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Abstract: An analytic method to calculate the vortex number on a torus is constructed,

focusing on analytic vortex solutions to the Chern-Simons-Higgs theory, whose governing

equation is the so-called Jackiw-Pi equation. The equation is one of the integrable vortex

equations and is reduced to Liouville’s equation. The requirement of continuity of the Higgs

field strongly restricts the characteristics and the fundamental domain of the vortices. Also

considered are the decompactification limits of the vortices on a torus, in which “flux loss”

phenomena occasionally occur.

ar
X

iv
:2

40
3.

18
26

4v
1 

 [
he

p-
th

] 
 2

7 
M

ar
 2

02
4

mailto:miyamoto.kaoru@st.kitasato-u.ac.jp, nakamula@sci.kitasato-u.ac.jp, nakamula00@gmail.com
mailto:miyamoto.kaoru@st.kitasato-u.ac.jp, nakamula@sci.kitasato-u.ac.jp, nakamula00@gmail.com


Contents

1 Introduction 1

2 The Jackiw-Pi equation 3

2.1 Integrable vortices 3

2.2 Non-relativistic Chern-Simons-matter theory and the Jackiw-Pi equation 6

2.3 Vortex solutions on torus 8

3 Analytic calculation of vortex number on torus 9

3.1 Strategy for analysis 9

3.2 Vortices from elliptic functions: Examples 13

4 Large period limits of vortices 21

4.1 Cylinder limits of the vortex from Jacobi elliptic function 21

4.2 Planar limit 24

5 Conclusion and discussions 25

A Derivation of the formula (3.4) 26

1 Introduction

Vortices are ubiquitous structures in various scales of nature. They typically demonstrate

a topologically non-trivial configuration of fields both in quantum and classical dynam-

ics [1–3]. We define the vortices here as the localised static solutions to a gauge theory

coupled with a matter, or a Higgs field. A characteristic example of the vortices is the

magnetic flux in type-II superconductors, which appeared as the topological solitons in the

Ginzburg-Landau(GL) model, namely, the static energy functional of the 2+1 dimensional

Abelian-Higgs model. Those vortices in GL model emerge as the defects of field configu-

ration with a spontaneous phase transition of the system, in which the ordinary Maxwell

electromagnetism governs the dynamics of the vortices described by an Abelian gauge field.

In 2+1 dimensions or 3 spatial dimensions, another “dynamics” for the gauge fields is pos-

sible: one can incorporate the Chern-Simons three-form, which brings topological degrees

of freedom. The physical significance of the Chern-Simons term stems from the fact the

theory including it serves as an effective theory of the quantum Hall effect [4, 5]. The

vortex solutions may notably exist in the Maxwell-Chern-Simons-matter theories and the

pure Chern-Simons-matter theories [6]. In this paper, we consider the Jackiw-Pi vortex

equation, which governs the non-relativistic Chern-Simons-matter theory in the static case,

and its vortex solutions.
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In ordinary Abelian-Higgs vortices such as in type-II superconductors, the flux of the

gauge field, i.e., the magnetic flux, is concentrated at the zeroes of the Higgs field. However,

another kind of vortices exists for which the magnetic flux is excluded from the Higgs zero,

sometimes referred to as exotic vortices [7]. The Jackiw-Pi vortices belong to the latter

case.

As with the ordinary field theories, the field equations governing the vortices are also

second-order differential equations. However, situations in which they become first-order

equations exist if the coupling constants obey critical relations, i.e., the BPS (Bogomolnyi-

Prasad-Sommerfield) limits. In such cases, the system of first-order BPS equations is

equivalent to the celebrated Liouville equation, a second-order solvable differential equa-

tion. In [8], Manton shows that five distinct cases of such integrable vortex equations exist

according to the curvature of the background surfaces on which the vortex lives. Among the

five equations, the Taubes equation [9], the Ambjørn-Olesen equation [10], and the Bradlow

equation [11] are defined on a hyperbolic surface of constant curvature H2, while the Popov

equation [12, 13] is defined on a sphere S2. The integrable vortex equation on a plane R2 is

the Jackiw-Pi equation [14, 15] considered in the present paper. There exist some geomet-

rical interpretations behind those integrable vortex equations. In [16], the Higgs fields of

the vortices are explained as conformal factors of a metric of the constant curvature surface

with isolated singularities. In [17], it is interpreted that these integrable equations can be

reduced from four-dimensional Yang-Mills theories, and the relation between the vortices

and a flat non-Abelian connection in three-dimensions is shown in [18]. In addition, the

higher-order generalizations in terms of the “vortex polynomials” to those integrable vortex

equations are considered in [19], which includes the equations from Chern-Simons theories.

Although the integrable vortices except for the Popov vortices are defined on non-

compact surfaces, they may also live on compact surfaces of constant curvature, i.e., the

surfaces of genus g ≥ 1. For those vortices, the periodicity of the background surfaces

strongly restricts the solution spaces to the vortex equations. For the cases of g = 1, the

Jackiw-Pi vortices on a torus are considered earlier in [20] and reconsidered in [21], in which

the elliptic functions describe the vortices. For the cases of g = 2, a special solution to

the Taubes equation is constructed with Schwarzian triangular functions [8]. However, a

comprehensive understanding of the vortices on compact surfaces has not been achieved.

For example, a systematic approach to calculating the characteristics of the vortices such

as the vortex number is not established. In this paper, we will show an analytical method

for determining the vortex number on a torus, namely the first Chern number, and aim to

elucidate the vortices on compact surfaces in detail.

Another topic of solitonic objects on compact spaces such as torus is the possibility

of having twisted periodic conditions, which leads to the so-called fractionally charged

solitons, e.g., [22]. Those kinds of objects are one of the key research interests for the

physics of confinement [23–25], however, we do not consider the twisted periodic conditions

here and remain them as a subject of future research.

The study of topological objects such as vortices, skyrmions, etc., is actively performed

and still underway. Although the integrability of such systems is essential, soliton-like phe-

nomena also appear in the systems without integrability, e.g., [26]. These are important
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interdisciplinary studies of physics, mathematics, and other areas of science. In particular,

these solitonic objects on the spaces with periodicity, which may be interpreted as compact

spaces, would provide an important contribution to condensed matter physics as well as

mathematical physics. In this context, the possibility of interpreting water waves as topo-

logical solitons has been proposed in [27]. This direction would open a new window into

the research for topological solitons. It is important to clarify the meaning of integrability

in nature.

This paper is organized as follows. In the next section, we define the model deriving the

Jackiw-Pi equation and give an outline of the integrable vortex equations. In section 3, we

construct a method for the analytic calculation of the vortex number on compact surfaces

and analyse typical cases with specific examples. In section 4, the decompactification limits

of the vortex solutions are considered on a torus. In the final section, we give conclusions

and discussions.

2 The Jackiw-Pi equation

In this section, we inaugurate the Jackiw-Pi vortex equation from some field theoretical

point of view. We firstly introduce the integrable vortex equations on constant curvature

surfaces discussed by Manton [8] and see the Jackiw-Pi equation is one of the five integrable

equations derived from the Abelian Higgs model. As an alternative derivation of the Jackiw-

Pi equation, we also focus on the non-relativistic Chern-Simons-matter theory. We then

give the general solutions to the Jackiw-Pi equation in terms of a meromorphic function

on a flat plane R2 and a torus T 2.

