
Non-Hermitian Topology with Generalized Chiral Symmetry

Alex Westström,1, 2 Wenbu Duan,1, 2 and Jian Li1, 2
1Department of Physics, School of Science, Westlake University, Hangzhou 310030, P. R. China

2Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, P. R. China
(Dated: March 28, 2024)

We study a generalization of chiral symmetry applicable to non-Hermitian systems and its topo-
logical consequences on one-dimensional chains. We uncover a rich family of topological phases
hosting several chiral flavors characterized not by a single winding number, but a vector of of them.
This, in turn, leads to a novel type of bulk-boundary correspondence, where – in contrast with con-
ventional chiral chains – some flavors can have topologically stable non-zero charges on both ends.
Moreover, we find that the total charge of each flavor can in some cases exceed the magnitude of
the highest winding number in the vector invariant. Our work extends the topological classification
of the non-Hermitian AIII class along a new axis.

I. INTRODUCTION

The classification and understanding of topological
phases in condensed matter physics have been central to
unraveling the intricate properties of quantum materials.
In recent years, non-Hermitian systems have emerged as
a promising avenue for exploration, where phenomena
not seen in conventional Hermitian systems challenge the
conventional wisdom about topological phases. Perhaps
the most prominent example of this is the non-Hermitian
skin effect and its effect on the concept of bulk-boundary
correspondence (BBC) in topological phases [1–4].

Since the spectra for non-Hermitian Hamiltonians is
with some notable exceptions [5, 6] generally complex,
the notion of a spectral gap needs some revision. One
typically speaks of two types of gaps in non-Hermitian
spectra [7]. The one closest to the Hermitian gap is the
line gap, where the spectrum consists of two parts, with
each part being on either side of a line going across the
complex energy plane. The other type of gap is the point
gap, where the spectrum does not necessarily separate
into distinct parts, but rather can be found to be at least
a minimum distance away from some specific point in the
energy plane. Although the existence of a line gap also
implies the existence of a point gap, the point gap has no
Hermitian analog.

The topological classification of non-Hermitian sys-
tems for both line and point gaps is largely captured in
the topological periodic table of Bernard-LeClair classes
[8–13] valid for Hamiltonians in any spatial dimension
satisfying local symmetries of the form H = ηUO(H)U†,
where η = ±1, U is a unitary matrix acting locally in
space, and O(H) represents the transpose, Hermitian
conjugate, or conjugate of H. The classification has then
mainly been extended by considering non-local U [14, 15].

A hitherto much less explored extension is allowing η
to take on other values on the unit circle than just ±1.
One example of such an extension is a generalized chiral
symmetry as introduced for non-interacting fermions in
[16], where they proved a generalization of Lieb’s theorem
applicable to multipartite systems. This generalized sym-
metry was subsequently used to construct higher-root
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Figure 1: (a) Schematic illustration of a spectrum for
a conventional non-Hermitian AIII system. The chiral
operator C maps the two parts of the spectrum into each
other. (b) Schematic illustration of a system with p-
chiral symmetry. Each sector of the spectrum is mapped
cyclically into the next by the p-chiral operator Cp. In
this particular example, p = 4.

topological insulators [17]. Outside of this, the gener-
alized chiral symmetry is also present in Baxter’s clock
model for parafermions [16, 18, 19], and a more general
version of this symmetry was also shown to allow for the
existence of higher-order topological phases in Hermitian
systems [20, 21].

In the interest of extending the topological classifica-
tion of non-Hermitian systems, we dedicate this work to
studying the topological properties of one-dimensional
chains possessing this generalized chiral symmetry. We
will see how it gives rise to a rich set of topological phases
with a novel BBC. The remainder of the paper is struc-
tured as follows: in Sec. II, we provide a brief introduc-
tion to the generalized chiral symmetry. In Sec. III we
argue for the presence of topological phases and define
the relevant topological invariant. Building on that, we
present the BBC in Sec. IV and discuss how it differs
from conventional chiral systems. Finally, in Sec. V, we
summarize our findings, and discuss some potential fu-
ture research directions.
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II. SYMMETRY PRELIMINARIES

In its standard form, chiral symmetry is expressed
as an anticommutation relation {H,C} = 0 between a
Hamiltonian H and a unitary matrix C with the prop-
erty C2 = 1. The generalized chiral symmetry – from
hereon referred to as p-chiral symmetry (pCS) – modifies
these relations in the following way: the anticommuta-
tion relation is replaced by

CpHC
†
p = ωpH, (1)

where ωp is a complex phase, and the p-chiral operator
satisfies Cp

p = 1, from which it follows that ωp = e
2πi
p . In

this notation, the standard chiral symmetry corresponds
to p = 2.

