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SIMPLICITY OF THE CONTACTOMORPHISM GROUP OF FINITE

REGULARITY

YONG-GEUN OH

Abstract. For a given coorientable contact manifold (M2n+1, ξ), we consider the group

Cont
(r,δ)
c (M,α) consisting of Cr,δ contactomorphisms with compact support which is

equipped with Cr,δ-topology of Hölder regularity (r, δ) for r ≥ 1 and 0 < δ ≤ 1. We

prove that for all Hölder class exponents with r > n+ 2 or r = n+ 1, 1
2
< δ ≤ 1 (resp.

r < n+ 1 or r = n+ 1 and 0 < δ < 1
2
), the group is a perfect (and so a simple) group.

In particular, Contrc(M, ξ) is simple for all integer r ≥ 1. For the case of Cont
(r,δ)
c (M,α)

of general Hölder regularity, we prove the simplicity for all pairs (r, δ) leaving only the

case of (r, δ) = (n+ 1, 1
2
) open.
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1. Introduction

Let (M, ξ) be a connected smooth contact manifold. The set

{f ∈ Diffr(M) | df(ξ) ⊂ ξ} =: Contr(M, ξ) (1.1)

is a subgroup of Diffr(M) for all r ≥ 1, even for the Hölder regularity (r, δ) with r ≥ 1,
0 < δ ≤ 1. The general topology of this group is not well-behaved. For example, it is not
known whether the group is locally contractible to the knowledge of the present author.

On the other hand, when (M, ξ) is coorientable and equipped with a contact form α, any
smooth contactomorphism f satisfies

f∗α = λf α
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for a nowhere vanishing smooth function λf : M → R, which we call the conformal factor
of f . Then we consider the logarithm ℓf = logλf which we call the conformal exponent
following the practice exercised in [Oh21a, Oh21b, Oh22a].

The following subset of Contr(M, ξ) is a subgroup of Diffr(M) which is more suitable
e.g., for the simplicity study of the contactomorphism group of finite regularity. Following
Tsuboi [T3], we adopt the following definition.

Definition 1.1 (Cr contact diffeomorphism). An element Cr diffeomorphism f : M →M
is called a Cr contactomorphism with respect to α if λf = λαf is a positive Cr function. We

denote by Contr(M,α) the set of Cr contactomorphisms.

It is straightforward to see that this definition does not depend on the choice of smooth
contact form α and the set of Cr contactomorphisms forms a subgroup of Diffrc(M), which
is locally contractible. (See the discussion in [Ly], [Ba2], [T3, Section 2] and Sections 3, 6,
especially the identitiy (3.5), of the present paper.)

Remark 1.2. One may call an element of Contr(M, ξ) a weakly-Cr contactomorphism but
we do not concern the group (1.1) in the present paper except when we discuss the case of
contact homeomorphisms later in 1.3. Its definition a priori does not involve the choice of
a contact form in its definition and so defined even for non-coorientable contact manifold.
This is usually denoted by Cont(M, ξ) in the literature when r = ∞. Obviously when ξ is
coorientable, we have Cont∞(M, ξ) = Cont∞(M,α) for any choice of smooth contact form
α, and hence two definitions coincide for the smooth, i.e., for the C∞ case.

1.1. Statement of main results. We denote the set of compactly supported Cr contac-
tomorphisms by

Contrc(M,α)

and its identity component by Contrc(M, ξ)0. We also denote by BCont
r

c(M,α) Haefliger’s
classifying space [Ha], [T3] of the group Contrc(M,α).

The following two results have been previously known concerning the simplicity of con-
tactomorphism groups:

• (Tsuboi [T3]) For 1 ≤ r < n+ 3
2 , H1(BCont

r

c(M,α);Z) = 0.

• (Rybicki [Ryb2]) For r =∞, H1(BCont
r

c(M,α);Z) = 0.

In particular, Contrc(M,α) is a perfect (and so simple) group for the corresponding r. In
their papers, the following contact version of the fragmentation lemma is an important
ingredient. The proof follows from the fact that any contactomorphism contact isotopic to
the identity is generated by a contact Hamiltonian and so the fragmentation lemma can be
proved by the same argument as that of the symplectic case [Ba1]. (See [Ba2].)

Lemma 1.3 (Fragmentation Lemma). Let f ∈ Contc(M,α)0 and let {Ui}ki=1 be an open
cover of M . Then there exists fj ∈ Contc(M,α)0, j = 1, . . . , ℓ with f = f1 ◦ f2 · · · ◦ fℓ such
that supp(fj) ⊂ Ui(j) for all j. The same holds for contact isotopies of contactomorphisms.

In the present paper, we prove the following.

Theorem 1.4. For any integer r ≥ n + 2, H1(BCont
r

c(M,α);Z) = 0. In particular,
Contrc(M,α) is a simple group.

Therefore combining the above three results, we obtain the following complete answer to
the simplicity for the Cr regularity with integer r (including the case of r =∞ [Ryb2]).

Corollary 1.5. Assume dimM = 2n+ 1 with n ≥ 1. Then for any integer r ≥ 1 including
r = ∞, H1(BCont

r

c(M,α);Z) = 0. In particular, Contrc(M,α) is a perfect group for all
integer r ≥ 1 and r =∞.

The above result can be further extended to the Hölder class of regularites (r, δ) with
r ∈ N and 0 < δ ≤ 1. (See also Section 3 for the precise definition of Cr,β contactomorphisms
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and the set Cont(r,δ)(M,α) consisting thereof.) By definition, this set Cont(r,δ)(M,α) forms
a subgroup of Contr(M,α) containing Contr+1(M,α).

As in [Ma1], we derive Theorem 1.4 as a consequence of the following general result for
the case of Hölder regularity class.

Theorem 1.6. Assume dimM = 2n + 1 with n ≥ 1. Then H1(BCont
(r,δ)

c (M,α);Z) = 0,

and hence Cont(r,δ)c (M,α) is a perfect group for all pairs (r, δ) with r < n+ 1 or r = n+ 1
and 0 ≤ δ < 1

2 .

By reversing the direction of the construction as in [Ma2], we obtain:

Theorem 1.7. Assume dimM = 2n + 1 with n ≥ 1. Then H1(BCont
(r,δ)

c (M,α);Z) = 0

and hence Cont(r,δ)c (M,α) is a perfect group for all pairs (r, δ) with r < n+ 1 or r = n+ 1
and 0 ≤ δ < 1

2 .

Appearance of the half integer threshold of δ has its origin from the asymmetry of the
orders of power of A in that when A ≥ 1, the norm of the contact scaling (z, q, p) 7→
(A2z, Aq,Ap) is A2 but the norm of its inverse (z, q, p) 7→ (A−2z, A−1q, A−1p) is A−1.

These leave the following question open which is the contact analog to the celebrated
open question [Ma1, Ma2] on simplicity of the Cr diffeomorphism group with r = n+ 1 for
an n-manifold. We would like to compare this open problem with that of the diffeomorphism
case: Mather proved in [Ma1, Ma2] the corresponding result for the diffeomorphism group
Diffc(M

m)r of connected m-manifold M , if r 6= m + 1. In the mean time, Theorem 1.7
recovers Tsuboi’s result [T3] whose proof is in the same spirit as Theorem 1.4 similarly as in
[Ma1, Ma2]. On the other hand, Epstein [E1] proved the simplicity of the homeomorphism
group Homeoc(M).

Question 1.8. Suppose dimM = 2n + 1. Is Cont(r,δ)c (M, ξ) simple when r = n + 1 and
δ = 1

2?

1.2. Rybicki’s contactization of Mather’s construction. The main methodology of
the proof is again those introduced by Mather [Ma1], [E2] which also relies on certain frag-
mentation lemma and the application of Schauder-Tychonoff’s fixed point theorem, which
has been also applied by Tsuboi [T3] and Rybicki [Ryb2] to the simplicity problem of con-
tactomorphisms. Using the fragmentation lemma and Epstein’s reduction [E1], the proof of
simplicity (or rather perfectness) is reduced to the case of Euclidean space Rm (m = 2n+1),
which in turn crucially relies on the ‘linear structure’ of the R

m. Some fundamental prop-
erties of the Euclidean space (or the torus) used in Mather’s proof are the simple facts:

• They carry the abelian group structure induced by the linear addition operator +
thereon.

• Any diffeomorphism C1-close to the identity can be written as f = id+v for v is a
R
m-valued function that is C1-close to the zero function.

(See [Ma4] for a detailed analysis of what obstructs the method of [Ma1, Ma2] applied to the
case of r = dimM+1 for the general diffeomorphism case.) Such a simple linear description
of C1 neighborhood fails to hold for the contactomorphisms. This prevents one from directly
borrowing Mather’s construction of rolling-up operators to the case of contactomorphisms.

New ingredients introduced by Rybicki [Ryb2] in this regard are the following:

(1) A new fragmentation lemma based on this contact potential and the contact cylin-
ders (W2n+1

k , αk) of the form

W2n+1
k := S1 × T ∗(T k × R

n−k) ∼= Sk+1 × R
n−k × R

n,

αk = dξ0 −
∑

i=1

pi dξi (1.2)

where T k = (S1)k and (ξ0, . . . , ξk) are standard coordinates (S1-valued) of (S1)k+1

and (ξk+1, . . . , ξn) are those of R
n−k and p = (p1, . . . , pn) the conjugate coordinates

of (ξ1, · · · , ξn).
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(2) Usage of the local parametrization of C1 neighborhood of the identity via the Leg-
endrianization and the generating functions, which we name the contact potential, of
the relevant contactomorphisms in his construction of contact version of unfolding-
fragmentation operators. This space of real-valued functions is the domain of the
function space where his application of Schauder-Tychonoff’s fixed point theorem is
made.

We closely follow the scheme of Rybicki which is used for the C∞ case. However we need
to make both geometric constructions and derivative estimates optimal in all the steps of
Rybicki’s proof which deals with the C∞ case by suitably adapting Epstein’s simplification
of the simpleness proof of Diff∞(M) exercised in [E2] to the contact case (without using the
Nash-Moser implicit function theorem originally used in [Th], [Ma4, Appendix]):

(1) We need to package the contact geometry elements employed in [Ryb2] systemat-
ically in the framework of contact Hamiltonian geometry and calculus of [Oh21a,
Oh21b, Oh22a].

(2) We need to identify the optimal form of contact homothetic transformations for the
definition of the rolling-up operator and the unfolding-fragmentation operators. (See
Section 8.)

(3) Using this optimal geometric package, we derive the optimal version of many of the
rough estimates carried out in [Ryb2].

For the C∞ case studied by Rybicki, these optimal choices of homothetic transformation
or of the estimates are not needed while only some rough estimates are enough as done
in [Ryb2]. But in our study of finite regularity, especially to determine the lower threshold
r = n+2 and the upper threshold r = n+1, we need the optimal version of all the estimates
that appear in the course of studying the Cr (or C(r,β)) norms of various contactomorphisms
and of their products. Our estimates also crucially rely on systematic contact Hamiltonian
calculus involving the conformal exponents and other basic contact Hamiltonian geometry
as exercised in our study of contact instantons in [Oh21b, Oh22a], for example.

Warning 1.9. We adopt the notations used in [Ma1]-[Ma3], [E2] and [Ryb2], especially
those from [Ryb2] so that the readers can easily compare the details of the present paper
with those in [Ryb2] corresponding thereto. However we warn the readers that even though
we adopt the same notations for the purpose of comparison, the detailed numerics appearing
in the definitions are almost never the same as those from [Ryb2], since we make the optimal
choices of various numerical constants and orders of powers. The systematic framework of
contact Hamiltonian geometry and calculus developed in [Oh21a, Oh22a] enables us to find
these optimal choices for the various constructions which is crucial in our determination of
the threshold

r = n+ 2 (1.3)

for the lower threshold, r = n + 1 for the upper threshold. (Also the latter threshold
corresponds to Tusboi’s upper threshold r = n + 3

2 in [T3].) These are the counterparts
of Mather’s thresholds r = n + 1 [Ma1] and r = n [Ma2] respectively for the case of
diffeomorphisms.

1.3. Discussion and open problems.

1.3.1. Relationship with [Ryb2]. Once the estimate for r = n+ 2

‖u‖n+2 ≤ εn+2

is given, we can inductively obtain a sequence εr for r ≥ n + 2, adapting the argument of
Epstein [E1, p.121] for the case of Diffc(M), such that the map ϑ : U → U is defined on

U = {u ∈ C∞
c (R2n+1) | ‖u‖r ≤ εr}

which is a convex closed subset of the Frechet space C∞
c (R2n+1). Then we can again

apply the Schauder-Tychonoff fixed point theorem and conclude that Cont∞c (M,α) is a
perfect group. Rybicki employed the same strategy in [Ryb2] to prove the perfectness of
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Cont∞c (M,α). Even for this case, our proof clarifies the presentation of relevant contact
geometry and simplifies the estimates to the optimal level of those given in [Ryb2]. Rybicki
also suspected that the perfectness may hold at least for large r. Our paper affirmatively
confirms this in the optimal way to the level of precisly locating the lower threshold r = n+2
and the upper threshold r = n + 1 for contact manifolds of dimension 2n+ 1, similarly as
Mather [Ma1, Ma4] did for the diffeomorphism group Diffc(M

n) in which case the corre-
sponding thresholds are n+1 and n. Rybicki also asked whether the contact analogs to the
Thurston-Mather type isomorphism from [Ma3], [T2, T3], [Ba2] and [Ryb1] can be proved,
and regards as a hard problem. We hope that our systematic study of the background ge-
ometry and of the optimal estimates will help making the future researches of such questions
easier.

On the other hand, for the case of 1 ≤ r < n+ 3
2 in the opposite direction, Tsuboi [T3]

proved the simplicity of Contc(M, ξ) by utilizing some construction of infinite repetition
which has been used in the study of topology of diffeomorphism groups. (We refer readers
to [T1] for a detailed exposition on such construction with many illuminating illustrations.)
The dual version of the method laid out in the present paper also gives a somewhat different
proof of Tsuboi’s result for 1 ≤ r < n+ 3

2 . We would like to compare it with the way how
Mather’s proofs for the case with r > n+ 2 [Ma1] and r < n+ 1 [Ma2] work.

Remark 1.10. In our earlier works on contact instantons [Oh21a]-[Oh22a] and others, the
Greek letter ψ and gψ as the notations of a contact diffeomorphism and of its conformal
exponent were used respectively. In the present article, we replace them by the Roman letter
f and ℓfrespectivley to be in more close contact with the literature related to the study of
simplicity problem such as [Ma1, Ma2, Ma3], [E2] and [Ryb2]. We also mention that the
conformal factor λf will be used at all in the present paper neither in our constructions
related to the Legendrianization nor in the definitions or the estimates of the norms of
contactomorphisms. Only the conformal exponent ℓf will be used in those matters.

1.3.2. Towards topological contact dynamics of Müller-Spaeth. Another interesting direction
of research is towards the direction of regularity lower than C1 similarly as in the case of
Hamiltonian homeomorphisms (hameomorphisms) as done in [OM], [CHS]. In fact such a
study has been carried out by Müller and Spaeth in their series of papers [MS1]–[MS3].
They in particular introduced the notions of topological contact automorphisms ([MS1, Defi-
nition 6.8]) and and of contact homeomorphisms ([MS1, Definitioin 6.7]). They denote them
respectively by

Homeo(M, ξ), Aut(M, ξ). (1.4)

By their definition Homeo(M, ξ) is a subgroup of Aut(M, ξ). The group Aut(M, ξ) is
the analogue of Eliashberg-Gromov’s symplectic homeomorphism group, the C0-closure
Symp(M,ω), which was also denoted by Sympeo(M,ω) in [OM].

We prefer to reserve the notation Homeo(M, ξ) for the set of elements from their Aut(M, ξ)
and to reserve Hameo(M, ξ) for the set of those from their Homeo(M, ξ) and call an element
therefrom a contact hameomorphisms since in the C0-level, there is a priori clear difference
between the notions of ‘contact’ and ‘contact Hamiltonian’ unlike the smooth case. In this
vein we will adopt the notations

Hameo(M, ξ) ⊂ Homeo(M, ξ)

instead of (1.4) of Müller and Spaeth, to emphasize the fact that the Hamiltonians enter
into the definition of the group. One may compare this pair in the contact case with the
pair of notations

Hameo(M,ω) ⊂ Sympeo(M,ω)

introduced in [OM] in the symplectic case. (In the same vein, one might prefer to replace
the notation Sympeo(M,ω) by Homeo(M,ω).)

These groups are defined in [MS1] by taking some suitable completions of Cont∞c (M,α)
similarly as in the case of (symplectic) hameomorphisms [OM]. They also showed that
Hameo(M, ξ) is a normal subgroup of Homeo(M, ξ).
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Two natural questions to ask in this regard are the following:

Question 1.11. Let (M, ξ) be a coorientable contact manifold.

(1) Is the inclusion Hameo(M, ξ) ⊂ Homeo(M, ξ) proper?
(2) Is Homeo(M, ξ) a perfect (or a simple) group? How about Hameo(M, ξ)?

One might go further by specializing to the 3 dimensional case of contact manifold as the
contact counter part of the area-preserving dynamics on 2 dimensional surface.

Based on the recent developments [CHS] of C0 Hamiltonian dynamics in symplectic ge-
ometry, the following problem seems to be a very interesting doable open problem.

Problem 1.12 (Open problem). Find the answers to the questions asked in Question 1.11
for the 3 dimensional contact manifold (M, ξ), and see if any of the existing Floer-type
analytical machinery can be used as in the 2 dimensional area-preserving dynamics.

It is worthwhile to recall the readers that there is one big difference of the contactomor-
phism group from the symplectomorphism group for the contact case: there is no Calabi-
type invariant, at least no apparent one. This seems to prevent one from easily guessing the
direction of the answers to the questions, unlike the area-preserving case [OM, Oh10].

The organization of the paper is now in order. In Section 2, we set the notations and
various conventions we adopt in contact/symplectic geometry. These are not all the same as
those used in [Ryb2]. We also recall various cubical objects and operators defined on R

2n+1

appearing in [Ryb2] but none of these cubical objects are the same as the corresponding
ones in [Ryb2] in their numerics although the same notations are used. Then in Section 3
- 4 we explain the basic background contact geometry emphasizing our usages of conformal
exponent, contact product, the Legendrianization and of an equivariant Darboux-Weinstein
theorem. After then we provide the geometric part of various constructions employed in
[Ryb2] with some new definitions, refinements, amplifications and corrections, and give the
proofs of the main theorems as an application of Schauder-Tychonoff’s theorem, assuming
the existence of the map ϑ : L(ε, A) → L(ε, A) on some closed convex subset L(ε, A) →
L(ε, A) of the Banach space Crc (R

2n+1,R) of real-valued functions. (See Section 22 for the
definition of ϑ.)

Then in Part II, we prove all the derivative estimates on the various operators entering in
all relevant constructions. All these estimates have their precedents in [Ryb2], some of which
in turn have their precedents also in [Ma1] and [E2], but our optimal versions thereof enable
us to define the operator ϑ : L(ε, A) → L(ε, A) for a sufficiently small ε and sufficiently
large A > 1, provided r + δ > n + 2. Then Part III combines the geometry of Part I and
the estimates of Part II to complete the proofs of all main theorems. In Appendix A, we
derive an implication of the equivariance of the Darboux-Weinstein chart in terms of the
independence thereof on the first factor of the contact product.

Acknowledgement: We would like to thank Leonid Polterovich for attracting our attention
to Rybicki’s work on the simplicity of C∞ contactomorphism group in Luminy in the summer
of 2023, while the author had been investigating on the simplicity question of the contact
diffeomorphism group. We also thank Sanghyun Kim for a useful discussion on Mather’s
thresholds and on the modulus of continuity at the final stage of finishing the paper which
has motivated the author to add the content of Theorem 1.7 and Subsection 23.2.

2. Notations and conventions

In this section, we gather the notations and conventions that we adopt for the various
geometric constructions, and compare them with those used by Mather [Ma1] and by Epstein
[E2].

2.1. Notations and conventions for general contact geometry. We start with the
notations for the general contact geometry.
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(1) (z, q, p) = (z, q1, . . . , qn, p1, . . . , pn); The canonical coordinates of the 1-jet bundle
J1

R
n ∼= R× T ∗

R
n with the z-coordinates written first,

(2) MQ := Q ×Q × R; The contact product of contact manifold (Q,α) equipped with
contact form A = −eηπ∗

1α+ π∗
2α [Oh22a],

(3) (x,X, η): a point in the contact product Q ×Q× R,
(4) x = (z, q, p) and X = (Z,Q, P ) are the ‘coordinate system’ for the contact product

with Q = J1
R
n,

(5) ΦU : U → V, ΦU ;A : UA → VA; Legendrian Darboux-Weinstein charts. (Note that
the R-factor is written at the last spot unlike the case of J1Q.)

We also set up our conventions for the definitions of Hamiltonian vector fields both in
symplectic and in contact geometry so that they are compatible in some natural sense. We
briefly summarize basic calculus of contact Hamiltonian dynamics to set up our conventions
on their definitions and signs following [Oh21a].

Definition 2.1. Let α be a contact form of (M, ξ). The associated function H defined by

H = −α(X) (2.1)

is called the (α-)contact Hamiltonian of X . We also call X the (α-)contact Hamiltonian
vector field associated to H .

We alert readers that under our sign convention under which the Reeb vector field Rλ as
a contact vector field becomes the constant function H = −1. We denote by Rα the Reeb
vector field of α.

Here are more general conventions that we use in the present article.

• The symplectic form on the cotangent bundle T ∗N is given by

ω0 =

n∑

i=1

dqi ∧ dpi = d(−θ) (2.2)

in the canonical coordinates of T ∗N associated to a coordinate system (x1, . . . , xn)
of N .

• The Hamiltonian vector field associated a real-valued function H on a symplectic
manifold (M,ω) is given by the equation

dH = XH⌋ω. (2.3)

• The standard contact form on the 1-jet bundle J1N is given by

α0 = dz −
∑

i=1

pi dqi (2.4)

in the canonical coordinates (z, q1, . . . , qn, p1, . . . , pn) of J
1N .

• The contact Hamiltonian vector field X = XH associated to a real-valued function
H on general contact manifold (M,α) is uniquely determined by the equation

®
X⌋α = −H,

X⌋dα = dH −Rα[H ]α.
(2.5)

With these conventions, the contact Hamiltonian vector field XH has the decomposition

XH = X
‖
H ⊕ (−H Rα) ∈ Ξ⊕ R〈Rα〉.

In the canonical coordinates (q, p, z) on R
2n+1, this expression is reduced to the well-known

coordinate formula for the contact Hamiltonian vector field below. (See [Ar, Appendix 4],
[OW, Lemma 2.1], [Bhu, Lemma 4.1], [Ryb2, Equation (2.3)], for example but with different
sign conventions.)
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Example 2.2. Let H : R2n+1 → R be a smooth function on R
2n+1. Then the contact

Hamiltonian vector field X = XH is given by

XH = X
‖
H −HRα (2.6)

=

n∑

i=1

Å
∂H

∂pi

D

∂qi
−
DH

∂qi

∂

∂pi

ã
−H

∂

∂z

=
n∑

i=1

∂H

∂pi

∂

∂qi
−

Å
∂H

∂qi
+ pi

∂H

∂z

ã
∂

∂pi
+

Å≠
p,
∂H

∂p

∑
−H

ã
∂

∂z
(2.7)

2.2. Notations of Rybicki in [Ryb2] and their variations. To make it easier for readers
to compare various constructions appearing in the present article with those from [Ryb2],
we mostly adopt the notations of various objects appearing in Rybicki’s constructions in
[Ryb2]. We follow the notations of Rybicki as closely as possible but with many changes
of numerical constants and orders of power which are necessary to be able to obtain that
optimal estimates that give rise to the threshold r = n+ 2 mentioned in Warning 1.9.