2.1 Integrable vortices

We consider a complex scalar field with a quartic potential coupled with an abelian gauge

field on a two-dimensional surface with critical coupling constants [3]. Let M0 be a surface

with conformal metric ds20 = Ω0(dx
2+ dy2), where the conformal factor Ω0 is a function of

x and y. The static energy functional E of such the Abelian Higgs model on M0 is

E =

∫
M0

{
− 4

Ω2
0

F 2
zz̄ −

2C

Ω0
|Dz̄ϕ|2 +

(
−C0 + C|ϕ|2

)2
}
Ω0dzdz̄, (2.1)

where z = x+ iy, Fzz̄ = ∂zaz̄ − ∂z̄az is the field strength, Dz = ∂z + iaz and Dz̄ = ∂z̄ − iaz̄
are the covariant derivatives with respect to gauge potentials az and az̄, and ϕ is a complex

Higgs field. The real constants C0 and C will be specified later. Applying the Bogomolny

completion to this energy functional, we obtain the following formula,

E =

∫
M0

{(
− 2i

Ω0
Fzz̄ + C0 − C|ϕ|2

)2

− 2C

Ω0
|Dz̄ϕ|2

}
Ω0dzdz̄ − 4πC0N, (2.2)

where

N :=
1

2π

∫
M0

Fxydxdy =
1

2π

∫
M0

Fzz̄dzdz̄ (2.3)
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is the first Chern number taking an integer value. The integer (2.3) is interpreted as the

number of the vortices considering with multiplicity and is a topological invariant because

it is independent of the metric of M0. From this formula, if the following Bogomolny

equations,

Dz̄ϕ = 0, − 2i

Ω0
Fzz̄ = −C0 + C|ϕ|2, (2.4)

are satisfied, we find the energy is bounded below E ≥ −4πC0N if C ≤ 0, thus the field

configurations satisfying (2.4) are stable. However, we will discuss the case of C > 0 below

and in the next section from another point of view. Eliminating Fzz̄ by using the first

equation of (2.4), we obtain the following equation,

∂∂ log |ϕ|2 = Ω0

2

(
C0 − C|ϕ|2

)
, (2.5)

where we have defined ∂ := ∂z and ∂ := ∂z. We refer to the equation (2.5) as the generalised

vortex equation.

We note that the values of the constants C0 and C can be normalised as either −1, 0 or

1 by rescaling the metric and |ϕ|. In ref.[8], Manton argued that there are nine possible ways

to choose C0 and C, but the four cases of them are invalid: The right-hand-side of (2.5)

must be positive since the left-hand side of (2.5) is the magnetic field Fzz̄ whose integral

gives the positive topological number N . Therefore the remaining five cases (C0, C) =

(−1,−1), (−1, 0), (−1, 1), (0, 1), and (1, 1) are acceptable.

There is a geometrical interpretation of the constants C0 and C in the generalized

vortex equations [16]. Let ds2 = |ϕ|2ds20, where ds20 is the metric of M0. The new metric

ds2 obtained by conformally rescaling the original metric ds20 with the squared Higgs field

is referred to as the Baptista metric [16]. Let the Gaussian curvatures of the original metric

K0 and that of the Baptista metric K, respectively. We find

K0 =
−1

2Ω0
∇2 log Ω0, K =

−1

2Ω0|ϕ|2
∇2 log Ω0|ϕ|2, (2.6)

where ∇2 = 4∂∂ is the Euclidean Laplace operator. From (2.6), the relation between the

two curvatures is

∂∂ log |ϕ|2 = Ω0

2

(
K0 −K|ϕ|2

)
. (2.7)

Because ϕ is a solution to the generalized vortex equation (2.5), we obtain the following

relation

C0 −K0 = (C −K)|ϕ|2, (2.8)

by using (2.5).

The relation (2.8) is crucial for the integrability of the generalised vortex equation. Let

us consider the curvature K0 is equal to the constant C0, then K equals C from (2.8). If
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this is the case, as the curvature K = C, the differential equation providing K (the latter

of (2.6)) can be written as

∇2 log Ω = −2CΩ, (2.9)

where Ω = Ω0|ϕ|2. This equation, or the equation with new variable u := (log Ω)/2

∇2u = −Ce2u, (2.10)

is called Liouville’s equation, which is one of typical integrable equations. It is known that

the general solution to Liouville’s equation is

e2u =
4

(1 + Cf(z)g(z̄))2
df

dz

dg

dz̄
, (2.11)

where f and g are arbitrary holomorphic functions of z and z̄ defined on the original surface

M0, respectively. Hereafter, we restrict ourselves that the case g = f̄ , namely,

Ω = e2u =
4

(1 + C|f(z)|2)2

∣∣∣∣dfdz
∣∣∣∣2, (2.12)

for the geometrical interpretation of vortices. Now we consider the case that M0 is a

constant curvature surface, i.e., K0 = C0 is a constant. Then we find the metric of M0

takes the form

ds20 = Ω0dzdz̄ =
4(

1 + C0|z|2
)2dzdz̄. (2.13)

Recalling that |ϕ|2 = Ω/Ω0, we obtain a representation of |ϕ|2 in terms of f ,

|ϕ|2 =

(
1 + C0|z|2

)2

(
1 + C|f |2

)2

∣∣∣∣dfdz
∣∣∣∣2. (2.14)

From (2.14), we find that the squared Higgs field can be considered as the quotient of a

metric of constant curvature surface M with complex coordinates w = f(z) and w = f(z),

ds2 = Ω dwdw =
4(

1 + C|w|2
)2 dwdw, (2.15)

and that of M0. Hence, the zeroes of the Higgs field, where the vortex centres are sitting,

are the indefinite points of the surface M . This means that M is a constant curvature

surface with orbifold-like singularities at the vortex centres.

We introduce the Jackiw-Pi equation as a special case of the generalized vortex equa-

tions (2.5). The Jackiw-Pi equation is the integrable vortex equation defined on a flat

Euclidean plane, i.e., the background curvature K0 = C0 = 0 and the conformal factor
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Ω0 = 4. From Manton’s classification, the case of (C0, C) = (0, 1) is the only possible case.

Then the target surface is S2, and the Jackiw-Pi equation takes the form

∂∂ log |ϕ|2 = −1

2
|ϕ|2. (2.16)

This is also Liouville’s equation. The solution to Liouville’s, or the Jackiw-Pi equation is

therefore,

|ϕ(z, z̄)|2 = 4

(1 + |f |2)2

∣∣∣∣dfdz
∣∣∣∣2, (2.17)

or

ϕ(z, z̄) =
2

1 + |f |2
df

dz
, (2.18)

where f is a meromorphic function on C ≃ R2. The meromorphicity of f is required by

the target surface being S2.

2.2 Non-relativistic Chern-Simons-matter theory and the Jackiw-Pi equation

As we already mentioned, the Jackiw-Pi equation can be derived from another point of

view. In this subsection, we review that the equation is the governing equation to the 2+1

dimensional non-relativistic Chern-Simons-matter theory for its static and (anti-)self-dual

solutions. The vortex solutions to the Jackiw-Pi equation are unstable from the perspective

of the Abelian-Higgs model, since the positiveness of C, as seen above. We can avoid this

instability of the vortices in the Chern-Simons-matter theory.