An immediate consequence of pCS is that the spectrum
will have a rotational symmetry in the complex energy
plane; for any eigenstate ψ with eigenvalue ε, Cpψ will
also be an eigenstate with energy ωpε. In fact, repeatedly
applying Cp on ψ gives us a p-tuple of eigenstates whose
energies are related by different powers of ωp. As such,
pCS for p > 2 can only be present in systems with com-
plex spectra, so that for the remainder of this paper, we
will only concern ourselves with non-Hermitian Hamilto-
nians. However, we do not exclude the conventional case
p = 2 as it will very much be encompassed by the ensuing
discussion. For a schematic picture of typical spectra, see
Fig. 1.

Since our focus will be on gapped topological phases
(with respect to zero energy), we will assume Cp is of the
form

Cp = diag
[
1, ωp, . . . , ω

p−1
p

]
⊗ IN×N , (2)

where N is the number of additional degrees of freedom.
Any other choice of sizes for the different chiral sectors
would lead to zero-energy bands as per Lieb’s theorem
[16].

Any Hamiltonian possessing pCS must in this diagonal
basis for the Cp operator be of the form

H =


0 0 · · · 0 a1,p

a2,1 0 · · · · · · 0

0 a3,2
. . .

...
...

. . . . . . . . .
...

0 · · · 0 ap,p−1 0

 , (3)

where each aj+1,j is a N -by-N matrix. Similarly to the
standard chiral symmetry, this form allows us to make a
sublattice interpretation, but instead of having only two
sublattices, we now have p sublattices, that are connected
in a cyclic way.

The spectrum for the Hamiltonian in Eq. (3) can be
solved from the characteristic equation

det (εp − ap,p−1 · · ·a2,1a1,p) = 0, (4)

where we explicitly see the aforementioned rotational
symmetry manifest: if ε is a solution to the character-
istic equation, then ωn

p ε for any integer n will also satisfy
it. The above expression also makes it evident that all
individual aj+1,j need to have a gapped spectrum for the
system to be gapped.

III. WINDING AND TOPOLOGY

The topological nature of zero-energy edge modes in
systems with conventional chiral symmetry can be un-
derstood through the following argument: suppose we
have a one-dimensional semi-infinite chain with a single
zero-energy boundary mode energetically isolated from
the bulk modes, chiral symmetry maps states with en-
ergy ε to states with energy −ε locally, thus the single
zero-energy boundary state must be an eigenstate of the
chiral operator. In other words, it has an associated chi-
ral charge; conversely, finite-energy states are superposi-
tions of both chiralities. Because of this, we are unable
to remove the boundary mode from zero energy with-
out breaking the chiral symmetry or closing the gap. In
fact, we can have an arbitrary amount of zero modes at
the boundary which can not be removed if they all carry
the same chiral charge. However, if we have boundary
modes of opposite chiral charge, we can combine them
and remove them from zero energy without breaking the
symmetry.

In a similar vein, if we have a zero-energy state in a pCS
system, it will also have an associated chiral charge, and
it can also not be removed without either breaking the
symmetry, closing the gap, or using zero-energy states of
complementary chiral charges. In fact, this already al-
lows us to deduce the first novel feature of pCS topology:
to gap out a zero mode without breaking symmetry re-
quires the introduction of the p − 1 other chiral charges
by coming into contact with either other zero modes or
bulk states. This implies that there will not necessar-
ily be an equal number of states at each end of a finite
chain. However, the total charge at each end must equal
in magnitude but differ in sign. We will elaborate more
on the BBC further down.