(1) T k = (S1)k; The k-torus,
(2) [Contact cylinders] Wm

k = S1 × T ∗(T k−1 × R
m−k) for m = 2n + 1 and 1 ≤ k ≤

n; the circular contactization of symplectic manifold T ∗k × R
m−k, equipped with

the canonical (partially circular) coordinates (ξ0, ξ, p) = (ξ0, ξ1, . . . , ξn, p1, · · · , pn).
Throughout the paper, we will use either m or 2n + 1 interchangeably as we feel
more proper to use.

(3) α0 = dξ0 −
∑
i=1 pi dξi; The contactization contact form α0 = dξ0 −

∑
i=1 pi dξi on

Wm,
(4) For A ≥ 1, k = 0, . . . , n, we define the reference rectangulapid

IA = [−2, 2]× [−2, 2]n × [−2A, 2A]n.

(5) We define

J
(k)
A = S1 × T k−1 × [−2A2, 2A2]n−k × [−2A3, 2A3]n

K
(k)
A = S1 × T k−1 × [−2, 2]× [−2A2, 2A2]n−k+1 × [−2A3, 2A3]n

for k = 1, . . . , n, and

J
(0)
A = JA = [−3A5, 3A5]× [−2A2, 2A2]n × [−2A3, 2A3]n

K
(0)
A = KA = [−2, 2]× [−2A2, 2A2]n × [−2A3, 2A3]n.

(Compare these definitions with those appearing in [Ryb2, p.3312] with the same
notations.)

(6) EA = [−A,A]m, EkA = S1 × T k × [−A,A]m−k,
(7) [Subinterval] A closed subset E ⊂ EA of type EA is called a subinterval,
(8) [Contact scaling] χA: the map defined by χA(z, q, p) = (A2z, Aq,Ap),
(9) [twisted p-translations] σti : the contact cut-off of the map Sti defined by Sti (z, q, p) =

(z + tqi, q, p+ t t
∂pi

),

(10) [Contact scaling preceded by p-translations]

ρA;t = χ2
A ◦ σ

t, σt = σt11 ◦ · · · ◦ σ
tn
n

for t = (t1, . . . , tn). (This map is different from the one given in [Ryb2, p.3307] with
the same notation.)

(11) [Mather-Rybicki’s rolling-up operators]

Θ
(k)
A : Cont

J
(k+1)
A

(W2n+1
k , α0)0 ∩ U1 → Cont

K
(k)
A

(W2n+1
k+1 , α0)0,

(12) [Mather-Rybicki’s unfolding-fragmentation operators]

Ξ
(k)
A;N : Cont

J
(k)
A

(W2n+1
k+1 , α0)0 ∩ U1 → Cont

J
(k+1)
A

(W2n+1
k , α0)0,
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(13) [Rybicki’s rolling-up operators]

Ψ
(k)
A : Cont

J
(k)
A

(W2n+1
k , α0)0 ∩ U1 → Cont

J
(k)
A

(W2n+1
k , α0)0

where the rolling occurs in the qk-coordinate direction for k = 1, . . . , n and for z for
k = 0.

We now organize the domains and the codomains entering into the definitions of these
operators in the following diagram: For the study of the lower threshold, we consider the
diagram

[−2, 2]2n+1

p0ρA,σt0

tt✐✐✐
✐✐
✐✐
✐✐
✐✐
✐✐
✐✐
✐✐
✐✐
✐

p1ρA,σt1
yyss
ss
ss
ss
ss
s

p∗ρA,σt∗

��

pnρA,σtn

%%▲
▲▲

▲▲
▲▲

▲▲
▲▲

J
(0)
A

ι0

��

// J
(1)
A

ι1

��

// · · · · · ·

ι∗

��

// J
(n)
A

ιn

��

W2n+1
0 π0

// W2n+1
1 π1

// · · · · · · πn

//W2n+1
n .

Here πk are the covering projections induced by R
k+1 → T k+1 for k = 0, . . . , n, the map

induced by the identity map of T k+1 and the inclusion map

[−2A2, 2A2]n−k × [−2A3, 2A3]n →֒ R
2n−k.

The map pi : R
2n+1 → T i+1×R

2n−i are the obvious covering projections. Finally, the maps
ρA,ti : R

2n+1 → R
2n+1 are the translation map followed by the contact rescaling map given

by

ρA,ti := χ2
A ◦ σ

ti
i .

(See (8.2) for the precise definition thereof.) Compare this sequence

R
2n+1 ⊃ J

(0)
A → J

(1)
A · · · → J

(n)
A ⊂ J1

R
n

with the sequence

[−2, 2]n = Dn ⊂ Dn−1 ⊂ · · · ⊂ D0 = [−2A, 2A]n

from [Ma1, Section 3], [E2, Section 2], and observe that both sequences have n terms in them,
which is essential for the determination of the lower threshold r = n+2 for the contact case
and r = n+ 1 for the diffeomorphism case, respectively here and in [Ma1, Ma2].

Similarly as in [Ma2], we reverse the horizontal arrows for the study of the upper threshold.

3. Conformal exponents, contact product and Legendrianization

Now let (M, ξ) be a contact manifold of dimension m = 2n + 1, which is coorientable.
We denote by Cont+(M, ξ) the set of orientation preserving contactomorphisms and by
Cont0(M, ξ) its identity component. Equip M with a contact form α with kerα = ξ.

3.1. Conformal exponents of contactomorphisms. For any coorientation-preserving
contactomorphism g we have

g∗α = λαg α.

We adopt the convention of systematically calling the function λαg the conformal factor, and

ℓαg := log(λαg ) (3.1)

the conformal exponent of g, following the practice of [Oh21a, Oh21b, Oh22a]. Since the
contact form α will be fixed throughout the paper, we omit α from notations by writing λf
and ℓf respectively from now on. The following lemma is well-known and straightforward
to check.

Lemma 3.1. For any two contactomorphisms g, f , we have

ℓαgf = ℓαg ◦ f + ℓαf . (3.2)
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For each contact form α of the given contact manifold (M, ξ), we consider the function
ϕα : G := Cont(M, ξ)→ C∞(M), defined by

ϕα(f) = ℓαf . (3.3)

Regard it as a one-cochain in the group cohomology complex (C1(G,C∞(M)), δ) with
the coboundary map δ : C1(G,C∞(M)) → C2(G,C∞(M)) on the right Z[G]-module
C1(G,C∞(M)) with the right composition

(f, ℓ) 7→ ℓ ◦ f

as the action of G on C1(G,C∞(M)). Then the above lemma can be interpreted as

ℓgf = (δϕα)(g, f). (3.4)

Furthermore for a different choice of contact form α′ of the same contact structure ξ in
the same orientation class, we make α-dependence on ℓf explicit by writing ℓαf and ℓα

′

f .
Furthermore we have

α′ = eh(α′α)α (3.5)

for some smooth function h(α′α) depending on α, α′. Then we have

Proposition 3.2. Consider the two zero-cochains ϕα′ , ϕα in the group cohomology complex
C∗(G,C∞(M)). Then ϕα′ , ϕα are cohomologus to each other.

Proof. A straightforward calculation leads to

ℓα
′

f = hα′α ◦ f + ℓαf . (3.6)

This itself can be written as
ϕα′ − ϕα = δh(α′α)

where we regard h(α′α) as a zero-cochain. This finishes the proof. �

An iteration of (3.2) gives rise to the following suggestive form of the identity

ℓgm◦···◦g1 =

m−1∑

k=0

ℓgk ◦ (gk−1 ◦ · · · ◦ g1) (3.7)

for all gi ∈ Cont(M, ξ) with i = 1, · · · ,m.

3.2. Defintion of Cr,δ contactomorphisms. Now, we give the precise definition of Cr

(resp. Cr,β) contactomorphisms.

Definition 3.3 (Cr contact diffeomorphism). A Cr diffeomorphism f :M →M is called a
Cr contactomorphism if λf , or equivalently ℓF , is a positive Cr function.

This definition can be extended to the Hölder regularity classes. More precisely, let β be

a modulus of continuity of the form β : [0,∞)→ [0, 1] and Denote by Diff(r,β)(M,α) be the
set of Cr,β diffeomorphisms.

We specialize to the Hölder regularity β(x) = xδ and define the set of Cr,δ contactomor-
phism as follows.

Definition 3.4 (Cont(r,δ)(M,α)). We define the set of Cr,δ contactomorphisms to be the
intersection

Cont(r,δ)(M,α) := Contr(M,α) ∩Diff(r,δ)(M) ⊂ Diff(r,δ)(M). (3.8)

An immediate corollary of (3.2) is the following.

Corollary 3.5. For any 1 ≤ r ≤ ∞, the set Contrc(M,α) (resp. Cont(r,δ)c (M,α)) is a
topological subgroup of Diffrc(M).

Proof. We have only to prove that for any contact diffeomorphisms f, g such that they are
of class Cr as well as ℓf , ℓg are Cr, ℓgf are Cr. But this is apparent by the formula (3.2).

For the case of Cont(r,δ)c (M,α), it is well-known [Ma1, Section 2] that Diff(r,δ)(M) is a
subgroup of Diffr(M), which finishes the proof. �
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It is straightforward to derive from the identity (3.5) that the definition of Cont(r,δ)(M,α)
and its topology do not depend on the choice of the contact form α.

Remark 3.6. However, we alert the readers that the product operation is not closed in the
intersection

Contr+1
c (M,α) ∩Diffrc(M),

according to the definition given in Definition 1.1, and hence the intersection does not
form a subgroup of Diffrc(M) because the conformal exponent of an element may not be
Cr. Therefore Contrc(M, ξ) is not a closed subgroup of Diffrc(M), because a priori one
loses a regularity by 1 to define the conformal exponent. As a result, the Cr-convergence
of contactomorphisms fi does not guarantee convergence ℓfi . The following inclusion is a
proper inclusion

Contr+1
c (M, ξ) ⊂ Contrc(M, ξ)

where the closure is the one of Contr+1
c (M, ξ) ⊂ Diffrc(M) taken in Diffrc(M). The case

r < 1 is particularly interesting which may be regarded as a contact counterpart of the
group Hameo(M,ω) of hameomorphisms in symplectic geometry [OM]. (It was conjectured
in [OM] that Hameo(M,ω) is a proper subgroup of the area-preserving homeomorphism
group in the 2 dimensional case such as M = D2, S2, and the conjecture has been recently
proved by Cristofaro-Gardiner, Humilière and Seyfaddini [CHS].) Some related researches
in this direction have been carried out by Müller and Spaeth in their series of works [MS1,
MS2, MS3] and others.

3.3. Contact product and Legendrianization. We now consider the product (MQ,Ξ)

MQ := Q×Q× R, Ξ := kerA (3.9)

with contact distribution Ξ = kerA for a specifically chosen contact form

A := −eη π∗
1α+ π∗

2α. (3.10)

Here we follow the sign convention of [Oh22a]. We then consider the operation of Legen-
drianization of contactomorphisms, which is the contact analog to the Lagrangianization
of canonically associating to each symplectomorphism the Lagrangian submanifold in the
product which is nothing but its graph.

We summarize basic properties of this contact product and the Legendrianization, some
of which are well-known, e.g., can be found from [Ly, Bhu].

Proposition 3.7. Let (Q, ξ) be any contact manifold and a contact form α be given. We
define (MQ,A ) as above. Denote by πi : MQ → Q the projection to the i-th factor of the
product for i = 1, 2, and η :MQ → R the projection to R. Then the following hold:

(1) The fibers of the projection maps (πi, η), i = 1, 2 are Legendrian in MQ.
(2) The Reeb vector field RA is given by (0, Rα, 0).
(3) For any contactomorphism g of (Q, ξ) with g∗α = eℓgα, the map

jg(y) = (y, g(y), ℓg(y)) (3.11)

is a Legendrian embedding of Q into (MQ,A ).

We call the image of the map jg the Legendrianization of g [Oh22a].

One can utilize this to give a local parametrization of a neighborhood of the identity in
Cont(M, ξ), which also shows local contractibility of the Contrc(M, ξ). (See [Ly], [Ba2].)

We will apply this construction to the case when Q = J1
R
n ∼= R

2n+1 equipped with the
standard contact form α0 = dz − pdq in the canonical coordinates

(z, q1, · · · , qn, p1, · · · , pn).

In terms of the coordinate system (x,X, η), which we call the contact product coordinate
system, of

MR2n+1 = R
2n+1 × R

2n+1 × R
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with x = (z, q, p) and X = (Z,Q, P ), we have

π∗
1α0 = dz − p dq, π∗

2α0 = dZ − P dQ.

Then the form A is given by

AR2n+1 = −eη(dz − p dq) + (dZ − P dQ) (3.12)

in the given coordinate system. We highlight the location of the R-coordinate η that is
written at the last spot, while the R-coordinate in the 1-jet coordinate system of J1

R
2n+1 is

written at the first spot. This practice will be consistently used throughout the present paper.

Remark 3.8 (Locations of the R coordinates). Here is the reason why we exercise the
aforementioned practice. There are quite a few constructions carried out on

R
2(2n+1)+1 ∼= J1

R
2n+1 ∼=MR2n+1.

Some of them are more natural to consider in J1
R

2n+1 but others are in MR2n+1 . Some of
the constructions may be the most natural even in R

2(2n+1)+1. We would like to make it
clear on which space we perform the constructions by distinguishing the ways of representing
points in MR2n+1 and in J1

R
2n+1 at least by putting the R coordinates differently. Luckily,

the articles [Bhu] and the present author’s preprints [Oh21b], [Oh22a] have already used
the same convention putting the R-coordinate in the last spot as Q × Q × R = MQ which
makes the current practice consistent with them. Furthermore we take the same practice as
[Ryb2] put the R coordinate in the 1-jet bundle J1

R
2n+1 in the first spot so that comparing

the notations and the details from [Ryb2] and from the current paper is hoped to become
easier.

4. Basic contact vector fields and contactomorphisms of R
2n+1

We take the (global) frame ß
∂

∂z
,
D

∂qi
,
∂

∂pi

™
,

on R
2n+1 = J1

R
n which is equipped with the standard contact form

α0 = dz −
n∑

i=1

pi dqi.

Here we write
∂

∂qi
+ qi

∂

∂z
=:

D

∂qi
following the notation from [LOTV]. We mention that { D∂qi ,

∂
∂pi
} is a Darboux frame of the

contact distribution ξ. More specifically, they are tangent to the distribution ξ and satisfies

dα

Å
D

∂qi
,
∂

∂pj

ã
= δij .

Note that the collection { ∂
∂qi

+ qi
∂
∂z ,

∂
∂pi
} provides a global Darboux frame of the contact

distribution ξ of J1
R
n. We mention that except the Reeb vector field ∂

∂z (whose Hamiltonian
is the constant function −1) none of these vector fields are contact.

4.1. Basic contact Hamiltonian vector fields. Now we consider the flows of various
basic Hamiltonian vector fields:

(1) Consider the Hamiltonian H = −qi whose Hamiltonian vector field is given by

X−qi =
∂

∂pi
+ qi

∂

∂z
= ~fi + qi~ez.

It generates the translation flow in the pi-direction

ψt−qi(z, q, p) = (z + tqi, q1, · · · , qn, p1, · · · , pi−1, pi + t, pi+1, · · · , pn) =: T ti .

In particular, we write
Ti := ψ1

−qi
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the translation by 1 in the pi-direction.
(2) Next, we consider H = pi and its Hamiltonian vector field

Xpi =
∂

∂qi
= ~ei

whose flow is given by

ψtpi = (z, q1, · · · , qi + t, · · · , qn, p1, · · · , pn) =: Sti

In particular, we have

ψ1
pi(z, q, p) = (z, q + ~ei, p) =: Si.

(3) We also consider the contact Euler vector field Ec defined by

Ec = 2z
∂

∂z
+

n∑

i=1

Å
qi
∂

∂qi
+ pi

∂

∂pi

ã
(4.1)

which is a contact vector field associated to the Hamiltonian Hc := 2z −
∑n
i=1 qipi,

and generates the flows the contact rescaling ηt given by

ψtHc(z, q, p) = (e2tz, et q, et p). (4.2)

(4) The front Euler vector field

Ef =
n∑

i=1

qi
∂

∂qi
+ z

∂

∂z
(4.3)

is associated to the Hamiltonian Hf := z −
∑n

i=1 qipi and generate and the front
rescaling χt given by

ψHf (q, p, t) = (et, etq, p). (4.4)

We denote the time-one maps of Ec and Ef by Rc and Rf respectively.

Remark 4.1. We would like to warn the readers that our definition is different from that of
[Ryb2] for the signs in that the Hamiltonian associated to a contact vector field X is given
by H := −α(X), while [Ryb2] adopts its negative H = α(X).

4.2. Contact cut-off of basic Hamiltonian vector fields. In summary, we will consider
the following collection of contact diffeomorphisms

{Ti, Si}
n
i=1 ∪ {R

c, Rf} (4.5)

throughout the paper, which we call the basic contact transformations on R
2n+1. Obviously,

none of these contactomorphisms are compactly supported on R
2n+1 while our concern in on

the compactly supported contactomorphisms. However all of them are generated by contact
Hamiltonian vector fields and so we can cut down their supports by multiplying a bump
function to the associated Hamiltonian functions as done in [Ba1] for the symplectic case
and in [Ryb2] for the contact case, when there is given a compact subset K ⊂ R

2n+1.
It deserves some explanations to explain this contact cut-off of basic Hamiltonian vector

fields and their induced contactomorphisms, which we feel is somewhat counter intuitive.
We will focus on the cut-off of the case of transformation Tj = ψ1

pi which is generated by
the Hamiltonian vector field

∂

∂pi
+ qi

∂

∂z

on R
2n+1 ∼= J1

R
n. It generates the flow

T t(z, q, p) = (z + qit, q, p+ t ~fi).

If we multiply a cut-off function of the form

κ = κ0 ×

(
n∏

i=1

κi

)
×

Ñ
n∏

j=1

κn+j

é
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supported in the interior of a compact set

E = {(z, q, p) | |z| ≤ 2a0, |qi| ≤ 2ai, |pj| ≤ 2bj}

that also satisfy κi ≡ 1 on [−ai, ai] and κn+j ≡ bj on [−bj, bj ] for some positive numbers
ai, bj > 0 for i = 0, . . . , n and j = 1, . . . , n

We write ρi := (κ/κi) which does not depend on qi by definition. Then we compute the
Hamiltonian vector field of H = qj · κ = (qjχj) · ρj . We substitute H into (2.6) and obtain

XH = −

Å
(qiκi)

′ ∂

∂pi
+ qi(qiκi)

′ ∂

∂z

ã
+X ′

where X ′ is the vector field that does not contain components of ∂
∂qi

and ∂
∂z which is still

supported in E. We not examine the components in the two directions of qi and z, which is

(qiκi)
′ ∂

∂pi
+ qi(qi)

′ ∂

∂z
= (κi + q′i)

∂

∂pi
+ qi(κi + qiκ

′
i − qiκiρi)

∂

∂z
.

Therefore the pi component of its flow is given by

t 7→ pi + t((κi(qi) + qiκ
′
i(qi)) =: pi(t)

and the z component is given by

t 7→ z + qi(κi + qiκ
′
i − qiκiρi)t =: z(t).

The upshot of the above calculation is to show that the coordinate function −qi does not
generate a pure pi-translation but only the one coupled with a z-translation, while pi generates
the pure q + i-translation.

Lemma 4.2. The cut-off flow τ t maps E into E and is a translation with constant speed qi
in the direction of pi on (−bi, bi).

Proof. The first statement immediately follows from the observation that the vector field
Xpi vanishes outside E, and the second follows from the property ≡ 1 on 1

2E ⊂ E. �

These preparations on the cut-off being made and mentioned, we will omit the process
throughout the paper, without further mentioning of converting (4.5) to the relevant com-
pactly supported counterparts see [Ma1, Construction in p. 519] for the precise description
of the process in the case of Diffrc(M)): We denote the compactly supported contactomor-
phisms obtained this way by

{τi, σi} ∪ {χ, η}. (4.6)

We will also consistently utilize the following notations for the corresponding collection

χA := ψlogA
Hc , ηA := ψlogA

Hf , A > 1

respectively, where we also denote by χA, ηA the associated cut-off version thereof by an
abuse of notations.

Part 1. Mather-Rybicki’s constructions for Contc(R
2n+1, α0)0

5. An equivariant Darboux-Weinstein chart

An immediate corollary of the standard Darboux-Weinstein theorem is that any C1-small
perturbation R′ of the given Legendrian submanifold R can be uniquely written as

R′ = Φ−1
U (j1u(R))

for some smooth function u : R → R where j1u is the 1-jet graph of f via the chart
ΦU : U → V . Conversely for any C1-small (resp. Ck-small) smooth function u, its 1-jet
graph corresponds to is a C0-small (resp. Ck−1-small) smooth perturbation of R. However
we want some additional equivariant property for the chart with respect to some actions by
the group

G = R
n+1 or T k × R

n+1−k.
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with respect to some actions for our purpose of the present paper. This leads us to involve
a variation of the contact product [Ly, Ba2, Bhu, Oh22a, Ryb2], when we apply it to the
standard ‘linear’ contact manifold R

2n+1.

5.1. Coordinate transforms on R
2(2n+1)+1. Following Rybicki [Ryb2], we consider the

contact cylinders denoted by

W2n+1
k = T k × R

2n+1−k ∼= (T k × R
n−k)× R

n.

We first consider its 1-jet bundle

J1W2n+1
k

∼= R× T ∗W2n+1
k

∼= R×W2n+1
k × R

2n+1, α0 = dξ0 −
n∑

i=1

pidξi.

(For the simplicity of notations, we sometime write 2n+ 1 =: m.) We write the associated
canonical coordinates as (t, x,px) with x = (z, q, p) where px = (zx, qx, px) is the conjugate
coordinates of x. Here we regard qi as S

1-valued for i = 1, . . . , k and real-valued for i =
k+1, . . . ,m when we considerWm

k instead of R2n+1. Consider the Legendrian submanifold

R := ZWm
k

∼= {0}R ×W
m
k × {0}(Rn)∗ ⊂ J

1Wm
k
∼= R× T ∗Wm

k , (5.1)

the zero section of J1Wm
k . By the definition of Cr-topology of Cont(M,α) (Definition 3.3) in

general, it follows that any contactomorphism of Wm
k C1-close the identity can be uniquely

lifted to a contactomorphism f̃ C1-close to the identity on R
2n+1:

R
2n+1

π

��

f̃
// R

2n+1

π

��

Wm
k

f
// Wm

k .

Remark 5.1 (Notational abuse). (1) We can uniquely lift the chart ΦU to Φ̃U : ‹U →
‹V under the covering projection R

2n+1 → W2n+1
k so that the following diagram

commutes:

‹U
π

��

‹ΦU // ‹V
π

��

U
ΦU

// V

where ‹U = π−1(U) and ‹V = π−1(V ).
(2) Since we will be interested in C1-small diffeomorphisms, we may and will always

assume that this unique lifting is fixed. Once this is being said, we will drop the
tilde from notations and abuse the notation ΦU : U → V also to denote the latter.
Since the covering projections of Π are linear isometries with respect to the standard
linear structure and the metric of R2(2n+1)+1 and δ is a linear map, all the estimates
we will perform will be done on R

2n+1 and R
2(2n+1)+1. This enables us to freely use

the global coordinates of R2(2n+1)+1. We will adopt this approach in the rest of the
paper, especially when we do the estimates in Part 2 of the present paper, unless
there is a danger of confusion. (See [Ma1, p.525] for the similar practice laid out for
the same purpose of study of derivative estimates in the similar setting of covering
projections Rn → Ci with Ci

∼= S1 × R
n−1.