We introduce the following Lagrangian density,

LJP = iΨ∗D0Ψ− 1

2m

∣∣∣D⃗Ψ
∣∣∣2 + λ

2
|Ψ|4 + κ

2
ϵαβγAαFβγ , (2.19)

where Ψ is a complex scalar field, Dµ = ∂µ−iqAµ is the covariant derivative with an Abelian

gauge field Aµ, D⃗ = (D1, D2), and Fβγ is the field strength. The metric and the complete

anti-symmetric tensor are defined as gµν = diag.(−1, 1, 1) and ϵ012 = 1, respectively. The

Euler-Lagrange equations to this system are

iD0Ψ = − 1

2m
D⃗2Ψ− λ|Ψ|2Ψ (2.20)

Fαβ = −1

κ
ϵαβγJ

γ , (2.21)

where Jγ = (ρ, J⃗ ) with

ρ = |Ψ|2, (2.22)

J⃗ = −i(Ψ∗D⃗Ψ− (D⃗Ψ)∗Ψ)/2. (2.23)

The field equations (2.21) are decomposed as

B := F12 = − q

κ
|Ψ|2, (2.24)

Ei := F0i =
1

κ
ϵijJj , (2.25)
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where ϵij := ϵ0ij and ϵ120 = −ϵ120 = −1 are understood.

Making use of an identity

−→
D2 = 4D±D∓ ±B, (2.26)

where D± = (D1 ∓ iD2)/2, we can rearrange (2.20) into

iD0Ψ = − 1

2m
4D±D∓Ψ−

(
λ∓ 1

2mκ

)
|Ψ|2Ψ. (2.27)

We now consider the static solutions to (2.27) with ∂0Ψ = ∂0Ai = 0, then (2.27) is reduced

to be

− 1

2m
4D±D∓Ψ−

(
λ∓ q

2mκ

)
|Ψ|2Ψ+A0Ψ = 0. (2.28)

Taking a gauge

A0 = ± q

2mκ
|Ψ|2, (2.29)

(2.28) becomes

− 1

2m
D±D∓Ψ−

(
λ∓ q

mκ

)
|Ψ|2Ψ = 0. (2.30)

This can be solved by the following “self-dual” or ”anti-self-dual” ansatz

D∓Ψ = 0, (2.31)

g ∓ q

mκ
= 0, (2.32)

the latter is referred to as the (anti-)self-dual coupling. The defining equation for the scalar

fields (2.31) is first order in its derivatives, so we refer to it as the BPS equation. From the

BPS equation (2.31) with (2.24), we obtain the Jackiw-Pi equation again,

∂∂̄ log |Ψ|2 = −1

2
|Ψ|2, (2.33)

where we have chosen q = 1 and κ = −1. Thus we find that the magnetic flux density is

proportional to the scalar field density

B = F12 = |Ψ|2, (2.34)

from (2.24) in contrast to the ordinary GL theory.

The static energy with these ansatz turns out to be

EJP =

∫ (
1

2m

∣∣∣D⃗Ψ
∣∣∣2 − 1

2

(
g ∓ 1

mκ

)
|Ψ|4

)
dx2 =

∫
|D∓Ψ|2dx2, (2.35)

thus the energy takes minimum value for the (anti-)self-dual solutions. Hence the BPS

vortex solutions to the non-relativistic Chern-Simons matter theory (2.19) can be regarded

as stable configurations.

Hereafter we unify the expression of the scalar field Ψ with ϕ and refer to it as the

Higgs field, and consider the Lagrangian (2.19) governs the dynamics of the system.
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2.3 Vortex solutions on torus

As shown above, the Jackiw-Pi equation is equivalent to Liouville’s equation so that arbi-

trary holomorphic functions give the local solutions. For the solutions to be regular vortices,

we should pay attention to the global behaviour of the field configurations: the finiteness

of the flux, or energy, should be imposed. This requirement certainly gives restrictions for

the holomorphic functions.

Firstly, we consider the vortex solutions defined on a flat plane R2. It has been shown

that the Higgs field ϕ given in (2.17) yields the Jackiw-Pi vortices on R2 if, and only if,

the meromorphic function f takes the form

f(z) =
P (z)

Q(z)
(2.36)

where P (z) and Q(z) are polynomials such that degP < degQ [21, 28]. In this case, the

vortex number N of the solution is proved to be degQ.

Next, we focus on the vortices on a torus T 2. In this case, it is sufficient to impose the

doubly periodicity for the Higgs field to be regular vortices. It is obvious that imposing

the doubly periodicity for the meromorphic functions f leads to that of the Higgs field.

The well-known fact is that the general doubly periodic functions are given in terms of

the Weirestrass elliptic function ℘(z) and its derivative ℘′(z) on a periodic lattice Λ =

2Zω1 +2Zω2, where ω1 and ω2 are independent complex numbers with positive imaginary

part, so-called the half-periods, e.g., [29]. The corresponding doubly periodic meromorphic

functions are

f(z) = R1(℘(z)) + ℘′(z)R2(℘(z)), (2.37)

where R1 and R2 are some rational functions. Although the general form of the mero-

morphic function f(z), or the Higgs field, is given, the characteristic quantities of vortices

such as the vortex number are not obvious from (2.37). As shown in the next section, we

consider the concrete examples for f(z) to analyse the structure of individual vortices in

detail.

We point out here that the Higgs field ϕ(z, z̄) itself would not be an observable quantity

of the theory but it would be the flux density ρ = |ϕ|2. If this is the case the Higgs field itself

is not necessary to be doubly periodic: it only needs quasi-doubly periodicity concerning

the lattice Λ = 2Zω1 + 2Zω2, i.e.,

ϕ(z + 2ωi) = eiθiϕ(z), (i = 1, 2), (2.38)

where θi ∈ R are some phase angles. In this context, Akerblom et.al. [21] found the general

doubly periodic solutions for the flux density ρ. From the gauge theoretical perspective,

the quasi-periodic field configurations are admittable because the fields are periodic up to

gauge transformation in those cases. However, we consider in this paper the Jackiw-Pi

vortices on T 2 constructed from the strict doubly periodic Higgs field ϕ(z, z̄) itself. The

reason is that the continuity of the Higgs field as a complex function is necessary for the

analytic calculation of the vortex number, which takes integer values. On the other hand,
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the quasi-periodic Higgs fields would give rise to the solitonic objects with non-trivial

holonomy. For that kind of vortices, the vortex numbers would be able to take fractional

values just as in the case of fractional instantons [23, 24, 30]. Although these are interesting

solitonic objects, we concentrate here on the trivial holonomy vortices based on the Higgs

fields with strict doubly periodicity.

3 Analytic calculation of vortex number on torus

In this section, we establish the analytic calculation method for the vortex number of the

Jackiw-Pi vortices on a torus. The crux of the method is reconsidering the integral (2.3)

that determines the vortex number: representing it in an expansion of the Higgs field

around its zeroes, i.e., the vortex centres. Then we apply the method to several examples

including the vortices with simple zero and also multiple zero. Here we give the details

of the approach. An outline of the procedure has been reported in [31]1 by the present

authors.

3.1 Strategy for analysis

Let us recall that the vortex number N of the Jackiw-Pi vortices on 2-dimensional space

M is given by the first Chern number,

N =
1

2π

∫
M

Fzz̄dz ∧ dz̄ =
1

4π

∫
M

F. (3.1)

We notice that if M is a closed surface such as a torus, this integral seems to vanish as the

surface has no boundary due to the Stokes theorem:∫
M

F =

∫
M

da =

∫
∂M

a = 0 (3.2)

However, numerical integration suggests that N does not vanish even if M is a torus, and

the value of N takes a certain integer value.

The principal bundle argument has solved this contradiction [21], in which the con-

nection form of the bundle is not defined globally on a compact base space such as that of

Dirac monopoles. In such cases, the transition functions of the bundle carry all of the in-

formation for the field configurations. Thus we can find the vortex number takes an integer

value from the argument. Nevertheless, we face the difficulty: although the vector bundle

argument shows us that N is an integer, it does not give the value concretely. However, as

mentioned above, we can obtain the vortex number explicitly with numerical integration.