Before that, we must first discuss winding numbers.
Unlike Hermitian physics, the spectrum for a non-
Hermitian system with open boundary conditions (OBC)
can be vastly different from that of the corresponding one
with periodic boundary conditions (PBC). As it pertains
to the setups studied in this article, one can define a
spectral winding number (or vorticity) [9, 12]

Wε(bk) =
1

2πi

ˆ π

−π

Tr
[
(bk − ε)

−1 ∂bk

∂k

]
dk (5)

for a continuous and periodic matrix function bk : S1 →
GL(C, n), where S1 is the circle and GL(C, n) is the set of
complex-valued n×n matrices. This winding number can
be calculated for any point ε in the complex energy plane
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Figure 2: (a) An example of the spectrum for a pCS system with p = 3 (3-CS) in the trivial phase. The blue lines
are the periodic-boundary spectrum, the black points are the open-boundary energies. The open-boundary spectrum
is calculated for a system with 100 sites. The energies have been rescaled such that the largest energy modulus is
set to one. (b) Same as (a) except for a non-trivial phase, where W = (1, 2,−3). The zero-energy eigenvalue of the
open-boundary spectrum is colored in red. (c) Similar to (a) and (b) except for a system with non-zero total winding
W = (1, 1,−3). We see that we now have modes within the region where the zero-modes are located.

provided it does not coincide with the eigenvalue of bk

for some k. The winding number tells us how many times
the spectrum winds around said point as we go around
the Brillouin zone (BZ). This value is of great relevance,
since if it is non-zero, there will be skin modes present at
that energy [22–24] in a semi-infinite chain [25].

To ensure that our non-Hermitian system remains
gapped even when taking skin modes into account, it
is then imperative that we restrict ourselves to systems
where the winding number around ε = 0 is zero. As
shown in App. A, the winding number for a Hamiltonian
of the form Eq. (3), is given by the sum of the individual
winding numbers of each aj+1,j(k) (here j + 1 needs to
be taken modulo p). However, a topologically non-trivial
phase still requires at least some of the winding numbers
for the individual blocks to be non-zero, lest there can
be no zero-modes. To illustrate this, we show the PBC
and OBC spectra for a trivial (topological) pCS model in
Fig. 2(a) (Fig. 2(b)). In Fig. 2(c), we show an example
of a system with non-zero total winding. The randomly
generated topologically non-trivial toy model has been
constructed using blocks of the form

ank = c+ deink, (6)

where c and d are complex numbers satisfying |c| < |d|.
This requirement ensures that it traces out a path en-
circling the origin of the complex plane. Conversely, we
constructed the topologically trivial model by inverting
the inequality. In either case, Eq. (6) corresponds to an
onsite term and an nth-order hopping between sites. We
generated random c and d for each block. For the topo-
logical phase, we first sampled the modulus of d from the
unit interval, then we sampled the modulus of c from the

interval [0, |d|]. The phases for each were then sampled
from the interval [−π, π]. All sampling was done with
uniform distributions.

Note that in all of the plots in Fig. 2, the open-
boundary spectrum is extremely sensitive to numeri-
cal precision so the specific points in the plotted open-
boundary spectra are more suggestive than quantitative.
However, we only care about it being confined within the
area bounded by the periodic-boundary spectrum, which
is always true, so the exact values are not important in
this context. The example systems generated here all
have spectra that separate into isolated islands, like in
the conventional AIII case. However, it is also possible
to construct models where the spectrum wraps around
the zero-point but such that the total winding remains
zero. We present an example of this in App. B. This
makes the fact that we are dealing with point-gap spec-
tra all the more obvious.

As per similar logic as for the skin modes,
W0(aj+1,j(k)) tells us how many zero-energy right eigen-
states of the jth chiral flavor we have on which side [23].
Simultaneously, it also tells us that we have the same
number of zero-energy left eigenstates of the (j + 1)th
flavor on the opposite edge. It is this imbalance between
left and right eigenvectors and which end they localize on
that give rise to a non-trivial BBC. To touch base with
something familiar again, we mention that for p = 2, it
is guaranteed that there are the same amount of left and
right eigenstates of the same flavor at either side but with
the flavor of one edge being opposite to that of the other.
The BBC thus remains unaltered for p = 2 even when
the system is non-Hermitian. We further note that in
the Hermitian case, the constraint a2,1 = a†1,2 guarantees
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that the total winding is zero. Indeed, conventionally,
the topological classification for AIII in Hermitian sys-
tems is Z whereas it is Z2 in the non-Hermitian case [13],
since the winding number of the two blocks become in-
dependent. This classification can then immediately be
extended to pCS where it is given by Zp.

