + 2C j
µ C

i
ν + 2C i

ρ C
ρjgµν

2
√
2P 2

C − S2
C

− S2
CC

i
µ C

j
ν − 8SCC

i
µ C

k
ρ C

ρjC k
ν + 16C k

ρ C
ρiC k

µ C m
τ CτjC m

ν

4 (2P 2
C − S2

C)
3
2

)
, (5.17)

we can write the Lagrangian LQ for the fluctuating field as

LQ = Qµi

(
cosh(γ)

2
gµνδ

ij + sinh(γ)Pµν
ij

)
Qνj , (5.18)

or after integrating by parts to move the derivative acting on Qµi = ∂µQi, as

LQ = −Qi

(
cosh(γ)

2
δij∂2 + sinh(γ)

(
∂µP ij

µν

)
∂ν + sinh(γ)P ij

µν ∂µ∂ν
)
Qj . (5.19)

The first term in (5.19) is proportional to a conventional free kinetic term for the fields

Qi. The second and third terms, involving P ij
µν and its derivative, encode the interactions

which are induced by expanding around the classical field configuration Ci.

Feynman rules

Now that we have obtained the Lagrangian (5.19), we may read off the Feynman rules

which we will need for computing diagrams. The propagator for the quantum field is

Dij = − i

cosh(γ)

δij

k2
. (5.20)

64



Next we must work out the vertex associated to the interaction between Qi and the clas-

sical field via the combination P mn
µν . We will draw quantum fields as solid lines and the

cumulative effect of the background fields as a single coiled line. Consider the trivalent

interaction between a field Qi with momentum p, a field Qj with momentum q, and an

insertion of the background P mn
µν with momentum r. This vertex can be visualized as

r =− p− q

i, p

j, q

µ, ν; m, n

. (5.21)

Let the vertex factor for this interaction be gij.
22 There are four ways that we can get a

contribution to this factor from the Lagrangian (5.19). First, there is a piece arising from

the term sinh(γ)
(
∂µP mn

µν

)
∂ν when m = j and n = i, which gives a term proportional to

rµqν because of the first derivative ∂µ acting on P mn
µν and the second derivative ∂ν acting

on Qj. There is another term of the same form when m = i and n = j. Then there are

two more contributions from the term sinh(γ)P mn
µν ∂µ∂ν , when either m = j and n = i,

or when m = i and n = j, which both come with a factor of qµqν from the two derivatives

acting on Qj. Altogether, the value of this vertex is

gij = i sinh(γ)
(
δmjδniPmn

µν r
µqν + δmiδnjPmn

µν r
µqν + δmjδniPmn

µν q
µqν + δmiδnjPmn

µν q
µqν
)

= −i sinh(γ)
(
δmjδniPmn

µν p
µqν + δmiδnjPmn

µν p
µqν
)

= −i sinh(γ)
(
P ij
µν + P ji

µν

)
pµqν , (5.22)

where in the second step we have used rµ = −qµ−pµ to cancel terms. This gives the desired

value of the trivalent vertex gij between Q
i, Qj, and the classical background. However, in

the calculations that follow, it will be convenient to factor out the dependence on Pmn
µν and

use an “uncontracted” vertex factor g̃ defined by

gij = Pmn
µν

(
g̃mnij

)µν
,

(
g̃mnij

)µν
= −i sinh(γ)

(
δmjδnipµqν + δmiδnjpµqν

)
. (5.23)

22The vertex factor gij should not be confused with the target-space metric Gij(ϕ) for the bosons which

appears in equation (2.49). We also note that the value r of the classical field momentum must be integrated

over in this trivalent interaction, but we do not include this integral in the expression (5.22) for gij .
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Let us emphasize that
(
g̃mnij

)µν
is not the full value of the interaction vertex, but rather

a useful intermediate quantity which has removed all factors of Pmn
µν . After computing

Feynman diagrams using “uncontracted” vertices g̃, we must contract the final result with

one factor of Pmn
µν for each vertex in order to recover the true value of the diagram.

5.2 Quantum effective action

We are now ready to compute the leading quantum corrections to the Modified Scalar

Lagrangian. Most of our discussion will focus on the one-loop effective action, defined by

the first term beyond the classical contribution in the expansion

Γ[Ci] = S[Ci] +
i

2
Tr


log

(
δ2S

δφi δφj

) ∣∣∣∣∣
φk=Ck


+ · · · . (5.24)

Although we are primarily interested in the one-loop contribution to Γ, we will also present

some partial results concerning corrections at higher loop order.

There are several techniques for computing the one-loop effective action Γ. One way is

to use heat kernel methods; we will not pursue this strategy here, but we refer the reader

to the thesis [61] for a discussion of this approach in the related context of the 4d Mod-

Max theory. Rather, we will compute contributions to the effective action perturbatively,

using the Feynman rules derived in the preceding subsection. This amount to a diagram-

matic evaluation of the one-loop determinant of the operator δ2S
δφi δφj , which is the operator

appearing in LQ that we have computed in equation (5.19).

In particular, our goal is to evaluate divergent Feynman diagrams in the Modified Scalar

theory using dimensional regularization, as a function of the background configuration Ci.

Each such divergent contribution necessitates the addition of an appropriate counterterm to

cancel the divergence. The collection of all such counterterms which must be added to the

classical Lagrangian therefore reproduces the additional terms that appear in the quantum

effective action, giving a characterization of the corrections in the expansion (5.24).

Constant background, one-loop diagrams

Let us begin by considering the simpler case in which the background field configuration

Ci is linear in the spacetime coordinates, which means that the classical field has constant

gradients. That is, we assume that C i
µ = ∂µC

i is constant for such backgrounds, so that

∂µC
i

ν = 0 for all µ, ν, i. In this case, no momentum can flow through the classical fields in

the interaction vertex (5.21), which implies that r = 0 and thus p = −q.
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To obtain the one-loop effective action Γ, we must evaluate all Feynman diagrams built

from the quantum field propagator and interaction vertex (5.21) which contain at most one

loop. This corresponds to an infinite series of diagrams given by

Γ = + + + · · · . (5.25)

Let Dn represent the value of the diagram in the series (5.25) which has n insertions of the

classical background. The first diagram in this infinite series is

D1 =

`

p

µ, ν;m, n

. (5.26)

Following the comments around equation (5.23), we will evaluate this diagram – and the

others in this section – by using the Feynman rule associated with the uncontracted vertex

factor g̃, and then contracting with Pmn
µν . Doing this and simplifying the resulting sum of

Kronecker delta functions using symmetry, one finds

D1 = Pmn
µν sinh(γ)δimδjn

∫
ddℓ

(2π)d
(2iℓµℓν)Dij . (5.27)

A term in the integrand which is proportional to ℓµℓν will produce a result which scales like

ℓ2 and which is a symmetric tensor in µ and ν. The only constant symmetric 2-tensor in the

problem is the spacetime metric gµν , so the integral of such a term must be proportional

to ℓ2gµν . By taking the trace, one can fix the dimensionless constant to be 1
d
. Thus, within

the integral, we can make the replacement

ℓµℓν → 1

d
ℓ2gµν . (5.28)

Using this replacement and the propagator (5.20), we find

D1 = −
2 tanh(γ)

d
Pmn
µν δ

mn

∫
ddℓ

(2π)d
gµν . (5.29)
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The integrand is now independent of ℓ. Although this integral diverges as Λd with a näıve

cutoff at momentum Λ, within dimensional regularization it is exactly zero [99].

This result relies only on the momentum dependence of the integral. However, note that

the insertions of additional vertices appearing in the higher one-loop diagrams Dn will not

change the momentum dependence of the integral. In general, we will have n propagators

Dij of the form (5.20), each of which is proportional to 1
ℓ2
, and n copies of the vertex factor

(5.23). Because the vertex factor contains products of momenta like ℓµℓν , the integrand of

Dn will involve a product of 2nmomenta. We can replace such factors using a generalization

of the argument which led to the replacement rule (5.28). That is, any integral involving

a totally symmetric product of 2n momenta must yield a result which is proportional to

ℓ2n multiplied by a totally symmetrized combination of n metric tensors, since the metric

is the only symmetric tensor in the problem. This leads to the replacement

n∏

i=1

ℓµ2i−1ℓµ2i → ℓ2n (d− 2)!!

(d− 2 + 2n)!!
g(µ1µ2 · · · gµ2n−1µ2n) , (5.30)

where we have used the double factorial n!! = n · (n − 2) . . . 4 · 2. We thus find an overall

factor of ℓ2n from the vertex factors, in addition to a compensating factor of 1
ℓ2n

from the n

copies of the propagator, each of which scales like 1
ℓ2
. Note that all of these momenta are

equal due to momentum conservation around the loop, as we assumed that no momentum

can be carried by the classical fields, so the powers of loop momentum precisely cancel.

Therefore, every diagram Dn involves an integrand which is independent of momentum,

and thus vanishes in dimensional regularization just as D1 does.

We conclude that the perturbative one-loop effective action Γ[Ci], with constant back-

ground field strength C i
µ , vanishes in dimensional regularization. This implies that under

these assumptions, there are no 1-loop corrections to the classical theory.