We expect that the vortex number on a torus is supposed to be the sum of the multiplicity

of Higgs zeroes, or the winding number, as an analogy to the case of vortices on a flat

plane. The analytical method constructed in this section will provide the vortex number

exactly and prove this expectation.

We begin with reconsidering the background surface, i.e., the torus, on which the

flux is defined. Let ϕ be a solution to the Jackiw-Pi equation possessing m zeroes at

1The contents of this report include inaccuracies.
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z = ηi (i = 1, . . .m). We have to pay attention that the Liouville equation (2.16) or (2.33)

is not defined at the zeroes of ϕ, the vortex centre, due to the logarithmic singularities

of the equation. It suggests that we should define the natural domain of ϕ as the torus

without singular points:

T̃ 2 := T 2\{ηi ∈ T 2|ϕ(ηi, ηi) = 0}, (i = 1, . . .m). (3.3)

The boundaries ∂T̃ 2 of T̃ 2 are infinitesimal circles Cηi (i = 1, . . .m) around zeroes of ϕ.

Then the integral (3.1) turns out to be

1

2π

∫
T̃ 2

Fzz̄dz ∧ dz̄ =
1

4πi

m∑
i=1

∮
Cηi

∂ log |ϕ|2dz − ∂ log |ϕ|2dz̄, (3.4)

through Green’s theorem and it may not vanish, where the integration contours rotate

counterclockwise. The derivation to (3.4) is given in Appendix A.

We now evaluate the contour integral (3.4) around the zeroes of ϕ. We notice from

(2.17) that the zeroes of ϕ may arise from the zeroes of f ′(z) or the poles of |f(z)|2. Firstly,
let us consider the former cases in which the meromorphic function f ′(z) has a simple zero

at, say η. In such cases, f(z) can be expanded into the form of Taylor expansion around η

as

f(z) = c0 + c2(z − η)2 +O
(
(z − η)3

)
, f ′(z) = 2c2(z − η) +O

(
(z − η)2

)
, (3.5)

where cj ’s are complex coefficients. Thus one can expand ϕ around η as

ϕ(z, z̄) = c(z − η) +O(2), (3.6)

where c = 2c2/(1 + |c0|2) and O(2) is the terms of order 2 and higher in z − η, z − η and

their products. Evaluating z-derivative part of the integrand of (3.4) around simple zero

η, we find

∂ log |ϕ|2dz =

(
∂ϕ

ϕ
+

∂ϕ

ϕ

)
dz

≃
(

c+O(1)

c(z − η) +O(2)
+

O(1)

c̄(z − η) +O(2)

)
dz

≃
(

1

z − η
+O(0) +

O(1)

z − η

)
dz. (3.7)

On the small circle around η, we take the parametrisations z = η+ ϵeiθ, z̄ = η̄+ ϵe−iθ, and

dz = iϵeiθdθ, where ϵ ≪ 1. Taking the limit ϵ → 0 with these parametrisations, we observe

∂ log |ϕ|2dz ≃
(
iϵeiθ

ϵeiθ
+O(ϵ) +

O(ϵ2)

ϵe−iθ

)
dθ −−→

ϵ→0
idθ. (3.8)

Similarly, the z̄-derivative part becomes

∂ log |ϕ|2dz̄ =

(
∂ϕ

ϕ
+

∂ ϕ

ϕ

)
dz̄

≃
(

O(1)

c(z − η) +O(2)
+

c+O(1)

c(z − η) +O(2)

)
dz̄

≃
(
O(1)

z − η
+

1

z − η
+O(0)

)
dz̄ −−→

ϵ→0
−idθ, (3.9)
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where dz̄ = −iϵe−iθdθ is applied. Therefore the integrand of the right-hand-side of (3.4)

turns out to be

∂ log |ϕ|2dz − ∂ log |ϕ|2dz̄ −−→
ϵ→0

2idθ, (3.10)

on the small circle around a simple zero η. By integrating it, we obtain a unit vortex

number for each simple zero. Hence, the contribution to the vortex number from the

simple zeroes of ϕ is

N(simple zero) =
1

4πi

∑
ηi

∮
Cηi

2idθ =
1

2π

∑
ηi

∮
Cηi

dθ = (Number of simple zeroes),

(3.11)

where ηi’s are the location of simple zeroes.

We next consider the Higgs zeroes emerging from the zeroes of f ′(z) with order n ≥ 2.

In such cases, the meromorphic function has the expansion around the order n zero

f(z) = c0+cn+1(z−η)n+1+O
(
(z − η)n+2

)
, f ′(z) = (n+1)cn+1(z−η)n+O

(
(z − η)n+1

)
.

(3.12)

Similarly to the simple zero cases, the Higgs field is expanded around η as

ϕ(z, z̄) = c(z − η)n +O(n+ 1), (3.13)

where c is a complex constant composed of the expansion coefficients of f(z) and O(n+1)

is the terms of order n+ 1 and higher in z − η, z − η, and their products as in the simple

zero case. Thus we find

∂ log |ϕ|2dz =

(
∂ϕ

ϕ
+

∂ϕ

ϕ

)
dz

≃
(
nc(z − η)n−1 +O(n)

c(z − η)n +O(n+ 1)
+

O(n)

c̄(z − η)n +O(n+ 1)

)
dz

≃
(

n

z − η
+O(0) +

O(n)

(z − η)n

)
dz −−→

ϵ→0
indθ, (3.14)

and

∂ log |ϕ|2dz̄ =

(
∂ϕ

ϕ
+

∂ ϕ

ϕ

)
dz̄

≃
(

O(n)

c(z − η)n +O(n+ 1)
+

nc(z − η)n−1 +O(n)

c(z − η)n +O(n+ 1)

)
dz̄

≃
(

O(n)

(z − η)n
+

n

(z − η)n
+O(0)

)
dz̄ −−→

ϵ→0
−indθ, (3.15)

where the parametrization around η is similar to the simple zero case. From this expansion,

the contribution to the vortex number from order n zeroes is (3.4)

N(order n zero) =
1

4πi

∑
ηi

∮
Cηi

∂ log |ϕ|2dz − ∂ log |ϕ|2dz̄

−−→
ϵ→0

1

4πi

∑
ηi

∮
Cηi

2indθ = n× (Number of order n zeroes). (3.16)
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Hence the Higgs zero of order n emerged from the n-th zero of f ′ contributes to the vortex

number n from (3.4).

Finally, we consider the Higgs zeroes that emerged from the poles of the meromorphic

function f(z). Assuming that f(z) has an order n pole at z = η with n ≥ 1, the Laurent

expansion of f(z) around η is

f(z) =
c

(z − η)n
+O

(
(z − η)−n+1

)
, (3.17)

then its derivative is

f ′(z) = − nc

(z − η)n+1
+O

(
(z − η)−n

)
, (3.18)

where c is a complex coefficient and O ((z − η)−n) is the terms of order −n and higher in

z − η. Note that the singularities of f(z) are only poles since it is meromorphic. To find

the behaviour of the Higgs zeroes, we observe that

1 + |f(z)|2 = 1 +

(
c

(z − η)n
+ Õ(−n+ 1)

)(
c

(z − η)n
+ Õ(−n+ 1)

)
= 1 +

|c|2

(z − η)n(z − η)n

(
1 + Õ(1)

)
=

|c|2

(z − η)n(z − η)n

(
1 + Õ(1)

)
, (3.19)

where Õ(n) is the terms of order n ∈ Z and higher in z−η, z − η, and their products. Note

that the Õ(n) terms may include negative powers of z−η and z − η such as (z − η)n+m/(z−
η)m in contrast to the former cases. Thus the behaviour of the Higgs field ϕ around η is