The topological phase for pCS systems with vanish-
ing total winding number is then uniquely determined
by p−1 winding numbers, since the pth winding number
follows from the aforementioned constraint (the topolog-
ical classification is accordingly reduced to Zp−1 much
like how Z2 becomes Z for conventional AIII when we go
from non-Hermitian to Hermitian). In other words, the
topological invariant now becomes a vector

W =
(
W0(a2,1) W0(a3,2) . . . W0(ap,p−1) W0(a1,p)

)
,

(7)
where we include all p winding numbers for later conve-
nience. We remark that this is still consistent with the
conventional chiral symmetry, where the topological in-
variant is given by the winding of the upper off-diagonal
block.

A difference from the Hermitian case, however, is
that transitioning between different zero-total-winding
(ZTW) phases requires us to change at least two winding
numbers, which means that ZTW phases are in general
separated by gapless phases, where, again, the gapless-
ness is defined in terms of the presence of skin modes.
This means that in a system where the ZTW spectrum
consists of separate islands, the phase transition leads to
a transition in the topology of the spectrum as well: as
the winding of one block changes, the overall winding be-
comes non-zero, and we must have at least one spectral
band wrapping around zero energy like in Fig. 2(c). This
transition between separate islands and one single band
happens when the band islands meet and connect at zero
energy at the point in parameter space where one block
changes winding number. Then as another block changes
to a winding number such that the overall winding is zero
again, the same procedure happens in reverse. Of course,
from this perspective, phase changes for the Hermitian
case actually also correspond to changing two winding
numbers, but here imposing Hermiticity ensures that the
two winding numbers are always opposite to each other.

As a last point of this section, we mention that in
the case of a composite p = mn for some integers m
and n, one can consider breaking pCS into a lower mCS
corresponding to the operator Cn

p . This operator does
not distinguish between the original p-chiral charges la-
beled by {r + lm}l=0,1,...,n−1, where 0 ≤ r < m. If
we broke the pCS down to a mCS without closing the
gap, the components of the new vector Wm is given by
(Wm)r =

∑
l(W)r+lm.

Figure 3: Sweet-spot model with W = (2, 2,−1,−3).
Each row corresponds to a chiral flavor {ωj

4}j=0,1,2,3given
by the labels on the left. The black sites are part of
the closed loops in the boundary. The blue (red) arrows
correspond to incomplete loops, i.e. open chains, on the
left (right) edge of the chain. Each open chain gives
rise to a non-trivial Jordan block with dimensions given
by the number of sites (green for left side, orange for
right side) in said open chain. The blue and red sites
correspond to one-dimensional Jordan blocks.

IV. THE BULK-BOUNDARY
CORRESPONDENCE

Conventionally, there is an immediate relationship be-
tween the topological invariant derived from a PBC cal-
culation and the boundary modes of the corresponding
OBC system. The BBC for one-dimensional chains states
that the magnitude of the topological invariant (for which
zero corresponds to the trivial phase) equals the number
of topological boundary modes at both ends of the open
chain. Based on our previous observation that we need
all chiralities present to gap out zero modes, and the fact
that we now have a vector of invariants to describe the
overall topological phase of the system, the BBC needs
some revisions.

Perhaps the easiest way to understand the relationship
between the vector invariant and the boundary behavior
is to consider a so-called “sweet spot” model for which
the PBC version merely amounts to

aj+1,j(k) = einjk, ∀j, nj ∈ Z (8)

where {nj}j=1,...,p are the winding numbers, and thus
the ZTW requirement simply means

∑
j nj = 0. In real

space, eink translates to a hopping term of length |n| in
the sgn(n) direction. As illustrated in Fig. 3, the ZTW
condition implies that when we draw the hopping terms
between different sites, it forms closed loops in the bulk,
and open chains and isolated sites at the edges.

Computing the chiral charge in a non-Hermitian finite-
chain setting is perhaps most straightforwardly done us-
ing the formalism of biorthogonal quantum mechanics
[26, 27], where we must employ both left and right eigen-
vectors to compute expectation values. For our purposes,
we are interested in the quantity

Qσ(n) = Tr
[
V †PnPσU

]
, (9)
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which counts the total charge of the chiral flavor ωn
p at

the edge labeled by σ = left/right. Here, U (V ) contains
the right (left) eigenvectors spanning the zero-energy sub-
space, and Pn and Pσ are the projectors to the ωn

p and
σ edge (the half of the chain containing the σ edge) sub-
spaces, respectively. In App. C, we show how it is suffi-
cient to treat all sites at the edge that are not part of a
complete loop as contributing to the boundary charge.