5.2. Contact product of Wm
k and equivariant Darboux-Weinstein chart. Recall

the general definition of the contact product (MQ,A ) of a contact manifold (Q,α), MQ :=
Q×Q× R equipped with the contact form

A = −eηπ∗
1α0 + π∗

2α0.
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Then the contact diagonal is given by

{(x, x, 0) ∈MQ | x ∈ Q} =: Γid. (5.2)

By construction, it follows that Γid. is Legendrian with respect to A , which is diffeomorphic
to R given in (5.1). More generally, recall that the graph

Γf : Q→MQ; Γf (x) := (x, f(x), ℓf (x)) (5.3)

is a Legendrian embedding of (MQ,A ) which is called the Legendrianization of f in [Oh22a].
With a slight abuse of notations, we will denote by Γf both the map and its image.

For the purpose of applying a Mather-type construction on Q = R
2n+1, we would like to

achieve parameterize each contactomorphism f of Wm
k sufficiently C1-close to the identity

map by a real-valued function uf on R
2n+1. For this purpose, we want to associate to the

map

f̃ − id : R2n+1 → R
2n+1,

not f itself, a Legendrian submanifold in (J1
R

2n+1, α0) so that it becomes the graph of 1-jet
map j1uf : R2n+1 → J1

R
2n+1 for some real-valued function uf . To achieve this goal, we

consider the map δ :MR2n+1 →MR2n+1 defined by

δ(x,X, η) = (x,X + x, η). (5.4)

Obviously its inverse is given by

δ−1(x,X, η) = (x,X − x, η). (5.5)

(See [Ryb2, p. 3300] for a similar consideration.)

Remark 5.2. This operation of taking the difference f̃ − id is natural on MR2n+1 while it
is very unnatural as one made on J1

R
2n+1. Therefore the operation δ is defined as one on

MR2n+1. However it is not a contact diffeomorphism of (MR2n+1 ,A ) and hence the graph

f̃ − id is not Legendrian for contactomorphism f unlike Γf .

Here we use the collective coordinate system (x,X, η) on R
2(2n+1)+1 with

x = (z, q, p), X = (Z,Q, P )

as the coordinate system on the contact product MR2n+1 by identifying R2(2n+1)+1 with
R

2n+1 × R
2n+1 × R.

Remark 5.3. We emphasize the fact that this kind of linear contactomorphism is a con-
struction that exists only for the linear contact manifold R

2n+1, not for for general contact
manifold Q, while the contact product is a general functorial construction applied to an
arbitrary contact manifold Q.

We pull-back A by the diffeomorphism δ and set a new contact form

Â |(t,x,X) := δ∗A |(t,x,X) = −e
t(dz − pdq) + d(z + Z)−

n∑

i=1

(p+ P )d(q +Q) (5.6)

on MR2n+1 . We also consider the tautological map

Π : J1
R

2n+1 →MR2n+1 = R
2n+1 × R

2n+1 × R (5.7)

defined by Π(t, x,X) = (x,X, t) where we identify X with the conjugate px of x on the
domain of the map Π, and have the diagram

MR2n+1
δ // MR2n+1

pr2
��

J1
R

2n+1

Π

OO

π
// R

2n+1.

(5.8)

Obviously the map
∆f := (δΠ)−1 ◦ Γf : R2n+1 → J1

R
2n+1



18 YONG-GEUN OH

is not Legendrian with respect to α0 but becomes Legendrian with respect to the contact

form Â for all contactomorphism f of R2n+1. Similarly as we did for Γf , we denote by ∆f

both the map and its image.
The following is by now obvious and reflects the ‘linear structure’, which plays a significant

role in Mather’s construction, on the contact manifold R
2n+1, and is utilized in Rybicki’s

contact version [Ryb2] of the rolling-up and homothetic transformations of Mather [Ma1].

Lemma 5.4. Let f ∈ Cont(R2n+1, α0) and consider the graph of the map ∆f : R2n+1 →
J1

R
2n+1 given by

∆f := (δΠ)−1 ◦ Γf =
{
(ℓf(x), x, f(x) − x) ∈ J

1
R

2n+1 | x ∈ R2n+1
}
. (5.9)

Then for any f C1-close to the identity map, ∆f is a section of the projection π : J1
R

2n+1 →

R
2n+1, which is also Legendrian with respect to the contact form Â . For f = id, we have

∆id = ZW2n+1
k

. (5.10)

Proof. By definition, we have π◦∆f is bijective on R
2n+1 which shows that ∆f is associated

to a section of the projection π. By definition, we have

(δΠ) ◦∆f = Γf (5.11)

and hence
∆∗
f (Â ) = (δ−1 ◦ Γf )

∗
Â = Γ∗

fA

This shows that ∆f is Legendrian with respect to Π∗Â if and only if Γf is Legendrian with
respect to A . This finishes the proof. �

Remark 5.5. In [Ryb2], the notation Γf is associated to f− id, not to f , unlike the present
paper. In the present paper, we reserve the notation Γf the Legendrian graph in MQ in
general to be compatible with the notation from [Bhu, Oh22a]. The notation ∆f for the
Legendrian map is reserved for a Legendrian submanifold associated to f − id applied only

for the 1-jet bundle J1W2n+1
k with respect to the contact form Π∗Â which is closer to Γf

adopted in [Ryb2].

Then we would like to associate to each such f a real-valued function onW2n+1
k . Knowing

that (5.10) holds, we can apply the standard Darboux-Weinstein theorem (contact version).
On the other hand, we will also want some fiber preserving property for the chart. (See
[Ryb2, p.3300].) To naturally construct such a chart, we will apply some equivariance
for the Darboux-Weinstein chart exploiting the linear structure of Rm (resp. Wm

k ) whose
description is now in order.

We consider the abelian groups

G := R
2n+1 or T k × R

n+1−k (5.12)

and consider its actions on MW2n+1
k

and on J1
R

2n+1 respectively. We consider the contact

G-actions on (MR2n+1 , Â )

G1 : (g, (t, x,X)) 7→ (t, x+ (g, 0), X + (g, 0))

and on (J1
R

2n+1, α0) the one given by

G2 : (g, (t, x,X) 7→ (t, x+ (g, 0), X).

Here (g, 0) ∈
(
S1 × (T k−1 ×Rn−k+1)

)
× R

n ∼= W2n+1
k and we identify the momentum

coordinatespx with X . which is possible by the linearity of Q = R
2n+1.

Then the map δΠ is a (G1,G2)-equivariant contact diffeomorphism which makes the fol-
lowing commuting diagram

(J1
R

2n+1,Π∗Â )

π

''❖
❖❖

❖❖
❖❖

❖❖
❖❖

δΠ // (MR2n+1 ,A )

pr2

xxqq
qq
qq
qq
qq

R
2n+1.
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The following is a special form of an equivariant Darboux-Weinstein theorem implicitly
utilized by Rybicki [Ryb2]. Recall ∆id = ZWm

k
.

Proposition 5.6. There exists a G2-equivariant open neighborhoods U and V of ZWm
k

= R

in J1
R

2n+1 and G2-equivariant diffeomorphism ΦU : U → V such that

(1) Φ∗
Uα0 = Â and ΦU ◦∆id = ZWm

k
.

(2) It satisfies

T(0,x,0)ΦU (ξx, ξx + ξX , ξt) = (ξt, ξx, ξX) ∈ T(0,x,0)J
1
R

2n+1

for each element (ξx, ξx + ξX , ξt) ∈ T(0,x,0)MR2n+1.

Remark 5.7. The geometric meaning of Statement (2) is that the derivative dΦU maps the
linear polarization

{(a, ξx, v + ξx) | v ∈ R
2n+1, a ∈ R}

to

{(a, ξx, v) | v ∈ R
2n+1, a ∈ R}

for each given vector vx ∈ R
2n+1 = TxW

n+1
k . For ξx = 0, the two subspaces coincide while

for ξx 6= 0, the first subspace is moved by a translation of the second by ξx in the X direction
(i.e., the fiber direction).

An immediate corollary of the G-equivariance is the following. For readers’ convenience,
we give its proof in Appendix A.

Corollary 5.8. We have the expression

ΠΦ−1
U (t, x,X) = (x+ hx(X, t), x+ hX(X, t), (t+ ht(X, t)) ∈MR2n+1

such that ht(0, x, 0) = 0, hx(0, x, 0) = 0 and hX(0, x, 0) = 0. If we define the map H to be

H(x,X, t) = (ht(X, t), hx(X, t), hX(X, t)) (5.13)

as a map MR2n+1 → J1
R

2n+1, it does not depend on x.

Obviously from this corollary, the map

(ΠΦ−1
U )−1δ−1 : (MR2n+1 ,A )→ (J1

R
2n+1, α0)

is a contact diffeomorphism which has the form

(ΠΦ−1
U )−1δ−1 = Π−1 + H (5.14)

on U ′. (Recall that Π is just the R coordinate swapping map and the identity map if we
identify J1

R
2n+1 and MR2n+1 with R

2(2n+1)+1.) We summarize the above discussion into
the diagram

(MR2n+1 , Â )
δ // (MR2n+1 ,A )

pr2

��(ΠΦ−1
U

)−1δ−1
ww♦♦
♦♦
♦♦
♦♦
♦♦
♦♦

(J1
R

2n+1,Π∗Â )
ΦU

//

Π

66♠♠♠♠♠♠♠♠♠♠♠♠

(J1
R

2n+1, α0)

Π◦Φ−1
U

OO

π
// R

2n+1

where all maps in the left triangle and δ are contact diffeomorphisms by definition. In
particular, the map

(ΠΦ−1
U )−1δ−1 ◦ Γf = ΦU (δΠ)

−1 ◦ Γf = ΦU ◦∆f (5.15)

is a Legendrian embedding of R2n+1 into (J1
R

2n+1, α0) that is also graph-like for any con-
tactomorphism f sufficiently C1-close to the identity. (See (5.9).)

We remark that the map H depends only on the Darboux-Weinstein chart ΦU .
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6. Parametrization of C1-small contactomorphisms by 1-jet potentials

We recall that any Legendrian submanifold R C1-close to the zero section ZN ⊂ J1N
can be written as the 1-jet graph

Ru := Image j1u = {(z, q, p) | p = du(q), z = u(q)}

for some smooth function u : R→ R. We call u the (strict) generating function of R. This
correspondence is one-to-one in a C1-small perturbations of the zero section.

Remark 6.1. We remark that if f is a contactomorphism C1-close to the identity (say,

M∗
1 (f) = max{‖f‖1, ‖ℓf‖1} <

1
4 ), its lift to R

2n+1 can be written as f̃ = id+ṽ for a map

that is C1 close to the zero map. This also implies that the map v is C1-close to the zero
section map of the front projection J1

R
n → R × R

n and v ≡ 0 when f = idWm
k
. However

unlike the diffeomorphism case of [Ma1], there is no obvious such linear perturbation result
of contactomorphisms. We suspect that this phenomenon leads to the contact counterpart
of the discussion about the failure of Mather’s scheme in [Ma1, Ma2] on the nose for the
critical case r = n+1 as explained in [Ma2]. We will investigate this phenomenon elsewhere.

By a suitable contact conformal rescaling of ΦU , we may assume

π(ΦU (U)) ⊃ [−1, 1]2n+1 (6.1)

for the chart ΦU where π : J1
R

2n+1 → R
2n+1 is the canonical projection. We set

KΦU ,r := sup
0≤s≤r+1

max
{∥∥∥DsΦ

U∩‹E(0)
1

∥∥∥ ,
∥∥∥Ds(Φ

U∩‹E(0)
1

)−1
∥∥∥
}
, (6.2)

This constant is a universal constant depending only on the Darboux-Weinstein chart ΦU
and r. We remark that the set U ∩ ‹E(0)

1 is relatively compact and so KΦU ,r < ∞ for all
r ≥ 1.

We will fix the chart ΦU as the reference in the rest of the paper for other charts that
will be obtained by further conformal rescalings. The latter will be denoted by

ΦU ;A, A ≥ 1

depending on the constant A, whose precise definition is now in order.
With slight abuse of terminology, we call such a contactomorphism C1 close to the identity

a C1-small contactomorphism.

6.1. Rescaled Darboux-Weinstein chart ΦU ;A. We recall the maps χA and ηA given in
(4.4) and (4.2) respectively with t = A. Both satisfy that

χ∗
Aα0 = A2α0 = η∗Aα0 (6.3)

where α0 is the standard contact form on R
2n+1 ∼= J1

R
n. Furthermore, we have

χA
(
[−1, 1]2n+1

)
= [−2A2, 2A2]× [−A,A]2n (6.4)

ηA
(
[−1, 1]2n+1

)
= [−A,A]n+1 × [−1, 1]n. (6.5)

By a suitable conjugating process by the maps χA and νA, we lift the map χA on Wm
k to

the maps

µA = χA × χA × idR on Wm
k ×W

m
k × R =MWm

k

νA = (A2 idR)× χA × ηA on R× T ∗Wm
k = J1Wm

k

as contact automorphisms, respectively. In fact they can be lifted to R
2(2n+1)+1 explicitly

expressed as

µA(z, q, p, Z,Q, P, η) = (A2z, Aq,Ap,A2Z,AQ,AP, η), (6.6)

νA(t, z, q, p, Z,Q, P ) = (A2t, A2z, Aq,Ap,AZ,AQ,P ) (6.7)

in terms of the standard coordinates ofMR2n+1 and J1
R

2n+1 respectively. It is easy to check
from this that they indeed satisfy

µ∗
AÂ = A2

Â , ν∗Aα0 = A2α0
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respectively, i.e., µA and νA define contactomorphisms of (J1
R

2n+1, Â ) and (J1
R

2n+1, α0),
respectively. This being said, we will also denote by the same notation µA for the obvious
action on J1

R
2n+1 conjugate by the map Π, recalling that Π is essentially the identity map

as a map defined on R
2(2n+1)+1.

Definition 6.2 (ΦU ;A). Let A ≥ 1 be given and consider the expression

ΦU ;A := νA ◦ ΦU ◦ µ
−1
A : UA → VA (6.8)

and write

UA := µA(U), VA := νA(V )

where we regard the subsets as ones either on J1
R

2n+1 or on J1Wm
k .

Then the rescaled chart map

ΦU ;A : (UA,Π
∗
Â )→ (VA, α))

is a well-defined strict contactomorphism for all A > 1.

Proposition 6.3 (Compare Proposition 4.2 (2) [Ryb2]). Let r ≥ 2 be given. For any given

A0 > 1, let 1 ≤ A ≤ A0 and consider a subinterval E ⊂ E
(k)
A .

(1) Then the map

ΦU ;A : UA → VA

is defined and satisfies ΦU ;A|R = idR, Φ
∗
U ;AÂ = α0.

(2) Define the constants

KΦU ,r,A := sup
0≤s≤r+1

max
{∥∥∥DsΦU ;A|UA∩‹E(0)

A

∥∥∥ ,
∥∥∥Ds(ΦU ;A|UA∩‹E(0)

A

)−1
∥∥∥
}
. (6.9)

Then KΦU ,r,A ≤ A
2KΦU,r

for all 0 ≤ s ≤ r.

An upshot of this proposition is that when A0 > 0 and r are given, the constants cam
be uniformly controlled depending only on the original chart ΦU and on A0 which however
does not depend on individual A from 1 ≤ A ≤ A0.

Following [Ryb2], we consider the cylinders

W2n+1
k := (S1)k × R

2n+1−k (6.10)

for k = 0, . . . , n where we write the z coordinates first and set q0 := z. For k = 0, we have
W2n+1

0 = R
2n+1 and for k = 1, . . . , n, and for k ≥ 1 we can write

W2n+1
k

∼= S1 × T ∗(T k−1 × R
n−k+1)

which is manifestly a contact manifold as the (circular) contactization of the symplectic
manifold. T ∗(T k−1 × R

n−k+1).
For k = 1, . . . , n, we consider

E
(k)
A := (S1)k × [−A,A]2n+1−k ⊂ W2n+1

k (6.11)

and for k = 0

E
(0)
A := [−A,A]2n+1 ⊂ R

2n+1.

We write the associated coordinates by (ξ0, · · · , ξn, p1, · · · , pn) with

ξj ≡ qj mod 1 for j = 0, · · · , k,

ξj = qj for j = k + 1, · · · , n.

We then consider the family of subsets

‹E(0)
A : = [−2A2, 2A2]× [−A,A]m−1 × R

m+1
(
= χA([−1, 1]

m × R
m+1

)
,

‹E(k)
A : = T k × [−A,A]m−k × R

m+1
(
= π

(
R
k × [−A,A]m−k × R

m+1
))

and equip the contact forms induced from Â on the contact product MR2n+1 .
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6.2. Representation of contactomorphisms by their 1-jet potentials. Let C∞
E (W2n+1

k ,R)

be the set of R-valued functions compactly supported in a closed subset E ⊂ W2n+1
k .

Composing the 1-jet map j1u with the Darboux-Weinstein chart ΦU ;A, we obtain the
following parametrization of C1-small neighborhood of the identity map in Cont(Wm

k , ξ).

Proposition 6.4. Let A0 > 1 be given. Then there exist UA is a C1-small neighborhood
of the identity and VA a C2-small neighborhood of zero in C∞

E (W2n+1
k ,R) and a one-to-one

correspondence

GA : ContE(W
2n+1
k , α0) ⊃ UA → VA ⊂ C

∞
E (W2n+1

k ,R)

that satisfies GA(id) = 0 and is continuous over 1 < A ≤ A0.

Proof. Let π : J1Wm
k →W

m
k be the canonical projection. Consider submanifold

Rg,A := ImageΦU ;A ◦∆g

which is Legendrian by construction. Moreover the projection π restricted to Rg,A becomes
one-to-one provided the C1-norm of g is sufficiently small. Therefore there exists a unique
real-valued function u such that we can express Rg,A = Image j1u for the 1-jet map of u.

We define GA(g) to be the unique function u :W2n+1
k → R satisfying

Image(ΦU ;A ◦∆g) = Image(j1u) (6.12)

where u = ug,A depends not only on g, A but also on the chart ΦU ;A. (See Diagram 5.8.)
We alert readers that while their images coincide they are different as a map.

Remark 6.5. The fact that the two maps are not the same complicates the relationship
between the contactomorphism g and the function ug,A as shown below. This will give rise
to some difficulty later in Section 15 when we try to compare the Cr estimates of g and that
of the function ug,A.

Then we put

GA(g) := ug;A. (6.13)

For the statement on the properties, we further examine the definition. By the definition of
the Legendrianization parametrization map GA. By (6.12), there exists y = y(x) such that

ΦU ;A ◦∆g(x) = (ug,A(y), y,Dug,A(y))

for each x ∈ Wm
k , and that such y is unique, provided g is sufficiently C1-small and the

neighborhood U is sufficiently small. We can express

y = π2ΦU ;A ◦∆g(x)

ug,A(y) = π1ΦU ;A ◦∆g(x)

Dug,A(y) = π3ΦU ;A ◦∆g(x).

Furthermore the map

π2ΦU ;A ◦∆g =: Υg,A

is a self diffeomorphism of R2n+1 map if g is sufficiently C1-small. We can write the first
equation as

x = Υ−1
g,A(y). (6.14)

Then we can express

ug,A = π1ΦU ;A ◦∆g ◦Υ
−1
g;A

Dug,A = π3ΦU ;A ◦∆g ◦Υ
−1
g;A.

This expression already clearly shows the continuity of the map

GA : (g,A) 7→ ug,A

in the Cr topology of g and in the Cr+1 topology of u = ug,A, respectively.
The last statement immediately follows from this presentation. �
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Definition 6.6 (1-jet potential). Let

U1 ⊂ Contc(W
2n+1
k , α0) (6.15)

be a C1-small neighborhood of the identity of Contc(W
2n+1
k , α0). For any C1-small con-

tactomorphism g ∈ U1, we call the function u = ug satisfying (6.13) (for A = 1) the 1-jet
potential of contactomorphismg ∈ U1 with respect to α and ΦU .

We will fix a cut-off function ψ :W2n+1
k → [0, 1] whose precise defining properties will be

given later.

Proposition 6.7 (Compare with Proposition 5.4 [Ryb2]). Let E ⊂ E
(k)
A be a sub-interval

of E
(k)
A . There exists a C1-neighborhood Uχ,A ⊂ U1 of the identity in Cont

E
(k)
A

(W2n+1
k , α0)

such that for any g ∈ Uχ,A with support E the contactomorphism

gψ := G
−1
A (ψGA(g)) = G

−1
A (ψug,A)

is well-defined and supp(gψ) ⊂ E. More precisely, we have supp(gψ) ⊂ supp(χ) and gψ = g
on any open subset U ⊂ W2n+1

k with g = 1 on U .

We will just write ug = ug;A as in [Ryb2] for the simplicity of notation, whenever there
is no danger of confusion.

Remark 6.8. Observe that the identity (6.12) relates the two maps Γg and j1ug for ug =
GA(f) explicitly via the chart ΦU ;A which depends only on the fixed chart ΦU and the
rescaling constant A > 1. In particular, the identity shows the equivalence of the two norms

M∗
0 (g) = max{‖g − id ‖C0 , ‖ℓg‖C0}

and
‖j1ug‖C0 = max{‖Dug‖C0 , ‖ug‖C0}

when A varies 1 < A ≤ A0 for any fixed constant A0 > 1.

7. Correcting contactomorphisms via the Legendrianization

The construction in the present section, which was introduced and utilized by Rybicki
[Ryb2], presents its feature applicable only to the case of contactomorphisms in which the
parametrization of a C1 neighborhood of the identity of Contc(W

2n+1
k , α0)0 is achieved

by a C2-neighborhood of 0 in C∞(W2n+1
k ,R) through taking the 1-jet potentials. Such a

construction was not needed for the case of general diffeomorphisms or even for the case of
symplectic diffeomorphisms [Ba1].

One important aspect of the Euclidean space Rn in the study of its diffeomorphism groups,
although not manifest enough at the time of the advent of [Ma1], is the linear structure R

n

so that any C1-small perturbation of the identify map can be written in the form

id+v : Rn → R
n

where v : Rn → R
n is C1-close to the zero map as well as its C0-norm.

For the case of contact space (R2n+1, ξ), there is no such a simple form of perturbation
in the context of contactomorphisms, which prevents one from directly applying Mather’s’:

• construction of rolling-up operators, or
• utilizing the homothetic transformations.

The upshot of Rybicki’s proof in [Ryb2] of perfectness of Contc(R
2n+1, α0) = Cont∞c (R2n+1, α0)

is to correctly contactify the two operations.
We start with the observation that we have a natural covering projection

prk+1 : R2n+1 →W2n+1
k+1

and that any sufficiently C1-small (and so C0-small) contactomorphism g ∈ W2n+1
k+1 can be

uniquely lifted to a contactomorphism g̃ of W2n+1
k+1 that satisfies

g = g̃ ◦ prk
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and that Γg̃ is periodic in the variable ξk.

Definition 7.1 (ContT
ℓ

c (W2n+1
k , α0)). For ℓ+ 1, · · ·n+ 1, we define a subset

ContT
ℓ

c (W2n+1
k , α0)

:= {f ∈ ContT
ℓ

c (W2n+1
k , α0) | f − id does not depend on ξi with 0 ≤ i ≤ ℓ}.

It follows from Proposition 6.7 that Contc(W
2n+1
k , α0)

(ℓ) is a C1-small neighborhood of
the identity.

Since f − id =: v does not depend on ξi with 0 ≤ i ≤ ℓ, we may abuse the notation v by
omitting the projection π : R2n+1 → R

2n+1−ℓ from v ◦ π and just write

v ◦ π(ξ0, . . . , ξℓ, . . . ξn, p1, . . . , pn) := v(ξℓ+1, . . . , ξn, p1, . . . , pn).