ϕ(z, z̄) =
f ′(z)

1 + |f(z)|2
≃

(
− nc

(z − η)n+1
+ Õ(−n)

)
(z − η)n(z − η)n

|c|2
(
1 + Õ(1)

)
=

(
−n(z − η)n

c̄(z − η)
+ Õ(n)

)(
1 + Õ(1)

)
= −n(z − η)n

c̄(z − η)
+ Õ(n), (3.20)

and similarly,

ϕ(z, z̄) = −n(z − η)n

c(z − η)
+ Õ(n). (3.21)

We find from (3.20) that the zeroes of the Higgs field ϕ emerge from the cases n ≥ 2, while

the n = 1 case gives a non-zero point. The contour integral around η for the n = 1 case

does not contribute to the vortex number and the point z = η becomes a saddle point of

ϕ because there remains no radius dependence in its leading order at this point, as we will

see later in some examples. We thus observe that

∂ϕ

ϕ
≃

n(z − η)n

c(z − η)2
+ Õ(n− 1)

−n(z − η)n

c̄(z − η)
+ Õ(n)

= − 1

z − η
+ Õ(0), (3.22)
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and

∂ϕ

ϕ
≃

−n2(z − η)n−1

c(z − η)
+ Õ(n− 1)

−n(z − η)n

c(z − η)
+ Õ(n)

=
n

z − η
+ Õ(0), (3.23)

around η, respectively. The z-derivative part of the contour integral of (3.4) and its z-

derivative counterpart for these cases become∮
Cη

∂ log |ϕ|2dz =

∮
Cη

(
∂ϕ

ϕ
+

∂ϕ

ϕ

)
dz

=

∮
Cη

(
(n− 1)

z − η
+ Õ(0)

)
dz −−→

ϵ→0
2(n− 1)πi, (3.24)

and ∮
Cη

∂ log |ϕ|2dz =

∮
Cη

(
∂ϕ

ϕ
+

∂ϕ

ϕ

)
dz −−→

ϵ→0
−2(n− 1)πi, (3.25)

respectively, where the parametrization z = η+ ϵeiθ, etc., is applied as in the former cases.

Note that the Õ(0) term such as (z − η)dz/(z − η) does not contribute to the contour

integral around η because it has order ϵ. Hence the contour integral is evaluated as in the

previous cases

N(order n pole) =
1

4πi

∑
ηi

∮
Cηi

∂ log |ϕ|2dz − ∂ log |ϕ|2dz̄

−−→
ϵ→0

1

4πi

∑
ηi

∮
Cηi

2i(n− 1)dθ = (n− 1)× (Number of order n poles).

(3.26)

Therefore, we find that the Higgs zero emerged from the order n poles of f contributes to

the vortex number n − 1. We note that the order 1 poles of f do not contribute to the

vortex number since they do not give the zero points of ϕ, namely, not the vortex centres.

To summarize this subsection, we have proposed an analytical method to calculate the

vortex number of the Jackiw-Pi vortex on a torus. In this approach, the defining region of

the flux is regarded as a torus without the singular points corresponding to the centres of

the vortex, namely, the Higgs zeroes. The evaluation of the flux integration is given through

the expansion around each singular point and contour integration. It is shown that there

are two types of Higgs zeroes: One of them arises from the zeroes of the derivative of a

meromorphic function f ′, and the other emerges from the poles of f . The contribution to

the vortex number is n from the order n zeroes of f ′, and n− 1 from the order n poles of

f .

3.2 Vortices from elliptic functions: Examples

Let us examine typical examples of the Jackiw-Pi vortices on a torus. We choose simple

elliptic functions as a meromorphic function f(z) and see the characteristic aspects of the
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Higgs fields for individual vortices. In particular, we perform analytic calculations for

the vortex number developed in the previous subsection and see the consistency with the

numerical integration. It is well known that there are two kinds of fundamental doubly

periodic functions, namely, the Weierstrass ℘ function and the Jacobi elliptic function. We

will find that the characteristic difference appears between the vortices constructed from

these fundamental elliptic functions.

Example 1: Weierstrass ℘ function First of all, let us consider simply the Weierstrass

℘ function ℘(z;ω1, ω2) for the meromorphic function f , then the Higgs field becomes

ϕ℘(z, z̄) =
℘′(z;ω1, ω2)

1 + |℘(z;ω1, ω2)|2
, (3.27)

where ω1, ω2 ∈ C are the half-periods of the lattice 2 Λ = 2Z ω1+2Z ω2, and ℘(z;ω1, ω2) is

doubly periodic with respect to the lattice. The ℘-function enjoys the differential equation

℘′ 2(z) = 4℘3(z)− g2℘(z)− g3, (3.28)

where g2 and g3 are constants and the dependence of the ω1 and ω2 is omitted. The values

of ℘-function at its half-periods are denoted as ej = ℘(ωj), (j = 1, 2, 3) with ω3 := ω1+ω2,

and there exist relations e1e2 + e2e3 + e3e1 = −g2/4, and e1e2e3 = g3/4. It is known that

the ℘ function has a double pole at the origin such as

℘(z) =
1

z2
+O(z0). (3.29)

Hence the Higgs field has a zero with a unit vortex number at the origin from the discussion

of the previous subsection. We find from (3.20) that the phase angle rotates three times

around the origin,

ϕ℘(z, z) ≃ −2z2

z
+ Õ(2)

= −2ϵe−3θi +O(ϵ2), (3.30)

where z = ϵeiθ and z = ϵe−iθ are employed.

On the other hand, the ℘′ has simple zeroes at the half-period points z = ω1, ω2 and

ω3, so that there exist three simple zeroes of the Higgs field at that points. We observe

that the phase angle rotates once around these simple zeroes,

ϕ℘(z, z) ≃ c(z − ωj) +O(2) = cϵeiθ +O(ϵ2), (3.31)

from (3.6), where c = (6e2j − g2/2)/(1 + |ej |2) with j = 1, 2, and 3. Thus we find these

zeroes, namely the vortex centres, contribute to the vortex number 3 from (3.11) so that the

total vortex number of this solution is 4. This is consistent with the numerical integration

for the first Chern number (3.1) performed with Mathematica,

1

2π

∫
Bdxdy =

1

2π

∫
|ϕ℘|2dxdy = 4, (3.32)
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Figure 1: Profiles of ϕ℘ on the fundamental lattice (top), and its enlarged plot with cutoff

(bottom) on its fundamental lattice. The vertical axis is the absolute value of the Higgs

field |ϕ℘| and the colour indicates the phase angle.

where (2.34) is applied.

Figure 1 shows the profile of the Higgs field ϕ℘ with half-periods ω1 = 0.5 + 0.1i and

ω2 = 0.1 + 0.5i. The four zero points exist at 0, ω1, ω2, and ω3 in the fundamental lattice.

The phase angle structure shows the three times rotation around z = 0, while the rotations

are once around the other zeroes at z = ωi, (i = 1, 2, 3), as expected.

The absolute value of the Higgs field indicates that the flux is localised at the twin

peaks on the fundamental lattice. This localisation structure is not the common feature

of ϕ℘ but depends on the choice of half-periods as illustrated in Figure 2. As the region

of the fundamental lattice tends to be rectangular, the twin peaks eventually merge into a

2In some literatures these are defined as the whole-periods.
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“volcano-like” structure surrounding the zero at ω3.

Figure 2: Profiles of ϕ℘ with ω1 = 0.5 + 0.2i, ω2 = 0.2 + 0.5i (upper left), ω1 = 0.5 +

0.05i, ω2 = 0.05 + 0.5i (upper right), ω1 = 0.5 + 0.025i, ω2 = 0.025 + 0.5i (lower left),

ω1 = 0.5+ 0.001i, ω2 = 0.001+ 0.5i (lower right). The vertical scale is not unified, and the

colour scale legend is the same as Figure 1.

