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ABSTRACT

Transformers have been the most successful architecture for vari-
ous speech modeling tasks, including speech separation. However,
the self-attention mechanism in transformers with quadratic com-
plexity is inefficient in computation and memory. Recent models
incorporate new layers and modules along with transformers for bet-
ter performance but also introduce extra model complexity. In this
work, we replace transformers with Mamba, a selective state space
model, for speech separation. We propose dual-path Mamba, which
models short-term and long-term forward and backward dependency
of speech signals using selective state spaces. Our experimental re-
sults on the WSJ0-2mix data show that our dual-path Mamba models
match or outperform dual-path transformer models Sepformer with
only 60% of its parameters, and the QDPN with only 30% of its
parameters. Our large model also reaches a new state-of-the-art SI-
SNRi of 24.4 dB.

Index Terms— Speech separation, source separation, speech
sequence modeling, state space model, deep learning

1. INTRODUCTION

Speech is an inherently long signal of thousands of samples. Speech
separation models separate multiple individual speech, each of thou-
sands of samples, from a single overlapped speech mixture of the
same length. Therefore, an effective mechanism for modeling long
speech sequences is crucial to achieving high performance in speech
separation. With the advancement of deep learning, a variety of
neural sequence modeling architectures, including convolutional
neural networks (CNN) [1], recurrent neural networks (RNN) [2],
and transformers [3], have been adopted into speech separation
models and achieved a state-of-the-art (SOTA) performance at the
time they were adopted [4, 5, 6]. However, each architecture faces
its own challenges: CNNs are restricted by a finite receptive field;
RNNs are hard to parallelize and struggle with vanishing or explod-
ing gradients [7]; Transformers often outperform CNNs and RNNs
but require quadratic computation in computing self-attention [3].
Although alternative self-attention mechanisms with sub-quadratic
complexity exist, they fail to match the performance of the original
attention mechanism in speech separation [8]. Meanwhile, the at-
tempt to scale up transformer parameters, as seen from Sepformer
[6] to almost eight times larger QDPN [9], yields a modest perfor-
mance improvement, suggesting diminishing returns with increasing
model size. Recently, MossFormer2, which integrates transformers
and RNN-free recurrent networks, has achieved better performance
but is much smaller than QDPN, hinting that speech separation
might still benefit from exploring beyond transformer architectures.

State space model (SSM) [10, 11, 12] is another unique class
of sequence modeling architecture. Recently, a novel selective SSM
named Mamba is proposed [13]. Distinct from earlier SSMs, Mamba

incorporates an input-dependent selection mechanism that improves
sequence modeling performance but still enjoys linear complexity
with respect to the sequence length. Mamba models have matched
and even surpassed transformers of comparable sizes in sequence
modeling tasks of text, audio, image, and genomics. [13, 14].

Inspired by Mamba’s effectiveness and efficiency in sequence
modeling, we introduce it into speech separation and propose a new
model named dual-path Mamba (DPMamba). As the name sug-
gests, we follow the long sequence modeling method in dual-path
RNN [5] to split a long speech into multiple short chunks and apply
Mamba models within each chunk, across all chunks, in the origi-
nal direction, and in the reversed direction of time. Our experiments
of DPMamba of four different sizes on the WSJ0-2mix dataset [15]
demonstrate on-par or superior performance over SOTA models of
similar or larger sizes, including the CNN-based Wavesplit [16], the
RNN-based DPRNN [5] and VSUNOS [17], and the transformer-
based SepFormer [6] and QDPN [9]. The largest model outperforms
Mossformer2 [18] and reaches a new SI-SNRi record of 24.4 dB.