Constant background, multi-loop diagrams

Proceeding to higher loops, more vertices in the perturbative expansion become accessible,

beginning at two loops with a vertex cubic in the quantum field. The first of such diagrams

that is not a tadpole, shown in equation (5.31), emerges at order O(γ2), and one can show
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that it nontrivially vanishes within dimensional regularization.

q

p

p− q

. (5.31)

The introduction of multiple loop momenta prevents the simple argument in the one-loop

case from generalizing immediately. However, since with constant backgrounds there cannot

be any external momenta and there is no characteristic scale present in these integrals, it

will always be possible to iteratively symmetrize using (5.30) and integrate over each loop

momentum, leaving a symmetrizable integral that will vanish in dimensional regularization.

Therefore we expect that the argument presented above generalizes to all loops, implying

that the full effective action Γ[Ci] admits no corrections for constant background field

strengths C i
µ .

Background-varying, one-loop diagrams

We now study the more general case in which we do not assume that ∂µC
i

ν = 0, instead

allowing the background field to vary. Besides requiring that the field configuration Ci is a

solution to the classical equations of motion, we make no further assumptions.

For this general background analysis, let us use the same notation Dn for the diagrams

appearing in the infinite sum (5.25). The first diagram in this series, D1, is unchanged from

the constant background case, and thus it identically vanishes in dimensional regularization.

The first nontrivial diagram is

D2 =
q

`; k

`+ q; l

qµν; ij ρτ ;mn
. (5.32)

As usual, it will be convenient to strip off factors of Pµν
ij when computing the value of this

diagram. This corresponds to evaluating the diagram using the “uncontracted” vertex g̃ of

(5.23) and contracting the result with factors of Pµν
ij. To this end, let us write the value
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of the diagram as

D2 =
tanh2(γ)

2

∫
ddq

(2π)d
Pµν

ij (−q)
(∫

ddℓ

(2π)d
1

ℓ2 (ℓ+ q)2
(
δikδjlℓµ (ℓ+ q)ν + δilδjk (ℓ+ q)µ ℓν

)

·
(
δkmδlnℓρ (ℓ+ q)τ + δknδlm (ℓ+ q)ρ ℓτ

)
)
P mn
ρτ (q) .

(5.33)

Using the symmetry property P ij
µν = P ji

νµ , this can also be expressed as

D2 = 2 tanh2(γ)

∫
ddq

(2π)d
Pµν

ij (−q) I(µν)(ρτ)2 P ij
ρτ (q) , (5.34)

where we have defined the simpler integral

Iµνρτ2 =

∫
ddℓ

(2π)d
(ℓ+ q)νℓµ(ℓ+ q)τℓρ

ℓ2 (ℓ+ q)2
, (5.35)

and where our conventions for symmetrization are T (µν) = 1
2
(T µν + T νµ).

To study the divergence structure of the diagram D2, it suffices to evaluate the quantity

Iµνρτ2 in dimensional regularization, which is performed in appendix B.1. The resulting

divergent contribution is

Iµνρτ2 =

(
1

ϵ

) −i
24 (4π)

[
q2 (gµνgρτ + gµρgντ + gµτgνρ) + 2 (qνqµgτρ + gµτqνqρ + gνµqτqρ + gνρqµqτ )

+ 4 (gµρqνqτ + gντqµqρ)

]
. (5.36)

In order to cancel this 1
ϵ
divergence, one would introduce a counter-term which involves

two factors of P ij
µν in the Lagrangian. Therefore, in the background-varying case, there is

a non-trivial contribution to the quantum effective action at one loop. Because the higher

diagrams Dn will involve higher powers of γ, the result (5.36) represents the complete

one-loop effective action at O(γ2).
With the two-vertex diagram evaluated, to complete the computation of the one-loop

effective action, we seek to evaluate all remaining diagrams containing one loop. Fortu-

nately, there is only one diagram Dn for each number of vertices n. The details of the

evaluation of this diagram are presented in appendix B.2. Here we merely summarize the

results. The value of In can be written as

(In)µ1...µ2n = (n− 1)!

∫ 1

0

(
n−1∏

i=0

dxi

)
δ

(
n−1∑

i=0

xi − 1

)
(Cµ1...µ2n

2n +Dµ1...µ2n
2n ) , (5.37)
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where we have defined

Cµ1...µ2n
2n =

i (d− 2)!!

(d− 2 + 2n)!!
gµ1···µ2n

Γ
(
n+ d

2

)

(4π)
d
2 Γ (n) Γ

(
d
2

)Γ
(
−d
2

)
∆d

Dµ1...µ2n
2n =

i (d− 2)!!

(d− 4 + 2n)!!

2n∑

a=1

2n∑

b>a

g{µ̸=µa,µb}fµa (x, q, a) fµb (x, q, b)

· Γ
(
n− 1 + d

2

)

(4π)
d
2 Γ (n) Γ

(
d
2

)Γ
(
1− d

2

)
∆d−2 . (5.38)

The notation gµ1···µ2n refers to a symmetrized product of metric tensor factors, which is

defined in equation (B.33). Similarly, g{µ̸=µa,µb} is shorthand for such a symmetrized product

of metrics which which omits the two indices µa and µb, which is explained in more detail

around equation (B.35). Finally, the function fµ(x, q, a) is defined in equation (B.32).

In dimensional regularization, with d = 2(1 + ϵ) and as ϵ → 0, the overall momentum

dependence and divergence structure of these terms is

Cµ1...µ2n
2n ∼ 1

ϵ
q2gµ1···µ2n ,

Dµ1...µ2n
2n ∼ 1

ϵ

2n∑

a=1

2n∑

b>a

qµaqµbg{µ̸=µa,µb} , (5.39)

which is of the same qualitative form as the one-loop, two-vertex contribution (5.36).

Therefore, the full one-loop effective action for the Modified Scalar theory is obtained by

introducing counterterms that cancel the divergent contributions which we have described

in equations (5.36) and (5.39). Because, after Fourier transforms, only two derivatives arise

acting on the external background vertices, the counterterms are invariant under classical

conformal transformations.

Background varying, two vertex, m-loop diagrams

One could imagine computing the quantum effective action (5.24) using a double expansion

in both the number n of vertices and the number m of loops. The preceding subsections

have discussed the contributions at one loop but for any number of vertices. We have also

argued that higher loop corrections vanish when expanding around constant backgrounds.

It is then natural to ask what one can say about the higher-loop contributions in the

general case of varying backgrounds. Although the structure of the problem quickly becomes

quite complicated, we can make some general remarks by restricting to two vertices but
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any number of loops. For instance, we can consider a diagram with m+1 internal quantum

field lines, each of which runs between two interaction vertices with a classical background

field, thus forming m loops:

Dm,2 =

qq
m+ 1

...

...

. (5.40)

We use the notation Dm,n for a diagram which has m loops and n vertices. In this notation,

the one-loop diagrams which we called Dn in the preceding subsections would be denoted

D1,n. For example, the diagram D2 of equation (5.32) would be written as D1,2, since it is of

the form in equation (5.40) with m = 1 because it has 2 = 1+ 1 internal lines between two

vertices and thus one loop. Similarly, a diagram with 4 internal lines between two vertices

would have three loops and be denoted D3,2.

In order to study the diagrams Dm,2, we will need to derive a new Feynman rule for the

(m+2)-valent vertex involving (m+1) quantum fields lines and one insertion of the classical

background. These higher vertex factors will come from further terms in the expansion of

the square root in equation (5.14),

√
2P 2 − S2 =

√
2P 2

C − S2
C +

∞∑

N=1

(
1
2

N

)
2NQN

(2P 2
C − S2

C)
N− 1

2

=
√

2P 2
C − S2

C +
∞∑

M=2

P i1···iM
µ1···µM

M∏

k=1

∂µkQik . (5.41)

In the first line, the factor of 2N is a choice of normalization which is needed to match our

conventions for Q1 and Q2 above. We will not compute the higher terms QN explicitly, but

we instead schematically denote the collection of all contributions from these terms which

involve a product ofM derivatives of the quantum fields by writing the tensor P i1···iM
µ1···µM .

When M = 2, this is precisely the tensor P ij
µν of equation (5.17). We have changed the

summation variable toM in the second line to emphasize that one must collect contributions

from several QN at each fixed order in M . There are no linear vertices in Qi, so the M = 1

term is absent, but both the N = 1 term Q1 and the N = 2 term Q2 of the first sum

contributes to the quadratic M = 2 interaction of the second sum, and so on.

In terms of the tensors P i1···iM
µ1···µM which are defined implicitly through the expansion

in equation (5.41), the Feynman rule for an (M + 1)-valent interaction with one classical
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field insertion is

q =−∑k p
µk

α1, pµ1 αM , pµM

i1, · · · ,iM ; ν1, · · · ,νM

M

· · ·
=

∫
ddq P i1···iM

ν1···νM (q)
M∏

k=1

pνkik . (5.42)

Using this Feynman rule, we can compute the value of the diagram Dm,2 in equation (5.40).