As a concrete example, let us consider a system with
W = (2, 2,−1,−3) – we choose this example as it cap-
tures several of the new features not present in conven-
tional chiral systems. Counting sites that are not part of
the closed loop in Fig. 3 suggests that Qleft = (0, 2, 4, 3),
and Qright = (4, 2, 0, 1). Indeed, for a non-sweet-spot
model with the same W – again constructed in the same
way as the models used for Fig. 2 – we can numeri-
cally confirm these conclusions; in Fig. 4(a), we show the
gapped PBC and OBC spectra for the non-sweet-spot
toy model, and in Fig. 4(b) the logarithm of the modulus
of the spatial charge distributions for each chiral flavor
for the same model. The charge distribution is calcu-
lated by replacing Pσ in Eq. (9) with a projector to a
specific site. Note that this quantity is not real, which is
why we only plot the modulus. It only becomes real – or
rather the imaginary part becomes exponentially small
– once we sum over the sites of half a chain. As we can
see from the nearly linear slopes, the charge distributions
are exponentially localized to each end. In Fig. 4(c), we
calculate the moduli of the cumulative sums and collect
them into a vector

(cumsum(Q(n)))m =

m∑
j=1

Tr
[
V †PnPjU

]
(10)

for each flavor. Here m is the index for the site in ques-
tion, and Pj is the projector to the jth site. This provides
a clearer picture of how many charges of each flavor is lo-
calized to which edge of the chain.

More generally, the boundary charges (see App. D for
the derivation) can be computed from the winding num-
bers as follows:

1. Define a vector Q, where the elements are the cu-
mulative sums of the elements of W but cyclically
permuted so that (Q)1 =

∑p
j=1 Wj = 0.

2. Qleft = −min(Q) +Q.

3. Qright = max(Q)−Q.

The total charge of each flavor is given by Qtot =
max(Q) − min(Q), which can be larger than max(W).
For p = 2 and p = 3, the inequality is saturated, so that
Qtot = max(W), implying that a strict inequality Qtot >
max(W) which can only happen for p > 3, marks a clear
deviation from the conventional chiral insulator. Indeed,
looking back at our example of W = (2, 2,−1,−3), we
see that there are four of each flavor, which is more than
the highest winding | − 3|.

Given that p = 4 is a composite number, we can break
the symmetry down to a p = 2 symmetry as we men-
tioned in the final paragraph of the previous section. In
this case, the old chiral flavors combine into the new fla-
vors according to (1,−1) → 1 and (i,−i) → −1. In that
case, the stable boundary charge would simply be the re-
maining charge of whichever flavor had the highest charge
once we have paired up as many 1 and −1 as possible on
a particular edge. For example, on the left edge, we have
0+4 = 4 charges of the new 1 flavor, and 2+3 = 5 of the
new −1 flavor. The boundary charge would thus have
one charge of the −1 flavor on the left edge (and con-
sequently one charge of the 1 flavor on the right edge)
when we take the system to only have p = 2 symmetry.
For a more general discussion on this, see App. E.

Also worth mentioning is that the same set of wind-
ing numbers arranged in a different order would yield
a completely different charge distribution at the edges;
for example, W = (2,−1, 2,−3) would only have three
charges in total for each chiral flavor.

Another novel feature not present in p = 2 is the non-
diagonalizability of the Hamiltonian for certain choices
of W. Any choice where the corresponding sweet-spot
Hamiltonian has broken loops corresponding to Jordan
matrices like in Fig. 3 will be non-diagonalizable in the
semi-infinite setup. This follows from the observation
that the number of left- and right eigenstates for each
flavor at each edge is topologically protected by the
winding numbers. In App. C, it is also argued that
non-diagonalizability does not affect the conclusions re-
garding the BBC. So in semi-infinite chains, this non-
diagonalizability is topologically protected, and suggests
that it is not sufficient to look at only eigenvectors
when studying topology, but rather the zero-energy sub-
space which also contains generalized eigenvectors of rank
higher than one. However, any finite OBC chain will re-
main diagonalizable as the states localized at the two
edges of the chain will have a finite overlap such that
one can always find a proper biorthogonal basis unless
fine-tuned to a sweet spot.