Example 2: Jacobi sn function The other fundamental elliptic function is the Jacobi

elliptic function. Now we apply the Jacobi sn function simply as the meromorphic function

f , then the Higgs field takes the form

ϕsn(z, z̄) =
cn(z; k)dn(z; k)

1 + |sn(z; k)|2
, (3.33)

where sn′(z; k) = cn(z; k)dn(z; k) and k is the modulus. The fundamental lattice on which

the sn function defined is Λ = 4K(k)Z+2iK ′(k)Z, where K(k) and K ′(k) := K(k′) are the

complete elliptic integrals of first kind with k′2 = 1 − k2. We take the modulus k ∈ [0, 1)

as usual, for which K(k), K ′(k) > 0 so that the fundamental lattice is rectangular.

This vortex solution has four simple zeroes emerging from the simple zeroes of the

numerator in (3.33), i.e., K and 3K are the zeroes of cn, and 3K + iK ′ and 3K + iK ′ are

those of dn. In contrast to the ℘-function case, the sn-function in the denominator has

only simple poles at iK ′ and 2K + iK ′ so they do not give zero points but saddle points

from (3.20).
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Figure 3: Profiles of ϕsn with modulus k = 1/4 (left), k = 1/2 (right) and k = 3/4 (lower

centre). The domain of these plots is the fundamental lattice spanned by 4K and 2iK ′.

The colour indicates the phase angle as in the previous Figures.

The profiles of ϕsn with various values of k are shown in Figure 3. The four simple

zeroes appear, for which the phase angle rotates once around them as expected from (3.6).

On the other hand, the phase angle rotates twice around the two saddle points, which is

consistent with (3.20) with n = 1, namely, the behaviour is

ϕsn(saddle pts.) ∼ −1

c
e−2θi +O(ϵ). (3.34)

The vortex number of these solutions is also four because all four zeroes are simple, which

agrees with the numerical integration as with the previous example.

We note that if the phase factor of the Higgs field is ignored the fundamental domain of

the solution would be halved in the real axis as shown in Figure 4. This can be understood
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by the periodicity of the Jacobi elliptic functions sn(z + 2K) = −sn(z), cn(z + 2K) =

−cn(z), and dn(z+2K) = dn(z) from (3.33). However, the continuity of the Higgs field as

a function of z and z is lost on this half-domain, on which the phase angle is not periodic at

the boundaries so that the formula for the vortex number (3.4) will be invalid. Therefore,

we require the strict doubly periodicity of the Higgs field itself in our analysis for the

vortices. We will comment on this issue again in the final example.

Figure 4: Profiles of |ϕsn| with modulus k = 1/2. The colour indicates the absolute value

of the Higgs field.

Example 3: Powers of Jacobi sn function For a vortex solution with multiple zeroes,

we consider a solution constructed from the multiple powers of the Jacobi sn function. As

an illustration, we choose sn3(z; k) as the meromorphic function f , the Higgs field takes

the form

ϕsn3(z, z̄) =
3 cn(z; k)dn(z; k)sn2(z; k)

1 + |sn3(z; k)|2
, (3.35)

whose fundamental lattice is the same as in the previous example. There are three types of

Higgs zeroes in this case: the simple zeroes from cnz and dnz and the double zeroes from

sn2z in the numerator, and the triple zeroes from the poles of sn3z in the denominator.

The positions of simple zeroes are K, 3K,K + iK ′ and 3K + iK ′ of which the first two

are from cnz and the others are from dnz. The double zeroes from sn2z are located at 0

and 2K, and the triple zeroes emerging from the poles of sn3z are at iK ′ and 2K + iK ′.

We observe that the vortex number of this solution is 12, namely, the four simple zeroes,

the two double zeroes, and the two triple poles contribute to 4, 4 = 2 · 2, and 4 = 2 · 2,
respectively. This is consistent with the result of numerical integration.
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We remark that the zeroes of the Higgs field can also be identified with rewriting it in

terms of elliptic theta functions as,

ϕsn3(u, ū) =
3k′k

√
k ϑ2

1(u)ϑ2(u)ϑ3(u)|ϑ4(u)|2 arg ϑ−4
4 (u)

|ϑ1(u)|6 + k3|ϑ4(u)|6
(3.36)

where the variable u = z/2K. Note that the absolute values of the elliptic theta functions

do not diverge, we find the zeroes of ϕsn3 only come from the zeroes of the theta func-

tions in the numerator. Let τ = iK ′/K, then the simple zeroes of elliptic theta functions

ϑ1(u), ϑ2(u), ϑ3(u), and ϑ4(u) are located at 0, 1/2, (1 + τ)/2, and τ/2, respectively. To-

gether with the quasi-periodicity of the elliptic theta functions, ϑj(u + 1) = −ϑj(u), (j =

1, 2) and ϑj(u + 1) = ϑj(u), (j = 3, 4), the zeroes of the Higgs field with accurate multi-

plicities are found in the fundamental lattice.

Figure 5: Profile of ϕsn3 of modulus k = 1/2 on the fundamental lattice spanned by 4K

and 2iK ′. The right is the view from the top of the left profile. The colour scale legend is

the same as the previous Figures.

Figure 5 shows the profile of this solution with the phase angle dependence. The simple

zeroes are located at K, 3K,K + iK ′ and 3K + iK ′ with phase angle rotation 2π. The

double zeroes from the numerator at 0 and 2K show the phase angle rotation twice, i.e.,

4π as expected from (3.13) with n = 2, whereas those from the poles of the denominator at

iK ′ and 2K + iK ′ demonstrate the rotation angle 8π as expected from (3.20) with n = 3.

Example 4: Concerning Olesen’s solution In the early 1990s, Olesen constructed

a Jackiw-Pi vortex on a torus with unit vortex number [20] in the context of the Chern-

Simons-Higgs theory discussed in the previous section. The meromorphic function defining

the solution is

f(z) =
℘(z)− e3√

(e3 − e1)(e2 − e3)
. (3.37)
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Although the solution is similar to the first example (3.27), a constant shift and an overall

scaling are assembled for ℘(z). This adjustment makes the periodicity of the flux density

|ϕ(z, z)|2, or |ϕ(z, z)|, a quarter of the fundamental lattice region of the ℘ function, i.e.,

|ϕ(z + ωj , z + ωj)| = |ϕ(z, z)|, (j = 1, 2, 3). For instance, we show a profile of Olesen’s

solution for the square fundamental region ω1 = 1/2, ω2 = i/2 for which e1 = −e2 ≃
6.87519 and e3 = 0 in Figure 6.

Figure 6: Profile of Olesen’s solution of the square fundamental lattice. The left is the

profile of |ϕ(z, z)| and the right is ϕ(z, z) with phase angle dependence. The colour scale

legend is the same as the previous Figures.