When ℓ = k, this becomes

v(ξ0, . . . , ξk, . . . ξn, p1, . . . , pn) = v(ξk+1, . . . , ξn, p1, . . . , pn), (7.1)

i.e., v can be identified with a map v : Rn−k × R
n →W2n+1

k by abusing notation.

Corollary 7.2. Suppose that f ∈ ContT
ℓ

c (W2n+1
k , α0) ∩ U1, i.e., T ℓ-equivariant. Then the

function uf = uf ;A defined by

GA(f) =: uf ∈ C
∞(W2n+1

k ,R)

a T k-invariant function on W2n+1
k where the T k acts on the k circle factors of W2n+1

k =

S1×T ∗(T k−1×R
n−k) ∼= (S1)k×R

2n−k+1 by the standard rotations of circles. In particular,
uf does not depend on the variables ξ0, . . . , ξk−1.

Proof. This is an immediate consequence of the discussion given in Section 6. �

8. Contact-scaling and shifting of the supports of contactomorphisms

Suppose a positive integer A > 0 which will be chosen sufficiently large whose size is to
be determined later. For each given such integer, we start with the (2n+1)-cube [−1, 1]2n+1

and consider its shifting by an integer −(2A− 1) ≤ ki ≤ 2A− 1 in the pi-direction. By the
choice 0 ≤ ki ≤ 2A− 1, we have [ki − 1, ki + 1] ⊂ [−2A, 2A].

Then we consider the conjugation of f

ρA,t ◦ f ◦ ρ
−1
A,t (8.1)

by the (affine) contactomorphism

ρA,t := χA2 ◦ σti , i = 1, · · · , n. (8.2)

Remark 8.1. We would like to highlight one difference between our definition of ρA,t and
that of [Ryb2]: We do not involve the front scaling transformation ηA but only χA by taking
the square of χA instead. This turns out to be a crucial change to be made for the purpose
of obtaining the optimal power of A4−2r+2(n+1). In this regard, it is crucial for the length
of q-rectangularpid to become A2 which is responsible for the coefficient 2 in front of r and
(n + 1), and the number 4 in the constant term in the exponent comes from the power of
the z direction for the contact rescaling operation

χ2
A(z, q, p) = (A4z, A2q, A2p).

The map χA ◦ ηA provides the power 1 of A in the q-direction while the power 3 in the
z direction, which would give rise to the power A4−r+(n+1) which will give rise to only
r > n+5. This is the reason why we use the map χ2

A = χA2 instead of χAηA used in [Ryb2].

We also define the vector version of the conjugation (8.1)

ρA,t = χA2 ◦ σt
i i = 1, · · · , n (8.3)

where we write t :=
∑n

i=1 ti~ei and

σt
i := σt11 ◦ σ

t2
2 ◦ · · · ◦ σ

tn
n :
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It has the following explicit formula (before applying cutting-off: we recall the discussion
given in Subsection 4.2 here)

ρA,t(z, q, p) =

(
A4z +

n∑

i=1

, A2q, A2(p+ t ~fi)

)
, t = (t1, t2, . . . , tn)p =

n∑

i=1

ti ~fi. (8.4)

Observe that the image ρA;t

(
[−2, 2]2n+1

)
is contained in the following

A4

(
n∏

i=1

[−2− t
n∑

i=1

|qi|, 2 + t

n∑

i=1

|qi|]

)
× [−2A2, 2A2]n×A2

(
n∏

i=1

[−2− |ti|, 2 + |ti|]

)
. (8.5)

Lemma 8.2. Let k =
∑n

i=1 ki
~fi + (

∑n
i=1 ki) · ~ez with [ki| ≤ 2A − 1 for all i = 1, · · · , n.

Consider f ∈ Contc(J
1
R
n, α0) satisfying

supp f ⊂ [−2, 2]2n+1 + k.

Then for any t = (t1, . . . , tn) with |ti| ≤ 2A− 1,

supp
Ä
ρA,tfρ

−1
A,t

ä
⊂ [−3A5, 3A5]× [−2A2, 2A2]n × [−2A3, 2A3]n (8.6)

provided A ≥ 2n.

Proof. Consider the map ρA,t above associated to i. We evaluate

ρ−1
A,t(z, q, p) =

Å
z −

∑n
i=1 tiqi
A4

,
q

A2
,
p− t

A2

ã
. (8.7)

Therefore if this point is not contained in supp f , then one of the following inequalities holds:

(1)
z−

∑n
i=1 tiqi
A4 6∈ [−2, 2] +

∑n
i=1 ki for some i,

(2)
∣∣ qi
A2

∣∣ > 2 for some i,

(3) pi−ti
A2 6∈ [−2 + k1, 2 + ki] for some i,

If (3) holds, then

pi < (−2 + ki)A
2 + ti or pi > (2 + ki)A

2 + ti.

Using |ki| ≤ 2A− 1 and |ti| ≤ 2A, we derive

pi < −2A
3 or pi > 2A3

and hence pi ∈ [−2A2, 2A2].
If (1) holds but (2) fails to hold, we have inequalities

qi
A2
∈ [−2, 2]

for all i = 1, · · · , n and

z < A4

(
−2 +

n∑

i=1

ki

)
+
∑

i=1

tiqi or z > A4

(
2 +

n∑

i=1

ki

)
+
∑

i=1

tiqi

for some i. The first inequality implies

−2A2 ≤ qi ≤ 2A2

Combining this with the second inequality, we have derived that any point (z, q, p) satisfying

z < −2A4 + nA4(−2A+ 1− 2A) or z > 2A4 + nA4(2A− 1 + 2A)

is not in supp(ρA,tfρ
−1
A,t). In particular, this holds if z < −3A5 or z > 3A5, provided A ≥ 5n.

Combining the above altogether, we have finished the proof. �

This leads us to the consideration of the following subsets of W2n+1
k .

Definition 8.3 (JA). Let 0 ≤ ti ≤ 2A and A > 0. We define

JA := [−3A5, 3A5]× [−2A2, 2A2]n × [−2A3, 2A3]n (8.8)

⊂ R× R
n × R

n ∼= J1
R
n.
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We will always make this choice of A > 0 and ti’s from now on.

Remark 8.4. We warn the readers that our definition of JA and many others with the same
notations from [Ryb2] are different therefrom in their specific choices of the orders of powers
of A. Our choices are made to make the relevant constructions and estimates in [Ryb2] as
optimal as possible. We encourage readers to compare the differences of the exponents of
the power of A appearing in the definitions of various contact cylinders and rectangularpids
below. It is important for the power of A to be 2 for the q-cube factors appearing in (8.9)
below for our purpose of obtaining the optimal thresholds.

We will also need to consider the following families of contact cylinders

J
(k)
A = S1 × (S1)k−1 × [−2A2, 2A2]n−k+1 × [−2A3, 2A3]n

K
(k)
A = S1 × (S1)k−1 × [−2, 2]× [−2A2, 2A2]n−k × [−2A3, 2A3]n

for k = 1, . . . , n and

J
(0)
A = JA = [−3A5, 3A5]× [−2A2, 2A2]n × [−2A3, 2A3]n

K
(0)
A = KA = [−2, 2]× [−2A2, 2A2]n × [−2A3, 2A3]n. (8.9)

of the construction of a family of Rybicki’s rolling-up operators

Ψ
(k)
A : Cont

J
(k)
A

(W2n+1
k , α0)0 ∩ U1 → Cont

K
(k)
A

(W2n+1
k , α0)0

for which the rolling occurs in the qk-coordinate direction. Note that we have natural

covering projections JA → J
(k)
A and KA → K

(k)
A , respectively. The fiber of JA → J

(k)
A is

isomorphic to

Z4A2 × (Z4A3 )k−1,

and the fiber of KA → K
(k)
A is isomorphic to

Z4 × (Z4A2)k−1.

Similarly J
(k)
A → K

(k)
A has fiber isomorphic to ZA2 .

9. Rybicki’s fragmentation of the second kind: Definition

In [Ryb2], Rybicki introduced some fragmentation for the case of contactomorphisms
which involves a fragmentation of the 1-jet potentials defined in the previous section. Such
a fragmentation is uniquely applicable to the case of contactomorphisms because its natural
analog which does not preset either in the case of diffeomorphisms [Ma1, E2] nor in that of
symplectomorphisms [Ba1]. Rybicki [Ryb2] introduced the following-type of fragmentation
which he calls the fragmentations of the second kind.

We start with the Rybicki’s fragmentation in the direction of z = ξ0.

Lemma 9.1 (Compare with Proposition 5.6 [Ryb2]). Let 2A > 1 be an even integer, ψ :
[0, 1]→ [0, 1] be a boundary-flattening function such that ψ ≡ 1 on [0, 14 ] and ψ ≡ 0 on [ 34 , 1],
and let

E2A := E
(0)
2A = [−2A, 2A]2n+1.

Then there exists a C1-neighborhood Uψ,A of the identity in ContE2A(R
2n+1, α0) such that

for any g ∈ Uψ,A there exists a factorization

g = g1 · · · g4k+1, (9.1)

that satisfies the following properties: The factorization is uniquely determined by ΦA, ψ
and A so that supp(fK) is contained in an interval of the formÅï

k −
3

4
, k +

3

4

ò
× R

2n

ã
∩ E2A,

with k ∈ Z, |ki| ≤ 2A.
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Proof. We extend ψ to [−1, 1] as an even function and then to R as a 2-periodic function.
We lift it to E2A. Let g be a sufficiently C1-small contactomorphism with supp g ⊂ E2A

and consider the function

gψ := G
−1
A (ψGA(g)) = G

−1
A (ψug).

We now take a factorization g = gψ2 g
ψ
1 by first defining

gψ1 := g−2A ◦ g−2(A−1) ◦ · · · ◦ g2(A−1) ◦ g2A, (9.2)

and then setting

gψ2 := g(gψ1 )
−1 (9.3)

where gi’s satisfy supp g2k ⊂ [2k− 3
4 , 2k+

3
4 ]×R

2n and supp g2k+1 ⊂ [2k+ 1
4 , 2k+

7
4 ]×R

2n. �

We mention that the collections {supp g2k}
n
k=1 and {supp g2k+1}

n
k=1 are disjoint from

one another respectively. By applying the above construction consecutively to all variables
(z, q, p) = (ξ0, ξ, p), we obtain the following.

Proposition 9.2 (Compare with Proposition 5.7 [Ryb2]). Let A, ψ and E2A be as in Lemma
9.1. Then there exists a C1-neighborhood Uψ,A of the identity in ContE2A(R

2n+1, α0) such
that for any g ∈ Uψ,A there exists a factorization

g = g1 · · · gam , am = (4A+ 1)m

that satisfies the following properties: The factorization is uniquely determined by ΦA, χ
and A so that supp(fK) is contained in an interval of the form

Åï
k1 −

3

4
, k1 +

3

4

ò
× · · · ×

ï
km −

3

4
, km +

3

4

òã
∩E2A,

with ki ∈ Z, |ki| ≤ 2A.

10. The ‘hat’ operation: deforming to an S1-equivariant map

Now we take the ‘hat’ operation of turning the given contactomorphism into one that
becomes S1-symmetric in an additional direction of qis. This is the analog to the construction
given in [Ma1, p. 524]. However the direct application of Mather’s construction cannot work
for the contactomorphisms because the addition operation + on the vector space R

2n+1 does
not respect the contact property. Here enters one of Rybicki’s key ideas of exploiting the
representation of contactomorphisms g sufficiently C1-close to the identity by the Legendrian

graph of g − id in the contact product (MW2n+1
k

, Â ) followed by their contact potentials

ug ∈ C∞(W2n+1
k ,R) via the following sequence of one-to-one correspondences:

g ←→ g − id←→ Γg ←→ ∆g ←→ ΦU ;A(∆g)←→ Image j1ug ←→ ug. (10.1)

This construction is reversible and respects the T k+1-action on W2n+1
k which are given by

the linear rotations of the underlying (k + 1) torus W2n+1
k → (S1)k+1 = T k+1.

The upshot of this step is that both Wen+1
k and the set C∞(W2n+1

k ,R) are is linear,
and hence we can apply the Mather-type constructions thereto and then read back the
above diagram to obtain a contact diffeomorphism g associated to any given function v ∈
C∞(W2n+1

k ,R) sufficiently C2-close the zero function. The detail of the construction is now
in order. (See [Ryb2, p. 3309] for the relevant counterpart.)

Consider the cylinders

E
(k)
A := (S1)k × [−A,A]2n+1−k ⊂ W2n+1

k , k = 1, . . . , n+ 1.

We start with a T k equivariant element

g ∈ ContT
k

E
(k+1)
A

(W2n+1
k , α0)0 ⊂ ContT

k

c (W2n+1
k , α0)0
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sufficiently C1-close to the identity. By definition, g is equivariant under the T k action, and
so ug is a T k-invariant real-valued function by Proposition 6.7. Therefore we can express

ug = u′g ◦ pr
c
k; prck :W2n+1

k+1 → R
2n−k−1

for some function u′g : R
2n−k−1 → R. By the identification of

R
2n−k−1 ∼= {[(0, . . . , 0)]} × R

2n−k−1 ⊂ R
2n+1,

u′g can be canonically defined from ug by defining

u′g(ξk, ξk+1, . . . , ξn, p) := u([(0, . . . , 0)], ξk, ξk+1, . . . , ξn, p).

Here [(0, . . . , 0)] ∈ R
k+1/Zk+1 is the identity element.

Now we define a T k+1-invariant function ũg by setting

ũg(ξ0, ξ, p) := u′g(0, ξk+1, · · · , ξn, p) (10.2)

which is now clearly invariant under the translation in the additional direction of ξk. It
follows that ug is again contained in the given neighborhood V2. Then we define

ĝ := G
−1
A (ũg) (10.3)

which is now T k+1-equivariant and hence contained in

ĝ ∈ ContT
k+1

E
(k+1)
A

(W2n+1
k , α0)0 ⊂ ContT

k+1

c (W2n+1
k , α0)0.

Here we remark that the domains of the contactomorphisms can be naturally identified with

S1 × T ∗(T k × R
n−k),

respectively for 0 ≤ k ≤ n. In summary, each hat operation adds the S1-equivariance in the
one more direction of ξ’s.

11. Rolling-up operator and unfolding-fragmentation operators

Denote by πk : W2n+1
k → W2n+1

k+1 the natural projection in the qk direction induced

by the covering projection R → S1. We consider a contactomorphism g of W2n+1
k+1 con-

tained in a sufficiently C1-small neighborhood U1 of the identity with supp g ⊂ J
(k)
A , i.e., in

Cont
J

(k)
A

(W2n+1
k , α0). More specifically, we will assume M∗

1 (g) <
1
4 .

11.1. Mather’s rolling-up operator. We first recall Mather’s rolling-up operators Θ
(k)
A

in the current context

Θ
(k)
A (g)(θ0, . . . , θk−1, qk+1, . . . , qn, p) = πk

(
(Tkg)

N (z, q1, . . . , qn, p)
)

(11.1)

where we make a choice of N as follows. For any x = (θ0, · · · , θk−1, . . . , qn, p) ∈ W
2n+1
k+1 ,

we choose x̃ ∈ R
n+1 × R

n with πk+1(x̃) = x with qk < −2A2 for the covering map πk+1 :
R

2n+1 →W2n+1
k+1 . Choose a sufficiently large N ∈ N so that

qk
(
(Tkf)

N (x̃)
)
> 2A2.

(It is easy to check that it is enough to choose any N > 4A2 + 4A by starting with x̃ with
qk(x̃) = −2A2 − 2A.)

The following summarizes basic properties of Mather’s rolling-up operators [Ma1, Defin-
tiion p. 520] applied to the contactomorphisms.

Proposition 11.1 (Compare with Proposition 8.1 [Ryb2]). Let k = 0, . . . , k. After shrink-
ing U1 if necessary,

Θ
(k)
A : Cont(W2n+1

k , α0)0 ∩ U1 → Cont
K

(k+1)
A

(W2n+1
k+1 , α0)

satisfies the following properties:

(1) Θ
(k)
A is continuous and preserves the identity.



SIMPLICITY OF CONTACTOMORPHISM GROUP 29

(2) Θ
(k)
A (ContT

k

(W2n+1
k , α0)0 ∩ U1) ⊂ ContT

k (
W2n+1
k+1 , α0

)
0
, i.e., Θ

(k)
A (g) is also S1

k-
equivariant.

11.2. Unfolding-fragmentation operators Ξ
(k)
A;N . Rybicki [Ryb2] also considers the fol-

lowing map (for N = 2)

Ξ
(k)
A;N : Cont

J
(k+1)
A

(W2n+1
k+1 , α0) ∩ U2 → Cont

K
(k)
A

(W2n+1
k , α0)0, k = 0, . . . , n,

where U2 is a C1-small neighborhood of id in Cont
J

(k+1)
A

(W2n+1
k+1 , α0). This is a contact

counterpart of Mather’s operator of ‘fragmentation followed by shifting supports’ [Ma1,
Construction p. 524]. We call the map an unfolding-fragmentation operator in the qk-
direction. Its construction is now in order. This is where the construction of [Ryb2] makes a
stark difference from that of [Ma1] and the Legendrianization followed by taking the contact
potential plays a fundamental role it Rybicki’s proof.

We need to give the general definition of Ξ
(k)
A;N applied to the N -fragmentation, while

[Ryb2, p.3313] gave the construction only for the case of the 2-fragmentation and stop short
of giving the general definition associated to the N -fragmentation, although he implicitly
employed the defintion for the general case in the proof of [Ryb2, Lemma 8.6]. (See the end
of the proof in [Ryb2, p. 3318] and Remark 11.2 below of the present paper.)

To make clear the dependence on N of its definition, we denote by

Ξ
(k)
A;N

the one associated to the N -fragmentation with N = 2, 3 ..., leaving the corresponding
construction for N = 2 to [Ryb2, Section 8].

Remark 11.2. We would like to remark that the statement like “[ga] = [ga
n+2

] with g =
Ξ(k)(f∗)” in the end of the proof of [Ryb2, Lemma 8.6] is imprecise since the definition

of Ξ
(k)
A itself depends on a and hence the g on the right hand side is ambiguous. In this

regard, the presentation of [Ryb2, Section 8] is rather imprecise and is missing some details,
although they are all correctible by utilizing the generalized construction of the operator

Ξ
(k)
A for the a-fragmentation is straightforward which leads to our extended operator Ξ

(k)
A;a

for each choice of integer a ≥ 2. This imprecise presentation and lack of this general

construction in [Ryb2] make the proof of the homological identity [g] = [ga
n+2

] for a > 2
and of its conclusion [g] = [ga] are rather misleading because apparently its proof should

have involved the operator Ξ
(k)
A;a associated to the general a-fragmentation. In this regard,

we believe that both the statement and the proof of [Ryb2, Lemma 8.6] should be corrected
by taking this dependence on a into account as presented in Section 12 and Section 22.

We denote by ρ : [0, 1] → [0, 1] the standard boundary flattening function once and for
all that satisfies

ρ(t) =

®
1 for 0 ≤ t ≤ 1

4

1 for 3
4 ≤ t ≤ 0

ρ′(t) ≥ 0. (11.2)

We then extend the function to the interval [−1, 1] as an even function which we still denote
by ρ : [−1, 1] → [0, 1]. We also define ρ̃ to be the time-reversal ρ̃(t) = ρ(1 − t). We then
extend the function periodically to whole R with period 2.

Having the identification S1 = R/Z and the covering projection π : R→ S1 in our mind,
we consider the N pieces of subintervals of length 2 given by

Ij = [−N + j − 1,−N + j] , j = 1, . . . , 2N. (11.3)

We denote the left and the right boundary points of Ij by b±j respectively, i.e.,

bj = −N + j − 1, b+j = −N + j. (11.4)
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We write its concentric subinterval of the length 1

I ′j =

ï
−N + j −

1

4
,−N + j −

1

4

ò
⊂ Ij (11.5)

centered at

−2N + j −
1

2
=: cj , j = 1, . . . , 2N. (11.6)

In this regard, we will sometimes write them as

Ij = Ij(cj), I ′j :=
1

2
Ij(cj)

for the clarity of presentation. We also define

Aε(ck) = [ck − ε, ck + ε]. (11.7)

Remark 11.3. We observe that when N is odd,

• The interval Ij for j = 0 or j = N only the half of the intervals are contained in the
given big interval [−N,N ].

• The interval Ij centered at 0 lies at the eventh order. In fact 0 = c2j with j =
N+1
2 ,

and that when N is even,

• The interval Ij for j = 0 or j = N are fully contained in the given big interval
[−N,N ].

• The interval Ij centered at 0 lies at the oddth order. In fact 0 = c2j+1 with j = N
2 .

Now we scale the intervals [−N,N ] down to [−1, 1] and define

INj =
1

N
Ij , (I ′j)

N =
1

2
INj , (11.8)

ANε (ck) :=
1

N
Aε(ck). (11.9)

Since ρ(t) ≡ 1 for t = 0 mod 2 or and ρ(t) ≡ 0 for t ≡ 1 mod 2, we can extend it to the
whole R 2-periodically. Then we have

supp ρ ⊂
N⋃

j=1

(−N + 2j − 1) +

ï
−
3

4
,
3

4

ò
=

N⋃

j=1

AN3
4
(c2j). (11.10)

Later it will be more convenient to enumerate the intervals symmetrically with respect to
the origin so that the interval centered at the origin always appears at j = 0. In this ordering
we can write

N⋃

j=1

AN3
4
(c2j) =

[N+1
2 ]⋃

j=−[N+1
2 ]

AN3
4
(c2(j+[ n+1

2 ]+1)) (11.11)

where [b] is the largest integer smaller than or equal to a real number b.
We set

ψNk (ξ0, ξ, p) := ρ(Nξk), k = 1, . . . , n (11.12)

respectively, and lift it a function defined on Wm
k+1. For each given

g ∈ Cont
J

(k+1)
A

(Wm
k+1, α0)0 ∩ U2,

we define

gψk := G
−1
A (ψNk GA(g)) = G

−1
A (ψNk ug).

Let gψk

1 (resp. gψk

2 ) be the unique lift of (gψk)−1g (resp. gψk) to Wm
k which are periodic

contactomorphisms on

T k × R× [−2A2, 2A2]n−k × [−2A3, 2A3]n.

For the notational convenience, we set

EA,n,k := [−2A2, 2A2]n−k × [−2A3, 2A3]n.
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By definition, we have

g = gψk

2 gψk

1 . (11.13)

Furthermore, for a small enough C1 neighborhood U2, there is a sufficiently small ε > 0 such
that

gψk

1 = g on T k × I ′2j−1 × EA,n,k

gψk

2 = g on T k × I ′2j × EA,n,k

for all j = 1, . . .N .
We put

E−
k = {(ξ0, ξ, y) ∈ W

m
k | −1 ≤ ξk ≤ 0}

E+
k =

ß
(ξ0, ξ, y) ∈ W

m
k

∣∣∣ 1
2
≤ ξk ≤ 3/2

™
.

The following definition is the same as those of [Ma1, Construction of p.524], [E2, p.119]
and [Ryb2, Equation (8.2)] (for N = 2).

Definition 11.4 (The map Ξ
(k)
A;N ). We define Ξ

(k)
A;N (g) := f by requiring f to satisfy the

requirement:

πkf =

®
gψk

1 on E−
k , f(E−

k ) = E−
k

gψk

2 on E+
k , f(E+

k ) = E+
k

and

f = id on Wm
k \ (E

−
k ∪E

+
k ).