Such a diagram has two vertices of the form (5.42), each with M = m + 1, along with m

loop momenta ℓi. The contribution from this diagram is given by the integral

Dm,2 =
sinh2(γ)

coshm+1(γ)

∫
ddq

(2π)d

(∫ m∏

i=1

ddℓi
(2π)d

)(
1∏m+1

j=1 p
µ
j pµj

)

· P i1···im+1
ν1···νm+1

(q)

(
m+1∏

k=1

pνkik p
µk
jk

)
P j1···jm+1

µ1···µm+1
(−q) . (5.43)

Here the momenta of the internal lines are chosen to be p1 = q − ℓ1, pi = ℓi−1 − ℓi for

1 < i < m+ 1, and pm+1 = ℓm, so that the total momentum satisfies

m+1∑

i=1

pi = q . (5.44)

Besides the diagrams Dm,2 drawn in equation (5.40), one might ask whether we should

account for additional diagrams where a loop begins and ends on the same vertex. However,

diagrams of this form do not contribute, as they vanish in dimensional regularization. We

can see this by noting that the momentum ℓ running in such a loop will appear in the vertex

factor only in the combination ℓµℓν , and in the propagator in the form 1
ℓ2
. Therefore, the

value of any diagram will be proportional to
∫

ddℓ

(2π)d
ℓµℓν

ℓ2
=
gµν

d

∫
ddℓ

(2π)d
1 , (5.45)

which we have seen vanishes in dimensional regularization in the limit d→ 2, as desired.

Next let us consider the divergence structure of the diagram Dm,2. It is convenient

to isolate the part of the integrand which depends on the loop momenta and evaluate it

separately. To do this, let us define

(Lm,2)
{µν}
{ij} =

∫ (
m∏

i=1

ddℓi
(2π)d

)(
1∏m+1

j=1 p
µ
j pµj

)(
m+1∏

k=1

pνkik p
µk
jk

)
. (5.46)
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Here we use {ij} as a shorthand for the multi-index {i1 . . . im+1j1 . . . jm+1} and {µν} for

{µ1 . . . µm+1ν1 . . . νm+1}. We will sometimes suppress these multi-indices in writing Lm,2 for

convenience. The quantity Lm,2 determines the value of the diagram Dm,2 as

Dm,2 =
sinh2(γ)

coshm+1(γ)

∫
ddq

(2π)d
P i1···im+1

ν1···νm+1
(q) (Lm,2)

{µν}
{ij} P

j1···jm+1
µ1···µm+1

(−q) , (5.47)

so to understand the divergences in Dm,2, it suffices to understand those in Lm,2.

One can evaluate Lm,2 by performing the integral over each loop momentum in succes-

sion. The details of one such integration, namely the integral over the final variable ℓm,

are presented in appendix B.3. After evaluating this single integral over ℓm, one obtains

a result proportional to Γ
(
−d

2

)
ℓdm−1. One can then apply the same argument recursively

to conclude that performing all m of the integrals generates m factors of this form. After

evaluating all m integrals, the final dependence on the momentum q takes the form

(Lm,2)
{µν}
{ij} ∼ Γ

(
−d
2

)m
qdm , (5.48)

where we show only the dependence on q and d but suppress the tensor structure in the

i, j, µ, ν indices.23

It is also useful to translate the divergence structure of equation (5.48) in dimensional

regularization to an equivalent dependence on a momentum cutoff Λ. For d = 2(1 + ϵ) we

have the limiting behavior Γ
(
−d

2

)
∼ 1

ϵ
, and a divergence proportional to 1

ϵ
in dimensional

regularization corresponds to a logarithmic divergence of the form log(Λ). Therefore, the

m-loop, 2-vertex contributions from (5.48) yield divergences of the form

(Lm,2)
{µν}
{ij} ∼

(
1

ϵ

)m
q2m ∼ (log Λ)m . (5.49)

This is a different divergence structure than the one which we have seen in our study of

the 1-loop effective action, which would necessitate the addition of different counterterms.

It is interesting to note that each of these counterterms is classically conformal and has a

different higher derivative dependence on the external classical field momenta.

We conclude this section with some further comments. Even though our analysis for

non-constant backgrounds is very preliminary, no clear organizational principle seems to

emerge in this hierarchy of divergences and necessary counterterms. Though this might be

a feature of our perturbative approach, it begins to suggest that this non-analytic model is

23Each integral yields 6 different symmetrizations of the external indices. Thus the exact form of an

m-loop diagram contains many different index structures and is challenging to write explicitly in general.
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non-renormalizable, which might also spoil the quantum conformal invariance of the model.

Ultimately, the theory might retain a sensible interpretation only as an effective field theory.

Yet, it remains a very interesting fact that there are no quantum corrections for constant

background fields Cµ
i. We leave other open questions for further future investigations.

6 Conclusion

In this work, we have explored the space of interacting chiral boson theories from several

perspectives. We showed that, when written in a Floreanini-Jackiw representation, the

property of non-manifest Lorentz invariance is closely related to stress tensor deformations:

indeed, every parameterized family of Lorentz-invariant chiral boson theories can be inter-

preted as a deformation by some function of the energy-momentum tensor. In the dual

description using U(1) gauge fields with a Chern-Simons action, Lorentz invariance is man-

ifest but chirality (or self-duality) is not, and in this setting we find that every family of

self-dual Chern-Simons boundary terms likewise obeys a flow equation driven by a func-

tion of the stress tensor. We have also explained how a general boundary term for such a

bulk U(1) Chern-Simons theory imposes modified boundary conditions on the gauge fields

which lead to a non-linear self-duality condition for the currents; this mirrors the analogous

non-linear self-duality constraints obeyed by interacting Floreanini-Jackiw bosons.

We then studied the quantization of interacting chiral boson models, focusing on a

root-TT -deformed system of free bosons. We characterized the finite-volume spectrum

both for one left-moving and one right-moving boson, where the root-TT deformation

acts as a rescaling of the target space radius, and also for two left-moving bosons and

one right-moving boson, where the deformation is more complicated but can be analyzed

perturbatively in a large-momentum expansion. In doing so, we confirmed that the zero-

mode formula (1.7) derived via holography does not apply to generic states, but does apply

in certain states with constant stress tensors. We also gave a classical/heuristic argument

on how a set of field redefinitions might turn all these models into free ones. Finally, we

have studied the quantum effective action for the theory of root-TT -deformed bosons with

equal numbers of left- and right-movers. Intriguingly, we find that the one-loop effective

action vanishes around classical backgrounds which are linear in the spacetime coordinates.

There are several interesting directions for future research, some of which we summarize

in what follows. Understanding more about these issues, and in particular developing a

clearer picture of field theories with non-analytic interaction terms such as the Modified

Scalar theory, may teach us new lessons about previously unexplored models within the
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space of quantum field theories.

Supersymmetry

There has been a great deal of work on supersymmetric extensions of deformations con-

structed from the energy-momentum tensor [100–108] and other conserved currents [109],

including analogous deformations of 1d theories by conserved charges [63, 87, 110–112].

A natural direction for further investigation is to seek such a supersymmetric general-

ization of the results in this work. This would involve coupling a supersymmetric theory

of interacting chiral bosons and their fermionic superpartners to supergravity, which would

give expressions for the fields in the stress tensor supermultiplet.

In the case of a single free chiral boson and its fermionic partner, the procedure for

performing this coupling to supergravity was explained in [73], building on earlier results

for the supergravity couplings of non-chiral fields [113]. The bosonic truncation of this

supergravity coupling reproduces the coupling to vielbeins which we have used in this work.

It would be interesting to generalize this technique and couple an arbitrary number of chiral

and anti-chiral bosons, and their fermionic counterparts, to supergravity, and then consider

flows in the space of such supersymmetric interacting theories, much as we have done here.

In principle, one could perform this analysis either using component fields – which was the

strategy adopted in [73] – or using a superspace formulation, such as the one employed in

[25, 114]. One might also hope to interpret these theories using a bulk description involving

a supersymmetric Chern-Simons theory, which would give a supersymmetric generalization

of the results in section 3.

Quantum Hall physics

A famous application of U(1) Chern-Simons theories, and the chiral bosons which describe

their edge modes, occurs in the study of the quantum Hall effect. The essential reason for

this, as we mentioned in section 3, is that the Chern-Simons term is more relevant at low

energies than the Maxwell term. Therefore, in an effectively (2 + 1)-dimensional system –

such as a flat slab of material subject to a background magnetic field – one expects that

the low-energy effective action Seff[A] will be controlled by the Chern-Simons term SCS[A].

Computing the associated current which we defined in equation (3.14),

Ji ∼
δSCS

δAi
, (6.1)
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therefore gives predictions for the behavior of the system. For instance, in the integer

quantum Hall effect, this current Ji agrees with the Hall conductivity of an integer number of

filled Landau levels, if this integer ν ∈ Z is related to the Chern-Simons level appropriately.

We have seen that a Chern-Simons theory on a manifold with boundary supports chiral

bosons on the edge. In the quantum Hall setting, these chiral edge modes describe propa-

gating fluctuations in the charge density at the edge of the physical sample. Remarkably,

the quantum mechanics of this chiral boson theory contains a great deal of information

about the interior of the sample. For instance, by carrying out the quantization of a sin-

gle Floreanini-Jackiw boson as we described in section 4.1, one finds a Hamiltonian which

correctly predicts the spectrum (including degeneracies) of excited modes for the Laughlin

wavefunction which describes the fractional quantum Hall effect.24

One might ask whether the modified Chern-Simons boundary terms which we have

considered in this work could be used to model some variant of a conventional quantum

Hall system. For instance, it would be very interesting if an experimentally realizable

modification of a quantum Hall droplet would subject the system to a boundary term like

the one which is generated by the root-TT deformation. If so, this could offer a way to

study the effective dynamics of the Modified Scalar theory – and other theories obtained

via stress tensor deformations – in the laboratory.