We find the quarter periodicity in the absolute value of the Higgs field or the flux

density, and the quarter region having only one zero. Therefore the vortex number of

Olesen’s solution is one from the perspective of the flux density. The general form of the

Jackiw-Pi vortices whose flux density has a periodicity of a quarter of the fundamental

region of the associated elliptic functions is given in [21]. This interpretation is reasonable

because the physically observable quantity is the flux density and the phase angle of the

Higgs field is not significant. However, we find from the right of Figure 6 that the phase

angle of the Higgs field is not periodic in the quarter region, so it is not a continuous

function in this restricted cell. The continuity of the Higgs field itself is critical for the

analytic calculation of the vortex number developed in this paper, so we advocate here the

interpretation that the periodicity of this solution is identical to that of the ℘ function and

the vortex number is 4 since it has four zeroes as of the first example. This interpretation

will be acceptable from the point of view of the Aharonov-Bohm-like effects, in which the

phase angle of the field plays a critical role.
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4 Large period limits of vortices

If we take a fundamental period of the elliptic functions to be infinite, the fundamental

lattice expands in that direction and the torus turns out to be a cylinder. Furthermore,

the fundamental lattice becomes planar if both of the periods are set to be infinite. In

this section, we consider the vortex solutions defined on such large period limits of the

fundamental lattice. We will find characteristic “flux loss” phenomena of vortices in those

limiting cases.

4.1 Cylinder limits of the vortex from Jacobi elliptic function

To consider the cylinder limit, the vortex made from the Jacobi elliptic functions is

favourable because they become elementary functions in the limits.

We reconsider the second example in the last section, i.e., the case of f(z) = sn(z)

with a modulus k. The cylinder limits are obtained by taking the limit k → 0 or 1, for

which sn(z) → sin(z) or tanh(z), respectively. Here we consider the profiles of the Higgs

field in these limits and calculate the vortex number of such cases. Then we confirm that

they are consistent with numerical integration.

Firstly, we consider the trigonometric function limit k → 0. The Higgs field ϕsn then

becomes

ϕsn(z, z) −−−→
k→0

ϕsin(z, z) =
cos z

1 + |sin z|2
, (4.1)

which has simple zeroes at z = (2m+ 1)π/2 with m ∈ Z. The fundamental region of sin z

has an infinite period in the imaginary direction and a period 2π in the real direction, as

shown in Figure 7. As a result, the point at infinity is excluded from the fundamental

region, in other words, the region becomes open and can be thought of as a cylinder.

We parametrise the fundamental region of sin z with z = x + iy as 0 ≤ x ≤ 2π and

−∞ < y < ∞, for which the simple zeroes of cos z are located at z = π/2 and 3π/2.

The numerical integration for the vortex number in this cylinder limit is 4 as in the

case of a general value of k < 1. We now derive this vortex number analytically through

(3.4), in that the integration along boundaries at infinity contributes to the vortex number.

We evaluate the contour integral

Nk→0 =
1

2π

∫
C̃yl

Fzz̄dz ∧ dz̄ =
1

4πi

∫
∂ C̃yl

∂ log |ϕsin|2dz − ∂ log |ϕsin|2dz̄, (4.2)

where C̃yl is the cylinder with the Higgs zeroes removed as in the case of the torus. The

difference from the torus cases is that the boundary ∂C̃yl includes the edges at the infinities

in its imaginary coordinate. Thus, the contour integral in the right-hand-side of (4.2) is

composed of the small circles around the two Higgs zeroes and the two edges at infinities.

Since the two zeroes at z = π/2 and 3π/2 are simple, the integration around these zeroes

contributes to 2 from (3.6), so that it can be expected that the rest comes from the

integration along the edges Ey→±∞ := {z = x + iy | 0 ≤ x ≤ 2π, y → ±∞}. We observe
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Figure 7: Profile of ϕsin with the phase angle dependence. The right figure is the view

from the top of the left figure. The periodicity persists along the real axis, yet vanishes

along the imaginary axis. Hence the fundamental region is an infinitely long strip that

contains two zeroes.

the integrands of (4.2) are

∂ log |ϕsin|2 = −2 cos z̄ sin z

1 + |sin z|2
− tan z, ∂ log |ϕsin|2 = −2 cos z sin z̄

1 + |sin z|2
− tan z̄, (4.3)

and

∂ log |ϕsin|2 −−−−−→
y→+±∞

±i. (4.4)

The limits of ∂ log |ϕk→0|2 are complex conjugates of (4.4). Hence, Nk→0 can be calculated

as follows.

Nk→0 =
1

4πi

{∫
Ey→+∞

(idz − (−i)dz̄) +

∫
Ey→−∞

((−i)dz − (i)dz̄) + (Contribution from zeroes)

}

=
1

4πi

{∫ 2π

0
2idx+

∫ 0

2π
(−2i)dx

}
+ 2 =

1

4πi
{4i× 2π}+ 2 = 4. (4.5)

Here the orientation of the integral at the edges is set to ensure that the circle rotates

counterclockwise around zeroes at infinities, and we should interpret that the Higgs zeroes

sent away to infinity still contribute to the integration. This is consistent with numerical

integration as mentioned above.

We consider next the hyperbolic function limit k → 1, for which sn(z; k) turns into

tanh z. Then the Higgs field becomes

ϕsn(z, z) −−−→
k→1

ϕtanh(z, z) =
sech2(z)

1 + |tanh(z)|2
. (4.6)
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In contrast to the former case, the fundamental region of this function has an infinite period

in the real direction and a period 2π in the imaginary directions, as shown in Figure 8.

Hence the fundamental region is also considered as a cylinder. We take the parametrisation

of the fundamental region z = x+ iy as −∞ < x < ∞ and 0 ≤ y ≤ π.

Figure 8: Profile of ϕtanh. The right figure is the view from the top of the left figure.

The fundamental region is an infinitely long strip that contains no zeroes. Note that these

figures are drawn for double periods in the imaginary axis

The numerical integration for the vortex number in this limit is 2, in contrast to the

trigonometric function case. In the fundamental region, ϕtanh has no zeroes, thus the

contribution to the vortex number of ϕtanh will come from the integration on the edges

of the region. We now give the analytic calculation for this integration similarly to the

former.

The vortex number Nk→1 is also given by (3.4),

Nk→1 =
1

4πi

∫
∂ C̃yl

∂ log |ϕtanh|2dz − ∂ log |ϕtanh|2dz̄ (4.7)

where ∂ C̃yl are only the edges of the cylinder Ex→±∞ := {z = x+iy | x → ±∞, 0 ≤ y ≤ π

in this case. The integrands take the following form

∂ log |ϕtanh|2 = ∂ log |ϕtanh|2 = −2 tanh(z + z̄), (4.8)

thus, at the edges x → ±∞,

−2 tanh(z + z̄) → ∓2. (4.9)

Hence, Nk→1 can be evaluated as,

Nk→1 =
1

4πi

{∫
Ex→∞

(−2)dz − (−2)dz̄ +

∫
Ex→−∞

2dz − 2dz̄

}
=

1

4πi

{
−4

∫ 0

π
idy + 4

∫ π

0
idy

}
=

1

4πi
{4i× 2π} = 2. (4.10)
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We should interpret here that the two of four Higgs zeroes fled away from the integration

in contrast to the former case. This is also consistent with the numerical integration and

illustrates the flux loss phenomena.

4.2 Planar limit

In the examples of the cylinder limit considered so far, the vortex number is not conserved

in the limit k → 1, while it remains in the limit k → 0. We note that a similar flux loss

phenomenon has been reported in [21], where the authors constructed the vortex on a torus

from the elliptic function

f(z) =
℘′(z; t/2, it/2)

℘(z; t/2, it/2)
. (4.11)

Here ℘(z; t/2, it/2) is the Weierstrass ℘ function defined on the fundamental latice Λ =

Z t+ Z it. They have taken the planar limit t → ∞ of the lattice, for which the function

(4.11) tends to −2/z, and shown that the vortex number in this limit equals half of that

of the torus. Although the meromorphic function f ∼ 1/z does not give a Higgs zero

from (3.20) as in the last example, this case also has a vortex number since the integration

contour can be taken around infinity in the planar limit.