2. RELATED WORKS

2.1. Speech Separation

Following the shift to adaptive front-ends over the short-time Fourier
transform for waveform encoding [19, 20], time-domain speech sep-
aration models have become the mainstream of research. The core
of these models is a mask estimation network which consists of
multiple separation blocks of the same architecture. The architec-
ture of these blocks plays a crucial role in separation performance
and has thus become a primary focus of research efforts. CNN and
RNN models were first introduced, succeeded by better transformer
and hybrid models. We spotlight models that have set benchmarks
in speech separation across different architecture families and will
compare them with our mamba separation models in Section 4.
CNN: Conv-TasNet [4] first outperforms ideal time-frequency mask-
ing in speech separation. It uses temporal convolutional networks
(TCN) with progressively increasing dilation factors to expand its
receptive field. Sudo rm -rf [21, 22] employs a more efficient CNN
architecture with down-sampling layers to expand the receptive field.
Wavesplit [16] builds on TCNs but introduces additional speaker em-
beddings, which leads to a better performance.
RNN: An earliest time-domain model TasNet [20] utilizes long
short-term memory (LSTM) to separate speech. To improve the
modeling ability of long sequence, DPRNN [5] proposes splitting a
speech sequence into smaller chunks and utilizing two LSTMs for
intra-chunk and inter-chunk processing. VSUNOS [17] outperforms
DPRNN by substituting LSTMs with gated RNNs.
Transformer: DPTNet [23] and Sepformer [6] adopt the dual-path
architecture of DPRNN and replace LSTMs with transformers. They
differ in the stride size and the use of a RNN or positional encoding
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Fig. 1. A top-down view of DPMamba from I to IV.

to embed the order information of a speech sequence. QDPN [9]
proposes an improved quasi-dual-path architecture and scales up pa-
rameters to 200M. This marks the best performance of the largest
transformer model in WSJ0-2mix.
Hybrid: More recent separation models employ a hybrid archi-
tecture which often augments a vanilla transformer using another
model, like convolution-augmented transformers in TD-Conformer
[24], gated transformer with convolution-augmented attentions in
Mossformer [25], and transformer and RNN-free recurrent network
in Mossformer2 [18]. Separate and Diffuse [26] adds a generative
model to post-refine the speeches separated by Sepformer.

2.2. Applications of Mamba

Mamba has been proven a transformer-level performance in multi-
ple modalities and tasks. Mamba is first applied to text, audio, and
genomics modeling tasks in its own paper [13]. Later applications
extend to images [14], biomedical data [27], graphs [28], motions
[29], videos [30], and point clouds [31]. For speech, [32] adopts
Mamba for multi-channel speech enhancement. [33] adopts S4 (the
predecessor of Mamba) [12] for single-channel speech separation.
To our knowledge, ours is the first work that adopts Mamba in single-
channel speech separation.

3. DPMAMBA

In this section, we will first review the selective state space model
which is the core component of Mamba. Then, we will explain DP-
Mamba in a top-down way with Fig. 1. We focus on our adoption
of Mamba (purple parts in Fig. 1) into separation since the rest is
commonly shared with other dual-path separation models.

3.1. Selective State Space Model

A state space model (SSM) performs a sequence-to-sequence map-
ping x(t) ∈ R 7→ y(t) ∈ R with a hidden state h ∈ RH , a state tran-
sition matrix A ∈ RH×H , an input projection matrix B ∈ RH×1,

and an output projection matrix C ∈ R1×H . H is the dimension of
the hidden state:

h′(t) = Ah(t) + Bx(t), y(t) = Ch(t) (1)

To compute Eq.1 for discrete-time signals in digital devices, we need
to discretize the SSM with discretized matrices A and B:

ht = Aht−1 + Bxt, yt = Cht (2)

A and B are approximated by zero-order hold. A learnable parameter
∆ balances how much to focus or ignore the current state and input:

A = exp(∆A), B = (∆A)−1(exp(∆A)− I) ·∆B (3)

By unrolling the computation in Eq.2 along the sequence, it can be
observed that the output sequence yt is the input sequence xt con-
volved with a structured kernel K made up by A, B, and C:

K = (CB,AB, ..., CAL−1B), y = x ∗ K (4)

The kernel K can be pre-computed if A, B, and C are fixed. How-
ever, the SSM in Mamba is input selective to enable input content-
awareness: It updates the parameters ∆t (and therefore At), Bt, and
Ct based on the input xt at each timestep t. To accommodate these
dynamic updates, [13] proposes an efficient selective scan algorithm
for the calculation of Eq.4.