Non-perturbative analysis

All of the results concerning the quantum theory of root-TT -deformed bosons presented

in this work have been obtained in perturbation theory, by expanding around a classical

background. For instance, we have attempted a perturbative analysis of the effective ac-

tion and noticed that a hierarchy of counterterms emerged in the Modified Scalar theory.

However, it seems likely that the most interesting features of root-TT -deformed theories at

the quantum level – assuming that they exist – will only be visible non-perturbatively. It

is therefore important to find a way to study the quantization of such root-TT deformed

theories beyond perturbation theory, which will likely require a new perspective.

One way to re-frame these deformed theories, which may be useful for a non-perturbative

analysis, is via geometry. In the case of the related TT deformation, many insights have

resulted from presentations of the flow in terms of coupling to gravity [119, 120] or random

geometry [95], or realizing the deformation via a field-dependent change of variables [48, 121,

24See the reviews [98, 115], or the incomplete sampling of some of the original works [116–118], for further

discussion on this subject.
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122]. A similar geometrical interpretation may be possible for the root-TT deformation.

For instance, the Modified Scalar Lagrangian (5.2) can be rewritten as

L =
1

2
gµν∂µφ

i∂νφ
i ,

gµν = cosh(γ)ηµν + sinh(γ)


 2∂µφj∂νφj − ηµν∂ρφj∂ρφj√

2∂σφi∂τφi∂τφk∂σφk − (∂σφi∂σφi)
2


 , (6.2)

which is equivalent to a theory of free scalar fields coupled to a field-dependent metric. Even

at the perturbative level, such a rewriting of the deformation may be useful – for instance,

it may be possible to adapt existing heat kernel techniques25 which compute the quantum

effective actions for theories on background metrics to handle field-dependent metrics such

as (6.2), which could reproduce results like those in section 5 from a different point of view.

However, it would be even more useful if such a geometrical presentation of the root-TT

flow could furnish us with a non-perturbative definition of the quantum theory.

Another potential way to approach the study of renormalisation of the Modified Scalar

theory, and analyse its quantum conformal symmetry, is by using non-perturbative func-

tional renormalisation group approaches. An attempt to use such techniques for TT de-

formed scalar theories has been made in [124]. It would be intriguing to reattempt this

analysis for non-analytic models and generic TT -like deformations, including root-TT .

A third strategy is to bypass the classical Lagrangian (5.2) and attempt to define the

quantum Modified Scalar theory directly by characterizing the set of local operators in

the theory along with their correlation functions. For instance, one could proceed under

the assumption that the theory in question is a CFT, and see whether this leads to a

contradiction.26 Here there appears to be an interesting tension. Standard lore suggests

that, in any CFT2 with a conserved vector current J , its Hodge dual ∗J must also be

conserved. For a putative theory of root-TT -deformed φi, it appears that the operators

J iµ = ∂µφ
i should not be conserved at finite γ due to the source terms in the equations

of motion, although their duals J̃ iµ = ϵµν∂
νφi are conserved (at least for non-compact

scalars).27 If the quantum Modified Scalar theory does exist, it would be very interesting

to see how this tension is resolved. Perhaps the quantum theory is not a CFT, or perhaps

25See [123] and references therein for a review.
26An example of such a contradiction would be finding an operator which can be neither a primary

nor a descendant, which is used to demonstrate that the Maxwell theory is not conformal except in four

dimensions [125]. Alternatively, one could use the more formal machinery of algebraic/axiomatic QFT.
27The analogous tension for the ModMax theory can be phrased in terms of generalized global symmetries:

if a 4d CFT has a U(1)1 magnetic one-form global symmetry, then it must also have the corresponding U(1)1
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it is not even a local quantum field theory, much like a TT -deformed CFT is believed to

become non-local due to its Hagedorn density of states at high energies.
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A Perturbative f(T α
α , T

αβTαβ)-Deformed Actions

Throughout this paper, we have considered various deformations which are constructed from

the energy-momentum tensor. Although the most important examples within this class are

the TT and root-TT flows, it appears that general stress tensor deformations nonetheless

have interesting properties – for instance, we have shown that every parameterized family

of interacting 2d chiral boson theories which enjoys non-manifest Lorentz invariance admits

an interpretation as a stress tensor deformation. This is a 2d analog of similar theorems

about 4d theories of duality-invariant electrodynamics [4] or 6d chiral tensor theories [6].

Motivated by these observations, one may wish to study 2d deformations by other

functions of the energy-momentum tensor, besides the ones considered in the body of this

manuscript. One way to do this is to solve the resulting flow equations perturbatively, i.e.

order-by-order in the deformation parameter. In this appendix we will use the symbol g for

electric one-form global symmetry, and vice-versa [126]. A 4d ModMax CFT would appear to have the

magnetic 1-form symmetry of the Maxwell theory but not the electric one, since ∂µF̃
µν = 0 but ∂µF

µν ̸= 0.
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the parameter of a general stress tensor flow, which is not to be confused with the metric

gαβ or its determinant.

Let us therefore consider the following general class of operators in 2d which can be

expressed in terms of the two independent Lorentz scalars that can be built from the stress

tensor, namely Tr(T ) = Tαα and Tr(T 2) = TαβTαβ:

f(Tαα , T
αβTαβ) . (A.1)

We note that all higher traces of the stress tensor, Tr(T n) for n > 2, can be expressed

in terms of these two lower traces. Given such an operator, we wish to study the flow

equation28

∂S(g)

∂g
=

∫
d2xE f(Tαα , T

αβTαβ) . (A.2)

The solution to (A.2) can be written as a series expansion,

S(g) = S(0) +
∞∑

m=1

gm

m

∫
d2xE f(Tαα , T

αβTαβ)m−1 , (A.3)

where we write f(Tαα , T
αβTαβ)m for the term of order gm in the expression for the f(Tαα , T

αβTαβ)

operator computed from the action at order gm−1. Because each term in this expansion

only depends on the data of lower-order terms, one can build up the solution iteratively in

powers of g.

As in section 2 of the main text, we will work in the tetrad formalism with a Lorentzian

tangent-space metric and with spacetime coordinates xα = (t, θ). A general spacetime

metric can therefore be expanded in terms of vielbeins as

gαβ = Ea
αE

b
βηab = −

(
2E+

tE
−
t E+

tE
−
θ + E−

tE
+
θ

E+
tE

−
θ + E−

tE
+
θ 2E+

θE
−
θ

)
. (A.4)

The stress tensor associated with a general action S, which has been coupled to gravity

using the vielbeins Ea
α , can be written as

Tαβ = − 1

E

∂S

∂Ea
α

Ea
β = − 1

E

(
∂S
∂E+

t
E+

t +
∂S
∂E−

t
E−

t
∂S

∂E+
θ
E+

t +
∂S

∂E−
θ
E−

t

∂S
∂E+

t
E+

θ +
∂S
∂E−

t
E−

θ
∂S

∂E+
θ
E+

θ +
∂S

∂E−
θ
E−

θ

)
. (A.5)

We will use the general expression (A.5) for the stress tensor, along with the expansion

(A.3), to perturbatively solve the flow equation (A.2) for various choices of the f(Tαα , T
αβTαβ)

operator.

28One can also consider flows driven by a function f which has explicit dependence on the deformation

parameter g. For instance, the so-called TT + Λ2 deformation is defined by performing a TT deformation

and then activating a cosmological constant proportional to 1
λ . See [127–132] for further details.
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We begin by finding perturbative solutions for some of the flow equations considered in

the main text, before generalizing to other deformations which were not considered in the

body. In our examples, we compute the stress tensor (A.5) using the vielbein formalism

due to computational speed in Mathematica, but we note that the metric formalism gives

identical results.

Root-TT Perturbative Flow for Multiple Bosons

For our first example, we will consider the perturbative solution to the root-TT flow equa-

tion for an arbitrary number of non-chiral bosons φi, i = 1, . . . , N . This flow equation was

first solved in closed-form in [38].

We take a seed action which describes N free massless bosons in Lorentzian signature,

S(0) =
1

2

∫
d2x
√−ggαβ∂αφi∂βφi

=

∫
d2x

E−
θE

+
θφ̇

iφ̇i + E−
tE

+
tφ

′iφ′i − (E−
θE

+
t + E−

tE
+
θ) φ̇

iφ′i

E
,

(A.6)

which have been coupled to gravity using the tetrad formalism. We then deform using the

root-TT operator, which corresponds to the general f(Tαα , T
αβTαβ) operator of equation

(A.1) being

f(Tαα , T
αβTαβ) = R(γ) =

1√
2

√
TαβTαβ −

1

2
(Tαα )

2 . (A.7)

In this case, the perturbative solution (A.3) to the flow equation takes the form

S(γ) = S(0) +
∞∑

m=1

γm

m

∫
d2xE R(γ)

m−1 . (A.8)

Following the conventions in the main text, we use the symbol γ for the flow parameter

of a root-TT deformation, rather than the variable g which stood for the parameter in a

general deformation above.