V. DISCUSSION

In this work, we have studied the topology of systems
with a generalized chiral symmetry. The symmetry is an
extension of the Bernard-LeClair symmetry classification
and can be seen as an additional axis for the periodic ta-
ble of topological phases labeled by integers p. A notable
new feature is that the topological phase is specified by
a vector of winding numbers rather than a single integer.
In one dimension, we saw that the BBC is modified in a
non-trivial way such that there now is an unequal number
of topological zero-energy states at each chain end, and
the largest charge of a given chiral flavor at an edge can
exceed the largest winding number in the aforementioned
vector. Furthermore, we saw that the topological phase
generally corresponds to a non-diagonalizable Hamilto-
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Figure 4: (a) The periodic- and open-boundary spectra for a system with W = (2, 2,−1,−3) plotted with blue lines
and black dots, respectively. The zero energy states are highlighted in red. The energies are normalized such that
the largest modulus is set to one. The length of the open chain is 100 sites. (b) The logarithm of the modulus of
the charge distribution for each flavor {ωn

4 }n = {1, i,−1,−i}. The charge distributions are calculated using Eq. (9)
but where for each site the projector Pσ is replaced by a projector to that site. (c) The modulus of the cumulative
sums (starting from the left side) of the charge distribution. From here, we can see how much of each chiral flavor is
located at either side of the chain.

nian in the case of a semi-infinite chain, with the impli-
cation that the zero-energy space as a whole rather than
only the set of zero-energy eigenvectors is topologically
relevant.

The obvious next question theory-wise is what happens
in higher dimensions; as seen in App. A, the relation be-
tween the overall winding number and the winding num-
ber of the subblocks holds true in all odd dimensions,
which is highly suggestive of there being related pCS
phases lurking there. However, the presence/absence of
skin modes is no longer merely determined by the overall
winding number, but also by weak invariants [22–24], so
extra care needs to be taken. It is also expected that the
BBC must be revised, and the nature of the topological
modes would most likely no longer be simple Dirac-type
cones.

With current technology pCS could be implemented
in acoustic [28] or photonic systems [17, 29–31] – in-
deed, in [17] they realized a gapless version of a pCS
chain using photonic rings. One could also construct an
electric circuits with a Laplacian that mimics the non-
Hermitian Hamiltonian through the appropriate combi-
nation of electric components [32–36].
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Appendix A: Winding Numbers

Even though we are only considering one-dimensional
systems in this work, we show here that the total winding
number is always a sum of the individual blocks in all odd
dimensions. The (2n + 1)-dimensional spectral winding
number around zero is given by [37, 38]

W2n+1(Hk) =
(−1)nn!

(2n+ 1)!

(
i

2π

)n

εα1...α2n+1×
ˆ
BZ

Tr
[
H−1

k (∂α1Hk) . . . H
−1
k

(
∂α2n+1Hk

)]
d2n+1k.

(A1)

We observe that the above formula only contains prod-
ucts of the form H−1∂H. Calculating such a product for
the Hamiltonian in Eq. (3), gives us

H−1
k ∂αHk =

diag
[
a−1
2,1∂αa2,1, . . . ,a

−1
p,p−1∂αap,p−1,a

−1
1,p∂αa1,p

]
,

(A2)

which means that any products of such terms will remain
block diagonal, and when we finally perform the trace,
it can be achieved by summing the traces of all the indi-
vidual blocks together.

Appendix B: Constructing Non-Island Toy Models

The toy model used in the main text can only give
band islands, meaning the spectra will separate into in-
dividual bands. This is more directly connected to the
conventional Hermitian AIII case, since it consists of two
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Figure 5: A randomly generated example of a 3-CS sys-
tem with a periodic-boundary spectrum not given by iso-
lated islands. The blue lines are the periodic-boundary
spectrum, the black points are the open-boundary ener-
gies, with the exception that the zero-energy eigenvalue
is colored in red. The number of sites in the open system
is 100. The energies have been rescaled such that the
largest energy modulus is set to one.

band islands lying on the real line that are mapped to
each other via the chiral operator. However, for non-
Hermitian systems, this island picture is not a necessary
feature, and we can, in fact, also conjure up models where
we, for example, have two bands circling the origin but in
opposite directions such that the overall winding remains
zero. This can be achieved by starting from a block

a0(k) =

(
a11e

ik a12
a21 a22e

−ik

)
. (B1)