3.2. Time-domain Dual-path Model

DPMamba follows the time-domain dual-path structure of previous
SOTA separation models [5, 6, 25]. A linear encoder encodes a
single-channel wave mixture x ∈ R1×T of T samples to a two-
dimensional latent representation hx ∈ RD×N of D dimensions and
N frames. The encoder has a kernel size of 16 and a stride of 8, re-
sulting in N= T/8. The encoder dimension D is a hyperparameter.
Next, for two speakers in the mixture, a Mamba masking network
(Mamba MaskNet) estimates two masks m1,m2 ∈ RD×N . These
masks are then applied through element-wise multiplication with hx



to isolate individual speech sources hŝ1 , hŝ2 ∈ RD×N . Finally, a
linear decoder decodes hŝ1 , hŝ2 back to waveforms ŝ1, ŝ2 ∈ R1×T .
Fig. 1 I draws the same workflow.

Mamba MaskNet is a dual-path network that operates on a three-
dimensional tensor h0 ∈ RD×K×S . h0 is obtained by Chunking N
frames of hx into multiple smaller chunks. K=250 is the chunk size,
and S is the resulting number of chunks, with an overlap factor of
50% between adjacent chunks. Mamba MaskNet processes within-
and across-chunk sequences of much smaller lengths K and S than
N , which are two substantially easier sequence modeling tasks [5].
The output of Mamba MaskNet, hR ∈ RD×K×S , is converted back
to two-dimensional by OverlapAdd operation. Mask m1 and m2 are
estimated by a linear layer followed. Additional linear layers are
placed before Chunking and OverlapAdd operation, as drawn in Fig.
1 II.

Note that we use the same chunk size, kernel size, and stride as
other dual-path models like Sepformer [6] and Mossformer [25, 18]
for a fair comparison.

3.3. Dual-path Bidirectional Mamba

Mamba MaskNet comprises a stack of R dual-path (DP) blocks iter-
atively processing the chunked features h0, resulting in h1 to hR of
the same shape. Within each DP block, four SSMs process the fea-
tures in four different ways: intra-chunk forward, intra-chunk back-
ward, inter-chunk forward, and inter-chunk backward. An intra-
chunk SSM locally processes all K frames within a chunk; An inter-
chunk SSM globally processes all S chunks of the entire signal. A
forward SSM processes in the original direction; A backward SSM
processes in the opposite direction of the sequence. As shown in Fig.
1 III and IV, a DP block contains an intra-chunk and an inter-chunk
unit interleaved, and an intra-chunk or inter-chunk unit each contains
a forward and a backward SSM running in parallel.

3.3.1. Local and Global

We adopt computation units of the same structure for local and
global processing as shown in Fig. 1 III. Both intra-chunk and inter-
chunk units contain a normalization layer, a bidirectional Mamba
(BiMamba), and a skip connection. By default, we use RMSNorm
[34] as the normalization method due to its computational effi-
ciency. An intermediate feature hi ∈ RD×K×S is first processed
by the intra-chunk unit across K frames in every chunk and then
processed by the inter-chunk unit across S chunks in total. The
computation in ith DP block can be expressed as follows:

h′i = hi +
←−K−→

BiMamba
(
Norm(hi)

)
(5)

hi+1 = h′i +
←−S−→

BiMamba
(
Norm(h′i)

)
(6)

The intra-chunk duration is around 30 ms with our default con-
figuration for 8 kHz speech. In implementation, we permute the last
two dimensions K and S of hi (h′i) to alter between intra-chunk or
inter-chunk processing.