The first few terms in this perturbative expansion are

R(γ)
0 |flat =

1

2

√
(φ̇i − φ′i) (φ̇i − φ′i) (φ̇j + φ′j) (φ̇j + φ′j) , R(γ)

1 |flat =
1

2

(
−φ̇iφ̇i + φ′iφ′i) ,

R(γ)
2 |flat =

1

2
R(γ)

0 |flat , R(γ)
3 |flat =

1

6
R(γ)

1 |flat , R(γ)
4 |flat =

1

24
R(γ)

0 |flat , R(γ)
5 |flat =

1

120
R(γ)

1 |flat ,
(A.9)

where “flat” means that we have set the vielbeins to their flat-space values (2.51).
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We note that the quantities appearing in (A.9) can be written in terms of the manifestly

Lorentz-invariant combinations

(
∂µφ

i∂νφi
) (
∂νφ

j∂µφj
)
=
(
−φ̇iφ̇j + φ′iφ′j) (−φ̇iφ̇j + φ′iφ′j)

= (φ̇iφ̇i)2 + (φ′iφ′i)2 − 2(φ̇iφ′i)2 ,
(A.10)

and

2
(
∂µφ

i∂νφi
) (
∂νφ

j∂µφj
)
−
(
∂µφ

i∂µφi
)2

=
(
φ̇iφ̇i

)2
+
(
φ′iφ′i)2 − 4

(
φ̇iφ′i)2 + 2φ̇iφ̇iφ′jφ′j

=
(
φ̇i − φ′i) (φ̇i − φ′i) (φ̇j + φ′j) (φ̇j + φ′j) .

(A.11)

In terms of these quantities, one finds that the perturbative expansion to the flow equation

converges to the solution (5.2),

S(γ) = S(0)

+

∫
dt dθ

(
γR(γ)

0 |flat +
γ2

2
R(γ)

1 |flat +
γ3

6
R(γ)

0 |flat +
γ4

24
R(γ)

1 |flat +
γ5

120
R(γ)

0 |flat +
γ6

720
R(γ)

1 |flat + · · ·
)

=
1

2

∫
dt dθ

[
∂αφ

i∂αφi
(
1 +

γ2

2
+
γ4

24
+

γ6

720
+O(γ8)

)

+

√
2 (∂µφi∂νφi) (∂νφj∂µφj)− (∂µφi∂µφi)

2

(
γ +

γ3

6
+

γ5

120
+O(γ7)

)]

=
1

2

∫
dt dθ

[
cosh(γ)∂αφ

i∂αφi + sinh(γ)

√
2 (∂µφi∂νφi) (∂νφj∂µφj)− (∂µφi∂µφi)

2

]
.

(A.12)

Root-TT Perturbative Flow for Chern-Simons

An almost identical calculation can be performed to study the perturbative root-TT de-

formation of the Chern-Simons boundary action given in (3.8). The first few terms in the

expansion are

R(γ)
0 |flat =

1

4π

√(
kijAiwAjw + kijAiwAjw

) (
kmnAmwAnw + kmnAmwAnw

)
,

R(γ)
1 |flat = −

1

4π

(
kijAiwAjw + kijAiwAjw

)
, R(γ)

2 |flat =
1

2
R(γ)

0 |flat , R(γ)
3 |flat =

1

6
R(γ)

1 |flat ,
(A.13)

where now “flat” means that we have set the vielbeins equal to the values (3.77) appropriate

for a flat Euclidean tangent space metric, following the conventions of section 3.
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Therefore, the root-TT -deformed Chern-Simons boundary action is

I
(γ)
∂M3

=
i

8π

∫

∂M3

dwdw

(
−
(
kijAiwAjw + kijAiwAjw

)(
1 +

γ2

2
+O(γ4)

))

+
i

8π

∫

∂M3

dwdw
√(

kijAiwAjw + kijAiwAjw
) (
kmnAmwAnw + kmnAmwAnw

)(
γ +

γ3

6
+O(γ5)

)

=
i

8π

∫

∂M3

dwdw

[
− cosh(γ)

(
kijAiwAjw + kijAiwAjw

)

+ sinh(γ)
√(

kijAiwAjw + kijAiwAjw
) (
kmnAmwAnw + kmnAmwAnw

)]
.

(A.14)

TT Perturbative Flow for a Single Boson

For our next example, we will consider the irrelevant TT flow rather than the marginal root-

TT flow. For simplicity, we will restrict to a deformation of a single bosonic field φ whose

seed action is that of a free massless field. From the general f(Tαα , T
αβTαβ) deformation

of (A.1), we recover the usual TT deformation by taking

f(Tαα , T
αβTαβ) = −

1

2

(
TαβT

β
α − (Tαα)

2
)
. (A.15)

Evaluating a few of the terms in the perturbative expansion, we find

TT 0|flat = −
1

4

(
−φ̇2 + φ′2)2 , TT 1|flat =

1

2

(
−φ̇2 + φ′2)3 , TT 2|flat = −15

16

(
−φ̇2 + φ′2)4 .

(A.16)

This series expansion then converges to the well-known TT -deformed action,

S(λ) =

∫
dtdθ

[
1

2

(
−φ̇2 + φ′2)− λ

4

(
−φ̇2 + φ′2)2 + λ2

4

(
−φ̇2 + φ′2)3 − 5λ3

16

(
−φ̇2 + φ′2)4 + · · ·

]

=

∫
dtdθ

1

2λ

[√
1 + 2λ (−φ̇2 + φ′2)− 1

]
.

(A.17)

TT
1
3 Perturbative Flow for Multiple Bosons

Next we turn our attention to a deformation which was not considered in the body of this

manuscript. Consider a deformation by the relevant TT
1
3 operator, which we define by

TT
1
3 =

1

2

(
1

2

(
TαβT

β
α − (Tαα)

2
)) 1

3

. (A.18)
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We will again consider a seed action for N massless free bosons, given in equation (A.6).

The perturbative expansion for the TT
1
3 -deformed action takes the form

S(λ) = S(0) +
∞∑

m=1

λm

m

∫
d2xE TT

1
3
m−1 , (A.19)

and a few of the coefficients are

TT
1
3
0 |flat =

1

2
5
3

[ (
φ̇i − φ′i) (φ̇i − φ′i) (φ̇j + φ′j) (φ̇j + φ′j)

] 1
3

,

TT
1
3
1 |flat =

−φ̇iφ̇i + φ′iφ′i

9 · 2 1
3

[
(φ̇i − φ′i) (φ̇i − φ′i) (φ̇j + φ′j) (φ̇j + φ′j)

] 1
3

,

TT
1
3
2 |flat = −

(φ̇iφ̇i)
2
+ (φ′iφ′i)2 + 12(φ̇iφ′i)2 − 14φ̇iφ̇iφ′jφ′j

216

[
(φ̇i − φ′i) (φ̇i − φ′i) (φ̇j + φ′j) (φ̇j + φ′j)

] .

(A.20)

For this deformation, it does not seem possible to find an all-orders closed-form solution to

the flow equation, but the perturbative TT
1
3 -deformed action to O (λ3) is

S(λ) =

∫
dt dθ

(
1

2

(
−φ̇iφ̇i + φ′iφ′i)+ λ

2
5
3

[ (
φ̇i − φ′i) (φ̇i − φ′i) (φ̇j + φ′j) (φ̇j + φ′j)

] 1
3

+
λ2

9 · 2 4
3

−φ̇iφ̇i + φ′iφ′i

[
(φ̇i − φ′i) (φ̇i − φ′i) (φ̇j + φ′j) (φ̇j + φ′j)

] 1
3

− λ3

648

(φ̇iφ̇i)
2
+ (φ′iφ′i)2 + 12(φ̇iφ′i)2 − 14φ̇iφ̇iφ′jφ′j

(φ̇i − φ′i) (φ̇i − φ′i) (φ̇j + φ′j) (φ̇j + φ′j)
+ · · ·

)
.

(A.21)

f(Tαα , T
αβTαβ) Perturbative Flow for Multiple Bosons

To conclude this appendix, we note that one can also study the perturbative solution to

the flow driven by the f(Tαα , T
αβTαβ) = f(z, x) operator of equation (A.1) for an arbitrary

function f . We again take the initial condition for the flow to be the action (A.6) for N

free massless bosons. The first few terms in the perturbative expansion are

f(Tαα , T
αβTαβ)0|flat = f (x) , f(Tαα , T

αβTαβ)1|flat = 4xy

(
∂f(x)

∂x

)2

, (A.22)
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where

x =
1

2

(
φ̇i − φ′i) (φ̇i − φ′i) (φ̇j + φ′j) (φ̇j + φ′j) = 1

2

(
2
(
∂µφ

i∂νφi
) (
∂νφ

j∂µφj
)
−
(
∂µφ

i∂µφi
)2)

,

y = −φ̇iφ̇i + φ′iφ′i = ∂µφ
i∂µφi .

(A.23)

The perturbative action at O(g2) is

S(g) =

∫
dtdθ

[
y

2
+ gf (x) + 2g2xy

(
∂f(x)

∂x

)2

+ · · ·
]
. (A.24)

Furthermore, to summarize in the table below, one can check equation (A.24) recovers the

correct coefficients at O(g2) for the perturbative actions describing N free massless bosons

considered in this appendix.

In principle, one could also study the perturbative quantization of these more general

f(Tαα , T
αβTαβ)-deformed scalar models. For instance, one could use the background field

expansion and determine their Feynman rules as done in section 5 for the Modified Scalar

theory, or study canonical quantization following section 4.