Here we illustrate another simple case of a vortex in the planar limit. Let us consider

the first example of the last section f(z) = ℘(z;ω1, ω2), which leads to a vortex of the

vortex number 4 on a torus. If we let both periods be infinite, then the Weierstrass function

becomes a rational function, i.e., f(z) → 1/z2 defined on a plane. On first inspection, this

vortex gives the vortex number 1 because the meromorphic function has only a double pole

at the origin from the point of view of (3.26). However, it is known that the meromorphic

functions 1/zn give radially symmetric vortices of the vortex number 2n [28] so that the

vortex number will be 4 in this case. We can confirm that no flux loss is observed by

evaluating the flux integral as follows. The Higgs field in the planar limit becomes from

(4.11)

ϕ(z, z) = 2
−2/z3

1 + (1/|z|4)
= − 4z2/z

1 + |z|4
, (4.12)

which is rewritten in the polar coordinates

ϕ(z, z) = ϕ(r, θ) = −4re−3iθ

1 + r4
, (4.13)

where z = reiθ and z = re−iθ. The vortex number, or the flux integral, is easily calculated

as

Nplanar =
1

2π

∫
R2

|ϕ|2dxdy =
1

2π

∫ 2π

0
dθ

∫ ∞

0

16r2

(1 + r4)2
rdr = 4, (4.14)

which indicates no flux loss in the planar limit of the vortex. This observation shows that

some relics of the vortex on a torus survive at infinity after taking the planar limit from

the perspective of the plane as a decompactified torus. The scenario would be similar to

the cylinder limit of a torus considered in the last subsection.
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As we have seen in this section, the vortices on a torus occasionally give rise to the

flux loss phenomena at the large period limits. We have confirmed this fact in some cases

through an analytic manner.

5 Conclusion and discussions

In this paper, we have considered the aspects of the Jackiw-Pi vortices on a torus and, in

particular, developed an analytical calculation method to determine the vortex number.

The Jackiw-Pi equation can be derived from the Abelian Higgs model on R2 with critical

coupling constants, which is also one of the integrable vortex equations proposed by [8].

The equation can also be regarded as the “(anti-)self-dual” equation to the Chern-Simons-

Higgs theory in 2+1 dimensions. A meromorphic function characterizes the vortex solution

to the Jackiw-Pi equation, and the first Chern number of the gauge field is interpreted as

the vortex number. If one chooses an elliptic function as the meromorphic function then

the Jackiw-Pi vortex can be thought of as defined on a torus. To determine analytically

the value of the vortex number, we propose a calculation method using the expansion of

the Higgs field around its zeroes. We advocate that the continuity of the Higgs fields is

crucially important for determining the vortex number on a torus. The continuity strongly

restricts the fundamental domain of the vortices, as shown in this paper.

In the case of a vortex on a plane, the vortex number is equivalent to the degree of

mapping, namely the order of zeroes [28], but whether such interpretation applies to the

vortex on a torus has not been clear. In this paper, we have shown that the vortex number

is given as the sum of the degree of zeroes just as in the planar case even on a torus through

the analytical calculation method. It will provide a general procedure for computing the

vortex number on a compact surface.

We have also examined some concrete examples of the vortex on a torus and its cylin-

der or planar limits. Here we discuss the facet of the vortices with the “flux loss” at

such decompactification limits. An elliptic function determines a certain elliptic curve,

i.e., an algebraic curve of third or fourth order. For example, the Weierstrass ℘-function

parametrizes the third order elliptic curve Y 2 − 4X3 + g2X + g3 = 0, where X = ℘(z) and

Y = ℘′(z). In the planar limit of the torus considered in the last section, the ℘-function

degenerates into the rational function 1/z2. This means that the elliptic curve degenerates

into the third-order curve Y 2 −X3 = 0, which is singular at the origin. The situation is

similar to the flux loss case f = ℘′(z)/℘(z), which degenerates into −1/z and the degen-

erate curve is Y 2 −X4 = 0. The difference between them is that the latter is reducible or

factorizable, namely, Y 2 −X4 = (Y −X2)(Y +X2) = 0, while the former is irreducible.

Similarly, the cylinder limits of the vortex from the Jacobi elliptic function cases share this

characteristic. The meromorphic function f(z) = sn(z) parametrizes the fourth order ellip-

tic curve Y 2−(1−X2)(1−k2X2) = 0, where X = sn(z) and Y = sn′(z) = cn(z)dn(z). The

trigonometric function limit k → 0 reduces the curve into a quadratic curve Y 2−1+X2 = 0,

while the hyperbolic function limit k → 1 does into Y 2 − (1 − X2)2 = 0. The latter is

reducible to (Y −1+X2)(Y +1−X2) = 0. From the discussion in the last section, we notice

the trigonometric function limit does not induce the flux loss, while the hyperbolic function
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limit induces it. As can be inferred from these observations of the decompactification lim-

its, a conjecture might be possible that the flux loss phenomena occur if the corresponding

algebraic curve is factorizable into lower-order curves. Whether this conjecture holds or is

rejected, we expect that further study unvails the true mechanism of the flux loss.

Finally, we comment on the solutions with twisted periodic conditions mentioned in

the Introduction. The vortex solutions considered in this paper have strict periodicity so

the vortex numbers are integers. However, there could be the vortices on a torus with

twisted periodicity, which have fractional vortex numbers as in the cases of the fractional

instantons [22, 24, 30]. We consider such fascinating objects a subject of future research.

Acknowledgement

K M was supported by the Sasakawa Scientific Research Grant from The Japan Science

Society. A N was supported in part by JSPS KAKENHI Grant Number JP 23K02794.

A Derivation of the formula (3.4)

In this Appendix, we derive the key formula (3.4) for the analysis developed in this paper.

We rewrite the field strength Fzz̄ in terms of the Higgs field ϕ, satisfying the Jackiw-Pi

equation. Firstly, we solve the gauge field az̄ from Dz̄ϕ = 0,

az̄ = i∂ log ϕ. (A.1)

Similarly, az is given by the complex conjugate of (A.1). Hence Fzz̄ can be expressed as

Fzz̄ = ∂az̄ − ∂az

= ∂
(
i∂ log ϕ

)
− ∂

(
−i∂ log ϕ

)
= i∂∂ log |ϕ|2. (A.2)

The surface integration of the field strength on the punctured torus T̃ 2 where the

Jackiw-Pi vortices are defined then becomes

1

2π

∫
T̃ 2

Fzz̄dz ∧ dz̄ =
1

2π

∫
T̃ 2

i∂∂ log |ϕ|2dz ∧ dz̄

=
1

4π

∫
T̃ 2

(
∂2
x + ∂2

y

)
log |ϕ|2dx ∧ dy

=
1

4π

∫
∂T̃ 2

−∂y log |ϕ|2dx+ ∂x log |ϕ|2dy

=
1

4πi

∫
∂T̃ 2

∂ log |ϕ|2dz − ∂ log |ϕ|2dz̄

=
1

4πi

∑
i

∮
Cηi

∂ log |ϕ|2dz − ∂ log |ϕ|2dz̄, (A.3)

where in the third equality we applied Green’s theorem, e.g., [32]. Here ∂T̃ 2 denotes the

boundaries of T̃ 2, which are infinitesimal circles around the punctures z = ηi. We determine

the orientation of the circle Cηi so that they rotate counterclockwise as shown in Figure

9. We accentuate that the continuity of the Higgs field ϕ is critical and necessary in the

derivation of (A.3) for applying Green’s theorem.
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Figure 9: A sketch of integration on a punctured torus. Opposite edges of the rectangle

are identified: only circles around singular points (×) serve as boundaries.
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