When the off-diagonal terms are zero, the matrix de-
couples into two blocks with opposite winding. We can
then construct the remaining blocks using for example
the template

amn(k) =

(
A11e

imk A12

A21 A22e
ink

)
, (B2)

where the winding is m + n as long as |A12A21| <
|A11A22|. This can be confirmed by a direct calcula-
tion of the winding number using Eq. (5). We provide
an illustrative example in Fig. 5, where we have a ran-
domly generated 3-CS model with W = (1,−1, 0) (with
(m1, n1) = (2,−1) and (m2, n2) = (−2, 1) for the re-
spective two blocks that are not a0) where the spectrum
wraps around the origin, and the OBC modes are con-
fined to be within the annulus with the two PBC bands
as its borders. The sampling is done using the following

steps: first we find |A12A21| and |A11A22| in the same
way as outlined for |c| and |d| in the main text. Then we
define |A12| = r|A12A21| and |A21| = |A12A21|/r using a
uniformly sampled r from [0.5, 2]. Then we sample the
phases from [−π, π] as before. An identical procedure is
performed on the diagonal terms. As expected, we still
have topological zero modes at the edges.

Appendix C: Bulk-Boundary Correspondence

Here we will show that the chiral charge Eq. (9) is pre-
served at the edge of a semi-infinite chain. In the semi-
infinite case, the Hamiltonian is not necessarily diago-
nalizable, so the zero-energy subspace consists not only
of eigenstates, but also of higher-order eigenstates (i.e.
eigenstates of powers of the Hamiltonian). To calculate
the nth chiral charge at time t, we must then look at the
expression

Q(n, t) = Tr
[
V (t)†PnU(t)

]
= Tr

[
V †eiHtPne

−iHtU)
]
,

(C1)

where

Pn =

∏
q ̸=n

(
ωq
p − Cp

)∏
r ̸=n

(
ωr
p − ωn

p

) (C2)

is the projector to the nth chiral-charge sector, and U
and V are matrices containing the right and left (includ-
ing higher order) zero-energy eigenvectors, respectively.
Note that they are all eigenvectors of the chiral operator.

We insert I = U(t)V (t)† between all the terms in the
product of Eq. (C2). For each term, we get

V (t)†
(
ωq
p − Cp

)
U(t) = ωq

p − V †eiHtCpe
−iHtU

= ωq
p − V †eiHte−iωpHtCpU

= ωq
p − V †eiHt(1−ωp)UD

= ωq
p − eiJt(1−ωp)D,

(C3)

where D is a diagonal matrix containing the eigenvalues
of the vectors in U with respect to the chiral operator
(CpU = UD). We have denoted the Jordan normal form
of the zero-energy subspace of the Hamiltonian by J .
This matrix can be further decomposed into one zero-
matrix 0 corresponding to all the one-dimensional Jor-
dan blocks, and another one J1 containing the Jordan
blocks of higher dimension. Since J = 0 ⊕ J1, we can
treat them independently. For 0, the exponent reduces
to an identity matrix and we straightforwardly obtain the
number of chiral charges with flavor n in that sector of
the zero-energy subspace. For J1, the story is essentially
the same, but we must further note that eiJ1t(1−ωp) con-
tains a finite number of terms in its series expansion, but
only the zeroth order term – the identity matrix – lies on
the diagonal. The rest of the non-zero terms lie above
the diagonal. This means that once we multiply all the
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terms together and take the trace, only the zeroth-order
terms survive, so the conclusions are the same as that of
0. Putting it all together, we get

Q(n, t) = Q(n, 0). (C4)

This means that although higher-order eigenvectors
will move away from being chiral eigenvectors, the to-
tal charge of any particular flavor is preserved. This may
seem paradoxical, but it can be understood by remem-
bering that the higher-order left and right eigenvectors
move in “opposite” directions: one evolves into higher
chiral flavors corresponding to higher powers of ωp, while
the other evolves into lower flavors with their only overlap
lying in the original flavor sector.