B Details of Feynman Diagram Calculations

In this appendix, we collect the technical details of certain evaluations of Feynman diagrams

which occur in the analysis of section 5.
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B.1 One-loop, 2-vertex calculation

Let us first focus on the divergence structure of the diagram D2 of equation (5.32), which

we repeat here for convenience:

D2 =

q

`; k

`+ q; l

qµν; ij ρτ ;mn
. (B.1)

As we mentioned around equation (5.35), the value of this diagram can be expressed in

terms of the simpler quantity

Iµνρτ2 =

∫
ddℓ

(2π)d
(ℓ+ q)νℓµ(ℓ+ q)τℓρ

ℓ2 (ℓ+ q)2
. (B.2)

All of the dependence on loop momenta is encoded within Iµνρτ2 , which we will also write

as I2 with indices suppressed for simplicity. From the value of I2, the original diagram D2

is recovered from the expression (5.34), which only involves additional dependence on the

classical background via the tensor P ij
µν and an additional integration over the momentum

q. Therefore, in order to study the divergences arising from the loop, it suffices to perform

dimensional regularization of the quantity I2.
Expanding out the products and introducing a Feynman parameter x in order to resolve

the denominator, we find

I2 =
∫

ddℓ

(2π)d
ℓνℓµℓτℓρ + ℓνℓµqτℓρ + qνℓµℓτℓρ + qνℓµqτℓρ

ℓ2 (ℓ+ q)2

=

∫
ddℓ

(2π)d

∫ 1

0

dx
ℓνℓµℓτℓρ + ℓνℓµqτℓρ + qνℓµℓτℓρ + qνℓµqτℓρ

[
ℓ2 (1− x) + x (ℓ+ q)2

]2

=

∫
ddℓ

(2π)d

∫ 1

0

dx
ℓνℓµℓτℓρ + ℓνℓµqτℓρ + qνℓµℓτℓρ + qνℓµqτℓρ

[ℓ2 + x (2ℓµqµ + q2)]2

=

∫
ddℓ

(2π)d

∫ 1

0

dx
ℓνℓµℓτℓρ + ℓνℓµqτℓρ + qνℓµℓτℓρ + qνℓµqτℓρ

[
(ℓµ + xqµ)2 + x (1− x) q2

]2 . (B.3)

In the final step, we have completed the square in the denominator by adding and subtract-

ing q2x2. We now shift the integration variable from ℓµ to

ℓ′µ = ℓµ − xqµ , (B.4)
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which causes the denominator to become even in ℓ′, and thus terms in the numerator which

are odd in ℓ′µ will vanish by symmetry. We immediately drop the primes on ℓ′µ and write

the surviving terms as

I2 =
∫

ddℓ

(2π)d

∫ 1

0

dx

[
ℓνℓµℓτℓρ

(ℓ2 + q2x (1− x))2
+

x2ℓνqµℓτqρ

(ℓ2 + q2x (1− x))2
+

(x2 − 2x+ 1) qνℓµqτℓρ

(ℓ2 + q2x (1− x))2

+
(x2 − x) (qνqµℓτℓρ + qνℓµℓτqρ + ℓνℓµqτqρ + ℓνqµqτℓρ)

[ℓ2 + q2x (1− x)]2
+

(x4 − 2x3 + x2) qνqµqτqρ

(ℓ2 + q2x (1− x))2

]

=

∫
ddℓ

(2π)d

∫ 1

0

dx

[
ℓνℓµℓτℓρ

(ℓ2 + q2x (1− x))2
+

x2ℓνqµℓτqρ

(ℓ2 + q2x (1− x))2
+

(1− x)2 qνℓµqτℓρ
[ℓ2 + q2x (1− x)]2

+
x (1− x) (qνqµℓτℓρ + qνℓµℓτqρ + ℓνℓµqτqρ + ℓνqµqτℓρ)

[ℓ2 + q2x (1− x)]2
+

[
x2 (1− x)2

]
qνqµqτqρ

[ℓ2 + q2x (1− x)]2

]
,

(B.5)

where in the last expression we have factored various polynomials.

By a symmetry argument similar to the one discussed around equations (5.28) and

(5.30), within the integral we can replace products of loop momenta with symmetrized

combinations of metric tensors:

ℓµℓν → 1

d
ℓ2gµν ,

ℓµℓνℓρℓτ → 1

d (d+ 2)
ℓ4 (gµνgρτ + gµρgντ + gµτgνρ) . (B.6)

Applying the replacements (B.6), the integral I2 becomes

I2 =
∫

ddℓ

(2π)d

∫ 1

0

dx

(
ℓ4

d (d+ 2)

gµνgρτ + gµτgνρ + gµρgντ

[ℓ2 + q2x (1− x)]2
+
ℓ2

d

x2gντqµqρ

[ℓ2 + q2x (1− x)]2

+
ℓ2

d

(1− x)2 gµρqνqτ
[ℓ2 + q2x (1− x)]2

+
ℓ2

d

x (1− x) (qνqµgτρ + gµτqνqρ + gνµqτqρ + gνρqµqτ )

[ℓ2 + q2x (1− x)]2

+
x2 (1− x)2 qνqµqτqρ
[ℓ2 + q2x (1− x)]2

)
. (B.7)

It will be convenient to make use of the standard result
∫

ddℓ

(2π)d
ℓ2β

(ℓ2 −∆2)α
= i (−1)α+β Γ

(
β + d

2

)
Γ
(
α− β − d

2

)

(4π)
d
2 Γ (α) Γ

(
d
2

) ∆2( d
2
−α+β) , (B.8)

which can be found, for instance, in equation (A.4) in [99]. Using (B.8) with

∆2 = −q2x (1− x) (B.9)
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in equation (B.7), we find

I2 =
i

(4π)
d
2 Γ (2) Γ

(
d
2

)
∫ 1

0

dx

(
∆d

d (d+ 2)
Γ

(
2 +

d

2

)
Γ

(
−d
2

)
(gµνgρτ + gµρgντ + gµτgνρ)

+
∆d−2

d
Γ

(
1 +

d

2

)
Γ

(
1− d

2

)
x (1− x) (qνqµgτρ + gµτqνqρ + gνµqτqρ + gνρqµqτ )

+
∆d−2

d
Γ

(
1 +

d

2

)
Γ

(
1− d

2

)
x2gντqµqρ +

∆d−2

d
Γ

(
1 +

d

2

)
Γ

(
1− d

2

)
(1− x)2 gµρqνqτ

+∆d−4Γ

(
d

2

)
Γ

(
2− d

2

)[
x2 (1− x)2

]
qνqµqτqρ

)
. (B.10)

Using gamma function identities and some algebra, one can simplify this to

I2 =
iΓ
(
−d

2

)

(4π)
d
2

∫ 1

0

dx

(
∆d

4
(gµνgρτ + gµρgντ + gµτgνρ)− d∆d−2

4
x2gντqµqρ

− d∆d−2

4
(1− x)2 gµρqνqτ − d∆d−2

4
x (1− x) (qνqµgτρ + gµτqνqρ + gνµqτqρ + gνρqµqτ )

+
d (d− 2)∆d−4

4
x2 (1− x)2 qνqµqτqρ

)
. (B.11)

After substituting in for ∆2 using the definition (B.9), we can now evaluate the resulting

integrals using the formula
∫ 1

0

dx xα−1 (1− x)β−1 =
Γ (α) Γ (β)

Γ (α + β)
= B(α, β) , (B.12)

which we recognize as the definition of the beta function B(α, β). By doing this, we find

I2 =
iΓ
(
−d

2

)

4 (4π)
d
2

∫ 1

0

dx

(
d (d− 2) qd−4 [−x (1− x)] d2 qνqµqτqρ − dqd−2 (−x) d

2
−1 (1− x) d

2
+1 gµρqνqτ

+ qd [−x (1− x)] d2 (gµνgρτ + gµρgντ + gµτgνρ)− dqd−2
[
(−x) d

2
+1 (1− x) d

2
−1
]
gντqµqρ

+ dqd−2 [−x (1− x)] d2 (qνqµgτρ + gµτqνqρ + gνµqτqρ + gνρqµqτ )

)

=
i (−1) d

2 Γ
(
−d

2

)

4 (4π)
d
2

(
qd
Γ
(
d
2
+ 1
)2

Γ (d+ 2)
(gµνgρτ + gµρgντ + gµτgνρ)

+ dqd−2Γ
(
d
2

)
Γ
(
d
2
+ 2
)

Γ (d+ 2)
[gµρqνqτ + gντqµqρ] + d (d− 2) qd−4Γ

(
d
2
+ 1
)2

Γ (d+ 2)
qνqµqτqρ

+ dqd−2Γ
(
d
2
+ 1
)2

Γ (d+ 2)
(qνqµgτρ + gµτqνqρ + gνµqτqρ + gνρqµqτ )

)
. (B.13)
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Note that each term in (B.13) scales as qd, as expected. Factoring out the gamma functions,

we have found

I2 =
i (−1) d

2 Γ
(
−d

2

)

4 (4π)
d
2

Γ
(
d
2
+ 1
)2

Γ (d+ 2)

[
qd (gµνgρτ + gµρgντ + gµτgνρ) + d (d− 2) qd−4qνqµqτqρ

+ dqd−2 (qνqµgτρ + gµτqνqρ + gνµqτqρ + gνρqµqτ ) + (d+ 2) qd−2 (gµρqνqτ + gντqµqρ)

]
.