This map is well-defined since E+
k ∩ E

−
k = ∅ and by the 1-periodicity of the multi-

bump function ψNk . The following conservation of supports from g to ug and vice versa are
important in the comparison study of g and the associated ug.

Lemma 11.5.

supp(g − id) ∪ supp ℓg = supp j1ug. (11.14)

The following properties of Ξ
(k)
A;N are immediate to check which will be used later. (See

[Ryb2, p.3313] for a simpler relevant discussion thereon for the case of 2-fragmentation.)

Lemma 11.6. For any given sufficiently small ε > 0, there exists some δ > 0 depending
only on ε such that

πkΞ
(k)
A;N (g) = g on ANε × R

2n (11.15)

for all g ∈ Cont
J

(k+1)
A

(Wm
k+1, α0)0 ∩ U2 with M∗

1 (g) ≤ δ. Here ANε is the union

ANε =

2N⋃

j=1

ANε (cj) (11.16)

where the interval ANε (cj) is as introduced in (11.9).

Proof. By the definitions of GA(g) and g
ψN

k , we have

gψ
N
k = G

−1
A (ψkGA(g)).

If ξk ∈ AN2j(
1
8N ), then we have ψNk (ξk) = 1 by definition of ψ and so

gψ(x) = G
−1
A (ug(x)).

Since ΦU ;A ◦∆id(x) = (x, 0, 0) and by the obvious estimates

‖Dug‖ ≤ C1‖D(g − id)‖C0 + C2‖hX‖C0

and

max{‖g − id ‖, ‖Df‖, ‖ℓg‖} ≤ C3(‖Dug‖C0 + ‖ug‖C0)
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where Ci depend only on the Darboux-Weinstein chart ΦU , A and N but are independent
of g, provided ‖M∗

1 (g)‖ is sufficiently small. The above estimates then imply M∗
0 (g) =

max{‖g − id ‖C0 , ‖ℓg‖C0 and ‖j1ug‖C0 are comparable to each other. On the other hand,

on AN2j−1(
1

8N ), we have ψk(x) = 0 on ∪I ′2j−1 and ψNk (x) = 1 on ∪I ′2j and so gψ
N
k (x) = g.

Then by Lemma 11.5 and combining the above discussion, we have proved the lemma by
continuity of the map GA, the definition of ψ in (11.12) and the support identity (11.14). �

12. Rolling-up contactomorphisms

By now, we have constructed the map

Θ
(k)
A : Cont

J
(k)
A

(W2n+1
k , α0)0 ∩ U1 −→ Cont

J
(k+1)
A

(W2n+1
k+1 , α0)0

and

Ξ
(k)
A;N : Cont

J
(k+1)
A

(W2n+1
k+1 , α0)0 ∩ U2 −→ Cont

K
(k)
A

(W2n+1
k , α0)0

for each integer N ≥ 2 by suitably choosing U1 and U2.

12.1. Properties of Θ
(k)
A and Ξ

(k)
A;N . We also have the inclusion map

Cont
K

(k)
A

(W2n+1
k , α0)0 →֒ Cont

J
(k)
A

(W2n+1
k , α0)0

since K
(k)
A ⊂ J

(k)
A , and hence we may canonically regard the map Ξ

(k)
A;N also as a map

Ξ
(k)
A;N : Cont

J
(k+1)
A

(W2n+1
k+1 , α0)0 ∩ U2 −→ Cont

J
(k)
A

(W2n+1
k , α0)0,

especially Cont
J

(k)
A

(W2n+1
k , α0)0 as its codomain. We may choose U2 so small and then U1

that the composition of the two maps are defined. We will choose U2 so small that the map

Ξ
(k)
A;N is defined and that we have a commutative diagram

ContJk
A
(W2n+1

k , α0)0 ∩ U1
Θ

(k)
A // Cont

J
(k+1)
A

(W2n+1
k+1 , α0)0

ContKk
A
(W2n+1

k , α0)0 ∩ U1

OO

Cont
J

(k+1)
A

(W2n+1
k+1 , α0)0 ∩ U2

Ξ
(k)
A;N

oo

Θ
(k)
A

◦Ξ
(k)
A;N

OO

(12.1)

where the left vertical arrow map is just the inclusion map induced by the inclusion map
Kk
A ⊂ J

k
A.

The following, especially the strict equality of the composition in Statement (3), plays an
important role in Rybicki’s construction ϑ of the contact counterpart of Mather’s rolling-up
operator θf that appears in the proof of [Ma1, Theorem 2, p.518].

Proposition 12.1 (Compare with Proposition 8.2 [Ryb2]). Taking U2 and then U1 suffi-
ciently small, we have the following:

(1) Ξ
(k)
A;N is continuous and preserves the identity.

(2) Ξ
(k)
A;N

(
ContT

k

J
(k+1)
A

(W2n+1
k+1 , α0)0

)
⊂ ContT

k

K
(k)
A

(W2n+1
k , α0)0.

(3) We have Θ
(k)
A Ξ

(k)
A;N (g) = g for any g ∈ Dom(Ξ

(k)
A;N ).

Proof. Statements (1), (2) are straightforward to check. We focus on the proof of (3). Write

f := Ξ
(k)
A;N (g) ∈ Contkc (W

m
k , α0)0 ∩ U1

Let x = (ξ0, ξ1, . . . , ξk−1, ξk, ξk+1, . . . , ξn, p) ∈ W
m
k+1 and

x̃ = (ξ0, ξ1, . . . , ξk−1, qk, ξk+1, . . . , ξn, p) ∈ W
m
k

with qk ∈ R satisfying qk = ξk mod 1. We take qk < −2A
2. Then we have

Θ
(k)
A (f)(x) := πk(((Tkf)

N (x̃)))
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by the definition of Θ
(k)
A .

We consider the three cases separately:

x̃ ∈ E−
k , x̃ ∈ E+

k , x̃ ∈ Wm
k \ E

−
k ∪E

+
k .

By definition, this trichotomy is preserved by the application of f :Wm
k →W

m
k .

For the last case, we have

πk(((Tkf)
N (x̃)))) = πk(~ek + f(Tkf)

N−1(x̃))

= πk(f(Tkf)
N−1(x̃)) = h⋆1πk((Tkf)

N−1(x̃))

where h⋆1 is the map given by

h⋆1(ỹ) =





h0(ỹ) for ỹ ∈ E−
k

h1(ỹ) for ỹ ∈ E+
k

ỹ for ỹ ∈ Wm
k \ (E

−
k ∪E

+
k )

(12.2)

depending on the location of ỹ := (Tkf)
N−1(x̃). (Recall where h0 = gψk

1 and h1 = gψk

2 .)
Similarly we define h⋆2 so that

πk((Tkf)
N−1(x̃)) = h⋆2πk((Tkf)

N−2(x̃)).

By repeating this argument inductively, we have obtained

πk(((Tkf)
N(x̃)))) = h⋆N · · ·h⋆1(x̃).

By the property

f(E−
k ) = E−

k , f(E+
k ) = E+

k , f(Wm
k \ E

+
k ∪ E

−
k )

and (Tjf(x̃))k > (Tj−1f(x̃))k, it follows that all h⋆ℓ = id except possibly for at most two
ℓ’s, and hence h⋆N · · ·h⋆1 = h2h1 = g. This finishes the proof. �

Remark 12.2. (1) The property Θ
(k)
A ◦ Ξ

(k)
A;N = id is a fundamental ingredient in

Mather’s construction in general. (See [Ma1]-[Ma4], [E2], especially [Ma3] for a
detailed analysis on its implication.)

(2) While the composition Θ
(k)
A ◦Ξ

(k)
A;N is the identity map, we will show that the other

composition Ξ
(k)
A;N ◦Θ

(k)
A is not the identity map on the nose, but will be ‘homotopic

to the identity’.

We also state the following two lemmata from [Ryb2].

Lemma 12.3 (Lemma 8.3 [Ryb2]). If f, g ∈ Dom(Θ(k)) and Θ(k)(f) = Θ(k)(g), then
[f ] = [g] in H1(Contc(W

2n+1
k+1 , α0)0).

Proof. See the proof of [Ryb2, Lemma 8.3]. �

We remark that when gi = Θ(k)(fi) for i = 1, . . . , ℓ, its product g1 · · · gℓ may not be
contained in the image of Θ(k) and the equality

Θ(k)(f1 · · · fℓ) = g1 · · · gℓ

fails to hold in general. In other words, the map Θ(k) is not multiplicative on the nose. But
the following lemma shows that it is multiplicative in homology.

Lemma 12.4 (Lemma 8.4 [Ryb2]). Let k = 1, . . . , n.

(1) Suppose gi = Θ(k)(fi) for i = 1, . . . , ℓ. Then there exists a collection of f i such that
{supp f i} are disjoint, [f i] = [fi] in H1(Contc(Wm

k , α0)0), and satisfies

g1 · · · gℓ = Θ(k)
(
f1 · · · f ℓ

)

(2) If g1, g2, g1g2 ∈ Dom(Ξ(k)), then we have

[Ξ(k)(g1g2)] = [Ξ(k)(g1)Ξ
(k)(g2)]

in H1(Contc(Wm
k , α0)0).
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(3) If [g] = e in H1(Contc(Wm
k , α0)0), there is f ∈ Contc(Wm

k , α0)0 such that Θ(k)(f) =
g and [f ] = e in H1(Contc(Wm

k , α0)0).

Proof. See the proof of [Ryb2, Lemma 8.4]. �

12.2. The hat operation applied. Towards the verification of the claim made in Remark
12.2, we will first use the hat operation to deform the composition map

Ξ
(k)
A;N ◦Θ

(k)
A : Cont

J
(k)
A

(
W2n+1
k , α0

)
0
∩ U1 → Cont

K
(k)
A

(
W2n+1
k , α0

)
0

so that we can define our wanted ‘auxillary rolling-up operator’

Ψ
(k)
A;N : ContT

k

J
(k)
A

(
W2n+1
k , α0

)
0
∩ U1 → ContT

k

K
(k)
A

(
W2n+1
k , α0

)
0

that is equivariant with respect to the T k actions on the domain and on the codomain thereof.

Recall Dom
Ä
Ξ
(k)
A;N

ä
= Cont

J
(k+1)
A

(W2n+1
k+1 , α0)0 ∩ U2.

Now, we apply the hat operation explained in Section 10 to the function Θ
(k)
A (g) = ug,

and define a map

‘
Θ

(k)
A : ContT

k

J
(k)
A

(
W2n+1
k , α0

)
0
∩ U1 −→ ContT

k+1

J
(k+1)
A

(
W2n+1
k+1 , α0

)
0

by putting

“Θ(k)
A (g) :=

◊�
Θ

(k)
A (g). (12.3)

Then we introduce Rybicki’s axillary rolling-up operators Ψ
(k)
A;N .

Proposition 12.5 (Proposition 8.5 [Ryb2]). Let r ≥ 2 and k = 0, . . . , n. There exists a

neighborhood U3 ⊂ U1 ⊂ Contc(Wm
k , α0)0 and a map Ψ

(k)
A;N such that the map

Ψ
(k)
A;N : ContT

k

J
(k)
A

(Wm
k , α0)0 ∩ U3 → ContT

k

K
(k)
A

(Wm
k , α0)0

satisfies the following:

(1) Ψ
(k)
A;N(id) = id.

(2) For any g ∈ Dom(Ψ
(k)
A;N), we have

[Ψ
(k)
A;N(g) · Ξ

(k)
A;N
“Θ(k)
A (g)] = [g]

in H1(Contc(Wm
k , α0).

Proof. For readers’ convenience, we just recall the definition of Ψ
(k)
A;N leaving the verification

of its properties stated in this proposition to the proof of [Ryb2, Proposition 8.5].
Let g ∈ Cont

J
(k)
A

(Wm
k , α0) ∩ U1. Then we define

Ψ
(k)
A;N(g) := Ξ

(k)
A;N

Ä
Θ

(k)
A (g) · (“Θ(k)

A (g))−1
ä
. (12.4)

�

Finally, we are ready to define Rybicki’s contact rolling-up operator ΨA = ΨA;N . Keep-
ing the definition depends on the integer N in mind, we will sometimes omit N from the
notations of ΞA;N or ΨA;N unless the dependence on A needs to be emphasized.

For the simplicity of notation, we introduce the following notations:

Θ
(k>)
A := Θ

(k)
A ◦ · · · ◦Θ

(0)
A , “Θ(k>)

A := “Θ(k)
A ◦ · · · ◦

“Θ(0)
A (12.5)

Ξ
(<k)
A;N := Ξ

(0)
A;N ◦ · · · ◦ Ξ

(k)
A;N (12.6)

We state the half of [Ryb2, Lemma 8.6] separately, the proof of which we refer readers
thereto.
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Lemma 12.6 (Lemma 8.6 (1) [Ryb2]). Assume A and N are given. Let U3 be a sufficiently
C1-small neighborhood of the identity in Contc(R

2n+1, α0)0. Then for all g ∈ U3î
Ξ
(<n)
A Θ

(n>)
A (g)

ó
= [g]

in H1(Contc(R
2n+1, α0)0.

(Statement of this lemma looks different from that of [Ryb2, Lemma 8.6 (1)] (which is

stated only for a = 2, though) but equivalent if Ξ(<n)(= Ξ
(<n)
A ) therein is replaced by the

current Ξ
(<n)
A;N which should depend on N .)

Proposition 12.7 (Compare with Proposition 8.7 [Ryb2]). Let r ≥ 2. There exists a
sufficiently small C1 neighborhood U4 = Uχ,r,A in Contc(R

2n+1, α0)0 and a mapping, called
the contact rolling-up operator,

ΨA : ContJA
(R2n+1, α0)0 ∩ U4 → ContKA

(R2n+1, α0)0

that satisfies the following:

(1) ΨA is continuous and g(id) = id.
(2) For any g ∈ Dom(ΨA), [ΨA(g)] = [g] in H1(Contc(R

2n+1, α0)0.

Proof. The proof is essentially a duplication of the proof given in the proof of [Ryb2, Propo-
sition 8.7] but we give details of the geometric construction for the self-containedness of the
proof here.

Let g ∈ ContJA
(Rm, α0)0 ∩ U1. Define

ΨA(g) = g0g1 · · · gn (12.7)

where g0 = Ψ
(0)
A (g) and

gk = Ξ(<k−1)Ψ
(k)
A
”ΘA(k−1)

(g), k = 1, . . . , n. (12.8)

Statement (1) is apparent by definition.
Now we inductively evaluate

[ΨA(g)] = [g0g1 · · · gn]

= [g0g1 · · · gn · Ξ
(<n)
A
“Θ(n>)
A (g)]

=
î
g0g1 · · · gn−1

Ä
Ξ
(<n−1)
A Ψ

(n)
A
“Θ(n−1>)
A (g)

ä
·
Ä
Ξ
(<n−1)
A Ξ

(n)
A
“Θ(n)
A
“Θ(n−1>)
A (g)

äó

=
î
g0g1 · · · gn−1 · Ξ

(<n−1)
A

Ä
Ψ

(n)
A

Ä“Θ(n−1>)
A (g)

ä
· Ξ

(n)
A
“Θ(n)
A

Ä“Θ(n−1>)
A (g)

ääó

=
î
g0g1 · · · gn−1 · ·Ξ

(<n−1)
A

“Θ(n−1>)
A (g)

ó

where we apply Lemma 12.6 for the second equality, the definition (12.8) for the third, and
Proposition 12.5 (2) for the fifth equality. By repeating this process inductively downward
from k = n to k = 0, we have derived

[ΨA(g)] =
î
g0 · Ξ

(0)
A
“Θ(0)
A (g)

ó
=
î
Ψ

(0)
A (g) · Ξ

(0)
A
“Θ(0)
A

ó
= [g]

where we apply the definition of g0 and then again Proposition 12.5 (2) for the third equality.
Combining the two, we have finished the proof of Statement (2). �

Part 2. Optimal Cr estimates on contactomorphisms

In this part, we prove all the necessary Cr estimates of the various maps appearing in
the proof of the main theorem.

Before starting the estimates, we first recall the remark made by Mather himself in the
beginning of [Ma1, Section 6] almost verbatim, except the change of the covering projection
R
m → Ci therein by the covering projection R

m →Wm
k : “The projection mapping R

2n+1 →
W2n+1
k with W2n+1

k = S1×T ∗(T k−1×R
n−k+1) gives us a preferred system of coordinates in

a neighborhood of any point of W2n+1
k . The transition mappings between different coordinate
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systems which we obtain in this way are all translations. It follows that the rth derivative
of any Cr mapping of W2n+1

k into itself is defined independently of the choice of preferred

coordinate system. The rth derivative of such a mapping v is a mapping Drv : W2n+1
k →

SLr(R2n+1,R2n+1) of W2n+1
k into the space of symmetric r-linear mappings of R2n+1 into

itself.”
The same kind of practice enables us to work mainly with the Euclidean space R

2n+1 in
all the following estimates.

13. Basic Cr estimates on the spaces Diffrc(R
m); summary

In this section, we collect some function spaces, norm s and basic estimates of them on
the Euclidean spaces or on the cylinders over tori. We start those used by Mather [Ma1] and
Epstein [E2] associated with the general diffeomorphism groups, and then go to the case of
contactomorphisms as used by Rybicki [Ryb2] afterwards in the next section.

Let f : U → R
m be a Cr-function, where U is an open subset of Rn. We define

‖f‖r := sup
x∈U
‖Drf(x)‖.

We also consider maps between open subsets of spaces like Si × R
n−i with 0 ≤ i ≤ n.

If r ≥ 1 and f is a diffeomorphism, we write

Mr(f) = sup{‖f − id ‖, ‖f‖1, . . . , ‖f‖r}.

If f = (f1, . . . , fk) is a k-tuple of Cr-diffeomorphisms, we write Mr(f) = sup1≤i≤kMr(fi).
We recall the formula

D(f ◦ g) = (Df ◦ g) · (Dg)

where the right hand side is a composition of two linear maps, or a matrix multiplication of
n× n matrices. For the higher derivatives, we have

Dr(f ◦ g) = (Drf)(Dg × · · · ×Dg) + (Df ◦ g)(Drg)

+
∑

C(i; j1, . . . , ji)(D
if ◦ g)(Dj1g × · · · ×Djig) (13.1)

where C(i; j1, . . . , ji) is an integer which is independent of f , g and even of dimensions of
their domains and codomains for

1 < i < r, j1 + . . .+ ji = r, js ≥ 1.

We recall that (Dif ◦ g) is a multilinear map of i arguments. This implies that at least one
js ≥ 2. For the simplicity of notation, we write

DJg = (Dj1 × · · · ×Dji)g, J = (j1, . . . , ji).

Then we can write

Dr(f ◦ g) = (Drf)(Dg × · · · ×Dg) + (Df ◦ g)(Drg) +
∑

C(i; J)(Dif ◦ g)(DJg). (13.2)

We see that

M1(f ◦ g) ≤M1(f)(1 +M1(g)) +M1(g) (13.3)

by writing f ◦ g − id = (f − id) ◦ g + (g − id).

Definition 13.1 (Admissible polynomial). A polynomial is called admissible if its coeffi-
cients are non-negative integers, and has no constant or linear terms.

We will denote an admissible polynomial by F(∗)(x1, . . . xℓ) in general where (∗) denotes
the set of parameters into the coefficients of the polynomial, e.g.,

(∗) = {r, k, · · · }

where r is the order of differentiation Dr and k ist the order of composition as f1 ◦ · · · ◦ fk
and etc. The polynomial will vary depending on the circumstances that will appear later
in the various estimates we carry out. We will (locally) enumerate them when we need to
locally introduce several of them at the same time.
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We derive the inequality

‖f ◦ g‖r ≤ ‖f‖r(1 +M∗
1 (g))

r + ‖g‖r(1 +M1(f))
r + F1;r(Mr−1(f),Mr−1(g)) (13.4)

where F1,2 may be taken to be zero.

Proposition 13.2 (Proposition 1.6 [E2]). For each r ≥ 2 and k ≥ 2, there is an admissible
polynomial F2,k,r of one variable with the following property. For f = (f1, . . . , fk) which is
composable, we have

‖f1, ◦ · · · ◦ fk‖r ≤ k‖f‖r(1 +M1(f))
r(k−1) + F2;k,r(Mr−1(f)). (13.5)

Moreover

‖f1 ◦ · · · ◦ fk‖1 ≤ kM1(f)(1 +M1(f))
k−1. (13.6)

The following is a slight variation of [E2, Lemma 1.7] with the replacement ofM1(f) <
1
2

by M1(f) <
1
4 .

Proposition 13.3 (Compare with Lemma 1.7 [E2]). For each r ≥ 2 and k ≥ 2, there
is an admissible polynomial F3,r of one variable with the following property. Let f be a
diffeomorphism of Rn satisfying M1(f) <

1
4 and let r ≥ 2. Then

‖f−1‖r ≤ (1 +M1(f))
2(r+1)‖f‖r + F3;r(Mr−1(f)). (13.7)

Also

‖f−1‖1 ≤M1(f)(1 +M1(f))
2 ≤ 2M1(f). (13.8)

Remark 13.4. In general, if we choose M∗
1 (f) <

1
N , then there exists δ = δ(N) → 1 as

N →∞ such that

‖f−1‖r ≤ (1 +M1(f))
δ(N)(r+1)‖f‖r + F3;r(Mr−1(f)).

Also

‖f−1‖1 ≤M1(f)(1 +M1(f))
2 ≤ δ(N)M1(f).

In particular, by letting N →∞, we can make δ(N) as close to 1 as we want.

14. Cr estimates of contactomorphisms of the products

For notational convenience, we will use the following notations systematically following
those of [Ryb2].

Let E ⊂ R
m be a closed subset. We define

RE := sup
x∈E

dist
Ä
x,Rm \ E

ä
≤ ∞. (14.1)

For any f ∈ Contc(R
2n+1, α0) and r ≥ 0, we put

µ∗
r(f) := max{‖Dr(f − id)‖, ‖Drℓf‖} (14.2)

and

M∗
r (f) = max{µ∗

0(f), µ
∗
1(f), . . . , µ

∗
r(f)}. (14.3)

We consider the contact cylinders Wm
k = T k × R

m−k with m = 2n+ 1, and

E
(k)
A = T k × [−A,A]m−k, k = 1, . . . , n+ 1.

By the remark of Mather [Ma1] recalled in the beginning of this part, we can do the estimates
on R

m which we will focus on.
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14.1. Cr estimates of conformal exponents of the products.

Notation 14.1. For a given multi-index k := (1, . . . , k), we write

g◦k := gk ◦ gk−1 ◦ · · · ◦ g1.

We denote by g the tuple (g1, · · · , gk) and by g;ℓ the sub-tuple of g given by

g;ℓ := (g1, · · · , gℓ), 1 ≤ ℓ ≤ k.

Then we put

‖g‖r :=
k

max
i=1
‖gi‖r

for each given such a tuple, and

ℓg := (ℓg1 , . . . , ℓgk),

‖ℓg‖r :=
k

max
i=1
‖ℓgi‖r.

With these notations set up, we state the following basic Cr estimates on the conformal
exponents of the products.

Lemma 14.2. Let g1, . . . , gm be a set of contactomorphisms associated to the multi-index
I = (1, 2, · · · ,m). Then for r, |I| ≥ 2, we have

M∗
r (g) ≤ r‖ℓg‖r (1 +M∗

1 (g)) + rM∗
r (g) (1 + ‖ℓg‖1)

r

+F1,r(‖ℓg‖r−1, {M
∗
r−1(g;j}j). (14.4)

a multi-variable admissible polynomial F1,r, and

‖ℓg−1‖r ≤ ‖ℓg‖r
(
1 +M∗

1 (g
−1)
)r

+ ‖g−1‖r(1 + ‖ℓg‖1)
r (14.5)

+F2,r

(
‖ℓg‖r−1,Mr−1(g

−1)
)

(14.6)

for a 2 variable admissible polynomial F2,r.