3.3.2. Forward and Backward

The original Mamba [13] uses one SSM to process the input se-
quence in the forward direction. However, it has been shown that
bidirectional models, which utilize future context, usually outper-
form unidirectional models in speech separation [4]. To make
Mamba bidirectional, we borrow the BiMamba design from [14] to
run one forward and one backward SSM in parallel, as shown in Fig.

1 IV. For clarity of discussion, we omit the subscripts used in the
previous sections and denote the input and output of BiMamba as h
and h+, respectively.

We start with an input sequence h ∈ RD×L, where the di-
mension D is the same as the encoder dimension and the length
L ∈ {K,S} is either the number of frames per chunk or the number
of chunks. A linear layer projects h to h� ∈ RE×L, where E = 2D
is the dimension expanded by 2. h� is h� with L samples flipped.
Meanwhile, another linear layer projects h to z ∈ RE×L in order to
later gate SSM outputs:

h� = Lineari(h), h� = Flip(h�) (7)
z = Linearg(h) (8)

The forward and the backward sequence h� and h� are then pro-
cessed by their own convolution followed by activation layers, re-
sulting in x� and x�. The convolution has a kernel size of 4, and the
activation σ is the Sigmoid Linear Unit (SiLU) [35, 36]:{

x� = σ
(
Conv1d�(h

�)
)

x� = σ
(
Conv1d�(h

�)
) (9)

x� and x� are the inputs to two SSMs detailed in Section 3.1. The
SSM outputs are gated by σ(z):{ y� = σ(z)⊗ SSM�(x�)

y� = σ(z)⊗ SSM�(x�)
(10)

Finally, the final output h+ is obtained by a linear projection of the
average of the forward and the backward processed sequences y�

and y�, after the latter flipped back to the original direction:

h+ = Linearo
(y� + Flip(y�)

2

)
(11)

4. RESULTS

4.1. Experiments

We implemented DPMamba of four different sizes as documented in
Table 1. We trained them with scale-invariant signal-to-noise ratio
(SI-SNR) [37] and evaluated them with the improvement of SI-SNR
(SI-SNRi) and the improvement of signal-to-distortion ratio (SDRi)
on the WSJ0-2mix dataset [15]. We trained all the models with a
batch size of 1, an Adam optimizer [38], a peak learning rate of
1.5e−4, a linear learning rate warmup of 20,000 steps (1 epoch),
and a cosine learning rate decay to 0.1 from the peak. We trained
DPMamba (XS, S, M) for 100 epochs and DPMamba (L) for 150
epochs. We apply speed perturbation with a random ratio between
95% and 100% and dynamic mixing as data augmentation. Note that
this training setting is similar to the one in Sepformer [6] but with
a different learning rate schedule and fewer epochs. All the experi-
ments are conducted in a NVIDIA L40 GPU with mixed (bfloat16)
precision.

4.2. Performance Comparison

In Table 2, we compare the performance of our models with the per-
formance of the SOTA models from different architecture families:
CNN, RNN, Transformer, and Hybrid, which we have introduced in
Section 2.1. We also include the performance of S4M [33], which
adopts the S4 model for separation and also belongs to the SSM fam-
ily. The numbers in the table correspond to their best models trained
with data augmentation, as reported in their papers.



Table 1. Hyperparameters of DPMamba XS, S, M, and L. R × 2
means R DP blocks and each block consists of one intra-chunk and
one inter-chunk BiMamba unit.

Model Dimension D #Layers #Params (M)
DPMamba (XS) 128 8 × 2 2.3
DPMamba (S) 256 8 × 2 8.1
DPMamba (M) 256 16 × 2 15.9
DPMamba (L) 512 16 × 2 59.8

Table 2. A comparison of DPMamba with previous SOTA sepa-
ration models from each architecture family on WSJ0-2mix. n.r.
stands for not reported.