Appendix D: Deriving the Chiral Charge
Distribution

To determine the charge of each flavor on a given
boundary of the 1-D system, we focus on the sweet-spot
case as explained in the main text. To make the discus-
sion clearer, we use the sublattice picture for the different
flavors and adjust our language accordingly. The wind-
ing number W(aj+1,j) associated with the j + 1 and j
sublattices determines the relative position of the site in
the (j + 1)th sublattice with respect to the position of
a site in the jth sublattice to which the former site is
connected through the hopping term in the Hamiltonian.
For example, site x of the jth sublattice connects to the
site x + 2 in the (j + 1)th sublattice if W(aj+1,j) = 2.
Because the existence of a point gap at zero energy re-
quires the sum of all winding numbers to be zero, and
each winding number equals the relative position trans-
lation, all such hoppings between sublattices form closed
loops in the bulk. The presence of a boundary then cuts
some of these loops, leaving behind isolated sites and
open chains. These contribute to the boundary charges.
Again, keep Fig. 3 in the main text in mind throughout
this discussion.

All loops in the bulk have the same shape as deter-
mined by the vector invariant in Eq. (7). Consequently,
the number of sites not belonging to a complete loop on
the left boundary of a given sublattice equals the number
of sites to the left of the first site in that sublattice that is
a member of a complete loop. In other words, the charge
number on the left boundary of that flavor is determined
by the relative position of a site in that sublattice with
respect to the left-most site of the closest complete loop.
For the right edge, we can make analogous statements.

To explicitly determine the left-side boundary charges
for a given W, we begin by denoting the position of the
first flavor in the left-most complete loop by (X)1 ≡ x.
The positions of the remaining p − 1 flavors in the loop
are then given by a vector of cumulative sums (X)n>1 ≡
x +

∑n−1
j=1 (W)j . The left-most position of the loop is

then

min
n

{(X)n} = x+min
n


n∑

j=1

(W)j

 ≡ x+m. (D1)

The left-most position of the left-most loop must coincide
with the left boundary, so x+m = 0, or x = −m. Then
the positions – and hence the total left-boundary charge
– of a given flavor is simply given by

Qleft =

−m,−m+W1, · · · ,−m+

p−1∑
j=1

Wj


≡ −min (Q) +Q,

(D2)

where in the last line we have introduced the notation of
the main text. For the right charges, we can do a similar
analysis, using the maximum instead of the minimum.

Appendix E: Boundary Charges when Reducing the
Symmetry of Composite p

For a pCS system with composite p = mn, where
m,n ∈ N\{1}, we can break the pCS symmetry down
into a reduced mCS. This means that the original p chi-
ral flavors are grouped such that we are left with m fla-
vors. In this appendix, we will see how to calculate the
number of boundary charges for the new flavors in terms
of the charges for the old flavors. We will only do the left
boundary as the right boundary can be calculated in an
analogous way.

We saw that breaking the symmetry into a smaller
mCS leads to replacing the original vector invariant W
of length p to one of length m with the components

(Wm)r =

n−1∑
l=0

(W)r+lm . (E1)

We consider only the left boundary, as the right boundary
can be done in an analogous way. Following the recipe
for calculating the boundary charges as outlined in the
main text and derived in App. D, the new Q vector –
denoted here by Qm – is given by

(Qm)s>1 =

s−1∑
r=1

(Wm)r =

s−1∑
r=1

n−1∑
l=0

(W)r+lm

=

s−1∑
r=1

n−1∑
l=0

[
(Q)r+1+lm − (Q)r+lm

]
=

s−1∑
r=1

n−1∑
l=0

[
(QL)r+1+lm − (QL)r+lm

]
=

n−1∑
l=0

[
(QL)s+lm − (QL)1+lm

]
,

(E2)
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where we have introduced the original pCS Q vector,
and then rewritten the difference in terms of the cor-
responding left-boundary charge vector QL. The new
left-boundary charges are then Qm

L = −min(Qm)+Qm,
or more explicitly:

(Qm
L )s = −min

s

(
n−1∑
l=0

(QL)s+lm

)
+

n−1∑
l=0

(QL)s+lm . (E3)

This implies that the left-boundary charges are simply

given by first summing together the charges of all the
old flavors that now belong the same new flavor, and
then subtracting the smallest of these sums. This can
be understood by remembering that we can move away
charges from zero energy without breaking the symmetry
only if we combine states corresponding to a complete
set of flavors. This means that if we have all m flavors at
a boundary, we can remove as many charges from each
flavor as there are complete m-tuplets. The number of
complete m-tuplets equals the smallest charge number
among the flavors.
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