Proof. For (1), we first use (3.7) to write

ℓg◦
k
=

k∑

j=1

ℓgj ◦ g
◦
j .

Then we derive

Dr(ℓg◦m) =
m∑

j=1

Dr(ℓgj ◦ g
◦
j ).

We then apply (13.2) and obtain

Dr(ℓgj ◦ g
◦
j ) ≤ ‖ℓgj‖r

Ä
1 + ‖g◦j ‖1

är
+ ‖g◦j ‖r(1 + ‖ℓgj‖1)

r

+F1,r,j

Ä
‖ℓgj‖r−1,Mr−1(g

◦
j )
ä
.

By summing this over 1 ≤ j ≤ k and using the inequalities ‖ℓg;j‖ ≤ ‖ℓg‖ and

‖g◦j ‖ℓ ≤M
∗
r (g;j),

we get

M∗
r (g) ≤ r‖ℓg‖r (1 +M∗

1 (g)) + rM∗
r (g) (1 + ‖ℓg‖1)

r

+
k∑

j=1

F1,r,j(‖ℓg‖r−1,M
∗
r−1(g;j)).

Setting a multi-variable admissible polynomial

F1,r(a, b1, · · · , bk) :=
k∑

j=1

F1,r,j(a, bj),
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we have proved (14.4) i.e.,

M∗
r (g) ≤ r‖ℓg‖r (1 +M∗

1 (g)) + rM∗
r (g) (1 + ‖ℓg‖1)

r

+F1,r(‖ℓg‖r−1, {M
∗
r−1(g;j}j).

To prove (14.5), we first recall ℓg−1 = −ℓg ◦ g−1. Then we apply (13.2) to obtain

‖ℓg−1‖r ≤ ‖ℓg‖r
(
1 +M∗

1 (g
−1)
)r

+ ‖g−1‖r(1 + ‖ℓg‖1)
r

+F2,r

(
ℓg‖r−1,Mr−1(g

−1)
)

for a two-variable admissible polynomial F2,r,k of degree less than r. Then by substituting
‖g−1‖1 ≤ 2M∗

1 (g) for M1(g) <
1
4 , we have finished the proof. �

14.2. Basic Cr estimates on Contrc(R
2n+1, α0). The following is the list of basic estimates

with respect to the amended norms (14.2) and (14.3)adapted to the case of contactomor-
phisms of those listed in Section 13 for the case of general diffeomorphisms.

Lemma 14.3. Let RE < ∞ and let r ≥ 0 be given. Then there exists a constant C
independent of f depending only on RE such that

µ∗
r(f) ≤ Cµ

∗
r+1(f)

for all f ∈ ContE(R
m, α0).

Proof. Let x ∈ E. Since RE < ∞, there exists x0 ∈ R
m \ E with |x − x0| ≤ RE . By the

fundamental theorem of calculus, we have

Dr(f)(x) −Drf(x0) =

∫ |x−x0|

0

d

ds
(Drf((1− s)x0 + sx) ds

where x0 ∈ R
m \ E and x ∈ E. The lemma immediately follows from the chain rule

d

ds
(Drf((1− s)x0 + sx) =

m∑

i=1

(ξi(x)− ξi(x0))
∂

∂ξi
(Drf)((1− s)x0 + sx)

with the choice of constant C = mRE , since ∂
∂ξi

(Drf)(x0) = 0 for any r ≥ 0 at x0 ∈

R
m supp f . The same estimate also applies to ℓf since ℓf (x0) = 0 outside the support of

f . �

The following is [Ryb2, Lemma 3.6] with a slight variation of some numerics in the
statements.

Proposition 14.4. Let f1, . . . , fk ∈ Contc(R
m, α0) and f = (f1, . . . , fk).

(1) For r = 1, we have

µ∗
1(f1 ◦ · · · ◦ fk) ≤ kµ

∗
1(f) ((1 +M∗

0 (f)(1 +M∗
1 (f)))

k−1
.

(2) For any r, k ≥ 2, there exists a two variable admissible polynomial Fr,k such that

µ∗
r(f1 ◦ · · · ◦ fk) ≤ kµ

∗
r(f)

(
(1 + µ∗

0(f)
k−1(1 + µ∗

1(f))
)r(k−1)

+ Fr,k(M
∗
r−1(f) (14.7)

(3) Suppose µ∗
0(f), µ

∗
1(f) < δ < 1. Then

µ∗
1(f

−1) ≤
µ∗
1(f)

1− δ

(4) Suppose µ∗
0(f), µ

∗
1(f) < δ < 1. Then for any r ≥ 2, there exists an admissible

polynomial Fr such that for any f ∈ Contc(R
m, α0) such that

µ∗
r(f

−1) ≤

Å
1

1− δ

ãr+2 Å
1 +

µ∗
1(f)

1− δ

ãr+1

µ∗
r(f) + Fr

(
M∗
r−1(f)

)
.
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Proof. The proof will be the same as that of [Ryb2, Lemma 3.6], except the fact that we
are using the conformal exponent ℓf = logλf which slightly simplifies the estimates thanks
to the more linear formulae of the exponent of the product, i.e.,

ℓf1◦···◦fk =

k∑

i=1

ℓfi ◦ (fi+1 ◦ · · · ◦ fk).

(Recall that the corresponding formula for the conformal factor λf are multiplicative.) Since
we use ℓg instead of λg in our estimates, we just focus on this difference of the calculation
with the replacement of λf by the conformal exponents ℓf .

We start with the basic inequality

‖Df−1‖ ≤
1

1−M1(f)

provided M1(f) < 1, which follows from the inequality ‖M−1‖ ≤ (1 − ‖ id−M‖)−1 for an
invertible matrix M .

Therefore we have ‖ℓf−1‖ = ‖ℓf‖, and

Dℓf−1 = −
(
Dℓf ◦ f

−1
)
Df−1

which implies

‖Dℓf−1‖ ≤ ‖Dℓf ◦ f
−1‖‖Df−1‖ ≤

‖Dℓf‖

1−M∗
1 (f)

.

Therefore we obtain

µ∗
1(f

−1) = max{‖Df‖, ‖Dℓf‖} ≤ max

ß
‖Df‖,

‖Dℓf‖

1−M∗
1 (f)

™
≤

µ∗
1(f)

1−M∗
1 (f)

.

This proves (1) for the case r = 1. For higher r ≥ 2, we inductively perform the estimates
similarly as the proof of [Ryb2, Lemma 3.6] with the replacement of λf and ℓf .

In particular, if M1(f) < δ, the inequality is reduced to

µ∗
1(f

−1) ≤
µ1(f)

1− δ

and

µ∗
r(f

−1) ≤

Å
1

1− δ

ãr+2 Å
1 +

µ∗
1(f)

1− δ

ãr+1

µ∗
r(f) + Fr

(
M∗
r−1(f)

)
.

�

15. Estimates on derivatives under the Legendrianization

This is the central section of the present paper as well as in [Ryb2]. The materials of
the present section are not involved in Mather’s case of general diffeomorphisms and other
later literature but that relies crucially on some contact geometric aspect related to the
geometry of Legendrianization of contactomorphisms laid out in Section 5 and Section 6.
In this regard, the following equation is the reason why the estimates given in Proposition
15.1 hold:

Φ−1
U ;A ◦∆g(W

m
k ) = j1u(Wm

k ) (15.1)

on W2n+1
k for some real-valued function u = ug on Wm

k .
We start with the estimates involving the map GA defined in (6.13). Since the chart ΦU

is fixed and will not be changed, we will suppress the dependence on ΦU of various constants
appearing below. Essentially all constants depend on this map ΦU .

The following is a comparison result between the Cr-norm of the contactomorphism f and
the Cr+1-norm of its 1-jet potential uf . This is the optimal version of [Ryb2, Proposition
4.6].
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Proposition 15.1 (Compare with Proposition 4.6 [Ryb2]). Let A0 > 2 be a sufficiently

large given constant. For 2 < A ≤ A0, let E ⊂ E
(k)
A be a given subinterval. For any r ≥ 2

there is a C1-neighborhood U1 of the identity in ContE(W
2n+1
k , α0) such that for any g ∈ U1

with M∗
1 (g) <

1
4 , the function u = ug := GA(g) satisfies the following:

(1) There exists constant C1 = C1(r,ΦU ) such that

M∗
r (g) ≤ C1‖ug‖r+1 + C1A(1 + ‖ug‖2)

r +AF2,r(‖hX‖r−1, ‖ug‖r). (15.2)

holds uniformly over 1 < A ≤ A0.
(2) There exists a constant C2 = C2(r,ΦU ) depending only on r and the chart ΦU for

which

‖u‖r+1 ≤ C2M
∗
r (g) +A2Pr(M

∗
r−1(g)) (15.3)

holds uniformly over 1 < A ≤ A0.

Before launching on the proof of this proposition, we need some digression into the con-
sequence of the definition GA(g). Recall the definition ΦU ;A = νA ◦ ΦU ◦ µ

−1
A . We observe

π2 ◦ νA = χA ◦ π2

where π2 : R× R
2n+1 × R

2n+1 → R
2n+1 is the projection to the second factor, and that

µ−1
A ◦ δ(t, x,X) = δµ−1

A (x,X, t) = δ
(
t, χ−1

A (x), χ−1
A (X), t

)

= δ
(
χ−1
A (x), χ−1

A (X), t
)
. (15.4)

We regard a function u :W2n+1
k → R as a periodic function on R

2n+1 which we denote it
by the same letter u = u(x) for x = (z, q, p) in the canonical coordinates of J1

R
n ∼= R

2n+1.
Then

du =
∂u

∂z
dz +

n∑

i=1

∂u

∂qi
dqi +

n∑

i=1

∂u

∂pi
dpi.

We write the coefficient vector of du as

Du = (Dzu,Dqu,Dpu), Dqu = (Dq;1, . . . , Dq;n), Dpu = (Dp;1, . . . , Dp;n)

Then we consider a rescaled Darboux-Weinstein chart ΦU ;A.

15.1. Proof of Statement (1). For the proof of Statement (1) of Proposition 15.1, we
start with (15.1). We can express Γg as

Γg(x) = δΠΦ−1
U ;A(j

1u(y))

for some function u = ug provided g is sufficiently C1 close to the identity map. It follows

from the discussion around (5.15) that (δΠΦ−1
U ;A)

−1 ◦ Γg is a Legendrian submanifold of α0

when g is sufficiently C1-close to the identity.
Then its p and η components become

g(x) = pr2
Ä
δΠΦ−1

U ;A((j
1u)(y))

ä
(15.5)

ℓg(x) = pr3
Ä
δΠΦ−1

U ;A((j
1u(y)))

ä
. (15.6)

We also have

Φ−1
U ;A = µA ◦ Φ

−1
U ◦ ν

−1
A

by the definition (6.8).
In the following calculations, for the simiplicity of notation, we will identify both J1

R
2n+1

and MR2n+1 with R
2(2n+1)+1 and so regard Π as the coordinate swapping self map, H as

another self map on R
2(2n+1)+1 and the G-actions G1 and G2 act all on the same space

R
2(2n+1)+1. Precisely speaking the expression ‘Π + H’ should have been written as

Π + H ◦Π
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Then by substituting (5.14) into (15.5), we derive the formula

g(x) = χApr2(Π + H)(ν−1
A j1u(y))

ℓg(x) = pr1(Π + H)(ν−1
A j1u(y))

from (5.14), where H = (hx, hX , ht). We evaluate

g(x) = χApr2(Π + H)(ν−1
A j1u(y))

= χApr2(Π + H)(ν−1
A (u(y), y,Du(y))

= χAη
−1
A Du(y) + χAhX(ν−1

A (j1u(y)). (15.7)

Similarly, using (15.6),

ℓg(x) = A−2(u(y) + ht(ν
−1
A (j1u(y)). (15.8)

We have

χAη
−1
A (z, q, p) = (Az, q, Ap), ηAχ

−1
A (t, x,X) = (A−1z, q, A−1p).

Combining them with the above formulae, we derive

‖D(χA(hXµ
−1
A j1u)‖ ≤ A‖D(hXη

−1
A j1u)‖,

and taking further derivatives using the formula (13.2), we have obtained

‖DΓg‖r ≤ A‖D(hXj
1u)‖r

≤ A‖Dχ−1
A j1u‖r(1 +M1(hX))r

+A‖hX‖r(1 +M∗
1 (χ

−1
A j1u))r +AF1,r(M

∗
r−1(hX),M∗

r−1(χ
−1
A j1u))

≤ C‖Dj1u‖r(1 +M1(hX))r

+CA‖hX‖r(1 +M∗
1 (j

1u))r +AF1,r(M
∗
r−1(hX),M∗

r−1(j
1u))

for any r ≥ 1. Here the third inequality holds, since ‖Dj1u‖ ≤ CM∗
1 (g), ‖u‖r ≤ C‖u‖r+1,

‖χ−1
A ‖ ≤

1
A ≤ 1 and χA is a linear invertible map.

15.2. Proof of Statement (2). Again we start with (15.7) and (15.8). We rewrite them
into

Du(y) = ηAχ
−1
A g(x)− ηAhX(ν−1

A (j1u(x)) (15.9)

u(y) = A−2
(
ℓg(x) − ht(ν

−1
A (j1u(x)))

)
. (15.10)

We will derive the estimate of ‖u‖r+1 in terms of ‖g‖r inductively over r from these two,
remembering that |x− y| ≤ ‖hx‖.

For ‖u‖0 and ‖Du‖0, we derive

|u(y)| ≤ A−2|ℓg(x)| + |ht(ν
−1
A (j1u(y)))| ≤ A−2(‖ℓg‖+ ‖ht‖)

and

|Du(y)| ≤ ‖ηAχ
−1
A g‖0 + ‖ηAhX‖0 ≤ ‖g‖0 + ‖hX‖0.

Combining the two and using A ≥ 1, we have derived

‖u‖1 ≤ A−2(‖ℓg‖+ ‖ht‖) + ‖g‖0 + ‖hX‖0

≤ M∗
0 (g) + ‖H‖0. (15.11)

For the higher derivatives ‖Dru‖, r ≥ 2, we start from

Γg(x) = δΠΦ−1
U ;A(j

1u(y))).

which is equivalent to

j1u(y) = ΦU ;A(δΠ)
−1Γg(x). (15.12)

In particular, we have

x = pr2δΠΦ
−1
U ;A(j

1u(y)).

We mention that the map

y 7→ pr2δΠΦ
−1
U ;A ◦ (j

1u(y)))
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is invertible as a map to Rg,A = ImageΓg from Wm
k provided g is sufficiently C1-small. By

writing the inverse thereof by ΥA,g, we can write x = ΥA,g(Γg(y)) for the map

x = ΥA,g(Γg(y)) := (pr2δΠΦ
−1
U ;Aj1u)

−1(y) = (pr2 ◦ Γg)
−1(y) = g−1(y). (15.13)

Therefore substituting x = Υ(y) into (15.12), we can express

j1u(y) = ΦU ;A(δΠ)
−1Γg ◦ g

−1(y) = ΦU ;A(δΠ)
−1(g−1(y), y, ℓg ◦ g

−1(y))

= ΦU ;A(δΠ)
−1(g−1(y), y,−ℓg−1(y)).

Recalling ℓg−1 = −ℓg ◦ g−1, we write

ℵA := Φ−1
U ;A(δΠ)

−1, Kg(y) := (g−1(y), y,−ℓg−1(y)) (15.14)

Lemma 15.2. For r ≥ 1, we have

‖j1u‖r ≤ CM
∗
r (g) + Fr,3

(
max{‖ℵA‖r−1,M

∗
r−1(g)}

)
.

Proof. We decompose

j1u(y) = ℵA ◦Kg(y).

By applying (13.4) here with f1 = ℵA, f2 = Kg,, we obtain the formula

‖j1u‖r ≤ (1 + ‖ℵA‖1)M
∗
r (g) + (1 +M∗

1 (g))
r‖ℵA‖r + Fr

(
max{‖ℵA‖r−1,M

∗
r−1(g)}

)

where the terms ‖ℵA‖r measured after the evaluation of Kg. In particular for r ≥ 1, we
have

‖ℵA‖r ≤ C
1

A2
‖Kg‖ ≤

C

A2
M∗

1 (g) ≤
CC′

A2
M∗
r (g)

where the first inequality follows Proposition 6.3 (2). Therefore we can bound

(1 +M∗
1 (g))

r‖ℵA‖r ≤ C
′′

uniformly over 1 ≤ A ≤ A0 and hence

‖j1u‖r ≤ (1 + 2C′′′)‖ℵA‖r + Fr
(
max{‖ℵA‖r−1,M

∗
r−1(g)}

)
.

�

Therefore we obtain

‖u‖r+1 ≤ CM
∗
r (g) +A2Pr(M

∗
r−1(g))

inductively over r ≥ 1, where Pr is a polynomial that has no constant term. This finishes
the proof of the second inequality of Proposition 15.1 if we have made

‖hX‖1, M
∗
1 (g) < δ

for a sufficiently small δ by choosing the Darboux-Weinstein chart ΦU with the neighborhood
of U of ∆Wm

k
sufficiently small, and considering g in a sufficiently small neighborhood of the

identity.

16. Fragmentation of the second kind: Estimates

Our goal of this section is to establish the following derivative estimates.

Proposition 16.1 (Proposition 5.7 [Ryb2]). Let 2A ≥ 2 be an even integer, ρ : [0, 1]→ [0, 1]
be a boundary-flattening function such that ρ ≡ 1 on [0, 14 ] and ρ ≡ 0 on [ 34 , 1], and let

E2A := E
(0)
2A = [−2A, 2A]2n+1

Then there exists a C1-neighborhood Uχ,A of the identity in ContE2A(R
2n+1, α0) such that

for any g ∈ Uχ,A the factorization

g = g1 · · · gam , am = (4A+ 1)m
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given in Proposition 9.2 satisfies the following estimates: Whenever supp g ⊂ E ⊂ E2A with
RE ≤ 2, the inequalities

M∗
r (gK) ≤ CχM

∗
r (g) +APχ,r(M

∗
r−1(g)), (16.1)

M∗
r (gK) ≤ Cχ,rM

∗
r (g) (16.2)

hold for all K = 1, . . . , am and r ≥ 2.

We will prove the estimate inductively over the number 1 ≤ ℓ ≤ n+1 of directions of the
fragmentation.

We start with the case ℓ = 1. In this case, we restate the above proposition as the
following lemma.

Lemma 16.2 (Compare with Proposition 5.6 (2) [Ryb2]). Let 2A > 1 be an even integer,
χ : [0, 1] → [0, 1] be a boundary-flattening function such that χ ≡ 1 on [0, 14 ] and ρ ≡ 0 on

[ 34 , 1], and let

E2A := E
(0)
2A = [−2A, 2A]2n+1

Then there exists a C1-neighborhood Uχ,A of the identity in ContE2A(R
2n+1, α0) such that

for any g ∈ Uχ,A

supp gK ⊂

Åï
k −

3

4
, k +

3

4

ò
× R

2n

ã
∩ E2A

with k ∈ Z, |k| ≤ 2A, there exists a factorization

g = g1 · · · g4A+1, (16.3)

that satisfies the following estimates: Whenever supp g ⊂ E ⊂ E2A with RE ≤ 2, the
inequalities

M∗
r (gK) ≤ CχM

∗
r (g) +APχ,r(M

∗
r−1(g)),

M∗
r (gK) ≤ Cχ,rM

∗
r (g) (16.4)

hold for all K = 1, . . . , 4A+ 1 and r ≥ 2.

Proof. As in the proof of Proposition 9.2, we extend χ to [−1, 1] as an even function and
then to R as a 2-periodic function. For any sufficiently C1-small contactomorphism g with
supp g ⊂ E2A, we consider the function gψ := G

−1
A (ψug) and its factorization

gψ1 := g−2A ◦ g−2(A−1) ◦ · · · ◦ g2(A−1) ◦ g2A,

gψ2 := g(gψ1 )
−1

with supp g2k ⊂ [2k− 3
4 , 2k+

3
4 ]×R

2n and supp g2k+1 ⊂ [2k+ 1
4 , 2k+

7
4 ]×R

2n constructed
in the proof of Proposition 9.2.

Note that supp g2k is contained in the disjoint unionï
2k +

1

4
, 2k +

7

4

ò
× R

2n

Therefore we have

M∗
r (g

ψ) ≤
A∑

k=−A

M∗
r (g2k). (16.5)

On the other hand, we have

M∗
r (g2k) ≤ CM

∗
r (g) +APr( sup

0≤s≤r
‖j1u‖s, ‖H‖r)

and hence have derived

M∗
r (g2k) ≤ Cχ,rM

∗
r (g) +APχ,r

(
M∗
r−1(hX),M∗

r−1(g − id)
)

after rechoosing the polynomial Pχ,r.
�
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Proof of Proposition 16.1. By applying the above construction consecutively to all variables
(q, p, z), we have finished the proof. Whenever supp g ⊂ E ⊂ E2A with RE ≤ 2, the
inequalities

M∗
r (gK) ≤ Cχ,rM

∗
r (g) +APχ,r(M

∗
r−1(g)),

M∗
r (gK) ≤ Cχ,rM

∗
r (g) (16.6)

hold for all K = 1, . . . , 4A + 1 and r ≥ 2, provided we consider g from a sufficiently small
C1 neighborhood of the identity. Analogous decompositions can be obtained with respect to
other variables qi and yi. This finishes the proof. �

17. The threshold determining optimal scaling estimates

We consider the situation of Section 8. For each A > 1, we consider the square

IA = [−2, 2]× [−2, 2]n × [−2A, 2A]n ⊂MR2n+1
∼= R

2(2n+1)+1. (17.1)

The following is the optimal scaling estimates that essentially determines the threshold
r = n+3 for the dichotomy appearing later in the main theorem of the present paper. This
optimal inequality is the contact counterpart of the inequality [Ma1, p.518], [E2, Equation
(5.2)].

Proposition 17.1 (Compare with Proposition 6.1 [Ryb2]). If |ti| ≤ 2A for i = 1, . . . , n
and g ∈ ContIA(R

2n+1, α0)0, we have

M∗
r (ρA,t ◦ g ◦ ρ

−1
A,t) ≤ A

4−2r(2n)r+1M∗
r (g).

Proof. We know

supp(ρA,t ◦ g ◦ ρ
−1
A,t) ⊂ JA

for all g ∈ Contc(R
2n+1, α0) with support in the shifted I1

I1 + (2k − 1)~ei = [−2, 2]n+i × [k − 1, k + 1]× [−2, 2]n−i

for all |k| ≤ 2A− 1 so that −2A < k − 1 < 2(A− 1) and −2(A− 1) < k + 1 < 2A.
We have

ρ−1
A,t(z, q, p) =

Å
z −

∑n
i=1 tiqi
A4

,
q

A2
,
p− t

A3

ã

from (8.7). Then we compute

Dρ−1
A,t(z, q, p) = A−4~ez dz +

n∑

i=1

Å
−
~ezti
A4

+
~ei
A2

ã
dqi +

1

A3

n∑

j=1

~fj dpj

as a vector valued one-form on R
2n+1. Since |t| ≤ 2A and A ≥ 1, we obtain ‖Dρ−1

A,t‖ ≤ A
−2

and

‖DzzρA,t‖ ≤ A
4, ‖DqzρA,t‖ ≤ A

2|t|∞ ≤ 2A2 (17.2)

‖DqiqiρA,t‖ ≤ A
3, ‖DpipiρA,t‖ ≤ A

2. (17.3)

This implies ‖DρA,t‖ ≤ A4. Then we estimate

M∗
r (ρA,t ◦ g ◦ ρ

−1
A,t) ≤ ‖DρA,t‖

rA4‖Drg‖A−2r

≤ A4−2rM∗
r (g).