Model SI-SNRi (dB) SDRi (dB) #Params (M) Stride
CNN

Conv-TasNet [4] 15.3 15.6 5.1 8
Sudo rm -rf (B=36) [22] 19.5 n.r. 23.2 10

Wavesplit [16] 22.2 22.3 29 1
RNN

TasNet [20] 10.8 11.1 n.r. 20
DPRNN [5] 18.8 19.0 2.6 1

VSUNOS [17] 20.1 20.4 7.5 2
Transformer
DPTNet [23] 20.2 20.6 2.6 1
Sepformer [6] 22.3 22.4 25.7 8

QDPN [9] 23.6 n.r. 200 8
Hybrid

Mossformer (L) [25] 22.8 n.r. 42.1 8
TD-Conformer-XL [24] 21.2 n.r. 102.7 8

Separate And Diffuse [26] 23.9 n.r. n.r. 8
Mossformer2 (L) [18] 24.1 n.r. 55.7 8

SSM
S4M-tiny [33] 19.4 19.7 1.8 8

S4M [33] 20.5 20.7 3.6 8
DPMamba (XS) 18.9 19.1 2.3 8
DPMamba (S) 21.3 21.4 8.1 8
DPMamba (M) 22.4 22.4 15.9 8
DPMamba (L) 24.4 24.6 59.8 8

Our four DPMamba models, spanning from the smallest at 2.3
million parameters to the largest at 59.8 million parameters, achieve
SI-SNRi values between 18.9 dB and 24.4 dB and SDRi values from
20.7 dB to 24.6 dB. Notably, the SI-SNRi of DPMamba (L) exceeds
the literature’s highest SI-SNRi of 24.1 dB set by Mossformer2 (L),
establishing a new state-of-the-art on the WSJ0-2mix dataset. Fur-
thermore, our other sized models also achieve a high performance
with a relatively smaller model size. For instance, DPMamba (XS),
despite having slightly fewer parameters and a stride of 8, outper-
forms DPRNN, which uses a stride of 1. A larger stride means
a larger down-sampling ratio by the encoder, leading to faster in-
ference and smaller memory usage. DPMamba (S) is marginally
larger than VSUNOS but achieves an SI-SNRi over 1 dB higher,
with our stride 4 times larger. DPMamba (M) matches Sepformer’s
performance and is only 0.4 dB lower than Mossformer in SI-SNRi,
however, it only requires around 60% and 40% of their parameters,
respectively. DPMamba (L), being only 30% the size of QDPN,
achieves a SI-SNRi 0.8 dB higher. Finally, our S, M, and L models
outperform the previous SSM model S4M, although the XS model
slightly lags behind the performance of S4M-tiny. The S4M paper
[33] does not implement models of comparable sizes to our S, M,
and L, preventing a conclusive comparison across all model sizes.

In Fig. 2, we benchmark the GPU memory consumption during
a forward pass of the models on waveforms of different lengths. We
compare our models against Sepformer and DPRNN with default
model configurations implemented by Speechbrain [39]. DPMamba
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Fig. 2. A comparsion of GPU memory usage of DPMamba with
Sepformer and DPRNN.

Table 3. Ablations on DPMamba (S).
Configuration SI-SNRi (dB) SDRi (dB) #Params (M)
Unidirectional 18.1 18.3 7.4

LayerNorm 21.3 21.5 8.1
H=8 21.3 21.5 7.7

H=32 21.3 21.5 8.9
Without DM 20.0 20.2 8.1

Default DPMamba (S) 21.3 21.4 8.1

(M) maintains a Sepformer-level performance but reduces memory
usage by 30%. DPMamba (XS) outperforms DPRNN and consumes
only 10% of memory in separating 10-second speeches. The small
memory usage marks the potential of our model in mobile devices.