(B.14)

Finally, to perform dimensional regularization, we set the spacetime dimension to d = 2+2ϵ

and take ϵ→ 0 using the limiting behavior

Γ (−1− ϵ) = 1

ϵ
− γ + 1 +O (ϵ) (B.15)

for the gamma functions. Keeping only divergent terms, we arrive at the final expression

I2 =
(
1

ϵ

) −i
24 (4π)

[
q2 (gµνgρτ + gµρgντ + gµτgνρ) + 2 (qνqµgτρ + gµτqνqρ + gνµqτqρ + gνρqµqτ )

+ 4 (gµρqνqτ + gντqµqρ)

]
. (B.16)

This completes the evaluation of the divergent contribution from I2, which justifies the

result (5.36) which was quoted in the body of the paper.

B.2 One-loop, n-vertex calculation

The n-vertex diagram Dn can be computed via a generalization of the method used in

appendix B.1. We again write ℓ for the loop momentum and we label the external momenta

as qi, for i = 0, . . . , n− 1, with momentum conservation implying that

qn−1 = −
n−2∑

i=0

qi . (B.17)

As we did with D2 in equation (5.33), let us strip off various factors of P ij
µν to write

Dn = (−2 tanh(γ))N
∫ (

ddq0
(2π)d

P i1i2
(µ1µ2)

(q0)

)(
ddq0
(2π)d

P i2i3
(µ3µ4)

(q1)

)
· · ·
(
ddqn−2

(2π)d
P
in−1in
(µ2n−3µ2n−2)

(qn−2)

)

· P ini1
(µ2n−1µ2n)

(qn−1) (In)µ1µ2...µ2n−1µ2n , (B.18)

where In is the simpler integral

(In)µ1µ2...µ2n−1µ2n =

∫
ddℓ

(2π)d



n−1∏

i=0

(
ℓ+

i∑

j=0

qj

)−2


(

n∏

k=1

(
ℓ+

k−1∑

j=0

qj

)µ2k−1
(
ℓ+

k−1∑

j=0

qj

)µ2k)
.

(B.19)
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We will further break up In into pieces and evaluate each piece in turn. Let us write the

integrand of (B.19) as a product

(In)µ1µ2...µ2n−1µ2n =

∫
ddℓ

(2π)d
PnVµ1µ2...µ2n−1µ2n , (B.20)

where the symbol

Pn =
n−1∏

i=0

(
ℓ+

i∑

j=0

qj

)−2

(B.21)

refers to the collection of all factors in In which come from propagators, and the symbol

Vµ1µ2...µ2n−1µ2n =
n∏

k=1

(
ℓ+

k−1∑

j=0

qj

)µ2k−1
(
ℓ+

k−1∑

j=0

qj

)µ2k

, (B.22)

which we will sometimes abbreviate as V , refers to the pieces coming from vertex factors.

In order to highlight the divergence structure of the diagram Dn, we will focus on

performing the loop momentum integral of various terms appearing in the product PV of

equation (B.20), and neglect the additional structure arising from the contraction with the

various tensors P ij
µν to obtain Dn in (B.18).

Let us begin by simplifying the product P of n propagator factors. In general, we can

write the product of n propagators using a Feynman parameterization:

n−1∏

i=0

A−1
i =

∫ 1

0

(
n−1∏

i=0

dxi

)
δ

(
n−1∑

i=0

xi − 1

)
(n− 1)!

[
∑

i xiAi]
n . (B.23)

The product of propagators inside the loop can thus be expressed as

P =

∫ 1

0

(
n−1∏

i=0

dxi

)
δ

(
n−1∑

i=0

xi − 1

)

n−1∑

i=0

xi

(
ℓ+

i∑

j=0

qj

)2



−n

. (B.24)

As
∑

i xi = 1, we can expand and reduce the square bracketed term to


∑

i

xi

(
ℓ+

i∑

j=0

qj

)2



−n

=


ℓ2 +

∑

i

xi


2ℓµ

i∑

j=0

qµj +

(
i∑

j=0

qj

)2





−n

=



(
ℓ+

∑

i

i∑

j=0

xiqj

)2

−
(∑

i

i∑

j=0

xiqj

)2

+
∑

i

xi

(
i∑

j=0

qj

)2


−n

.

(B.25)
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We change variables in the loop momentum by shifting

ℓµ → ℓµ −
n−1∑

i=0

i∑

j=0

xiq
µ
j , (B.26)

so that the bracketed expression becomes


∑

i

xi

(
ℓ+

i∑

j=0

qj

)2



−n

=


ℓ2 −

(∑

i

i∑

j=0

xiqj

)2

+
∑

i

xi

(
i∑

j=0

qj

)2



−n

=
[
ℓ2 −∆2

]−n
, (B.27)

where we have defined

∆2 =

(∑

i

i∑

j=0

xiqj

)2

−
∑

i

xi

(
i∑

j=0

qj

)2

. (B.28)

Overall this allows us to write the propagators as

P = (n− 1)!

∫ 1

0

(
n−1∏

i=0

dxi

)
δ

(
n−1∑

i=0

xi − 1

)
(
ℓ2 −∆2

)−n
. (B.29)

Next let us turn to the contributions from the vertices in equation (B.22), which yield factors

of momenta in the numerator of the integrand. Under the change of variables (B.26) which

renders the denominator of P quadratic in ℓ, the vertex factor contribution becomes

Vµ1µ2...µ2n−1µ2n =
n∏

k=1

(
ℓ−

n−1∑

i=0

i∑

j=0

xiqj +
k−1∑

j=0

qj

)µ2k−1
(
ℓ−

n−1∑

i=0

i∑

j=0

xiqj +
k−1∑

j=0

qj

)µ2k

.

(B.30)

We expand this product in descending powers of ℓ as only powers ℓ2n and ℓ2n−2 will lead to

divergent terms. We have that

Vµ1µ2...µ2n−1µ2n =
n∏

k=1

ℓµ2k−1ℓµ2k +
2n∑

a=1

2n∑

b>a

(
2n∏

c ̸=a,b
ℓµc

)
fµa (x, q, a) fµb (x, q, b) +O

(
ℓ2n−4

)
,

(B.31)

where we have defined for brevity

fµ (x, q, a) =
n−1∑

i=0

i∑

j=0

xiq
µ
j +

⌊a−1
2

⌋∑

j=0

qµj . (B.32)
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Next we will replace products of loop momenta using the generalized symmetrization

rule of equation (5.30). To ease notation, let us write

gµ1...µn = g(µ1µ2 · · · gµn−1µn) (B.33)

for the symmetrized combination of derivatives appearing in this expression. When no

confusion is possible, we will also write g{µ} for (B.33), where {µ} is understood to refer to

a multi-index {µ} = µ1 . . . µn. With this notation, the replacement rule becomes

n∏

i=1

ℓµ2i−1ℓµ2i → ℓ2n (d− 2)!!

(d− 2 + 2n)!!
gµ1...µ2n . (B.34)

This transforms the vertex factor contribution to

Vµ1µ2...µ2n−1µ2n =
ℓ2n (d− 2)!!

(d− 2 + 2n)!!
gµ1···µ2n

+
ℓ2n−2 (d− 2)!!

(d− 4 + 2n)!!

2n∑

a=1

2n∑

b>a

g{µ ̸=µa,µb}fµa (x, q, a) fµb (x, q, b) +O
(
ℓ2n−4

)
.

(B.35)

In equation (B.35), we have written g{µ ̸=µa,µb} to refer to a product of the form (B.33) in

which the multi-index {µ} runs over all possible values except for the two indices µa and

µb, which are excluded.

Let us now combine the pieces and identify the divergent terms in Dn. We can evaluate

(In)µ1µ2...µ2n

=

∫
ddℓ

(2π)d
PVµ1µ2...µ2n

=

∫
ddℓ

(2π)d
(n− 1)!

∫ 1

0

(
n−1∏

i=0

dxi

)
δ

(
n−1∑

i=0

xi − 1

)
(
ℓ2 −∆2

)−n ·
(

ℓ2n (d− 2)!!

(d− 2 + 2n)!!
gµ1...µ2n

+
ℓ2n−2 (d− 2)!!

(d− 4 + 2n)!!

2n∑

a=1

2n∑

b>a

g{µ ̸=µa,µb}fµa (x, q, a) fµb (x, q, b) +O
(
ℓ2n−4

)
)
, (B.36)

in terms of the known integral

∫
ddℓ

(2π)d
ℓ2β

(ℓ2 −∆2)α
= i (−1)α+β Γ

(
β + d

2

)
Γ
(
α− β − d

2

)

(4π)
d
2 Γ (α) Γ

(
d
2

) ∆2( d
2
−α+β) . (B.37)

First let us justify why the terms of order ℓ2n−4 and lower in equation (B.36) will not give

divergent contributions. A term proportional to ℓ2n−4 in the parentheses of (B.36), after
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multiplying the propagator factor (ℓ2 − ∆2)−n, gives a term in the integrand of the form

(B.37) with α = n and β = n− 2. Such a term gives a contribution
∫

ddℓ

(2π)d
ℓ2(n−2)

(ℓ2 −∆2)n
= i (−1)n+(n−2) Γ

(
n− 2 + d

2

)
Γ
(
2− d

2

)

(4π)
d
2 Γ (n) Γ

(
d
2

) ∆2( d
2
−n+(n−2)) . (B.38)

In the limit as d→ 2, the two factors of gamma functions in the numerator of (B.38) tend

to Γ(n − 1) and Γ(1), which are both finite since n > 2. Since we are only interested in

computing the divergent contributions arising from these diagrams, we ignore these terms.