�
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18. Estimates on the rolling-up and the fragmentation operators

In this section, we establish crucial estimates concerning the rolling-up and the fragmen-

tation operators denoted by Θ
(k)
A and Ξ

(k)
A;N in [Ryb2]. We emphasize that to obtain the

threshold r = n+ 2, the order of power of A being 2 is crucial.
Recall the counterpart (11.1) of Mother’s rolling-up operators for which we made the

choice
qk (x̃) < −2A

2 (18.1)

and choose N > 0 large enough so that

qk
(
(Tkg)

N (x̃)
)
> 2A2 (18.2)

therein.

Proposition 18.1 (Compare with Inequality (2.2)[E2]). Let k = 0, . . . , k. After shrinking

U1 if necessary, Θ
(k)
A satisfies the following estimates: There exists a constant K1 > 0 such

that
M∗
r (Θ

(k)
A (g)) ≤ K1A

2(1 +M∗
1 (g))

rK1A
2

M∗
r (g) + Fr,A(M

∗
r−1(g)), (18.3)

and
M∗

1 (Θ
(k)
A (g)) ≤ K1A

2M∗
1 (g)(1 +M∗

1 (g))
K1A

2

. (18.4)

for any g ∈ Dom(Θ
(k)
A ). Moreover F1,A = 0.

Proof. The proof is similar to that of [E2, Inequality (2.2)]. Similarly as therein, we choose

N = 8A2 + 4. (18.5)

Then by the same argument as in the proof of [E2, Inequality (2.2)], we obtain

M∗
r (Θ

(k)
A (g)) ≤ K1A

2(1 +M∗
1 (g))

rK1A
2

M∗
r (g) + Fr,A(M

∗
r−1(g)),

where Fr,A is an admissible polynomial of one variable. We also have

M∗
1 (Θ

(k)
A (g)) ≤ K1A

2M∗
1 (g)(1 +M∗

1 (g))
K1A

2

.

This finishes the proof. �

The following is a key corollary of the above proposition.

Corollary 18.2. Assume the same hypotheses as in Proposition 18.1. There exists a con-
stant K2 > 0 such that

M∗
r (Θ

(k)
A (g)) ≤ K2rA

2Mr∗r(g) + Fr,A(M
∗
r−1(g)), (18.6)

and
M∗

1 (Θ
(k)
A (g)) ≤ K2A

2M∗
1 (g). (18.7)

for any g ∈ Dom(Θ
(k)
A ).

Proof. The current proof goes along the same line as that of [E2, p.117]. Recall the definition
of exponential function

lim
n→∞

Å
1 +

1

n

ãnx
= ex

and the function n → (1 + 1
n )
nx is an increasing function for any fixed x > 0. Therefore if

we consider g’s whose C1-norm M∗
1 (g) <

1
A2 , then

K1A
2(1 +M∗

1 (g))
rK1A

2

≤ A2K1

Å
1 +

1

A2

ãrK1A
2

≤ A2erK1.

By setting K2 = K1e
rK1, we have finished (18.7).

Substituting this into (18.3), we obtain

M∗
r (Θ

(k)
A (g)) ≤ K2rA

2M∗
r (g) + Fr,A(M

∗
r−1(g)).

This finishes the proof. �
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We next prove the following estimates.

Proposition 18.3 (Compare with Proposition 8.2 [Ryb2]). By shrinking U2 and then U1
sufficiently, there are constants Cχ,A, β and K1 such that

M∗
r

Ä
Ξ
(k)
A;N (g)

ä
≤ Cχ,rM

∗
r (g) +APχ,r(M

∗
r−1(g)). (18.8)

Proof. This is an immediate consequence of (16.5) and (16.4). �

Part 3. Proof of the main theorems

In this section, we give the proofs of the main theorems modulo the derivative estimates
which will be established in Part II.

19. Rybicki’s fundamental homological lemma

In this subsection, we explain a key lemma [Ryb2, Lemma 8.6] (2) that plays a funda-
mental role in Rybicki’s proof of perfectness of the C∞ contactomorphism group, which is
shared by many ingredient used in Mather’s proof in [Ma1]–[Ma4] and [E2].

We have already stated the first half of the statement of [Ryb2, Lemma 8.6] in Lemma
12.6. Now we separate the second half of the statement of [Ryb2, Lemma 8.6] here, which
we need to improve them in two regards to the following statement below.

Remark 19.1. Both the statement of [Ryb2, Lemma 8.6 (2)] and its proof are imprecise
and need to be made precise and then proved. This is because the proof spelled out therein

only provides the detail for the proof of [g2] = [g2
n+2

2 ], and then just simply saying : “Observe
the above procedure may be repeated for any integer a > 2 by making use of ηa and suitable

translations τi,t. As a result there exists ga ∈ Contc(R
n, αst)0 such that ‹Θ(n)(ga) = f∗ and

[ga
n+2

] = [ga]. Moreover by (1) we have [ga] = [g].”
To ensure that the validity of this novel identity hold true, one needs to generalize the

construction of the operator Ξ
(k)
A given in [Ryb2, p.3313] associated to the 2-fragmentation

to arbitrary N -fragmentations as given in Section 11 of the present paper. Probably the
author of [Ryb2] might have had this whole process in his mind. However, this is not even
mentioned explicitly, while this homological identity is one of the crucial ingredients in his
proof. In the present author’s opinion, the details of this should have been provided in more
details.

Because of this, we need to provide its details with some revision and amplification of the
construction of the unfolding-fragmentation operator associated the N -fragmentation with
N > 2 as given in the previous sections. Furthermore we also need to make a finer choice of
various numerical constants appearing in the construction.

Wee recall

W2n+1
n+1

∼= T n+1 × R
n ∼= S1 × T ∗(T n × R),

and more generally

W2n+1
k

∼= S1 × T ∗(T k−1 × R
n−k+1) (19.1)

for k = 0, . . . , n. Let f ∈ U3 and consider the T n+1-equivariant map

f∗ := “Θ(n>)
A (f) :W2n+1

n+1 →W
2n+1
n+1 . (19.2)

Lemma 19.2. The map f∗ satisfies the following:

(1) It has the form

f∗(ξ0, ξ, y) = f∗(z, q, p) = (z + f∗
0 (p), q + f∗

1 (p), p), (ξ0, ξ, y) = (z, q, p) (19.3)

for some function (f∗
0 , f

∗
1 ) : R

n
p → R

n+1
(z,q) = R

z × R
n
q .

(2) We have

[Ξ
(k)
A;a(f

∗)] = [Ξ
(k)
A;a′(f

∗)] (19.4)
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Proof. Since f∗ is T n+1-equivariant, we can write its unique lifting to R
2n+1, still denoted

by f∗ such that f∗− id is Rn+1-equivariant. This implies there exists a map v : Rnp → R
n+1
(z,q)

of the form given by

v(p) := (f∗
0 (p), f

∗
1 (p)) (19.5)

which is a section of the projection R
2n+1 → R

n
p . (See Appendix A for the proof in a similar

context.) This proves Statement (1).
The statement (2) follows from Lemma 12.3 and Proposition 12.1(3). �

We have the following suggestive expression of f∗

f∗ = id+v ◦ π3. (19.6)

Lemma 19.3. We put the map

ga := Ξ
(<n)
A;a (f∗) : R2n+1 → R

2n+1 (19.7)

Then [ga] = [g′a] for all pairs (a, a′) with a, a′ ≥ 2.

Proof. This follows from the definition (19.1) and (19.4). �

This lemma enables us to define the following cohomology class independent of a but
depending only on f (and on A).

Definition 19.4. Let f ∈ Contc(W
2n+1
n , α0)0 be given and f∗ be as in (19.2). We denote

by ω(f) this common class of ga above in H1(Contc(R
2n+1, α0)0).

This class is misleadingly denoted by [g] in [Ryb2, Section 8] without encoding the de-
pendence of the definition of g therein on a even though the definition of g depends on a
and so the independence of the class on a should have been proved in advance, but not even
mentioned.

In this regard, the following is the correct statement of [Ryb2, Lemma 8.6].

Proposition 19.5. For any integer a ≥ 2, there exists an element g′a ∈ Contc(R
2n+1, α0)

such that

[g′a] = ω(f) & [g′a] = [ga
n+2

a ]

in H1(Contc(R
2n+1, α0)0) for all f ∈ Contc(W

2n+1
k , α0) sufficiently C1-close to the identity.

Once we have made the above correct statement to prove, its proof will be a consequence
of the arguments employed in the proof of [Ryb2, Lemma 8.6] by combining the strict

identity Θ
(n>)
A Ξ

(<n)
A;a (ga) = ga and an inductive application of Proposition 12.1 generalized

to the case a > 2,
The entirety of the next two sections will be occupied by the proof of Proposition 19.5.

We divide our discussion into the two cases a = 2 and a > 2 purely for the simplicity and
convenience of presentation since the details of the latter case are not very different from
the former case. However as mentioned before, one needs to specify the dependence on a in

the identity “[g] = [ga
n+2

]” from [Ryb2] which we will do here.
In the next section, the case for a = 2 will be explained in detail, and then in the section

after we consider the general case a > 3 in Proposition 21.1 and indicate how the proof of
the case a = 2 can be adapted to the general case of a ≥ 2.

20. Reformulation of Rybicki’s identity “[g] =
î
g2

n+2
ó
”

In this section, we will provide a reformulation of the aforementioned Rybicki’s identity

“[g] =
î
g2

n+2
ó
” and then give its proof closely following his proof from [Ryb2].

We first introduce the following collection of subsets of R2n+1: where

In;A =

Åï
−
1

2
, 0

ò
∪

ï
1

4
,
3

4

òãn
× [−2A, 2A]n. (20.1)
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For each 1 ≤ ℓ ≤ n+ 1 and δ > 0, we define

Jℓ,δ :=

Åï
−
1

4
− δ,−

1

4
+ δ

ò
∪

ï
1

2
− δ,

1

2
+ δ

òãℓ
× R

n. (20.2)

and

Jℓ,δ;A :=

Åï
−
1

4
− δ,−

1

4
+ δ

ò
∪

ï
1

2
− δ,

1

2
+ δ

òãℓ
× [−2A, 2A]n. (20.3)

We mention that for ℓ = n+ 1, we have

In+1,δ;A ⊂ IA

where we recall IA = [−2, 2]n+1 × [−2A, 2A]n is the reference rectangularpid.
Then, by the definitions of the map Ξ(k) (Definition 11.4) and of g above in (19.7), the

equality
g = id+v ◦ π3 (20.4)

on the union Åï
−
1

2
− ε,−

1

2
+ ε

ò
∪ [1− ε, 1 + ε]

ãn+1

× [−2A, 2A]n

⋃ Åï
−
1

8
+ ε,

1

8
+ ε

ò
∪

ï
3

8
− ε,

5

8
+ ε

òã
× In;A

for some ε > 0 (Lemma 11.6). Furthermore we have

supp g ⊂

Å
[−1, 0] ∪

ï
1

2
,
3

2

òãn+1

× [−2A, 2A]n (20.5)

and Θ(n>)(g) = f∗ by Proposition 12.1 (3). The following is a key lemma toward the proof
of Proposition 19.5, which we call Rybicki’s identity is one of the crucial element in the
proof.

Proposition 20.1 (Equation (8.7) [Ryb2]). Consider the case a = 2 and let g2 = Ξ
(<n)
A;2 (f∗).

Then we have
[g2] =

î
g2

n+2

2

ó

in H1(Contc(R
2n+1, α0)0).

We postpone the proof of this proposition till the next section because its details are
rather tedious. Our proof closely follows but also fixes some ambiguities of the argument
used in the proof of the identity given in [Ryb2, p. 3317- 3318] by clarifying its notations
and much amplifying and optimizing the details of the proof thereof.

As an intermediate step, we will define a contactomorphism denoted by g′2 that we will
show simultaneously satisfies the following two equalities

[g2] = [g′2] & [g′2] = [g2
n+2

2 ]. (20.6)

The definition of g′2 will take n + 1 steps starting from the zero-th step. (Construction of
the final element g′2 is somewhat reminiscent of Mather’s construction performed in [Ma2,
Section 3].)

As the zero-th step, we start with considering the conjugation

h = η−1
2 g2η2 (20.7)

by the front scaling map η2. Then it follows from (20.5) that

supph ⊂

Åï
−
1

2
, 0

ò
∪

ï
1

4
,
3

4

òã
× In;A

where In;A is as in (20.1). We define the map

f∗
1
2
:= id+

1

2
v ◦ π3 (20.8)

where v is the map given in (19.5).
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Lemma 20.2. We have h = f∗
1
2

on

Jn+1,ε/2,A

⋃ÅÅï
−

1

16
.
1

16

ò
∪

ï
3

16
,
5

16

òã
× Jn,ε/2,A

ã
.

Remark 20.3. Lemma 20.5 and Lemma 20.6 are stated in the course of the proof of [Ryb2,
Lemma 8.6] without details of their proofs. This lack of the details makes Rybicki’s proof
thereof rather hard to digest. Largely for the purpose of convincing the current author
himself and for the convenience of the readers, we provide complete details of the proofs
of these sublemmata here partially because we need to generalize the arguments for the
case of a > 2 and also because some of the numerics appearing in the course of the proof
of [Ryb2, Lemma 8.6] are not explicitly given but need to be clearly understood for the
extension to a > 2. The lack of details has prevented the present author from penetrating
the details of the proof and delayed the necessary generalization to the case of a > 2, until
the present author himself rewrites all the details given here. In this sense, the present
subsection is largely a duplication of [Ryb2, Lemma 8.6] with some semantic improvement
of its presentation.

20.1. Step 0 of the construction of g′2: 2-fragmentation. We take a fragmentation

h = h0ĥ0 similarly as in the definition of Ξ
(k)
A;a so that

h0 =

®
h on [− 1

2 , 0]× R
2n

id there off,
ĥ0 =

®
ĥ0 = h on [ 14 ,

3
4 ]× R

2n

id there off
(20.9)

Then we define

h0 = ĥ0τ0, 12h0τ
−1
0, 12

(20.10)

and state a list of some technical properties of the map h0 in the following list of lemmata
that will enter into the proof of Proposition 20.1.

Lemma 20.4. [h0] = [h] in H1(Contc(R
2n+1)).

Proof. We compute

h−1h0 = (h0ĥ0)
−1(ĥ0τ0, 12h0τ

−1
0, 12

)

= ĥ−1
0 h

−1

0 ĥ0τ0, 12h0τ
−1
0, 12

=
î
ĥ−1
0 , h

−1

0

ó î
h
−1

0 , τ0, 12

ó
.

This finishes the proof. �

Lemma 20.5. We have

h0 = f∗
1
2

on

ï
1

4
− ε,

1

4
+ ε

ò
× Jn,ε,A,

and

supph0 ⊂

ï
0,

3

4

ò
× In;A

provided M∗
1 (f) < δ.

Proof. We have supp ĥ0 ⊂
[
1
4 ,

3
4

]
by (21.2) and hence

supp(τ0, 12 h0τ
−1
0, 12

) ⊂

Åï
−
1

4
,
1

4

ò
× R

2n

ã
.

Let

x = (z, q, p) ∈

ï
1

4
− ε,

1

2
+ ε

ò
×

Åï
−
1

4
− ε,−

1

4
+ ε

ò
∪

ï
1

2
− ε,

1

2
+ ε

òãn
× [−2A, 2A]n.

(This rectangularpid is nothing but Jn,ε,A from (20.3) for (ℓ, δ) = (n, ε).) Obviously

τ−1
0, 12

(x) =

Å
z −

1

2
, q, p

ã
, z −

1

2
∈

ï
−
1

4
− ε, ε

ò
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on which ĥ1 = id. Therefore we obtain

h0(z, q, p) = h0τ0, 12

Å
z −

1

2
, q, p

ã
= h0

Å
z −

1

2
, q, p

ã
.

Furthermore h0 = h on
[
− 1

4 − ε, 0
]
by (21.2) and so

h0(z, q, p) = h(z, q, p).

Finally, Lemma 20.2 proves h = f∗
1/2 for z ∈

[
1
4 − ε,

1
2 + ε

]
⊂
[
3
8 ,

5
8

]
, provided δ > 0 is

sufficiently small. �

Lemma 20.6. We have:

(1) h0τ0, 12h0 = f∗
1
2

on [0, 14 ]× R
2n,

(2) h0τ0, 12h0 = η−1
2 (Ξ<n−1)(f∗))η2 on [0, 14 ]× R

2n.

Here Ξ(<n−1)(f∗) ∈ Cont(W2n+1
1 , α0) is viewed as an element of Cont(R2n+1, α0) with

period 1 with respect to z variable.

Proof. By the fragmentation h = h0ĥ0 and the definition of h0, we derive

h0τ0, 12 h0 = h0τ0, 12 hτ0,
1
2
ĥ0τ

−1
0, 12

by inserting the definition into the left hand side. On the other hand, on
[
0, 14

]
× Jn,ε, we

have

z −
1

2
∈

ï
−
1

2
,−

1

4

ò
.

Then (21.2) implies

ĥ0τ
−1
0, 12

(z, q, p) =

Å
z −

1

2
, q, p

ã
.

This in turn implies

τ0, 12 ĥ0τ
−1
0, 12

(z, q, p) = (z, q, p)

and hence

h0τ0, 12h0(z, q, p) = h0τ0, 12h(z, q, p)

= h0τ0, 12 η
−1
2 gη2(z, q, p). (20.11)

Since g = Ξ(<n)(f∗) = f∗ for (z, q, p) ∈
[
3
8 − ε,

5
8 + ε

]
, we compute

η−1
2 gη2(z, q, p) = f∗

1
2
(z, q, p) (20.12)

thereon. From (20.8), we derive

|z
Ä
f∗

1
2
(z, q, p)

ä
− z| ≤

1

2
‖v‖C0 = z + CM∗

1 (f).

Therefore if M∗
1 (f) < δ for asufficiently small δ > 0, we haveï

3

8
− ε,

5

8
+ ε

ò
∩ supph0 = ∅.

This implies

h0
Ä
τ0, 12 (h(z, q, p))

ä
= τ0, 12h

Å
z −

1

2
, q, p

ã

= τ0, 12

Å
z +

1

2
f∗
0 (p), q +

1

2
f∗
1 (p), p

ã

=

Å
z +

1

2
+

1

2
f∗
0 (p), q +

1

2
f∗
1 (p), p

ã
.

For the support property, suppose

(z, q, p) 6∈

ï
0,

3

4

ò
× In;A =

ï
0,

3

4

ò
×

Åï
−
1

2
, 0

ò
∪

ï
1

4
,
3

4

òãn
× [−2A, 2A]n.
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Again a direct evaluation, which we omit the straightforward details, shows h0(z, q, p) =
(z, q, p). This confirms the required support property. Combining the above discussions, we
have finished the proof Statement (1).

For Statement (2), we start with (15.1)

h0τ0, 12h0(z, q, p) = h0τ0, 12 η
−1
2 gη2(z, q, p).

Writing Ξ
(n)
A = Ξ

(n)
A;2 and substituting of g = Ξ

(<n)
A (f∗) = Ξ

(<n−1)
A ◦Ξ

(n)
A (f∗) thereinto makes

the right hand side thereof become

h0τ0, 12h0(z, q, p) = (h0τ0, 12 η
−1
2 ) ◦ Ξ

(<n−1)
A ◦ (Ξ

(n)
A (η2(z, q, p)))

= (h0τ0, 12 η
−1
2 ) ◦ Ξ

(<n−1)
A (η2(z, q, p)))

=
Ä
(h0τ0, 12 η

−1
2 ) ◦ Ξ

(<n−1)
A ◦ η2

ä
(z, q, p)

If z ∈ [0, 14 ], (z, 2q, 2p) 6∈ suppΞ
(n)
A and hence

Ξ
(n)
A (η2(z, q, p))) = η2(z, q, p).

On the other hand, Statement (1) proves h0τ0, 12h0(z, q, p) = f∗
1
2

(z, q, p) when z ∈ [0, 14 ].

Combining the two, we have derived

η−1
2 ◦ Ξ

(<n−1)
A ◦ η2(z, q, p) = (h0τ0, 12 )

−1(f∗
1
2
(z, q, p)).

We compute

(h0τ0, 12 )
−1(f∗

1
2
(z, q, p)) = (τ0, 12 )

−1h
−1

0

Å
z +

1

2
+

1

2
f∗
0 (p), q +

1

2
f∗
1 (p), p

ã
.

Since z + 1
2 + 1

2f
∗
0 (p) ∈ [− 1

2‖f
∗
0 ‖, 1 +

1
2‖f

∗
0 ‖] and h ≡ id on [0, 2] \ [− 1

2 + ε, ε],

h
−1

0

Å
z +

1

2
+

1

2
f∗
0 (p), q +

1

2
f∗
1 (p), p

ã
=

Å
z +

1

2
+

1

2
f∗
0 (p), q +

1

2
f∗
1 (p), p

ã
.

Then we derive

(τ0, 12 )
−1h

−1

0

Å
z +

1

2
+

1

2
f∗
0 (p), q +

1

2
f∗
1 (p), p

ã
=

Å
z +

1

2
f∗
0 (p), q +

1

2
f∗
1 (p), p

ã
= f∗

1
2
(z, q, p)

on [0, 14 ] × R
2n. Combining the last 4 equalities, we have finished the proof of Statement

(2). �

20.2. Downward induction for kℓ with ℓ from n to 0. Now we define

k0 = h0τ0, 12h0τ
−1
0, 12

= h20[h
−1
0 , τ0, 12 ] (20.13)

by considering the variable ξ0. By the similar arguments used in the study of h0 above,
verification of the following list of properties is straightforward,

(1) supp(k0) ⊂ [0, 54 ]× Jn,ε,A,

(2) k0 = h on [ 14 − ε, 1 + ǫ]× Jn,ε,A,

(3) k0τ0,1k0 = f∗
1
2

on [0, 14 ]× Jn,ε,A,

(4) k0τ0,1k0 = η−1
2 Ξ(<n−1)(f∗)η2 on [0, 14 ]× R

2n,

(5) Θ(0)(k0) = f∗
1
2

on S1 × Jn,ε,A,

(6) Θ(0)(k0) = η−1
2 Ξ(<n−1)(f∗)η2 on [0, 14 ]× R

2n on W2n+1
1 ,

(7) [k0] = [h20] = [h2] = [g22].

The last equality of Statement (7) follows from Lemma 20.5.

Next, starting with k0, by replacing h by k0, we define h1, ĥ1, h1 and k1 analogously as
above, but now with respect to the variable ξ1 = q1( mod 1). Then we define

k1 = h1τ1, 12 h1τ
−1
1, 12

= h21[h
−1
1 , τ1, 12 ].

It satisfies
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(1) Θ(1)(k1) = f∗
1
2

on T 2 × Jn,ε,A,

(2) Θ(1>)(k1) = f∗
1
2

on T 2 × Jn−1,ε,A,

(3) Θ(1>)(k1) = η−1
2 Ξ<n−2)(f∗)η2 = f∗

1
2

on W2n+1
2 .

(4) [k1] = [k0]
2 = [h4] = [g42 ].

Continuing this procedure inductively, we obtain a sequence

h2, k2, . . . , hn, kn ∈ Contc(R
2n+1, α0)0

such that it satisfies

(1) Θ(n)(kn) = f∗
1
2

on T n+1 × J1,ε,A,

(2) Θ(n>)(kn) = f∗
1
2

on T n+1 × J0,ε,A,

(3) Θ(n>)(kn) = η−1
2 Ξ(0)(f∗)η2 = f∗

1
2

on W2n+1
n+1 .