4.3. Ablations

We conducted ablation studies of the DPMamba (S) models. These
involved switching from bidirectional to unidirectional models, de-
creasing or increasing the dimension H of the hidden state of SSMs,
eliminating dynamic mixing in training, and replacing RMSNorm
with LayerNorm. Our numbers in Table 3 reveal that a variation in
the hidden state dimension above 8 and the choice between RM-
SNorm and LayerNorm have little impact on the separation per-
formance. Training with dynamic mixing boosts the SI-SNRi and
SDRi by 1.3 dB and 1.2 dB, respectively. The most significant per-
formance improvement, a boost of over 3 dB, comes from adding
backward SSMs in the bidirectional model, compared to only using
forward SSMs in the unidirectional model.

5. CONCLUSION

In this work, we introduce DPMamba, a new model for speech sep-
aration. DPMamba utilizes a dual-path network to model local and
global aspects of speech sequences and incorporates bidirectional
Mamba blocks for processing the sequences in forward and back-
ward directions. Our models of four different sizes either meet or
surpass the performance of existing CNN, RNN, and transformer
models of similar or large sizes. DPMamba (L) also sets a new
benchmark on the WSJ0-2mix dataset. Moving forward, we will
explore two directions: enhancing the efficiency of the Mamba sep-
aration model and improving the performance by integrating Mamba
with other network layers.



6. ACKNOWLEDGEMENT

This work was funded by the National Institutes of Health (NIH-
NIDCD) and a grant from Marie-Josee and Henry R. Kravis.

7. REFERENCES

[1] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard,
W. Hubbard, and L. D. Jackel, “Backpropagation applied to
handwritten zip code recognition,” Neural Computation, vol.
1, no. 4, pp. 541–551, 1989.

[2] Long Short-Term Memory, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 2010.

[3] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia
Polosukhin, “Attention is all you need,” Advances in neural
information processing systems, vol. 30, 2017.

[4] Yi Luo and Nima Mesgarani, “Conv-tasnet: Surpassing ideal
time–frequency magnitude masking for speech separation,”
IEEE/ACM transactions on audio, speech, and language pro-
cessing, vol. 27, no. 8, pp. 1256–1266, 2019.

[5] Yi Luo, Zhuo Chen, and Takuya Yoshioka, “Dual-path
rnn: efficient long sequence modeling for time-domain single-
channel speech separation,” in ICASSP 2020-2020 IEEE Inter-
national Conference on Acoustics, Speech and Signal Process-
ing (ICASSP). IEEE, 2020, pp. 46–50.

[6] Cem Subakan, Mirco Ravanelli, Samuele Cornell, Mirko
Bronzi, and Jianyuan Zhong, “Attention is all you need in
speech separation,” in ICASSP 2021-2021 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2021, pp. 21–25.

[7] Phong Le and Willem Zuidema, “Quantifying the vanishing
gradient and long distance dependency problem in recursive
neural networks and recursive LSTMs,” in Proceedings of
the 1st Workshop on Representation Learning for NLP, Phil
Blunsom, Kyunghyun Cho, Shay Cohen, Edward Grefenstette,
Karl Moritz Hermann, Laura Rimell, Jason Weston, and Scott
Wen-tau Yih, Eds., Berlin, Germany, Aug. 2016, pp. 87–93,
Association for Computational Linguistics.

[8] Cem Subakan, Mirco Ravanelli, Samuele Cornell, François
Grondin, and Mirko Bronzi, “Exploring self-attention mech-
anisms for speech separation,” IEEE/ACM Transactions on
Audio, Speech, and Language Processing, vol. 31, pp. 2169–
2180, 2022.

[9] Joel Rixen and Matthias Renz, “QDPN - Quasi-dual-path Net-
work for single-channel Speech Separation,” in Proc. Inter-
speech 2022, 2022, pp. 5353–5357.

[10] Rudolph Emil Kalman, “A new approach to linear filtering and
prediction problems,” 1960.

[11] Albert Gu, Isys Johnson, Karan Goel, Khaled Saab, Tri Dao,
Atri Rudra, and Christopher Ré, “Combining recurrent, con-
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