Similarly, any terms of lower order in ℓ can be evaluated in the same way but with even

smaller values of β, which also lead to finite contributions from the gamma functions.

Let us therefore focus on the divergent terms. The term in the integrand proportional

to ℓ2n in equation (B.36) takes the form (B.37) with α = β = n. Similarly, the term in the

integrand that scales as ℓ2n−2 is of the form (B.37) with α = n and β = n− 1. Evaluating

the loop momentum integrals then gives

(In)µ1µ2...µ2n = (n− 1)!

∫ 1

0

(
n−1∏

i=0

dxi

)
δ

(
n−1∑

i=0

xi − 1

)

·
(

i (d− 2)!!

(d− 2 + 2n)!!
gµ1···µ2n

Γ
(
n+ d

2

)

(4π)
d
2 Γ (n) Γ

(
d
2

)Γ
(
−d
2

)
∆d

+
i (d− 2)!!

(d− 4 + 2n)!!

2n∑

a=1

2n∑

b>a

g{µ̸=µa,µb}fµa (x, q, a) fµb (x, q, b)

· Γ
(
n− 1 + d

2

)

(4π)
d
2 Γ (n) Γ

(
d
2

)Γ
(
1− d

2

)
∆d−2

)
. (B.39)

To better analyze the divergence structure, it is useful to define shorthand notation for the

two terms appearing in (B.39), which we call Cµ1...µ2n
2n and Dµ1...µ2n

2n :

Cµ1...µ2n
2n ≡ i (d− 2)!!

(d− 2 + 2n)!!
gµ1···µ2n

Γ
(
n+ d

2

)

(4π)
d
2 Γ (n) Γ

(
d
2

)Γ
(
−d
2

)
∆d

Dµ1...µ2n
2n ≡ i (d− 2)!!

(d− 4 + 2n)!!

2n∑

a=1

2n∑

b>a

g{µ̸=µa,µb}fµa (x, q, a) fµb (x, q, b)

· Γ
(
n− 1 + d

2

)

(4π)
d
2 Γ (n) Γ

(
d
2

)Γ
(
1− d

2

)
∆d−2 . (B.40)

Both contributions Cµ1...µ2n
2n andDµ1...µ2n

2n scale as qd and contain a polynomial in xi of degree

d. In Cµ1...µ2n
2n , this qd dependence is contained within ∆d, and for Dµ1...µ2n

2n , the power of

qd−2 from ∆d−2 is compensated by two factors of q, one of which sits in each function fµ.
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Therefore, we conclude that in the limit d → 2, all such n vertex diagrams have the

same general structure as the 2-vertex diagram which we saw in (B.16). In particular, both

Cµ1...µ2n
2n and Dµ1...µ2n

2n generate divergences of the form 1
ϵ
because they are proportional to

Γ
(
−d

2

)
and Γ

(
1− d

2

)
, respectively.

We conclude that

Cµ1...µ2n
2n ∼ 1

ϵ
q2gµ1···µ2n ,

Dµ1...µ2n
2n ∼ 1

ϵ

2n∑

a=1

2n∑

b>a

qµaqµbg{µ̸=µa,µb} . (B.41)

B.3 m-loop, two-vertex calculation

In this appendix, we will show how to evaluate the integral over one of the m loop momenta

ℓi which appear in the expression for the two-vertex, m-loop diagram of equation (5.40). It

suffices to integrate over the final momentum ℓm, since the result may then be iterated to

evaluate the other m− 1 integrals.

Therefore, let us focus on performing the integration over ℓm in the quantity Lm,2 of

equation (5.46). Specifically, we will compute the quantity

Lm,2 =

∫
ddℓm

ℓνm+1
m ℓτm+1

m (ℓm − ℓm−1)
νm (ℓm − ℓm−1)

τm

ℓ2m (ℓm − ℓm−1)
2 . (B.42)

This object Lm,2 is proportional to the remaining integrand that one finds by performing

the integral over ℓm in the definition of Lm,2. As we will see, after obtaining an expression

for Lm,2, this result can be used recursively to evaluate Lm,2 itself.

We notice the integral in equation (B.42) is exactly of the form of the one appearing in

the 1-loop, 2-vertex diagram which we evaluated in appendix B.1. Proceeding in the same

way, we introduce a Feynman parameter x to write

Lm,2 =

∫
ddℓm dx

ℓνm+1
m ℓτm+1

m (ℓm − ℓm−1)
νm (ℓm − ℓm−1)

τm

[
(1− x) ℓ2m + x (ℓm − ℓm−1)

2]2

=

∫
ddℓm dx

ℓνm+1
m ℓτm+1

m (ℓm − ℓm−1)
νm (ℓm − ℓm−1)

τm

[
ℓ2m + x

(
2ℓm · ℓm−1 − ℓ2m−1

)]2

=

∫
ddℓm dx

ℓνm+1
m ℓτm+1

m (ℓm − ℓm−1)
νm (ℓm − ℓm−1)

τm

[
(ℓm + xℓm−1)

2 − x2ℓ2m−1 + xℓ2m−1

]2 , (B.43)
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or after shifting the integration variable as ℓm → ℓm − xℓm−1,

Lm,2 =

∫
ddℓm dx

(ℓm − xℓm−1)
νm+1 (ℓm − xℓm−1)

τm+1 (ℓm − (1− x) ℓm−1)
νm (ℓm − (1− x) ℓm−1)

τm

[
ℓ2m + x (1− x) ℓ2m−1

]2 .

(B.44)

We may keep only even powers of ℓm in the integrand, as odd powers vanish by symmetry:

Lm,2 =

∫
ddℓm dx

(
ℓνm+1
m ℓτm+1

m ℓνmm ℓτmm + x2ℓ
νm+1

m−1 ℓ
τm+1

m−1 ℓ
νm
m ℓτmm + x (1− x) ℓνm+1

m ℓ
τm+1

m−1 ℓ
νm
m ℓτmm−1[

ℓ2m + x (1− x) ℓ2m−1

]2

+
x (1− x) ℓνm+1
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τm+1
m ℓνmm−1ℓ

τm
m + (1− x)2 ℓνm+1

m ℓτm+1
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τm
m−1 + x2 (1− x)2 ℓνm+1

m−1 ℓ
τm+1

m−1 ℓ
νm
m−1ℓ

τm
m−1[

ℓ2m + x (1− x) ℓ2m−1

]2

)
.

(B.45)

We now replace products of ℓµm with powers of ℓm and symmetrized metric factors, following

the generalized symmetrization rule (5.30), which yields

Lm,2 =

∫
ddℓm dx

( ℓ4m
d(d+2)

g(νm+1τm+1gνmτm) + x2 ℓ
2
m

d
gµmνmℓ

νm+1

m−1 ℓ
τm+1

m−1 + x (1− x) ℓ2m
d
gνm+1νmℓ
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ℓ2m + x (1− x) ℓ2m−1

]2

+
x (1− x) ℓ2m

d
gτm+1νmℓ

νm+1

m−1 ℓ
τm
m−1 + (1− x)2 ℓ2m

d
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τm
m−1 + x2 (1− x)2 ℓνm+1

m−1 ℓ
τm+1

m−1 ℓ
νm
m−1ℓ

τm
m−1[

ℓ2m + x (1− x) ℓ2m−1

]2

)
.

(B.46)

Splitting the numerator up, we can once again apply the standard formula (B.37) with

∆2 = −x (1− x) ℓ2m−1 , (B.47)

which gives

Lm,2 =
i

(4π)
d
2 Γ
(
d
2

)
∫ 1

0

dx

(
1

d (d+ 2)
g(νm+1τm+1gνmτm)Γ
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2 +
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2
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2
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. (B.48)
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Replacing ∆ using its definition in equation (B.47), we see that each term contains d overall

factors of loop momenta:

Lm,2 =
i

(4π)
d
2 Γ
(
d
2

)
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. (B.49)

We now use the identity Γ (1 + x) = xΓ (x) to factor and cancel the gamma functions, and

finally evaluate the Feynman integrals, giving the result

Lm,2 =
iΓ
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2
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. (B.50)

We see that all terms scale as ℓdm−1 and the only divergent gamma function is Γ
(
−d

2

)
. This

establishes the result used in the body of the paper, in the text above equation (5.48),

which can then be applied iteratively to evaluate the remaining loop integrals.
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Electrodynamics,” J. Phys. A 54 (2021), no. 26, 265201, 2105.05802.

[56] H. Nastase, “Coupling ModMax theory precursor with scalars, and BIon-type

solutions,” 2112.01234.

[57] C. A. Escobar, R. Linares, and B. Tlatelpa-Mascote, “Hamiltonian analysis of

ModMax nonlinear electrodynamics in the first-order formalism,” Int. J. Mod. Phys.

A 37 (2022), no. 03, 2250011, 2112.10060.

[58] K. Lechner, P. Marchetti, A. Sainaghi, and D. P. Sorokin, “Maximally symmetric

nonlinear extension of electrodynamics and charged particles,” Phys. Rev. D 106

(2022), no. 1, 016009, 2206.04657.

[59] M. J. Neves, P. Gaete, L. P. R. Ospedal, and J. A. Helayël-Neto, “Considerations on
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