(4) [kn] = [kn−1]
2 = [g2

n+1

2 ].

Finally we define

g′2 := τknτ
−1kn (20.14)

for a suitable translation in the direction of (ξ0, ξ) as in Section 11 so that g′2 has its support
that is a disjoint union of connected intervals of the same size. (See the proof of [Ryb2,
Lemma 8.4].) Then we summarize the above discussion into the following.

Lemma 20.7. g′2 satisfies the second equality of (20.6).

This finishes the proof of Proposition 20.1 for the case a = 2.

21. The identity [ga] = [ga
n+2

a ] for a > 2

The above process of defining g′a for a > 2 starting from ga = Ξ
(<n)
A;a (f∗) can be applied

verbatim for any integer a ≥ 3 utilizing the a-fragmentation operator Ξ
(k)
A;a defined in Section

12 with the replacement of N = 2 by N = a.

As the first step, we will again construct an element g′a that satisfies [g′a] = [ga
n+2

a ]. We
will briefly indicate necessary changes to be made from (20.6). Let a > 2 be any given
integer. Our goal is to prove the following.

Proposition 21.1 (Equation (8.7) [Ryb2]). Let a ≥ 2 and consider ga := Ξ
(<n))
A;a (f∗). Then

[ga] =
î
ga

n+2

a

ó

in H1(Contc(R
2n+1, α0)0).

The same kind of proof with the replacement of 2 by an arbitrary integer a ≥ 2 with
some changes in its details can be given to generalize this lemma as follows.

Again we will define a contactomorphism denoted by g′a that satisfies the two equalities

[g′a] = [ga] & [g′a] = [ga
n+2

a ] (21.1)

and the definition of g′a from ga will take n + 1 steps. As the zero-th step, we start with
considering the conjugation

h = η−1
a gaηa

by the front scaling map ηa similarly as in (20.7).
We consider the interval [−a, a] into a pieces of subintervals of length 2 and then scale

them back by the ratio a

Iaj =
1

a
[−a+ 2(j − 1),−a+ 2j] =

ï
−1 +

2(j − 1)

a
,−1 +

2j

a

ò
, j = 1, . . . ,

and take the union of their ‘halves’

(Iaj )
′ =

1

2
Iaj ,
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and the union

(I ′)a :=
a⋃

j=1

(Iaj )
′.

Then we consider the bump function ψk defined on [−a, a] in (11.12) and extend periodically
to whole R.

With these preparations, the process of defining an element g′a ∈ Contc(R
2n+1, α0) sat-

isfying [g′a] = [ga
n+2

a ] for general a > 3 is entirely similar to the case of a = 2. After its
construction, we will also have established

ω(f) = [ga
n+2

a ].

We start with the following

Lemma 21.2. [g′a] = ω(f)

Proof. In the course of the proof of Lemma 19.3, we have established

Θ(n>)(ga) = f∗.

By applying Lemma 12.6 and the definition of g in turn, we obtain

[g′a] = [Ξ
(<n)
A;a (f∗)] = [ga] = ω(f)

where the last equality comes from Lemma 19.3 and the definition of ω(f) ∈ Contc(R
2n+1, α0).

�

Again the definition of g′a will take n + 1 steps starting from the zero-th step. As the
zero-th step, we start with considering the conjugation

h = η−1
a gaηa.

Then the proof of the following lemma is similar to that of Lemma 20.2

Lemma 21.3. We define the map f∗
1
a

by

f∗
1
a

(z, q, p) :=

Å
z +

1

a
f∗
0 (p), q +

1

a
f∗
1 (p), p

ã
.

Then
h(z, q, p) = f∗

1
a

(z, q, p)

on

Jn+1,ε/2,A

⋃ÅÅ
Aa1

2a
(ev) ∪

Å
Aa1

2a
(ev) +

1

2a

ãã
× Jn,ε/2,A

ã

where we define

Aaev :=

a⋃

i=1

Aa1
2a

(c2j
a

)
.

Recall the definition (11.9) for the interval AN1
2N

in general.

21.1. Step 0 of the construction of g′a: a-fragmentation. We take an a-fragmentation

h = h0ĥ0 similarly as in the definition of Ξ
(k)
A;N so that

h0 =

®
h on 1

2I
a × R

2n

id there off,
ĥ1 =

®
ĥ0 = h on

((
Aaev +

1
2a

)
+ 1

2a

)
× R

2n

id there off
(21.2)

where by definition we have

1

2
Ia =

N⋃

i=1

ï
−1 +

2i− 1

a
,−1 +

2i+ 1

a

ò
, Aaev +

1

2a
=

a⋃

j=1

Aa1
2a

Å
c2j
a

+
1

2a

ã

In particular, we can further decompose

h0 = h0,1 · · ·h0,a
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so that their supports are pairwise disjoint. Then we define the counterpart of (20.10) for
the a-fragmentation

h0 = ĥ0

(
τ0, 1

a
h0,1τ

−1
0, 1

a

)(
τ1, 1

a
h0,2τ

−1
1, 1

a

)
· · ·
(
τn, 1

a
h0,nτ

−1
n, 1

a

)
. (21.3)

We and state a list of the counterparts of the properties of the map h0 for the case of
a > 2 in the following list of lemmata that will enter into the proof of Lemma 19.3. We omit
their proofs since they are entirely similar to the case of a = 2 once the correct statements
for a > 2 are made.

Lemma 21.4. We have [h0] = [h].

Lemma 21.5. We have

h0 = f∗
1
a

on
1

4
Ia × Jn,ε,A,

and

supph0 ⊂
3

4
Ia × Jn,ε,A

provided M∗
1 (f) < δ for a sufficiently small.

Lemma 21.6. We have:

(1) h0τ0, 1
a
h0τ0, 2

a
· · · τ0, a−1

a
h0 = f∗

1
a

on 1
4A

a
ev × R

2n,

(2) h0τ0, 1
a
h0τ0, 2

a
· · · τ0, a−1

a
h0 = η−1

a (Ξ<n−1)(f∗))ηa on 1
4A

a
ev × R

2n.

Here Ξ(<n−1)(f∗) ∈ Cont(W2n+1
1 , α0) is viewed as an element of Cont(R2n+1, α0) with

period 1 with respect to z variable.

21.2. Downward induction for a > 2. Now we define

k0 = h0τ0, 1
a
h0τ0, 2

a
· · · τ0, a−1

a
h0

using the variable ξ0. By the similar arguments used in the study of h0 for the case a = 2
above, verification of the following list of properties is straightforward,

(1) supp(k0) ⊂
⋃ [a+1

2 ]

j=−[ a+1
2 ]

Ä
2j
a + 1

a [0,
5
4 ]
ä
× Jn,ε,A,

(2) k0 = h on
⋃[a+1

2 ]

j=−[ a+1
2 ]

Ä
2j
a + 1

a [
1
4 − ε, 1 + ǫ]

ä
× Jn,ε,A,

(3) k0τ0,1k0 = f∗
1
2

on
⋃[a+1

2 ]

j=−[ a+1
2 ]

Ä
2j
a + 1

a [0,
1
4 ]
ä
× Jn,ε,A,

(4) k0τ0,1k0 = η−1
2 Ξ(<n−1)(f∗)η2 on

⋃[ a+1
2 ]

j=−[ a+1
2 ]

Ä
2j
a + 1

a [0,
1
4 ]
ä
× R

2n,

(5) Θ(0)(k0) = f∗
a on S1 × Jn,ε,A,

(6) Θ(0)(k0) = η−1
2 Ξ(<n−1)(f∗)η2 on

⋃[a+1
2 ]

j=−[ a+1
2 ]

Ä
2j
a + 1

a [0,
1
4 ]
ä
× R

2n ⊂ W2n+1
1 ,

(7) [k0] = [ha0 ] = [ha] = [ga2 ].

Now we define

g′2 :=
(
τ0, 1

a
knτ

−1
0, 1

a

)(
τ0, 2

a
hnτ

−1
0, 2

a

)
· · ·
(
τ0, a−1

a
knτ

−1

0, a−1
a

)
kn. (21.4)

Then we summarize the above discussion into the following.

Lemma 21.7. g′a satisfies [g′2] = [ga
n+2

a ].

This finishes the proof of Lemma 21.1 for the general cases a > 2.

21.3. Wrap-up of the proof of ω(f) = e. After the homological identity from Lemma
21.1 is established, we wrap up the proof of Proposition 19.5 utilizing a simple number
theoretic argument as in [Ryb2]. It follows from Lemma 21.1 that

[ga] = [ga
n+2

a ] = [g]a
n+2
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which implies ω(f) = ω(f)a
n+2

. As mentioned before this identity does not make sense as
it is unless we replace g = g2 in his case. The correct identity to show is

ω(f) = ω(f)a
n+2

.

Therefore we have derived that either ω(f) = e, which will finish the proof, or otherwise
ord(ω(f)) = ℓ0 > 1 and ω(f) satisfies

(ω(f))a
n+2−1 = e.

From now on, suppose the latter holds for ℓ0 > 1. Since this holds for every integer a ≥ 2,
we also have

ω(f)a
n+2−bn+2

= e

and hence ℓ0 | an+2−bn+2 for every pair of positive integer (a, b) with a, b ≥ 1. In particular
it also holds for (a, b) = (ℓ0, 1), i.e., ℓ0 divides

ℓn+2
0 − 1n+2 = ℓn+2

0 − 1.

This contradicts to the simple fact ℓ0 is not a divisor of ℓn+2
0 − 1, since we assume ℓ0 > 1.

Therefore we conclude that ω(f) = e which finishes the proof of Proposition 19.5.

Remark 21.8. The way how this homological identity is used in the proof is rather peculiar
which the author feels deserves more scrutiny on its meaning. It seems to the author that
it is a replacement of the more common practice of infinite repetition construction which
is also used by Tsuboi [T3] in his perfectness proof of Contrc(M,α) for the opposite case of
r < n+ 3

2 of the threshold.

22. Wrap-up of the proofs of Theorem 1.4 for r > n+ 2

We are now ready to wrap up the proof of perfectness of Cont∗c(R
2n+1, α0) combining the

arguments used by Mather [Ma1, Ma2, Section 3], [E2] and [Ryb2, Section 9] for all (r, δ)
with r ≥ 1, 0 < δ ≤ 1 for (r, δ) 6= (n+ 1, 12 ). Let f0 ∈ Contc(R

2n+1, α0).
We need to show that f0 belongs to the commutator subgroup thereof. By the fragmen-

tation lemma, Lemma 1.3, we may assume that

supp(f0) ⊂ IA = [−2, 2]× [−2, 2]n × [−2A, 2A]n. (22.1)

Furthermore by a contact conformal rescaling, which does not change its conjugacy class, we
may assume that M∗

r (f0) is as small as we want. Let A > 0 be a sufficiently large positive
integer which is to be fixed later, and let IA, JA and KA be the intervals in R

2n+1 given in
(17.1), (8.8) and (8.9) respectively. Let r ≥ 1 be given and define

Lr(ε, A) := {u ∈ C
r+1
IA

(R2n+1) | ‖Dr+1u‖ ≤ ε} (22.2)

where ε > 0 is a sufficiently small constant which will be fixed in the course of the proof. We
observe that Lr(ε, A) is a convex and compact subset of a locally convex space Cr+1

IA
(R2n+1).

Lemma 22.1. Suppose that r > n+2. Then there exist constants, a sufficient small ǫ0 > 0
and a sufficiently large A > 0, for which there exists a continuous map ϑ : Lr(ε, A) →
Lr(ε, A).

Proof. The proof of this lemma duplicates the 10 steps laid out by Rybicki [Ryb2, Section
9]. (This is the contact replacement of Mather’s strategy [Ma1, Section 3] that was applied
to the case of diffeomorphisms Diffc(M)0).

We may assume

pr1,2(U) ⊃ IA

as mentioned before again after contact conformal rescaling of f0. Then here are the afore-
mentioned Rybicki’s ten steps with some changes of various numerics appearing in the
construction and with the change of the form of the contact scaling from χAηA by χA2 in
Step (5):

(1) For any u ∈ Lr(ε, A), consider f ∈ Contc(R
2n+1, α0) given as f = G

−1
A (u).
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(2) Set g = ff0. Then we have the inequality

M∗
r (g) ≤ C‖u‖r+1 (22.3)

from (15.2).
(3) Use a fragmentation of the second kind for g = ff0 (Proposition 9.2) and obtain a

fragmentation g = g1 ◦ · · · ◦ gan with an = (8A2 + 8), and each gK is supported in
(
[−2, 2]n+1 × [k1 − 1, k1 + 1]× · · · × [k1 − 1, kn + 1]

)
∩ IA

with integers ki such that |ki| ≤ 2A− 1, i = 1, . . . , n.
(4) Use the operation of shifting supports of contactomorphisms described Section 8.

For any K = 1, . . . , an, we define

g̃K := σA,t ◦ gK ◦ σ
−1
A,t

=
Ä
σn,tn

Ä
σn−1,tn−1

(
· · ·
(
σ1,t1gKσ

−1
1,t1

)
· · ·
)
σ−1
n−1,tn−1

ä
σ−1
n,tn

ä

for a suitable t = (t1, · · · , tn) ∈ R
n depending on K in such a way that

supp(g̃K) ⊂ [−A5, A5]× [−2, 2]2n

for all K. Here we take |ti| ≤ 2A− 1, i = 1, · · · , n and A > 5n.
(5) For each K = 1, . . . , an, define the conjugation

hK = (χA2)g̃K(χA2)−1, supp(hK) ⊂ JA.

Then we have
[hK ] = [g̃K ] (22.4)

and the inequality

M∗
r (h̃K) ≤ CA4−2rM∗

r (g) (22.5)

from Proposition 17.1.
(6) Apply the rolling-up operator ΨA described in Proposition 12.5 to define hK =

ΨA(hK). We have supp(hK) ⊂ KA. We have

M∗
r (hK) ≤ CA2M∗

r (hK) (22.6)

from Corollary 18.2 and Proposition 18.3.
(7) Apply a fragmentation of the second kind in KA in the directions i = 1, . . . , n. We

write an = a3n and get the fragmentation of hK ,

hK = hK;1 ◦ · · · ◦ hK;an .

In each step of taking the conjugation by σi,ti for i = 1, · · · , n, the power of A moves
up by 2. Therefore we have

M∗
r (hK) ≤ CA2nM∗

r (h). (22.7)

(8) Apply the operation of shifting supports of contactomorphisms in the qi-directions

by the translations τi, i = 1, . . . , n. For each pair K, i, we define h̃K;i instead of

hK;i with support

supp(h̃K) ⊂ IA.

All the norms of the latter map are the same as those of hK;i.
(9) Take the product and write

h =

an∏

K=1

an∏

i=1

h̃K;i.

Then we have
M∗
r (h) ≤ CA

4−4r+2nM∗
r (g) (22.8)

(10) Take uh := GA(h). Then

‖uh‖r+1 ≤ CM
∗
r (h) (22.9)

from Proposition 15.1 (1).
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Then we define the map
ϑ(u) := uh. (22.10)

Combining the inequalities given in the above 10 steps, we have obtained

‖ϑ(u)‖r+1 ≤ CA
2(n+2−r)‖u‖r+1. (22.11)

Therefore if r > n+ 2, we can choose A > 0 sufficiently large (recalling that we also choose
δ > 0 and the Darboux-Weinstein chart ΦU : U → V sufficiently small), we can make the
inequality

CA2(n+2−r) < 1

holds. This finishes the construction of the map ϑ : Lr(ε, A)→ Lr(ε, A). �

Once this lemma is established, Schauder-Tychonoff theorem implies that any such con-
tinuous map ϑ : Lr(ε, A)→ Lr(ε, A) carries a fixed point. The rest of the proof is the same
as Rybicki’s laid out in [Ryb2, Section 9], especially the first half thereof, except that we
again need to incorporate the fact that the map ϑ itself depends on the integer a ≥ 2. Since
we will fix a in the following paragraph, we just write ga = g.

Let u ∈ Lr(ε, A) be a fixed point of ϑ, i.e., ϑ(u) = u. Denote by f = G
−1
A (u) ∈

U1 ⊂ Contc(W
2n+1
k , α0) and u = uf . By definition of the map ϑ = ϑf0 associated to

f0 ∈ Contrc(R
2n+1, α0) defined by the above 10 steps, we obtain the following sequence of

identities:

[ff0] = [g] = [g1 · · · gan ] = [g1] · · · [gan ] = [g̃1] · · · [g̃an ]

= [h1] · · · [han ] = [h1 · · · [han ]

= [h11] · · · [hanan ] = [h̃11] · · · [h̃anan ]

= [h̃11 · · · h̃anan ] = [h] = [f ].

Here the 5th equality follows from (22.4) and the 8th equality from Proposition 12.7 (3). The
last equality is a consequence of the definition f = G

−1
A (u) for the fixed point u of the map

ϑ by the standing hypothesis ϑ(u) = u. For by definition of ϑ, we also have ϑ(u) = GA(h).
Since GA is a bijective map, this implies h = f . All other equalities are either trivial or
consequences of Lemma 12.4 and Proposition 12.5

Therefore we have proved [f0] = e in H1(Contc(R
2n+1, α0)0). This completes the proof

of Theorem 1.4 for r > n+ 2.

23. Proof of Theorem 1.6 and Theorem 1.7

As for the diffeomorphism case of Mather [Ma1, Ma2], Theorem 1.4 is a consequence
of Theorem 1.6 which involves the function α of modulus of continuity, e.g., the function
α(x) = xβ for the Hölder regularity (k, δ) with 0 < δ ≤ 1. We refer readers to [CKK]
for a detailed study of the set of modulus of continuity which helps the authors thereof
systematically analyse the threshold case r = n+ 1 in [Ma1, Ma2].

23.1. Proof of Theorem 1.6 and Theorem 1.4 for r = n+ 2. Finally, we explain how

we can extend the proof of Theorem 1.4 to the Hölder regularity class Cont(r,δ)c (W2n+1
k , α0)

for all (r, δ) with r = n + 1 and 1
2 < δ ≤ 1. In fact, the proofs of the two theorems do

not make difference, observing that all the estimates performed in Part II can be equally
carried out for the Hölder class (r, δ) without change: The only change needed to make the
following estimate

µr,δ
(
σ1,t1gKσ

−1
1,t1

)
≤ CA2(1−r−2δ)µ∗

r,δ(gK). (23.1)

(See [Ma1, p.518] for the similar change made to handle the case of Diffr,δc (M)0.) Now this
change will make Proposition 12.7 into one such that the map

ΨA : Contr,δJA
(R2n+1, α0)0 ∩ U4 → Contr,δKA

(R2n+1, α0)0

that satisfies the estimate

M∗
r (ΨA(g)) ≤ CKrA

2(1−r−2δ+n)M∗
r (g) + Pχ,r(M

∗
r−1(g))
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which in turn gives rise to the same inequality of the map ε = εf0 . This proves Theorem
1.6 for the case of r = n + 1 and 1

2 < δ ≤ 1. Finally the case for r = n + 2 follows by the
same argument of Mather [Ma1] by noticing the equality

Contn+2
c (R2n+1, α0) =

⋃

0≤δ<1

Cont(n+2,δ)
c (R2n+1, α0).

23.2. Proof of Theorem 1.7. The case r = n+ 1 and 1 ≤ r + δ < n+ 3
2 was previously

proved by Tsuboi in [T3] and in particular for 1 ≤ r ≤ n+1 for integer r. His result follows
from our proof by dualizing the construction similarly as Mather did for the diffeomorphism
case.

Here are the key points of changes to be made in the estimates for this dual construction
from the case of lower threshold are the following:

(1) We just replace A by A−1 in the construction, which in particular reverse the direc-

tion of the map Θ
(k)
A so that we now have the map

Θ
(k)
A : ContJk

A
(W2n+1

k , α0) ∩ U1 → ContKk
A
(W2n+1

k , α0) ∩ U1.

See Diagram 5.8.
(2) As Mather put it in [Ma2, Section 4, p.37], “.... estimate (1) is essentially a special

case of (1) [Ma1, Section 6]. Here suppu ⊂ intDi−1,A, whereas there, we have only
the weaker condition suppu ⊂ Di,A. This explains why we may omit A from the
right hand side of the inequality here: the width of Di−1,A in the ith coordinate is
4, while the width of Di,A is 4A.”, The outcome is that we do not need the A2 in
(22.7) and so the corresponding equality becomes

M∗
r (hK) ≤ CM∗

r (hK).

(3) Recall we have used the contact scaling map χA2 = χ2
A the norm of which is bounded

by A4 while the norm of its inverse is bounded by A−2. This asymmetry is respon-
sible for the appearance of 2δ for the case of lower threshold and δ for the case of
upper threshold below.

(4) We remind the readers that the domain of the map ϑ is

IA = [−2, 2]× [−2, 2]n × [−2A, 2A]n

which plays the role of the reference space that normalizes the conformal factor of
the front projection [−2, 2]× [−2, 2]n throughout the constructions.

The final outcome is that the inequality (22.11) is then transformed by

‖ϑ(u)‖r+1,δ ≤ CA
2(−2−r−n)

on the Cr space, and
‖ϑ(u)‖r+1,δ ≤ CA

2(−2−r−n+2δ)

on Cr,δ space. (See [p. 516]mather for the relevant Hölder estimates.) We need either
r < n+ 1 or r = n+ 1 which precisely gives rise to the bound for δ given by

−1 + 2δ < 0

which shows that the Hölder regularity (n+1, δ) be in the required range stated in Theorem
1.6.

Combining the above all, we have finished the proof of Theorem 1.7.

Appendix A. Proof of Corollary (5.8): equivariant contactomorphisms

In this section, we give the proof of Corollary 5.8 for completeness’ sake. We state the
corollary here.

Corollary A.1. We have the expression

Φ−1
U (t, x,X) = (t+ ht(t,X), x+ hx(t,X), x+ hX(t,X)) ∈ R

2(2n+1)+1 ∼= J1
R

2n+1

such that ht(0, 0) = 0, hx(0, 0) = 0 and hX(0, 0) = 0.
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Proof. Recall that ΦU is (G1,G2)-equivariant, i.e, Φ
−1
U =: ϕ satisfies

ϕ(t, x+ g,X) = (ϕt(t, x,X), g + ϕx(t, x,X), g + ϕX(t, x,X)), ϕ(0, x, 0) = (0, x, x)

where we write ϕ = (ϕr , ϕx, ϕX) componentwise. Then we obtain the following system of
equations 




φt(t, x+ g,X) = φt(t, x,X)

φx(t, x+ g,X) = φx(t, x,X) + g

φx(t, x+ g,X) = φX(t, x,X) + g

for all t, xX and g ∈ R
2n+1. In particular, by plugging x = 0 into the equations, we obtain

φt(t, g,X) = φt(t, 0, X), φx(t, g,X) = φx(t, 0, X) + g φx(t, g,X) = φX(t, ,X) + g.

Since g is arbitrary, we can put g = x and then set

ht(t,X) = ϕt(t, 0, X), hx(t,X) = ϕx(t, 0, X), hX(t,X) = ϕ(t, 0, X).

This, varphi(0, x, 0) = (0, x, x) and

Tϕ|(0,x,0) = id : R⊕ R
2n+1
x ⊕ R

2n+1
X → R⊕ R

2n+1
x ⊕ R

2n+1
X

imply that we can write ϕ in the form of

ϕ(t, x,X) = (t+ ht(t,X), x+ hx(t,X), x+ hX(t,X))

with ht(0, X) = 0, hx(0, X) = 0, hX(0, X) = 0. Here we identity

T(0,x,0)(J
1Wm

k ) ∼= T(0,x,x)(MWm
k
)

by parallel translations on R
2(2n+1)+1. This finishes the proof. �
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